mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Subscribers: llvm-commits Differential Revision: http://reviews.llvm.org/D7482 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228500 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1099 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1099 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs various transformations related to eliminating memcpy
 | 
						|
// calls, or transforming sets of stores into memset's.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <list>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "memcpyopt"
 | 
						|
 | 
						|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | 
						|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | 
						|
STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | 
						|
STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
 | 
						|
 | 
						|
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
 | 
						|
                                  bool &VariableIdxFound, const DataLayout &TD){
 | 
						|
  // Skip over the first indices.
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | 
						|
    /*skip along*/;
 | 
						|
 | 
						|
  // Compute the offset implied by the rest of the indices.
 | 
						|
  int64_t Offset = 0;
 | 
						|
  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | 
						|
    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | 
						|
    if (!OpC)
 | 
						|
      return VariableIdxFound = true;
 | 
						|
    if (OpC->isZero()) continue;  // No offset.
 | 
						|
 | 
						|
    // Handle struct indices, which add their field offset to the pointer.
 | 
						|
    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | 
						|
      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we have a sequential type like an array or vector.  Multiply
 | 
						|
    // the index by the ElementSize.
 | 
						|
    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | 
						|
    Offset += Size*OpC->getSExtValue();
 | 
						|
  }
 | 
						|
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
 | 
						|
/// constant offset, and return that constant offset.  For example, Ptr1 might
 | 
						|
/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
 | 
						|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | 
						|
                            const DataLayout &TD) {
 | 
						|
  Ptr1 = Ptr1->stripPointerCasts();
 | 
						|
  Ptr2 = Ptr2->stripPointerCasts();
 | 
						|
 | 
						|
  // Handle the trivial case first.
 | 
						|
  if (Ptr1 == Ptr2) {
 | 
						|
    Offset = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
 | 
						|
  GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
 | 
						|
 | 
						|
  bool VariableIdxFound = false;
 | 
						|
 | 
						|
  // If one pointer is a GEP and the other isn't, then see if the GEP is a
 | 
						|
  // constant offset from the base, as in "P" and "gep P, 1".
 | 
						|
  if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
 | 
						|
    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
 | 
						|
    return !VariableIdxFound;
 | 
						|
  }
 | 
						|
 | 
						|
  if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
 | 
						|
    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
 | 
						|
    return !VariableIdxFound;
 | 
						|
  }
 | 
						|
 | 
						|
  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | 
						|
  // base.  After that base, they may have some number of common (and
 | 
						|
  // potentially variable) indices.  After that they handle some constant
 | 
						|
  // offset, which determines their offset from each other.  At this point, we
 | 
						|
  // handle no other case.
 | 
						|
  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip any common indices and track the GEP types.
 | 
						|
  unsigned Idx = 1;
 | 
						|
  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | 
						|
    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | 
						|
      break;
 | 
						|
 | 
						|
  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
 | 
						|
  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
 | 
						|
  if (VariableIdxFound) return false;
 | 
						|
 | 
						|
  Offset = Offset2-Offset1;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
 | 
						|
/// This allows us to analyze stores like:
 | 
						|
///   store 0 -> P+1
 | 
						|
///   store 0 -> P+0
 | 
						|
///   store 0 -> P+3
 | 
						|
///   store 0 -> P+2
 | 
						|
/// which sometimes happens with stores to arrays of structs etc.  When we see
 | 
						|
/// the first store, we make a range [1, 2).  The second store extends the range
 | 
						|
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | 
						|
/// two ranges into [0, 3) which is memset'able.
 | 
						|
namespace {
 | 
						|
struct MemsetRange {
 | 
						|
  // Start/End - A semi range that describes the span that this range covers.
 | 
						|
  // The range is closed at the start and open at the end: [Start, End).
 | 
						|
  int64_t Start, End;
 | 
						|
 | 
						|
  /// StartPtr - The getelementptr instruction that points to the start of the
 | 
						|
  /// range.
 | 
						|
  Value *StartPtr;
 | 
						|
 | 
						|
  /// Alignment - The known alignment of the first store.
 | 
						|
  unsigned Alignment;
 | 
						|
 | 
						|
  /// TheStores - The actual stores that make up this range.
 | 
						|
  SmallVector<Instruction*, 16> TheStores;
 | 
						|
 | 
						|
  bool isProfitableToUseMemset(const DataLayout &TD) const;
 | 
						|
 | 
						|
};
 | 
						|
} // end anon namespace
 | 
						|
 | 
						|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
 | 
						|
  // If we found more than 4 stores to merge or 16 bytes, use memset.
 | 
						|
  if (TheStores.size() >= 4 || End-Start >= 16) return true;
 | 
						|
 | 
						|
  // If there is nothing to merge, don't do anything.
 | 
						|
  if (TheStores.size() < 2) return false;
 | 
						|
 | 
						|
  // If any of the stores are a memset, then it is always good to extend the
 | 
						|
  // memset.
 | 
						|
  for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
 | 
						|
    if (!isa<StoreInst>(TheStores[i]))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Assume that the code generator is capable of merging pairs of stores
 | 
						|
  // together if it wants to.
 | 
						|
  if (TheStores.size() == 2) return false;
 | 
						|
 | 
						|
  // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | 
						|
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | 
						|
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | 
						|
  // memset will be split into 2 32-bit stores anyway) and doing so can
 | 
						|
  // pessimize the llvm optimizer.
 | 
						|
  //
 | 
						|
  // Since we don't have perfect knowledge here, make some assumptions: assume
 | 
						|
  // the maximum GPR width is the same size as the largest legal integer
 | 
						|
  // size. If so, check to see whether we will end up actually reducing the
 | 
						|
  // number of stores used.
 | 
						|
  unsigned Bytes = unsigned(End-Start);
 | 
						|
  unsigned MaxIntSize = TD.getLargestLegalIntTypeSize();
 | 
						|
  if (MaxIntSize == 0)
 | 
						|
    MaxIntSize = 1;
 | 
						|
  unsigned NumPointerStores = Bytes / MaxIntSize;
 | 
						|
 | 
						|
  // Assume the remaining bytes if any are done a byte at a time.
 | 
						|
  unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
 | 
						|
 | 
						|
  // If we will reduce the # stores (according to this heuristic), do the
 | 
						|
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | 
						|
  // etc.
 | 
						|
  return TheStores.size() > NumPointerStores+NumByteStores;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
class MemsetRanges {
 | 
						|
  /// Ranges - A sorted list of the memset ranges.  We use std::list here
 | 
						|
  /// because each element is relatively large and expensive to copy.
 | 
						|
  std::list<MemsetRange> Ranges;
 | 
						|
  typedef std::list<MemsetRange>::iterator range_iterator;
 | 
						|
  const DataLayout &DL;
 | 
						|
public:
 | 
						|
  MemsetRanges(const DataLayout &DL) : DL(DL) {}
 | 
						|
 | 
						|
  typedef std::list<MemsetRange>::const_iterator const_iterator;
 | 
						|
  const_iterator begin() const { return Ranges.begin(); }
 | 
						|
  const_iterator end() const { return Ranges.end(); }
 | 
						|
  bool empty() const { return Ranges.empty(); }
 | 
						|
 | 
						|
  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
      addStore(OffsetFromFirst, SI);
 | 
						|
    else
 | 
						|
      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
 | 
						|
  }
 | 
						|
 | 
						|
  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
 | 
						|
    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
 | 
						|
    addRange(OffsetFromFirst, StoreSize,
 | 
						|
             SI->getPointerOperand(), SI->getAlignment(), SI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
 | 
						|
    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | 
						|
    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
 | 
						|
  }
 | 
						|
 | 
						|
  void addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                unsigned Alignment, Instruction *Inst);
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
} // end anon namespace
 | 
						|
 | 
						|
 | 
						|
/// addRange - Add a new store to the MemsetRanges data structure.  This adds a
 | 
						|
/// new range for the specified store at the specified offset, merging into
 | 
						|
/// existing ranges as appropriate.
 | 
						|
///
 | 
						|
/// Do a linear search of the ranges to see if this can be joined and/or to
 | 
						|
/// find the insertion point in the list.  We keep the ranges sorted for
 | 
						|
/// simplicity here.  This is a linear search of a linked list, which is ugly,
 | 
						|
/// however the number of ranges is limited, so this won't get crazy slow.
 | 
						|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
 | 
						|
                            unsigned Alignment, Instruction *Inst) {
 | 
						|
  int64_t End = Start+Size;
 | 
						|
  range_iterator I = Ranges.begin(), E = Ranges.end();
 | 
						|
 | 
						|
  while (I != E && Start > I->End)
 | 
						|
    ++I;
 | 
						|
 | 
						|
  // We now know that I == E, in which case we didn't find anything to merge
 | 
						|
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | 
						|
  // to insert a new range.  Handle this now.
 | 
						|
  if (I == E || End < I->Start) {
 | 
						|
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | 
						|
    R.Start        = Start;
 | 
						|
    R.End          = End;
 | 
						|
    R.StartPtr     = Ptr;
 | 
						|
    R.Alignment    = Alignment;
 | 
						|
    R.TheStores.push_back(Inst);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This store overlaps with I, add it.
 | 
						|
  I->TheStores.push_back(Inst);
 | 
						|
 | 
						|
  // At this point, we may have an interval that completely contains our store.
 | 
						|
  // If so, just add it to the interval and return.
 | 
						|
  if (I->Start <= Start && I->End >= End)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | 
						|
  // but is not entirely contained within the range.
 | 
						|
 | 
						|
  // See if the range extends the start of the range.  In this case, it couldn't
 | 
						|
  // possibly cause it to join the prior range, because otherwise we would have
 | 
						|
  // stopped on *it*.
 | 
						|
  if (Start < I->Start) {
 | 
						|
    I->Start = Start;
 | 
						|
    I->StartPtr = Ptr;
 | 
						|
    I->Alignment = Alignment;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | 
						|
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | 
						|
  // End.
 | 
						|
  if (End > I->End) {
 | 
						|
    I->End = End;
 | 
						|
    range_iterator NextI = I;
 | 
						|
    while (++NextI != E && End >= NextI->Start) {
 | 
						|
      // Merge the range in.
 | 
						|
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | 
						|
      if (NextI->End > I->End)
 | 
						|
        I->End = NextI->End;
 | 
						|
      Ranges.erase(NextI);
 | 
						|
      NextI = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         MemCpyOpt Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class MemCpyOpt : public FunctionPass {
 | 
						|
    MemoryDependenceAnalysis *MD;
 | 
						|
    TargetLibraryInfo *TLI;
 | 
						|
    const DataLayout *DL;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    MemCpyOpt() : FunctionPass(ID) {
 | 
						|
      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
 | 
						|
      MD = nullptr;
 | 
						|
      TLI = nullptr;
 | 
						|
      DL = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    // This transformation requires dominator postdominator info
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequired<AssumptionCacheTracker>();
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<MemoryDependenceAnalysis>();
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
      AU.addPreserved<AliasAnalysis>();
 | 
						|
      AU.addPreserved<MemoryDependenceAnalysis>();
 | 
						|
    }
 | 
						|
 | 
						|
    // Helper fuctions
 | 
						|
    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
 | 
						|
    bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
 | 
						|
    bool processMemCpy(MemCpyInst *M);
 | 
						|
    bool processMemMove(MemMoveInst *M);
 | 
						|
    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
 | 
						|
                              uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
 | 
						|
    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
 | 
						|
                                       uint64_t MSize);
 | 
						|
    bool processByValArgument(CallSite CS, unsigned ArgNo);
 | 
						|
    Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
 | 
						|
                                      Value *ByteVal);
 | 
						|
 | 
						|
    bool iterateOnFunction(Function &F);
 | 
						|
  };
 | 
						|
 | 
						|
  char MemCpyOpt::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
// createMemCpyOptPass - The public interface to this file...
 | 
						|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
/// tryMergingIntoMemset - When scanning forward over instructions, we look for
 | 
						|
/// some other patterns to fold away.  In particular, this looks for stores to
 | 
						|
/// neighboring locations of memory.  If it sees enough consecutive ones, it
 | 
						|
/// attempts to merge them together into a memcpy/memset.
 | 
						|
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
 | 
						|
                                             Value *StartPtr, Value *ByteVal) {
 | 
						|
  if (!DL) return nullptr;
 | 
						|
 | 
						|
  // Okay, so we now have a single store that can be splatable.  Scan to find
 | 
						|
  // all subsequent stores of the same value to offset from the same pointer.
 | 
						|
  // Join these together into ranges, so we can decide whether contiguous blocks
 | 
						|
  // are stored.
 | 
						|
  MemsetRanges Ranges(*DL);
 | 
						|
 | 
						|
  BasicBlock::iterator BI = StartInst;
 | 
						|
  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | 
						|
    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
 | 
						|
      // If the instruction is readnone, ignore it, otherwise bail out.  We
 | 
						|
      // don't even allow readonly here because we don't want something like:
 | 
						|
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | 
						|
      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
 | 
						|
        break;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
 | 
						|
      // If this is a store, see if we can merge it in.
 | 
						|
      if (!NextStore->isSimple()) break;
 | 
						|
 | 
						|
      // Check to see if this stored value is of the same byte-splattable value.
 | 
						|
      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      int64_t Offset;
 | 
						|
      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
 | 
						|
                           Offset, *DL))
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addStore(Offset, NextStore);
 | 
						|
    } else {
 | 
						|
      MemSetInst *MSI = cast<MemSetInst>(BI);
 | 
						|
 | 
						|
      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
 | 
						|
          !isa<ConstantInt>(MSI->getLength()))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Check to see if this store is to a constant offset from the start ptr.
 | 
						|
      int64_t Offset;
 | 
						|
      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
 | 
						|
        break;
 | 
						|
 | 
						|
      Ranges.addMemSet(Offset, MSI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have no ranges, then we just had a single store with nothing that
 | 
						|
  // could be merged in.  This is a very common case of course.
 | 
						|
  if (Ranges.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we had at least one store that could be merged in, add the starting
 | 
						|
  // store as well.  We try to avoid this unless there is at least something
 | 
						|
  // interesting as a small compile-time optimization.
 | 
						|
  Ranges.addInst(0, StartInst);
 | 
						|
 | 
						|
  // If we create any memsets, we put it right before the first instruction that
 | 
						|
  // isn't part of the memset block.  This ensure that the memset is dominated
 | 
						|
  // by any addressing instruction needed by the start of the block.
 | 
						|
  IRBuilder<> Builder(BI);
 | 
						|
 | 
						|
  // Now that we have full information about ranges, loop over the ranges and
 | 
						|
  // emit memset's for anything big enough to be worthwhile.
 | 
						|
  Instruction *AMemSet = nullptr;
 | 
						|
  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const MemsetRange &Range = *I;
 | 
						|
 | 
						|
    if (Range.TheStores.size() == 1) continue;
 | 
						|
 | 
						|
    // If it is profitable to lower this range to memset, do so now.
 | 
						|
    if (!Range.isProfitableToUseMemset(*DL))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, we do want to transform this!  Create a new memset.
 | 
						|
    // Get the starting pointer of the block.
 | 
						|
    StartPtr = Range.StartPtr;
 | 
						|
 | 
						|
    // Determine alignment
 | 
						|
    unsigned Alignment = Range.Alignment;
 | 
						|
    if (Alignment == 0) {
 | 
						|
      Type *EltType =
 | 
						|
        cast<PointerType>(StartPtr->getType())->getElementType();
 | 
						|
      Alignment = DL->getABITypeAlignment(EltType);
 | 
						|
    }
 | 
						|
 | 
						|
    AMemSet =
 | 
						|
      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Replace stores:\n";
 | 
						|
          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
 | 
						|
            dbgs() << *Range.TheStores[i] << '\n';
 | 
						|
          dbgs() << "With: " << *AMemSet << '\n');
 | 
						|
 | 
						|
    if (!Range.TheStores.empty())
 | 
						|
      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
 | 
						|
 | 
						|
    // Zap all the stores.
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator
 | 
						|
         SI = Range.TheStores.begin(),
 | 
						|
         SE = Range.TheStores.end(); SI != SE; ++SI) {
 | 
						|
      MD->removeInstruction(*SI);
 | 
						|
      (*SI)->eraseFromParent();
 | 
						|
    }
 | 
						|
    ++NumMemSetInfer;
 | 
						|
  }
 | 
						|
 | 
						|
  return AMemSet;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | 
						|
  if (!SI->isSimple()) return false;
 | 
						|
 | 
						|
  if (!DL) return false;
 | 
						|
 | 
						|
  // Detect cases where we're performing call slot forwarding, but
 | 
						|
  // happen to be using a load-store pair to implement it, rather than
 | 
						|
  // a memcpy.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
 | 
						|
    if (LI->isSimple() && LI->hasOneUse() &&
 | 
						|
        LI->getParent() == SI->getParent()) {
 | 
						|
      MemDepResult ldep = MD->getDependency(LI);
 | 
						|
      CallInst *C = nullptr;
 | 
						|
      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
 | 
						|
        C = dyn_cast<CallInst>(ldep.getInst());
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        // Check that nothing touches the dest of the "copy" between
 | 
						|
        // the call and the store.
 | 
						|
        AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
        AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
 | 
						|
        for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
 | 
						|
                                  E = C; I != E; --I) {
 | 
						|
          if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
 | 
						|
            C = nullptr;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (C) {
 | 
						|
        unsigned storeAlign = SI->getAlignment();
 | 
						|
        if (!storeAlign)
 | 
						|
          storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
 | 
						|
        unsigned loadAlign = LI->getAlignment();
 | 
						|
        if (!loadAlign)
 | 
						|
          loadAlign = DL->getABITypeAlignment(LI->getType());
 | 
						|
 | 
						|
        bool changed = performCallSlotOptzn(LI,
 | 
						|
                        SI->getPointerOperand()->stripPointerCasts(),
 | 
						|
                        LI->getPointerOperand()->stripPointerCasts(),
 | 
						|
                        DL->getTypeStoreSize(SI->getOperand(0)->getType()),
 | 
						|
                        std::min(storeAlign, loadAlign), C);
 | 
						|
        if (changed) {
 | 
						|
          MD->removeInstruction(SI);
 | 
						|
          SI->eraseFromParent();
 | 
						|
          MD->removeInstruction(LI);
 | 
						|
          LI->eraseFromParent();
 | 
						|
          ++NumMemCpyInstr;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // There are two cases that are interesting for this code to handle: memcpy
 | 
						|
  // and memset.  Right now we only handle memset.
 | 
						|
 | 
						|
  // Ensure that the value being stored is something that can be memset'able a
 | 
						|
  // byte at a time like "0" or "-1" or any width, as well as things like
 | 
						|
  // 0xA0A0A0A0 and 0.0.
 | 
						|
  if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
 | 
						|
                                              ByteVal)) {
 | 
						|
      BBI = I;  // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
 | 
						|
  // See if there is another memset or store neighboring this memset which
 | 
						|
  // allows us to widen out the memset to do a single larger store.
 | 
						|
  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
 | 
						|
    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
 | 
						|
                                              MSI->getValue())) {
 | 
						|
      BBI = I;  // Don't invalidate iterator.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
 | 
						|
/// and checks for the possibility of a call slot optimization by having
 | 
						|
/// the call write its result directly into the destination of the memcpy.
 | 
						|
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
 | 
						|
                                     Value *cpyDest, Value *cpySrc,
 | 
						|
                                     uint64_t cpyLen, unsigned cpyAlign,
 | 
						|
                                     CallInst *C) {
 | 
						|
  // The general transformation to keep in mind is
 | 
						|
  //
 | 
						|
  //   call @func(..., src, ...)
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //
 | 
						|
  // ->
 | 
						|
  //
 | 
						|
  //   memcpy(dest, src, ...)
 | 
						|
  //   call @func(..., dest, ...)
 | 
						|
  //
 | 
						|
  // Since moving the memcpy is technically awkward, we additionally check that
 | 
						|
  // src only holds uninitialized values at the moment of the call, meaning that
 | 
						|
  // the memcpy can be discarded rather than moved.
 | 
						|
 | 
						|
  // Deliberately get the source and destination with bitcasts stripped away,
 | 
						|
  // because we'll need to do type comparisons based on the underlying type.
 | 
						|
  CallSite CS(C);
 | 
						|
 | 
						|
  // Require that src be an alloca.  This simplifies the reasoning considerably.
 | 
						|
  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | 
						|
  if (!srcAlloca)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that all of src is copied to dest.
 | 
						|
  if (!DL) return false;
 | 
						|
 | 
						|
  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | 
						|
  if (!srcArraySize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | 
						|
    srcArraySize->getZExtValue();
 | 
						|
 | 
						|
  if (cpyLen < srcSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that accessing the first srcSize bytes of dest will not cause a
 | 
						|
  // trap.  Otherwise the transform is invalid since it might cause a trap
 | 
						|
  // to occur earlier than it otherwise would.
 | 
						|
  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | 
						|
    // The destination is an alloca.  Check it is larger than srcSize.
 | 
						|
    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | 
						|
    if (!destArraySize)
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
 | 
						|
      destArraySize->getZExtValue();
 | 
						|
 | 
						|
    if (destSize < srcSize)
 | 
						|
      return false;
 | 
						|
  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | 
						|
    if (A->getDereferenceableBytes() < srcSize) {
 | 
						|
      // If the destination is an sret parameter then only accesses that are
 | 
						|
      // outside of the returned struct type can trap.
 | 
						|
      if (!A->hasStructRetAttr())
 | 
						|
        return false;
 | 
						|
 | 
						|
      Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | 
						|
      if (!StructTy->isSized()) {
 | 
						|
        // The call may never return and hence the copy-instruction may never
 | 
						|
        // be executed, and therefore it's not safe to say "the destination
 | 
						|
        // has at least <cpyLen> bytes, as implied by the copy-instruction",
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t destSize = DL->getTypeAllocSize(StructTy);
 | 
						|
      if (destSize < srcSize)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that dest points to memory that is at least as aligned as src.
 | 
						|
  unsigned srcAlign = srcAlloca->getAlignment();
 | 
						|
  if (!srcAlign)
 | 
						|
    srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
 | 
						|
  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
 | 
						|
  // If dest is not aligned enough and we can't increase its alignment then
 | 
						|
  // bail out.
 | 
						|
  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that src is not accessed except via the call and the memcpy.  This
 | 
						|
  // guarantees that it holds only undefined values when passed in (so the final
 | 
						|
  // memcpy can be dropped), that it is not read or written between the call and
 | 
						|
  // the memcpy, and that writing beyond the end of it is undefined.
 | 
						|
  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
 | 
						|
                                   srcAlloca->user_end());
 | 
						|
  while (!srcUseList.empty()) {
 | 
						|
    User *U = srcUseList.pop_back_val();
 | 
						|
 | 
						|
    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
 | 
						|
      if (!G->hasAllZeroIndices())
 | 
						|
        return false;
 | 
						|
 | 
						|
      for (User *UU : U->users())
 | 
						|
        srcUseList.push_back(UU);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
 | 
						|
      if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
          IT->getIntrinsicID() == Intrinsic::lifetime_end)
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (U != C && U != cpy)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that src isn't captured by the called function since the
 | 
						|
  // transformation can cause aliasing issues in that case.
 | 
						|
  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | 
						|
    if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Since we're changing the parameter to the callsite, we need to make sure
 | 
						|
  // that what would be the new parameter dominates the callsite.
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | 
						|
    if (!DT.dominates(cpyDestInst, C))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // In addition to knowing that the call does not access src in some
 | 
						|
  // unexpected manner, for example via a global, which we deduce from
 | 
						|
  // the use analysis, we also need to know that it does not sneakily
 | 
						|
  // access dest.  We rely on AA to figure this out for us.
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
 | 
						|
  // If necessary, perform additional analysis.
 | 
						|
  if (MR != AliasAnalysis::NoModRef)
 | 
						|
    MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
 | 
						|
  if (MR != AliasAnalysis::NoModRef)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // All the checks have passed, so do the transformation.
 | 
						|
  bool changedArgument = false;
 | 
						|
  for (unsigned i = 0; i < CS.arg_size(); ++i)
 | 
						|
    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | 
						|
      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
 | 
						|
        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | 
						|
                                      cpyDest->getName(), C);
 | 
						|
      changedArgument = true;
 | 
						|
      if (CS.getArgument(i)->getType() == Dest->getType())
 | 
						|
        CS.setArgument(i, Dest);
 | 
						|
      else
 | 
						|
        CS.setArgument(i, CastInst::CreatePointerCast(Dest,
 | 
						|
                          CS.getArgument(i)->getType(), Dest->getName(), C));
 | 
						|
    }
 | 
						|
 | 
						|
  if (!changedArgument)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the destination wasn't sufficiently aligned then increase its alignment.
 | 
						|
  if (!isDestSufficientlyAligned) {
 | 
						|
    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
 | 
						|
    cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Drop any cached information about the call, because we may have changed
 | 
						|
  // its dependence information by changing its parameter.
 | 
						|
  MD->removeInstruction(C);
 | 
						|
 | 
						|
  // Update AA metadata
 | 
						|
  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
 | 
						|
  // handled here, but combineMetadata doesn't support them yet
 | 
						|
  unsigned KnownIDs[] = {
 | 
						|
    LLVMContext::MD_tbaa,
 | 
						|
    LLVMContext::MD_alias_scope,
 | 
						|
    LLVMContext::MD_noalias,
 | 
						|
  };
 | 
						|
  combineMetadata(C, cpy, KnownIDs);
 | 
						|
 | 
						|
  // Remove the memcpy.
 | 
						|
  MD->removeInstruction(cpy);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
 | 
						|
/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
 | 
						|
/// copy from MDep's input if we can.  MSize is the size of M's copy.
 | 
						|
///
 | 
						|
bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
 | 
						|
                                              uint64_t MSize) {
 | 
						|
  // We can only transforms memcpy's where the dest of one is the source of the
 | 
						|
  // other.
 | 
						|
  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If dep instruction is reading from our current input, then it is a noop
 | 
						|
  // transfer and substituting the input won't change this instruction.  Just
 | 
						|
  // ignore the input and let someone else zap MDep.  This handles cases like:
 | 
						|
  //    memcpy(a <- a)
 | 
						|
  //    memcpy(b <- a)
 | 
						|
  if (M->getSource() == MDep->getSource())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Second, the length of the memcpy's must be the same, or the preceding one
 | 
						|
  // must be larger than the following one.
 | 
						|
  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the two
 | 
						|
  // transfers.  For example, in:
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    memcpy(c <- a)
 | 
						|
  // It would be invalid to transform the second memcpy into memcpy(c <- b).
 | 
						|
  //
 | 
						|
  // TODO: If the code between M and MDep is transparent to the destination "c",
 | 
						|
  // then we could still perform the xform by moving M up to the first memcpy.
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep =
 | 
						|
    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
 | 
						|
                                 false, M, M->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the dest of the second might alias the source of the first, then the
 | 
						|
  // source and dest might overlap.  We still want to eliminate the intermediate
 | 
						|
  // value, but we have to generate a memmove instead of memcpy.
 | 
						|
  bool UseMemMove = false;
 | 
						|
  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
 | 
						|
    UseMemMove = true;
 | 
						|
 | 
						|
  // If all checks passed, then we can transform M.
 | 
						|
 | 
						|
  // Make sure to use the lesser of the alignment of the source and the dest
 | 
						|
  // since we're changing where we're reading from, but don't want to increase
 | 
						|
  // the alignment past what can be read from or written to.
 | 
						|
  // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | 
						|
  // example we could be moving from movaps -> movq on x86.
 | 
						|
  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
 | 
						|
 | 
						|
  IRBuilder<> Builder(M);
 | 
						|
  if (UseMemMove)
 | 
						|
    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | 
						|
                          Align, M->isVolatile());
 | 
						|
  else
 | 
						|
    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | 
						|
                         Align, M->isVolatile());
 | 
						|
 | 
						|
  // Remove the instruction we're replacing.
 | 
						|
  MD->removeInstruction(M);
 | 
						|
  M->eraseFromParent();
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
 | 
						|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | 
						|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | 
						|
/// circumstances). This allows later passes to remove the first memcpy
 | 
						|
/// altogether.
 | 
						|
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
 | 
						|
  // We can only optimize non-volatile memcpy's.
 | 
						|
  if (M->isVolatile()) return false;
 | 
						|
 | 
						|
  // If the source and destination of the memcpy are the same, then zap it.
 | 
						|
  if (M->getSource() == M->getDest()) {
 | 
						|
    MD->removeInstruction(M);
 | 
						|
    M->eraseFromParent();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If copying from a constant, try to turn the memcpy into a memset.
 | 
						|
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
 | 
						|
        IRBuilder<> Builder(M);
 | 
						|
        Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
 | 
						|
                             M->getAlignment(), false);
 | 
						|
        MD->removeInstruction(M);
 | 
						|
        M->eraseFromParent();
 | 
						|
        ++NumCpyToSet;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
  // The optimizations after this point require the memcpy size.
 | 
						|
  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
 | 
						|
  if (!CopySize) return false;
 | 
						|
 | 
						|
  // The are three possible optimizations we can do for memcpy:
 | 
						|
  //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | 
						|
  //   b) call-memcpy xform for return slot optimization.
 | 
						|
  //   c) memcpy from freshly alloca'd space or space that has just started its
 | 
						|
  //      lifetime copies undefined data, and we can therefore eliminate the
 | 
						|
  //      memcpy in favor of the data that was already at the destination.
 | 
						|
  MemDepResult DepInfo = MD->getDependency(M);
 | 
						|
  if (DepInfo.isClobber()) {
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
 | 
						|
      if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
 | 
						|
                               CopySize->getZExtValue(), M->getAlignment(),
 | 
						|
                               C)) {
 | 
						|
        MD->removeInstruction(M);
 | 
						|
        M->eraseFromParent();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
 | 
						|
  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
 | 
						|
                                                         M, M->getParent());
 | 
						|
  if (SrcDepInfo.isClobber()) {
 | 
						|
    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
 | 
						|
      return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
 | 
						|
  } else if (SrcDepInfo.isDef()) {
 | 
						|
    Instruction *I = SrcDepInfo.getInst();
 | 
						|
    bool hasUndefContents = false;
 | 
						|
 | 
						|
    if (isa<AllocaInst>(I)) {
 | 
						|
      hasUndefContents = true;
 | 
						|
    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | 
						|
        if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | 
						|
          if (LTSize->getZExtValue() >= CopySize->getZExtValue())
 | 
						|
            hasUndefContents = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hasUndefContents) {
 | 
						|
      MD->removeInstruction(M);
 | 
						|
      M->eraseFromParent();
 | 
						|
      ++NumMemCpyInstr;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
 | 
						|
/// are guaranteed not to alias.
 | 
						|
bool MemCpyOpt::processMemMove(MemMoveInst *M) {
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  if (!TLI->has(LibFunc::memmove))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // See if the pointers alias.
 | 
						|
  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
 | 
						|
 | 
						|
  // If not, then we know we can transform this.
 | 
						|
  Module *Mod = M->getParent()->getParent()->getParent();
 | 
						|
  Type *ArgTys[3] = { M->getRawDest()->getType(),
 | 
						|
                      M->getRawSource()->getType(),
 | 
						|
                      M->getLength()->getType() };
 | 
						|
  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
 | 
						|
                                                 ArgTys));
 | 
						|
 | 
						|
  // MemDep may have over conservative information about this instruction, just
 | 
						|
  // conservatively flush it from the cache.
 | 
						|
  MD->removeInstruction(M);
 | 
						|
 | 
						|
  ++NumMoveToCpy;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processByValArgument - This is called on every byval argument in call sites.
 | 
						|
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
 | 
						|
  if (!DL) return false;
 | 
						|
 | 
						|
  // Find out what feeds this byval argument.
 | 
						|
  Value *ByValArg = CS.getArgument(ArgNo);
 | 
						|
  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
 | 
						|
  uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
 | 
						|
  MemDepResult DepInfo =
 | 
						|
    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
 | 
						|
                                 true, CS.getInstruction(),
 | 
						|
                                 CS.getInstruction()->getParent());
 | 
						|
  if (!DepInfo.isClobber())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
 | 
						|
  // a memcpy, see if we can byval from the source of the memcpy instead of the
 | 
						|
  // result.
 | 
						|
  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
 | 
						|
  if (!MDep || MDep->isVolatile() ||
 | 
						|
      ByValArg->stripPointerCasts() != MDep->getDest())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The length of the memcpy must be larger or equal to the size of the byval.
 | 
						|
  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | 
						|
  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the alignment of the byval.  If the call doesn't specify the alignment,
 | 
						|
  // then it is some target specific value that we can't know.
 | 
						|
  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
 | 
						|
  if (ByValAlign == 0) return false;
 | 
						|
 | 
						|
  // If it is greater than the memcpy, then we check to see if we can force the
 | 
						|
  // source of the memcpy to the alignment we need.  If we fail, we bail out.
 | 
						|
  AssumptionCache &AC =
 | 
						|
      getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
 | 
						|
          *CS->getParent()->getParent());
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  if (MDep->getAlignment() < ByValAlign &&
 | 
						|
      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &AC,
 | 
						|
                                 CS.getInstruction(), &DT) < ByValAlign)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Verify that the copied-from memory doesn't change in between the memcpy and
 | 
						|
  // the byval call.
 | 
						|
  //    memcpy(a <- b)
 | 
						|
  //    *b = 42;
 | 
						|
  //    foo(*a)
 | 
						|
  // It would be invalid to transform the second memcpy into foo(*b).
 | 
						|
  //
 | 
						|
  // NOTE: This is conservative, it will stop on any read from the source loc,
 | 
						|
  // not just the defining memcpy.
 | 
						|
  MemDepResult SourceDep =
 | 
						|
    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
 | 
						|
                                 false, CS.getInstruction(), MDep->getParent());
 | 
						|
  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *TmpCast = MDep->getSource();
 | 
						|
  if (MDep->getSource()->getType() != ByValArg->getType())
 | 
						|
    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
 | 
						|
                              "tmpcast", CS.getInstruction());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
 | 
						|
               << "  " << *MDep << "\n"
 | 
						|
               << "  " << *CS.getInstruction() << "\n");
 | 
						|
 | 
						|
  // Otherwise we're good!  Update the byval argument.
 | 
						|
  CS.setArgument(ArgNo, TmpCast);
 | 
						|
  ++NumMemCpyInstr;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// iterateOnFunction - Executes one iteration of MemCpyOpt.
 | 
						|
bool MemCpyOpt::iterateOnFunction(Function &F) {
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk all instruction in the function.
 | 
						|
  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
 | 
						|
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
 | 
						|
      // Avoid invalidating the iterator.
 | 
						|
      Instruction *I = BI++;
 | 
						|
 | 
						|
      bool RepeatInstruction = false;
 | 
						|
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        MadeChange |= processStore(SI, BI);
 | 
						|
      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
 | 
						|
        RepeatInstruction = processMemSet(M, BI);
 | 
						|
      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | 
						|
        RepeatInstruction = processMemCpy(M);
 | 
						|
      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
 | 
						|
        RepeatInstruction = processMemMove(M);
 | 
						|
      else if (CallSite CS = (Value*)I) {
 | 
						|
        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | 
						|
          if (CS.isByValArgument(i))
 | 
						|
            MadeChange |= processByValArgument(CS, i);
 | 
						|
      }
 | 
						|
 | 
						|
      // Reprocess the instruction if desired.
 | 
						|
      if (RepeatInstruction) {
 | 
						|
        if (BI != BB->begin()) --BI;
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
 | 
						|
// function.
 | 
						|
//
 | 
						|
bool MemCpyOpt::runOnFunction(Function &F) {
 | 
						|
  if (skipOptnoneFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  MD = &getAnalysis<MemoryDependenceAnalysis>();
 | 
						|
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | 
						|
  DL = DLP ? &DLP->getDataLayout() : nullptr;
 | 
						|
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
 | 
						|
  // If we don't have at least memset and memcpy, there is little point of doing
 | 
						|
  // anything here.  These are required by a freestanding implementation, so if
 | 
						|
  // even they are disabled, there is no point in trying hard.
 | 
						|
  if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
 | 
						|
    return false;
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    if (!iterateOnFunction(F))
 | 
						|
      break;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  MD = nullptr;
 | 
						|
  return MadeChange;
 | 
						|
}
 |