mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	If the landingpad of the invoke is using a personality function that catches asynch exceptions, then it can catch a trap. Also add some landingpads to invalid LLVM IR test cases that lack them. Over-the-shoulder reviewed by David Majnemer. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228782 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1360 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1360 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Local.cpp - Functions to perform local transformations ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions perform various local transformations to the
 | |
| // program.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/LibCallSemantics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "local"
 | |
| 
 | |
| STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local constant propagation.
 | |
| //
 | |
| 
 | |
| /// ConstantFoldTerminator - If a terminator instruction is predicated on a
 | |
| /// constant value, convert it into an unconditional branch to the constant
 | |
| /// destination.  This is a nontrivial operation because the successors of this
 | |
| /// basic block must have their PHI nodes updated.
 | |
| /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
 | |
| /// conditions and indirectbr addresses this might make dead if
 | |
| /// DeleteDeadConditions is true.
 | |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
 | |
|                                   const TargetLibraryInfo *TLI) {
 | |
|   TerminatorInst *T = BB->getTerminator();
 | |
|   IRBuilder<> Builder(T);
 | |
| 
 | |
|   // Branch - See if we are conditional jumping on constant
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
 | |
|     BasicBlock *Dest1 = BI->getSuccessor(0);
 | |
|     BasicBlock *Dest2 = BI->getSuccessor(1);
 | |
| 
 | |
|     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|       // Are we branching on constant?
 | |
|       // YES.  Change to unconditional branch...
 | |
|       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
 | |
|       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
 | |
| 
 | |
|       //cerr << "Function: " << T->getParent()->getParent()
 | |
|       //     << "\nRemoving branch from " << T->getParent()
 | |
|       //     << "\n\nTo: " << OldDest << endl;
 | |
| 
 | |
|       // Let the basic block know that we are letting go of it.  Based on this,
 | |
|       // it will adjust it's PHI nodes.
 | |
|       OldDest->removePredecessor(BB);
 | |
| 
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       Builder.CreateBr(Destination);
 | |
|       BI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Dest2 == Dest1) {       // Conditional branch to same location?
 | |
|       // This branch matches something like this:
 | |
|       //     br bool %cond, label %Dest, label %Dest
 | |
|       // and changes it into:  br label %Dest
 | |
| 
 | |
|       // Let the basic block know that we are letting go of one copy of it.
 | |
|       assert(BI->getParent() && "Terminator not inserted in block!");
 | |
|       Dest1->removePredecessor(BI->getParent());
 | |
| 
 | |
|       // Replace the conditional branch with an unconditional one.
 | |
|       Builder.CreateBr(Dest1);
 | |
|       Value *Cond = BI->getCondition();
 | |
|       BI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
 | |
|     // If we are switching on a constant, we can convert the switch to an
 | |
|     // unconditional branch.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|     BasicBlock *DefaultDest = SI->getDefaultDest();
 | |
|     BasicBlock *TheOnlyDest = DefaultDest;
 | |
| 
 | |
|     // If the default is unreachable, ignore it when searching for TheOnlyDest.
 | |
|     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
 | |
|         SI->getNumCases() > 0) {
 | |
|       TheOnlyDest = SI->case_begin().getCaseSuccessor();
 | |
|     }
 | |
| 
 | |
|     // Figure out which case it goes to.
 | |
|     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|          i != e; ++i) {
 | |
|       // Found case matching a constant operand?
 | |
|       if (i.getCaseValue() == CI) {
 | |
|         TheOnlyDest = i.getCaseSuccessor();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Check to see if this branch is going to the same place as the default
 | |
|       // dest.  If so, eliminate it as an explicit compare.
 | |
|       if (i.getCaseSuccessor() == DefaultDest) {
 | |
|         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | |
|         unsigned NCases = SI->getNumCases();
 | |
|         // Fold the case metadata into the default if there will be any branches
 | |
|         // left, unless the metadata doesn't match the switch.
 | |
|         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
 | |
|           // Collect branch weights into a vector.
 | |
|           SmallVector<uint32_t, 8> Weights;
 | |
|           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
 | |
|                ++MD_i) {
 | |
|             ConstantInt *CI =
 | |
|                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
 | |
|             assert(CI);
 | |
|             Weights.push_back(CI->getValue().getZExtValue());
 | |
|           }
 | |
|           // Merge weight of this case to the default weight.
 | |
|           unsigned idx = i.getCaseIndex();
 | |
|           Weights[0] += Weights[idx+1];
 | |
|           // Remove weight for this case.
 | |
|           std::swap(Weights[idx+1], Weights.back());
 | |
|           Weights.pop_back();
 | |
|           SI->setMetadata(LLVMContext::MD_prof,
 | |
|                           MDBuilder(BB->getContext()).
 | |
|                           createBranchWeights(Weights));
 | |
|         }
 | |
|         // Remove this entry.
 | |
|         DefaultDest->removePredecessor(SI->getParent());
 | |
|         SI->removeCase(i);
 | |
|         --i; --e;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, check to see if the switch only branches to one destination.
 | |
|       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
 | |
|       // destinations.
 | |
|       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (CI && !TheOnlyDest) {
 | |
|       // Branching on a constant, but not any of the cases, go to the default
 | |
|       // successor.
 | |
|       TheOnlyDest = SI->getDefaultDest();
 | |
|     }
 | |
| 
 | |
|     // If we found a single destination that we can fold the switch into, do so
 | |
|     // now.
 | |
|     if (TheOnlyDest) {
 | |
|       // Insert the new branch.
 | |
|       Builder.CreateBr(TheOnlyDest);
 | |
|       BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|       // Remove entries from PHI nodes which we no longer branch to...
 | |
|       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
 | |
|         // Found case matching a constant operand?
 | |
|         BasicBlock *Succ = SI->getSuccessor(i);
 | |
|         if (Succ == TheOnlyDest)
 | |
|           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
 | |
|         else
 | |
|           Succ->removePredecessor(BB);
 | |
|       }
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       Value *Cond = SI->getCondition();
 | |
|       SI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (SI->getNumCases() == 1) {
 | |
|       // Otherwise, we can fold this switch into a conditional branch
 | |
|       // instruction if it has only one non-default destination.
 | |
|       SwitchInst::CaseIt FirstCase = SI->case_begin();
 | |
|       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
 | |
|           FirstCase.getCaseValue(), "cond");
 | |
| 
 | |
|       // Insert the new branch.
 | |
|       BranchInst *NewBr = Builder.CreateCondBr(Cond,
 | |
|                                                FirstCase.getCaseSuccessor(),
 | |
|                                                SI->getDefaultDest());
 | |
|       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
 | |
|       if (MD && MD->getNumOperands() == 3) {
 | |
|         ConstantInt *SICase =
 | |
|             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
 | |
|         ConstantInt *SIDef =
 | |
|             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
 | |
|         assert(SICase && SIDef);
 | |
|         // The TrueWeight should be the weight for the single case of SI.
 | |
|         NewBr->setMetadata(LLVMContext::MD_prof,
 | |
|                         MDBuilder(BB->getContext()).
 | |
|                         createBranchWeights(SICase->getValue().getZExtValue(),
 | |
|                                             SIDef->getValue().getZExtValue()));
 | |
|       }
 | |
| 
 | |
|       // Delete the old switch.
 | |
|       SI->eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
 | |
|     // indirectbr blockaddress(@F, @BB) -> br label @BB
 | |
|     if (BlockAddress *BA =
 | |
|           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
 | |
|       BasicBlock *TheOnlyDest = BA->getBasicBlock();
 | |
|       // Insert the new branch.
 | |
|       Builder.CreateBr(TheOnlyDest);
 | |
| 
 | |
|       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | |
|         if (IBI->getDestination(i) == TheOnlyDest)
 | |
|           TheOnlyDest = nullptr;
 | |
|         else
 | |
|           IBI->getDestination(i)->removePredecessor(IBI->getParent());
 | |
|       }
 | |
|       Value *Address = IBI->getAddress();
 | |
|       IBI->eraseFromParent();
 | |
|       if (DeleteDeadConditions)
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
 | |
| 
 | |
|       // If we didn't find our destination in the IBI successor list, then we
 | |
|       // have undefined behavior.  Replace the unconditional branch with an
 | |
|       // 'unreachable' instruction.
 | |
|       if (TheOnlyDest) {
 | |
|         BB->getTerminator()->eraseFromParent();
 | |
|         new UnreachableInst(BB->getContext(), BB);
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local dead code elimination.
 | |
| //
 | |
| 
 | |
| /// isInstructionTriviallyDead - Return true if the result produced by the
 | |
| /// instruction is not used, and the instruction has no side effects.
 | |
| ///
 | |
| bool llvm::isInstructionTriviallyDead(Instruction *I,
 | |
|                                       const TargetLibraryInfo *TLI) {
 | |
|   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
 | |
| 
 | |
|   // We don't want the landingpad instruction removed by anything this general.
 | |
|   if (isa<LandingPadInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   // We don't want debug info removed by anything this general, unless
 | |
|   // debug info is empty.
 | |
|   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
 | |
|     if (DDI->getAddress())
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
|   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
 | |
|     if (DVI->getValue())
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!I->mayHaveSideEffects()) return true;
 | |
| 
 | |
|   // Special case intrinsics that "may have side effects" but can be deleted
 | |
|   // when dead.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     // Safe to delete llvm.stacksave if dead.
 | |
|     if (II->getIntrinsicID() == Intrinsic::stacksave)
 | |
|       return true;
 | |
| 
 | |
|     // Lifetime intrinsics are dead when their right-hand is undef.
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|         II->getIntrinsicID() == Intrinsic::lifetime_end)
 | |
|       return isa<UndefValue>(II->getArgOperand(1));
 | |
| 
 | |
|     // Assumptions are dead if their condition is trivially true.
 | |
|     if (II->getIntrinsicID() == Intrinsic::assume) {
 | |
|       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | |
|         return !Cond->isZero();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isAllocLikeFn(I, TLI)) return true;
 | |
| 
 | |
|   if (CallInst *CI = isFreeCall(I, TLI))
 | |
|     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
 | |
|       return C->isNullValue() || isa<UndefValue>(C);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
 | |
| /// trivially dead instruction, delete it.  If that makes any of its operands
 | |
| /// trivially dead, delete them too, recursively.  Return true if any
 | |
| /// instructions were deleted.
 | |
| bool
 | |
| llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
 | |
|                                                  const TargetLibraryInfo *TLI) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Instruction*, 16> DeadInsts;
 | |
|   DeadInsts.push_back(I);
 | |
| 
 | |
|   do {
 | |
|     I = DeadInsts.pop_back_val();
 | |
| 
 | |
|     // Null out all of the instruction's operands to see if any operand becomes
 | |
|     // dead as we go.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|       Value *OpV = I->getOperand(i);
 | |
|       I->setOperand(i, nullptr);
 | |
| 
 | |
|       if (!OpV->use_empty()) continue;
 | |
| 
 | |
|       // If the operand is an instruction that became dead as we nulled out the
 | |
|       // operand, and if it is 'trivially' dead, delete it in a future loop
 | |
|       // iteration.
 | |
|       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
 | |
|         if (isInstructionTriviallyDead(OpI, TLI))
 | |
|           DeadInsts.push_back(OpI);
 | |
|     }
 | |
| 
 | |
|     I->eraseFromParent();
 | |
|   } while (!DeadInsts.empty());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// areAllUsesEqual - Check whether the uses of a value are all the same.
 | |
| /// This is similar to Instruction::hasOneUse() except this will also return
 | |
| /// true when there are no uses or multiple uses that all refer to the same
 | |
| /// value.
 | |
| static bool areAllUsesEqual(Instruction *I) {
 | |
|   Value::user_iterator UI = I->user_begin();
 | |
|   Value::user_iterator UE = I->user_end();
 | |
|   if (UI == UE)
 | |
|     return true;
 | |
| 
 | |
|   User *TheUse = *UI;
 | |
|   for (++UI; UI != UE; ++UI) {
 | |
|     if (*UI != TheUse)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
 | |
| /// dead PHI node, due to being a def-use chain of single-use nodes that
 | |
| /// either forms a cycle or is terminated by a trivially dead instruction,
 | |
| /// delete it.  If that makes any of its operands trivially dead, delete them
 | |
| /// too, recursively.  Return true if a change was made.
 | |
| bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
 | |
|                                         const TargetLibraryInfo *TLI) {
 | |
|   SmallPtrSet<Instruction*, 4> Visited;
 | |
|   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
 | |
|        I = cast<Instruction>(*I->user_begin())) {
 | |
|     if (I->use_empty())
 | |
|       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | |
| 
 | |
|     // If we find an instruction more than once, we're on a cycle that
 | |
|     // won't prove fruitful.
 | |
|     if (!Visited.insert(I).second) {
 | |
|       // Break the cycle and delete the instruction and its operands.
 | |
|       I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
 | |
| /// simplify any instructions in it and recursively delete dead instructions.
 | |
| ///
 | |
| /// This returns true if it changed the code, note that it can delete
 | |
| /// instructions in other blocks as well in this block.
 | |
| bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD,
 | |
|                                        const TargetLibraryInfo *TLI) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // In debug builds, ensure that the terminator of the block is never replaced
 | |
|   // or deleted by these simplifications. The idea of simplification is that it
 | |
|   // cannot introduce new instructions, and there is no way to replace the
 | |
|   // terminator of a block without introducing a new instruction.
 | |
|   AssertingVH<Instruction> TerminatorVH(--BB->end());
 | |
| #endif
 | |
| 
 | |
|   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
 | |
|     assert(!BI->isTerminator());
 | |
|     Instruction *Inst = BI++;
 | |
| 
 | |
|     WeakVH BIHandle(BI);
 | |
|     if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
 | |
|       MadeChange = true;
 | |
|       if (BIHandle != BI)
 | |
|         BI = BB->begin();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
 | |
|     if (BIHandle != BI)
 | |
|       BI = BB->begin();
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Control Flow Graph Restructuring.
 | |
| //
 | |
| 
 | |
| 
 | |
| /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
 | |
| /// method is called when we're about to delete Pred as a predecessor of BB.  If
 | |
| /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
 | |
| ///
 | |
| /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
 | |
| /// nodes that collapse into identity values.  For example, if we have:
 | |
| ///   x = phi(1, 0, 0, 0)
 | |
| ///   y = and x, z
 | |
| ///
 | |
| /// .. and delete the predecessor corresponding to the '1', this will attempt to
 | |
| /// recursively fold the and to 0.
 | |
| void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
 | |
|                                         DataLayout *TD) {
 | |
|   // This only adjusts blocks with PHI nodes.
 | |
|   if (!isa<PHINode>(BB->begin()))
 | |
|     return;
 | |
| 
 | |
|   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
 | |
|   // them down.  This will leave us with single entry phi nodes and other phis
 | |
|   // that can be removed.
 | |
|   BB->removePredecessor(Pred, true);
 | |
| 
 | |
|   WeakVH PhiIt = &BB->front();
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
 | |
|     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
 | |
|     Value *OldPhiIt = PhiIt;
 | |
| 
 | |
|     if (!recursivelySimplifyInstruction(PN, TD))
 | |
|       continue;
 | |
| 
 | |
|     // If recursive simplification ended up deleting the next PHI node we would
 | |
|     // iterate to, then our iterator is invalid, restart scanning from the top
 | |
|     // of the block.
 | |
|     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
 | |
| /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
 | |
| /// between them, moving the instructions in the predecessor into DestBB and
 | |
| /// deleting the predecessor block.
 | |
| ///
 | |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
 | |
|   // If BB has single-entry PHI nodes, fold them.
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
 | |
|     Value *NewVal = PN->getIncomingValue(0);
 | |
|     // Replace self referencing PHI with undef, it must be dead.
 | |
|     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
 | |
|     PN->replaceAllUsesWith(NewVal);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   BasicBlock *PredBB = DestBB->getSinglePredecessor();
 | |
|   assert(PredBB && "Block doesn't have a single predecessor!");
 | |
| 
 | |
|   // Zap anything that took the address of DestBB.  Not doing this will give the
 | |
|   // address an invalid value.
 | |
|   if (DestBB->hasAddressTaken()) {
 | |
|     BlockAddress *BA = BlockAddress::get(DestBB);
 | |
|     Constant *Replacement =
 | |
|       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
 | |
|     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
 | |
|                                                      BA->getType()));
 | |
|     BA->destroyConstant();
 | |
|   }
 | |
| 
 | |
|   // Anything that branched to PredBB now branches to DestBB.
 | |
|   PredBB->replaceAllUsesWith(DestBB);
 | |
| 
 | |
|   // Splice all the instructions from PredBB to DestBB.
 | |
|   PredBB->getTerminator()->eraseFromParent();
 | |
|   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
 | |
| 
 | |
|   // If the PredBB is the entry block of the function, move DestBB up to
 | |
|   // become the entry block after we erase PredBB.
 | |
|   if (PredBB == &DestBB->getParent()->getEntryBlock())
 | |
|     DestBB->moveAfter(PredBB);
 | |
| 
 | |
|   if (DT) {
 | |
|     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
 | |
|     DT->changeImmediateDominator(DestBB, PredBBIDom);
 | |
|     DT->eraseNode(PredBB);
 | |
|   }
 | |
|   // Nuke BB.
 | |
|   PredBB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// CanMergeValues - Return true if we can choose one of these values to use
 | |
| /// in place of the other. Note that we will always choose the non-undef
 | |
| /// value to keep.
 | |
| static bool CanMergeValues(Value *First, Value *Second) {
 | |
|   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
 | |
| }
 | |
| 
 | |
| /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
 | |
| /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
 | |
| ///
 | |
| /// Assumption: Succ is the single successor for BB.
 | |
| ///
 | |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
 | |
|   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
 | |
| 
 | |
|   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
 | |
|         << Succ->getName() << "\n");
 | |
|   // Shortcut, if there is only a single predecessor it must be BB and merging
 | |
|   // is always safe
 | |
|   if (Succ->getSinglePredecessor()) return true;
 | |
| 
 | |
|   // Make a list of the predecessors of BB
 | |
|   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|   // Look at all the phi nodes in Succ, to see if they present a conflict when
 | |
|   // merging these blocks
 | |
|   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|     // If the incoming value from BB is again a PHINode in
 | |
|     // BB which has the same incoming value for *PI as PN does, we can
 | |
|     // merge the phi nodes and then the blocks can still be merged
 | |
|     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
 | |
|     if (BBPN && BBPN->getParent() == BB) {
 | |
|       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | |
|         BasicBlock *IBB = PN->getIncomingBlock(PI);
 | |
|         if (BBPreds.count(IBB) &&
 | |
|             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
 | |
|                             PN->getIncomingValue(PI))) {
 | |
|           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | |
|                 << Succ->getName() << " is conflicting with "
 | |
|                 << BBPN->getName() << " with regard to common predecessor "
 | |
|                 << IBB->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       Value* Val = PN->getIncomingValueForBlock(BB);
 | |
|       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
 | |
|         // See if the incoming value for the common predecessor is equal to the
 | |
|         // one for BB, in which case this phi node will not prevent the merging
 | |
|         // of the block.
 | |
|         BasicBlock *IBB = PN->getIncomingBlock(PI);
 | |
|         if (BBPreds.count(IBB) &&
 | |
|             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
 | |
|           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
 | |
|                 << Succ->getName() << " is conflicting with regard to common "
 | |
|                 << "predecessor " << IBB->getName() << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| typedef SmallVector<BasicBlock *, 16> PredBlockVector;
 | |
| typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
 | |
| 
 | |
| /// \brief Determines the value to use as the phi node input for a block.
 | |
| ///
 | |
| /// Select between \p OldVal any value that we know flows from \p BB
 | |
| /// to a particular phi on the basis of which one (if either) is not
 | |
| /// undef. Update IncomingValues based on the selected value.
 | |
| ///
 | |
| /// \param OldVal The value we are considering selecting.
 | |
| /// \param BB The block that the value flows in from.
 | |
| /// \param IncomingValues A map from block-to-value for other phi inputs
 | |
| /// that we have examined.
 | |
| ///
 | |
| /// \returns the selected value.
 | |
| static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
 | |
|                                           IncomingValueMap &IncomingValues) {
 | |
|   if (!isa<UndefValue>(OldVal)) {
 | |
|     assert((!IncomingValues.count(BB) ||
 | |
|             IncomingValues.find(BB)->second == OldVal) &&
 | |
|            "Expected OldVal to match incoming value from BB!");
 | |
| 
 | |
|     IncomingValues.insert(std::make_pair(BB, OldVal));
 | |
|     return OldVal;
 | |
|   }
 | |
| 
 | |
|   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | |
|   if (It != IncomingValues.end()) return It->second;
 | |
| 
 | |
|   return OldVal;
 | |
| }
 | |
| 
 | |
| /// \brief Create a map from block to value for the operands of a
 | |
| /// given phi.
 | |
| ///
 | |
| /// Create a map from block to value for each non-undef value flowing
 | |
| /// into \p PN.
 | |
| ///
 | |
| /// \param PN The phi we are collecting the map for.
 | |
| /// \param IncomingValues [out] The map from block to value for this phi.
 | |
| static void gatherIncomingValuesToPhi(PHINode *PN,
 | |
|                                       IncomingValueMap &IncomingValues) {
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
| 
 | |
|     if (!isa<UndefValue>(V))
 | |
|       IncomingValues.insert(std::make_pair(BB, V));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Replace the incoming undef values to a phi with the values
 | |
| /// from a block-to-value map.
 | |
| ///
 | |
| /// \param PN The phi we are replacing the undefs in.
 | |
| /// \param IncomingValues A map from block to value.
 | |
| static void replaceUndefValuesInPhi(PHINode *PN,
 | |
|                                     const IncomingValueMap &IncomingValues) {
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
| 
 | |
|     if (!isa<UndefValue>(V)) continue;
 | |
| 
 | |
|     BasicBlock *BB = PN->getIncomingBlock(i);
 | |
|     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
 | |
|     if (It == IncomingValues.end()) continue;
 | |
| 
 | |
|     PN->setIncomingValue(i, It->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Replace a value flowing from a block to a phi with
 | |
| /// potentially multiple instances of that value flowing from the
 | |
| /// block's predecessors to the phi.
 | |
| ///
 | |
| /// \param BB The block with the value flowing into the phi.
 | |
| /// \param BBPreds The predecessors of BB.
 | |
| /// \param PN The phi that we are updating.
 | |
| static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
 | |
|                                                 const PredBlockVector &BBPreds,
 | |
|                                                 PHINode *PN) {
 | |
|   Value *OldVal = PN->removeIncomingValue(BB, false);
 | |
|   assert(OldVal && "No entry in PHI for Pred BB!");
 | |
| 
 | |
|   IncomingValueMap IncomingValues;
 | |
| 
 | |
|   // We are merging two blocks - BB, and the block containing PN - and
 | |
|   // as a result we need to redirect edges from the predecessors of BB
 | |
|   // to go to the block containing PN, and update PN
 | |
|   // accordingly. Since we allow merging blocks in the case where the
 | |
|   // predecessor and successor blocks both share some predecessors,
 | |
|   // and where some of those common predecessors might have undef
 | |
|   // values flowing into PN, we want to rewrite those values to be
 | |
|   // consistent with the non-undef values.
 | |
| 
 | |
|   gatherIncomingValuesToPhi(PN, IncomingValues);
 | |
| 
 | |
|   // If this incoming value is one of the PHI nodes in BB, the new entries
 | |
|   // in the PHI node are the entries from the old PHI.
 | |
|   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
 | |
|     PHINode *OldValPN = cast<PHINode>(OldVal);
 | |
|     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       // Note that, since we are merging phi nodes and BB and Succ might
 | |
|       // have common predecessors, we could end up with a phi node with
 | |
|       // identical incoming branches. This will be cleaned up later (and
 | |
|       // will trigger asserts if we try to clean it up now, without also
 | |
|       // simplifying the corresponding conditional branch).
 | |
|       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
 | |
|       Value *PredVal = OldValPN->getIncomingValue(i);
 | |
|       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
 | |
|                                                     IncomingValues);
 | |
| 
 | |
|       // And add a new incoming value for this predecessor for the
 | |
|       // newly retargeted branch.
 | |
|       PN->addIncoming(Selected, PredBB);
 | |
|     }
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
 | |
|       // Update existing incoming values in PN for this
 | |
|       // predecessor of BB.
 | |
|       BasicBlock *PredBB = BBPreds[i];
 | |
|       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
 | |
|                                                     IncomingValues);
 | |
| 
 | |
|       // And add a new incoming value for this predecessor for the
 | |
|       // newly retargeted branch.
 | |
|       PN->addIncoming(Selected, PredBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   replaceUndefValuesInPhi(PN, IncomingValues);
 | |
| }
 | |
| 
 | |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
 | |
| /// unconditional branch, and contains no instructions other than PHI nodes,
 | |
| /// potential side-effect free intrinsics and the branch.  If possible,
 | |
| /// eliminate BB by rewriting all the predecessors to branch to the successor
 | |
| /// block and return true.  If we can't transform, return false.
 | |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
 | |
|   assert(BB != &BB->getParent()->getEntryBlock() &&
 | |
|          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
 | |
| 
 | |
|   // We can't eliminate infinite loops.
 | |
|   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
 | |
|   if (BB == Succ) return false;
 | |
| 
 | |
|   // Check to see if merging these blocks would cause conflicts for any of the
 | |
|   // phi nodes in BB or Succ. If not, we can safely merge.
 | |
|   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
 | |
| 
 | |
|   // Check for cases where Succ has multiple predecessors and a PHI node in BB
 | |
|   // has uses which will not disappear when the PHI nodes are merged.  It is
 | |
|   // possible to handle such cases, but difficult: it requires checking whether
 | |
|   // BB dominates Succ, which is non-trivial to calculate in the case where
 | |
|   // Succ has multiple predecessors.  Also, it requires checking whether
 | |
|   // constructing the necessary self-referential PHI node doesn't introduce any
 | |
|   // conflicts; this isn't too difficult, but the previous code for doing this
 | |
|   // was incorrect.
 | |
|   //
 | |
|   // Note that if this check finds a live use, BB dominates Succ, so BB is
 | |
|   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
 | |
|   // folding the branch isn't profitable in that case anyway.
 | |
|   if (!Succ->getSinglePredecessor()) {
 | |
|     BasicBlock::iterator BBI = BB->begin();
 | |
|     while (isa<PHINode>(*BBI)) {
 | |
|       for (Use &U : BBI->uses()) {
 | |
|         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
 | |
|           if (PN->getIncomingBlock(U) != BB)
 | |
|             return false;
 | |
|         } else {
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       ++BBI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
 | |
| 
 | |
|   if (isa<PHINode>(Succ->begin())) {
 | |
|     // If there is more than one pred of succ, and there are PHI nodes in
 | |
|     // the successor, then we need to add incoming edges for the PHI nodes
 | |
|     //
 | |
|     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
 | |
| 
 | |
|     // Loop over all of the PHI nodes in the successor of BB.
 | |
|     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Succ->getSinglePredecessor()) {
 | |
|     // BB is the only predecessor of Succ, so Succ will end up with exactly
 | |
|     // the same predecessors BB had.
 | |
| 
 | |
|     // Copy over any phi, debug or lifetime instruction.
 | |
|     BB->getTerminator()->eraseFromParent();
 | |
|     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
 | |
|   } else {
 | |
|     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
 | |
|       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
 | |
|       assert(PN->use_empty() && "There shouldn't be any uses here!");
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Everything that jumped to BB now goes to Succ.
 | |
|   BB->replaceAllUsesWith(Succ);
 | |
|   if (!Succ->hasName()) Succ->takeName(BB);
 | |
|   BB->eraseFromParent();              // Delete the old basic block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
 | |
| /// nodes in this block. This doesn't try to be clever about PHI nodes
 | |
| /// which differ only in the order of the incoming values, but instcombine
 | |
| /// orders them so it usually won't matter.
 | |
| ///
 | |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // This implementation doesn't currently consider undef operands
 | |
|   // specially. Theoretically, two phis which are identical except for
 | |
|   // one having an undef where the other doesn't could be collapsed.
 | |
| 
 | |
|   // Map from PHI hash values to PHI nodes. If multiple PHIs have
 | |
|   // the same hash value, the element is the first PHI in the
 | |
|   // linked list in CollisionMap.
 | |
|   DenseMap<uintptr_t, PHINode *> HashMap;
 | |
| 
 | |
|   // Maintain linked lists of PHI nodes with common hash values.
 | |
|   DenseMap<PHINode *, PHINode *> CollisionMap;
 | |
| 
 | |
|   // Examine each PHI.
 | |
|   for (BasicBlock::iterator I = BB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I++); ) {
 | |
|     // Compute a hash value on the operands. Instcombine will likely have sorted
 | |
|     // them, which helps expose duplicates, but we have to check all the
 | |
|     // operands to be safe in case instcombine hasn't run.
 | |
|     uintptr_t Hash = 0;
 | |
|     // This hash algorithm is quite weak as hash functions go, but it seems
 | |
|     // to do a good enough job for this particular purpose, and is very quick.
 | |
|     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
 | |
|       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
 | |
|       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
 | |
|     }
 | |
|     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
 | |
|          I != E; ++I) {
 | |
|       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
 | |
|       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
 | |
|     }
 | |
|     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
 | |
|     Hash >>= 1;
 | |
|     // If we've never seen this hash value before, it's a unique PHI.
 | |
|     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
 | |
|       HashMap.insert(std::make_pair(Hash, PN));
 | |
|     if (Pair.second) continue;
 | |
|     // Otherwise it's either a duplicate or a hash collision.
 | |
|     for (PHINode *OtherPN = Pair.first->second; ; ) {
 | |
|       if (OtherPN->isIdenticalTo(PN)) {
 | |
|         // A duplicate. Replace this PHI with its duplicate.
 | |
|         PN->replaceAllUsesWith(OtherPN);
 | |
|         PN->eraseFromParent();
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       // A non-duplicate hash collision.
 | |
|       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
 | |
|       if (I == CollisionMap.end()) {
 | |
|         // Set this PHI to be the head of the linked list of colliding PHIs.
 | |
|         PHINode *Old = Pair.first->second;
 | |
|         Pair.first->second = PN;
 | |
|         CollisionMap[PN] = Old;
 | |
|         break;
 | |
|       }
 | |
|       // Proceed to the next PHI in the list.
 | |
|       OtherPN = I->second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// enforceKnownAlignment - If the specified pointer points to an object that
 | |
| /// we control, modify the object's alignment to PrefAlign. This isn't
 | |
| /// often possible though. If alignment is important, a more reliable approach
 | |
| /// is to simply align all global variables and allocation instructions to
 | |
| /// their preferred alignment from the beginning.
 | |
| ///
 | |
| static unsigned enforceKnownAlignment(Value *V, unsigned Align,
 | |
|                                       unsigned PrefAlign, const DataLayout *TD) {
 | |
|   V = V->stripPointerCasts();
 | |
| 
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     // If the preferred alignment is greater than the natural stack alignment
 | |
|     // then don't round up. This avoids dynamic stack realignment.
 | |
|     if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
 | |
|       return Align;
 | |
|     // If there is a requested alignment and if this is an alloca, round up.
 | |
|     if (AI->getAlignment() >= PrefAlign)
 | |
|       return AI->getAlignment();
 | |
|     AI->setAlignment(PrefAlign);
 | |
|     return PrefAlign;
 | |
|   }
 | |
| 
 | |
|   if (auto *GO = dyn_cast<GlobalObject>(V)) {
 | |
|     // If there is a large requested alignment and we can, bump up the alignment
 | |
|     // of the global.
 | |
|     if (GO->isDeclaration())
 | |
|       return Align;
 | |
|     // If the memory we set aside for the global may not be the memory used by
 | |
|     // the final program then it is impossible for us to reliably enforce the
 | |
|     // preferred alignment.
 | |
|     if (GO->isWeakForLinker())
 | |
|       return Align;
 | |
| 
 | |
|     if (GO->getAlignment() >= PrefAlign)
 | |
|       return GO->getAlignment();
 | |
|     // We can only increase the alignment of the global if it has no alignment
 | |
|     // specified or if it is not assigned a section.  If it is assigned a
 | |
|     // section, the global could be densely packed with other objects in the
 | |
|     // section, increasing the alignment could cause padding issues.
 | |
|     if (!GO->hasSection() || GO->getAlignment() == 0)
 | |
|       GO->setAlignment(PrefAlign);
 | |
|     return GO->getAlignment();
 | |
|   }
 | |
| 
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
 | |
| /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
 | |
| /// and it is more than the alignment of the ultimate object, see if we can
 | |
| /// increase the alignment of the ultimate object, making this check succeed.
 | |
| unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
 | |
|                                           const DataLayout *DL,
 | |
|                                           AssumptionCache *AC,
 | |
|                                           const Instruction *CxtI,
 | |
|                                           const DominatorTree *DT) {
 | |
|   assert(V->getType()->isPointerTy() &&
 | |
|          "getOrEnforceKnownAlignment expects a pointer!");
 | |
|   unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
 | |
| 
 | |
|   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
 | |
|   unsigned TrailZ = KnownZero.countTrailingOnes();
 | |
| 
 | |
|   // Avoid trouble with ridiculously large TrailZ values, such as
 | |
|   // those computed from a null pointer.
 | |
|   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | |
| 
 | |
|   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
 | |
| 
 | |
|   // LLVM doesn't support alignments larger than this currently.
 | |
|   Align = std::min(Align, +Value::MaximumAlignment);
 | |
| 
 | |
|   if (PrefAlign > Align)
 | |
|     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
 | |
| 
 | |
|   // We don't need to make any adjustment.
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| ///===---------------------------------------------------------------------===//
 | |
| ///  Dbg Intrinsic utilities
 | |
| ///
 | |
| 
 | |
| /// See if there is a dbg.value intrinsic for DIVar before I.
 | |
| static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
 | |
|   // Since we can't guarantee that the original dbg.declare instrinsic
 | |
|   // is removed by LowerDbgDeclare(), we need to make sure that we are
 | |
|   // not inserting the same dbg.value intrinsic over and over.
 | |
|   llvm::BasicBlock::InstListType::iterator PrevI(I);
 | |
|   if (PrevI != I->getParent()->getInstList().begin()) {
 | |
|     --PrevI;
 | |
|     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
 | |
|       if (DVI->getValue() == I->getOperand(0) &&
 | |
|           DVI->getOffset() == 0 &&
 | |
|           DVI->getVariable() == DIVar)
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
 | |
| /// that has an associated llvm.dbg.decl intrinsic.
 | |
| bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | |
|                                            StoreInst *SI, DIBuilder &Builder) {
 | |
|   DIVariable DIVar(DDI->getVariable());
 | |
|   DIExpression DIExpr(DDI->getExpression());
 | |
|   assert((!DIVar || DIVar.isVariable()) &&
 | |
|          "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | |
|   if (!DIVar)
 | |
|     return false;
 | |
| 
 | |
|   if (LdStHasDebugValue(DIVar, SI))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *DbgVal = nullptr;
 | |
|   // If an argument is zero extended then use argument directly. The ZExt
 | |
|   // may be zapped by an optimization pass in future.
 | |
|   Argument *ExtendedArg = nullptr;
 | |
|   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | |
|     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
 | |
|   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | |
|     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
 | |
|   if (ExtendedArg)
 | |
|     DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr, SI);
 | |
|   else
 | |
|     DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar,
 | |
|                                              DIExpr, SI);
 | |
|   DbgVal->setDebugLoc(DDI->getDebugLoc());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
 | |
| /// that has an associated llvm.dbg.decl intrinsic.
 | |
| bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
 | |
|                                            LoadInst *LI, DIBuilder &Builder) {
 | |
|   DIVariable DIVar(DDI->getVariable());
 | |
|   DIExpression DIExpr(DDI->getExpression());
 | |
|   assert((!DIVar || DIVar.isVariable()) &&
 | |
|          "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | |
|   if (!DIVar)
 | |
|     return false;
 | |
| 
 | |
|   if (LdStHasDebugValue(DIVar, LI))
 | |
|     return true;
 | |
| 
 | |
|   Instruction *DbgVal =
 | |
|       Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr, LI);
 | |
|   DbgVal->setDebugLoc(DDI->getDebugLoc());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine whether this alloca is either a VLA or an array.
 | |
| static bool isArray(AllocaInst *AI) {
 | |
|   return AI->isArrayAllocation() ||
 | |
|     AI->getType()->getElementType()->isArrayTy();
 | |
| }
 | |
| 
 | |
| /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
 | |
| /// of llvm.dbg.value intrinsics.
 | |
| bool llvm::LowerDbgDeclare(Function &F) {
 | |
|   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
 | |
|   SmallVector<DbgDeclareInst *, 4> Dbgs;
 | |
|   for (auto &FI : F)
 | |
|     for (BasicBlock::iterator BI : FI)
 | |
|       if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
 | |
|         Dbgs.push_back(DDI);
 | |
| 
 | |
|   if (Dbgs.empty())
 | |
|     return false;
 | |
| 
 | |
|   for (auto &I : Dbgs) {
 | |
|     DbgDeclareInst *DDI = I;
 | |
|     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
 | |
|     // If this is an alloca for a scalar variable, insert a dbg.value
 | |
|     // at each load and store to the alloca and erase the dbg.declare.
 | |
|     // The dbg.values allow tracking a variable even if it is not
 | |
|     // stored on the stack, while the dbg.declare can only describe
 | |
|     // the stack slot (and at a lexical-scope granularity). Later
 | |
|     // passes will attempt to elide the stack slot.
 | |
|     if (AI && !isArray(AI)) {
 | |
|       for (User *U : AI->users())
 | |
|         if (StoreInst *SI = dyn_cast<StoreInst>(U))
 | |
|           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
 | |
|         else if (LoadInst *LI = dyn_cast<LoadInst>(U))
 | |
|           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
 | |
|         else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|           // This is a call by-value or some other instruction that
 | |
|           // takes a pointer to the variable. Insert a *value*
 | |
|           // intrinsic that describes the alloca.
 | |
|           auto DbgVal = DIB.insertDbgValueIntrinsic(
 | |
|               AI, 0, DIVariable(DDI->getVariable()),
 | |
|               DIExpression(DDI->getExpression()), CI);
 | |
|           DbgVal->setDebugLoc(DDI->getDebugLoc());
 | |
|         }
 | |
|       DDI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
 | |
| /// alloca 'V', if any.
 | |
| DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
 | |
|   if (auto *L = LocalAsMetadata::getIfExists(V))
 | |
|     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
 | |
|       for (User *U : MDV->users())
 | |
|         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
 | |
|           return DDI;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
 | |
|                                       DIBuilder &Builder, bool Deref) {
 | |
|   DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
 | |
|   if (!DDI)
 | |
|     return false;
 | |
|   DebugLoc Loc = DDI->getDebugLoc();
 | |
|   DIVariable DIVar(DDI->getVariable());
 | |
|   DIExpression DIExpr(DDI->getExpression());
 | |
|   assert((!DIVar || DIVar.isVariable()) &&
 | |
|          "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | |
|   if (!DIVar)
 | |
|     return false;
 | |
| 
 | |
|   if (Deref) {
 | |
|     // Create a copy of the original DIDescriptor for user variable, prepending
 | |
|     // "deref" operation to a list of address elements, as new llvm.dbg.declare
 | |
|     // will take a value storing address of the memory for variable, not
 | |
|     // alloca itself.
 | |
|     SmallVector<uint64_t, 4> NewDIExpr;
 | |
|     NewDIExpr.push_back(dwarf::DW_OP_deref);
 | |
|     if (DIExpr)
 | |
|       for (unsigned i = 0, n = DIExpr.getNumElements(); i < n; ++i)
 | |
|         NewDIExpr.push_back(DIExpr.getElement(i));
 | |
|     DIExpr = Builder.createExpression(NewDIExpr);
 | |
|   }
 | |
| 
 | |
|   // Insert llvm.dbg.declare in the same basic block as the original alloca,
 | |
|   // and remove old llvm.dbg.declare.
 | |
|   BasicBlock *BB = AI->getParent();
 | |
|   Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, BB)
 | |
|     ->setDebugLoc(Loc);
 | |
|   DDI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// changeToUnreachable - Insert an unreachable instruction before the specified
 | |
| /// instruction, making it and the rest of the code in the block dead.
 | |
| static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   // Loop over all of the successors, removing BB's entry from any PHI
 | |
|   // nodes.
 | |
|   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
 | |
|     (*SI)->removePredecessor(BB);
 | |
| 
 | |
|   // Insert a call to llvm.trap right before this.  This turns the undefined
 | |
|   // behavior into a hard fail instead of falling through into random code.
 | |
|   if (UseLLVMTrap) {
 | |
|     Function *TrapFn =
 | |
|       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
 | |
|     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
 | |
|     CallTrap->setDebugLoc(I->getDebugLoc());
 | |
|   }
 | |
|   new UnreachableInst(I->getContext(), I);
 | |
| 
 | |
|   // All instructions after this are dead.
 | |
|   BasicBlock::iterator BBI = I, BBE = BB->end();
 | |
|   while (BBI != BBE) {
 | |
|     if (!BBI->use_empty())
 | |
|       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
 | |
|     BB->getInstList().erase(BBI++);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// changeToCall - Convert the specified invoke into a normal call.
 | |
| static void changeToCall(InvokeInst *II) {
 | |
|   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
 | |
|   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
 | |
|   NewCall->takeName(II);
 | |
|   NewCall->setCallingConv(II->getCallingConv());
 | |
|   NewCall->setAttributes(II->getAttributes());
 | |
|   NewCall->setDebugLoc(II->getDebugLoc());
 | |
|   II->replaceAllUsesWith(NewCall);
 | |
| 
 | |
|   // Follow the call by a branch to the normal destination.
 | |
|   BranchInst::Create(II->getNormalDest(), II);
 | |
| 
 | |
|   // Update PHI nodes in the unwind destination
 | |
|   II->getUnwindDest()->removePredecessor(II->getParent());
 | |
|   II->eraseFromParent();
 | |
| }
 | |
| 
 | |
| static bool markAliveBlocks(BasicBlock *BB,
 | |
|                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
 | |
| 
 | |
|   SmallVector<BasicBlock*, 128> Worklist;
 | |
|   Worklist.push_back(BB);
 | |
|   Reachable.insert(BB);
 | |
|   bool Changed = false;
 | |
|   do {
 | |
|     BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // Do a quick scan of the basic block, turning any obviously unreachable
 | |
|     // instructions into LLVM unreachable insts.  The instruction combining pass
 | |
|     // canonicalizes unreachable insts into stores to null or undef.
 | |
|     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
 | |
|       // Assumptions that are known to be false are equivalent to unreachable.
 | |
|       // Also, if the condition is undefined, then we make the choice most
 | |
|       // beneficial to the optimizer, and choose that to also be unreachable.
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
 | |
|         if (II->getIntrinsicID() == Intrinsic::assume) {
 | |
|           bool MakeUnreachable = false;
 | |
|           if (isa<UndefValue>(II->getArgOperand(0)))
 | |
|             MakeUnreachable = true;
 | |
|           else if (ConstantInt *Cond =
 | |
|                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
 | |
|             MakeUnreachable = Cond->isZero();
 | |
| 
 | |
|           if (MakeUnreachable) {
 | |
|             // Don't insert a call to llvm.trap right before the unreachable.
 | |
|             changeToUnreachable(BBI, false);
 | |
|             Changed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
 | |
|         if (CI->doesNotReturn()) {
 | |
|           // If we found a call to a no-return function, insert an unreachable
 | |
|           // instruction after it.  Make sure there isn't *already* one there
 | |
|           // though.
 | |
|           ++BBI;
 | |
|           if (!isa<UnreachableInst>(BBI)) {
 | |
|             // Don't insert a call to llvm.trap right before the unreachable.
 | |
|             changeToUnreachable(BBI, false);
 | |
|             Changed = true;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Store to undef and store to null are undefined and used to signal that
 | |
|       // they should be changed to unreachable by passes that can't modify the
 | |
|       // CFG.
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|         // Don't touch volatile stores.
 | |
|         if (SI->isVolatile()) continue;
 | |
| 
 | |
|         Value *Ptr = SI->getOperand(1);
 | |
| 
 | |
|         if (isa<UndefValue>(Ptr) ||
 | |
|             (isa<ConstantPointerNull>(Ptr) &&
 | |
|              SI->getPointerAddressSpace() == 0)) {
 | |
|           changeToUnreachable(SI, true);
 | |
|           Changed = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Turn invokes that call 'nounwind' functions into ordinary calls.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
 | |
|       Value *Callee = II->getCalledValue();
 | |
|       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|         changeToUnreachable(II, true);
 | |
|         Changed = true;
 | |
|       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(II)) {
 | |
|         if (II->use_empty() && II->onlyReadsMemory()) {
 | |
|           // jump to the normal destination branch.
 | |
|           BranchInst::Create(II->getNormalDest(), II);
 | |
|           II->getUnwindDest()->removePredecessor(II->getParent());
 | |
|           II->eraseFromParent();
 | |
|         } else
 | |
|           changeToCall(II);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Changed |= ConstantFoldTerminator(BB, true);
 | |
|     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
 | |
|       if (Reachable.insert(*SI).second)
 | |
|         Worklist.push_back(*SI);
 | |
|   } while (!Worklist.empty());
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
 | |
| /// if they are in a dead cycle.  Return true if a change was made, false
 | |
| /// otherwise.
 | |
| bool llvm::removeUnreachableBlocks(Function &F) {
 | |
|   SmallPtrSet<BasicBlock*, 128> Reachable;
 | |
|   bool Changed = markAliveBlocks(F.begin(), Reachable);
 | |
| 
 | |
|   // If there are unreachable blocks in the CFG...
 | |
|   if (Reachable.size() == F.size())
 | |
|     return Changed;
 | |
| 
 | |
|   assert(Reachable.size() < F.size());
 | |
|   NumRemoved += F.size()-Reachable.size();
 | |
| 
 | |
|   // Loop over all of the basic blocks that are not reachable, dropping all of
 | |
|   // their internal references...
 | |
|   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (Reachable.count(BB))
 | |
|       continue;
 | |
| 
 | |
|     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
 | |
|       if (Reachable.count(*SI))
 | |
|         (*SI)->removePredecessor(BB);
 | |
|     BB->dropAllReferences();
 | |
|   }
 | |
| 
 | |
|   for (Function::iterator I = ++F.begin(); I != F.end();)
 | |
|     if (!Reachable.count(I))
 | |
|       I = F.getBasicBlockList().erase(I);
 | |
|     else
 | |
|       ++I;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | |
|   K->dropUnknownMetadata(KnownIDs);
 | |
|   K->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
|   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
 | |
|     unsigned Kind = Metadata[i].first;
 | |
|     MDNode *JMD = J->getMetadata(Kind);
 | |
|     MDNode *KMD = Metadata[i].second;
 | |
| 
 | |
|     switch (Kind) {
 | |
|       default:
 | |
|         K->setMetadata(Kind, nullptr); // Remove unknown metadata
 | |
|         break;
 | |
|       case LLVMContext::MD_dbg:
 | |
|         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_alias_scope:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_noalias:
 | |
|         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_range:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
 | |
|         break;
 | |
|       case LLVMContext::MD_invariant_load:
 | |
|         // Only set the !invariant.load if it is present in both instructions.
 | |
|         K->setMetadata(Kind, JMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_nonnull:
 | |
|         // Only set the !nonnull if it is present in both instructions.
 | |
|         K->setMetadata(Kind, JMD);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 |