mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29078 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Owen Anderson and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass transforms loops by placing phi nodes at the end of the loops for
 | 
						|
// all values that are live across the loop boundary.  For example, it turns
 | 
						|
// the left into the right code:
 | 
						|
// 
 | 
						|
// for (...)                for (...)
 | 
						|
//   if (c)                   if(c)
 | 
						|
//     X1 = ...                 X1 = ...
 | 
						|
//   else                     else
 | 
						|
//     X2 = ...                 X2 = ...
 | 
						|
//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
 | 
						|
// ... = X3 + 4              X4 = phi(X3)
 | 
						|
//                           ... = X4 + 4
 | 
						|
//
 | 
						|
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
 | 
						|
// be trivially eliminated by InstCombine.  The major benefit of this 
 | 
						|
// transformation is that it makes many other loop optimizations, such as 
 | 
						|
// LoopUnswitching, simpler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  static Statistic<> NumLCSSA("lcssa",
 | 
						|
                              "Number of live out of a loop variables");
 | 
						|
  
 | 
						|
  class LCSSA : public FunctionPass {
 | 
						|
  public:
 | 
						|
    
 | 
						|
  
 | 
						|
    LoopInfo *LI;  // Loop information
 | 
						|
    DominatorTree *DT;       // Dominator Tree for the current Function...
 | 
						|
    DominanceFrontier *DF;   // Current Dominance Frontier
 | 
						|
    std::vector<BasicBlock*> LoopBlocks;
 | 
						|
    
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    bool visitSubloop(Loop* L);
 | 
						|
    void processInstruction(Instruction* Instr,
 | 
						|
                            const std::vector<BasicBlock*>& exitBlocks);
 | 
						|
    
 | 
						|
    /// This transformation requires natural loop information & requires that
 | 
						|
    /// loop preheaders be inserted into the CFG.  It maintains both of these,
 | 
						|
    /// as well as the CFG.  It also requires dominator information.
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      AU.addRequiredID(LoopSimplifyID);
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
      AU.addRequired<LoopInfo>();
 | 
						|
      AU.addRequired<DominatorTree>();
 | 
						|
      AU.addRequired<DominanceFrontier>();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
 | 
						|
    Value *getValueDominatingBlock(BasicBlock *BB,
 | 
						|
                                 std::map<BasicBlock*, Value*>& PotDoms) {
 | 
						|
      return getValueDominatingDTNode(DT->getNode(BB), PotDoms);
 | 
						|
    }
 | 
						|
    Value *getValueDominatingDTNode(DominatorTree::Node *Node,
 | 
						|
                                  std::map<BasicBlock*, Value*>& PotDoms);
 | 
						|
                                      
 | 
						|
    /// inLoop - returns true if the given block is within the current loop
 | 
						|
    const bool inLoop(BasicBlock* B) {
 | 
						|
      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
 | 
						|
const PassInfo *llvm::LCSSAID = X.getPassInfo();
 | 
						|
 | 
						|
/// runOnFunction - Process all loops in the function, inner-most out.
 | 
						|
bool LCSSA::runOnFunction(Function &F) {
 | 
						|
  bool changed = false;
 | 
						|
  
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  DF = &getAnalysis<DominanceFrontier>();
 | 
						|
  DT = &getAnalysis<DominatorTree>();
 | 
						|
    
 | 
						|
  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
 | 
						|
    changed |= visitSubloop(*I);
 | 
						|
  }
 | 
						|
      
 | 
						|
  return changed;
 | 
						|
}
 | 
						|
 | 
						|
/// visitSubloop - Recursively process all subloops, and then process the given
 | 
						|
/// loop if it has live-out values.
 | 
						|
bool LCSSA::visitSubloop(Loop* L) {
 | 
						|
  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | 
						|
    visitSubloop(*I);
 | 
						|
    
 | 
						|
  // Speed up queries by creating a sorted list of blocks
 | 
						|
  LoopBlocks.clear();
 | 
						|
  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | 
						|
  std::sort(LoopBlocks.begin(), LoopBlocks.end());
 | 
						|
  
 | 
						|
  SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
 | 
						|
  
 | 
						|
  // If no values are affected, we can save a lot of work, since we know that
 | 
						|
  // nothing will be changed.
 | 
						|
  if (AffectedValues.empty())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  std::vector<BasicBlock*> exitBlocks;
 | 
						|
  L->getExitBlocks(exitBlocks);
 | 
						|
  
 | 
						|
  
 | 
						|
  // Iterate over all affected values for this loop and insert Phi nodes
 | 
						|
  // for them in the appropriate exit blocks
 | 
						|
  
 | 
						|
  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
 | 
						|
       E = AffectedValues.end(); I != E; ++I) {
 | 
						|
    processInstruction(*I, exitBlocks);
 | 
						|
  }
 | 
						|
  
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
 | 
						|
/// eliminate all out-of-loop uses.
 | 
						|
void LCSSA::processInstruction(Instruction* Instr,
 | 
						|
                               const std::vector<BasicBlock*>& exitBlocks)
 | 
						|
{
 | 
						|
  ++NumLCSSA; // We are applying the transformation
 | 
						|
  
 | 
						|
  std::map<BasicBlock*, Value*> Phis;
 | 
						|
  
 | 
						|
  // Add the base instruction to the Phis list.  This makes tracking down
 | 
						|
  // the dominating values easier when we're filling in Phi nodes.  This will
 | 
						|
  // be removed later, before we perform use replacement.
 | 
						|
  Phis[Instr->getParent()] = Instr;
 | 
						|
  
 | 
						|
  // Phi nodes that need to be IDF-processed
 | 
						|
  std::vector<PHINode*> workList;
 | 
						|
  
 | 
						|
  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
 | 
						|
      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
 | 
						|
    Value*& phi = Phis[*BBI];
 | 
						|
    if (phi == 0 &&
 | 
						|
        DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) {
 | 
						|
      phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
 | 
						|
                                 (*BBI)->begin());
 | 
						|
      workList.push_back(cast<PHINode>(phi));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Phi nodes that need to have their incoming values filled.
 | 
						|
  std::vector<PHINode*> needIncomingValues;
 | 
						|
  
 | 
						|
  // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where
 | 
						|
  // necessary.  Keep track of these new Phi's in the "Phis" map.
 | 
						|
  while (!workList.empty()) {
 | 
						|
    PHINode *CurPHI = workList.back();
 | 
						|
    workList.pop_back();
 | 
						|
    
 | 
						|
    // Even though we've removed this Phi from the work list, we still need
 | 
						|
    // to fill in its incoming values.
 | 
						|
    needIncomingValues.push_back(CurPHI);
 | 
						|
    
 | 
						|
    // Get the current Phi's DF, and insert Phi nodes.  Add these new
 | 
						|
    // nodes to our worklist.
 | 
						|
    DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent());
 | 
						|
    if (it != DF->end()) {
 | 
						|
      const DominanceFrontier::DomSetType &S = it->second;
 | 
						|
      for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
 | 
						|
           PE = S.end(); P != PE; ++P) {
 | 
						|
        if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*P))) {
 | 
						|
          Value *&Phi = Phis[*P];
 | 
						|
          if (Phi == 0) {
 | 
						|
            // Still doesn't have operands...
 | 
						|
            Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
 | 
						|
                              (*P)->begin());
 | 
						|
          
 | 
						|
            workList.push_back(cast<PHINode>(Phi));
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Fill in all Phis we've inserted that need their incoming values filled in.
 | 
						|
  for (std::vector<PHINode*>::iterator IVI = needIncomingValues.begin(),
 | 
						|
       IVE = needIncomingValues.end(); IVI != IVE; ++IVI)
 | 
						|
    for (pred_iterator PI = pred_begin((*IVI)->getParent()),
 | 
						|
         E = pred_end((*IVI)->getParent()); PI != E; ++PI)
 | 
						|
      (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis),
 | 
						|
                          *PI);
 | 
						|
  
 | 
						|
  // Find all uses of the affected value, and replace them with the
 | 
						|
  // appropriate Phi.
 | 
						|
  std::vector<Instruction*> Uses;
 | 
						|
  for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    Instruction* use = cast<Instruction>(*UI);
 | 
						|
    BasicBlock* UserBB = use->getParent();
 | 
						|
    if (PHINode* p = dyn_cast<PHINode>(use)) {
 | 
						|
      unsigned OperandNo = UI.getOperandNo();
 | 
						|
      UserBB = p->getIncomingBlock(OperandNo/2);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Don't need to update uses within the loop body.
 | 
						|
    if (!inLoop(use->getParent()))
 | 
						|
      Uses.push_back(use);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (std::vector<Instruction*>::iterator II = Uses.begin(), IE = Uses.end();
 | 
						|
       II != IE; ++II) {
 | 
						|
    if (PHINode* phi = dyn_cast<PHINode>(*II)) {
 | 
						|
      for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) {
 | 
						|
        if (phi->getIncomingValue(i) == Instr) {
 | 
						|
          Value* dominator = 
 | 
						|
                        getValueDominatingBlock(phi->getIncomingBlock(i), Phis);
 | 
						|
          phi->setIncomingValue(i, dominator);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis);
 | 
						|
      (*II)->replaceUsesOfWith(Instr, NewVal);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
 | 
						|
/// are used by instructions outside of it.
 | 
						|
SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
 | 
						|
  
 | 
						|
  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
 | 
						|
  // by using dominance information.  In particular, if a block does not
 | 
						|
  // dominate any of the loop exits, then none of the values defined in the
 | 
						|
  // block could be used outside the loop.
 | 
						|
  
 | 
						|
  SetVector<Instruction*> AffectedValues;  
 | 
						|
  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
 | 
						|
       BB != E; ++BB) {
 | 
						|
    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
 | 
						|
        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
 | 
						|
          unsigned OperandNo = UI.getOperandNo();
 | 
						|
          UserBB = p->getIncomingBlock(OperandNo/2);
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (!inLoop(UserBB)) {
 | 
						|
          AffectedValues.insert(I);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return AffectedValues;
 | 
						|
}
 | 
						|
 | 
						|
/// getValueDominatingBlock - Return the value within the potential dominators
 | 
						|
/// map that dominates the given block.
 | 
						|
Value *LCSSA::getValueDominatingDTNode(DominatorTree::Node *Node,
 | 
						|
                              std::map<BasicBlock*, Value*>& PotDoms) {
 | 
						|
  // FIXME: The following assertion should be in place rather than the if
 | 
						|
  // statement.  Currently, this is due to the fact that LCSSA isn't smart 
 | 
						|
  // enough to avoid inserting IDF Phis that don't dominate any uses.  In some 
 | 
						|
  // of those cases, it could ask us to provide a dominating value for a block
 | 
						|
  // that has none, so we need to return undef.
 | 
						|
  //assert(Node != 0 && "Didn't find dom value?");
 | 
						|
  if (Node == 0) return UndefValue::get(PotDoms.begin()->second->getType());
 | 
						|
  
 | 
						|
  Value *&CacheSlot = PotDoms[Node->getBlock()];
 | 
						|
  if (CacheSlot) return CacheSlot;
 | 
						|
  
 | 
						|
  // Otherwise, return the value of the idom and remember this for next time.
 | 
						|
  return CacheSlot = getValueDominatingDTNode(Node->getIDom(), PotDoms);
 | 
						|
}
 |