mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Rationale: 1) This was the name in the comment block. ;] 2) It matches Clang's __has_feature naming convention. 3) It matches other compiler-feature-test conventions. Sorry for the noise. =] I've also switch the comment block to use a \brief tag and not duplicate the name. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168996 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			590 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			590 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the BitVector class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_BITVECTOR_H
 | 
						|
#define LLVM_ADT_BITVECTOR_H
 | 
						|
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <climits>
 | 
						|
#include <cstdlib>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class BitVector {
 | 
						|
  typedef unsigned long BitWord;
 | 
						|
 | 
						|
  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
 | 
						|
 | 
						|
  BitWord  *Bits;        // Actual bits.
 | 
						|
  unsigned Size;         // Size of bitvector in bits.
 | 
						|
  unsigned Capacity;     // Size of allocated memory in BitWord.
 | 
						|
 | 
						|
public:
 | 
						|
  // Encapsulation of a single bit.
 | 
						|
  class reference {
 | 
						|
    friend class BitVector;
 | 
						|
 | 
						|
    BitWord *WordRef;
 | 
						|
    unsigned BitPos;
 | 
						|
 | 
						|
    reference();  // Undefined
 | 
						|
 | 
						|
  public:
 | 
						|
    reference(BitVector &b, unsigned Idx) {
 | 
						|
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
 | 
						|
      BitPos = Idx % BITWORD_SIZE;
 | 
						|
    }
 | 
						|
 | 
						|
    ~reference() {}
 | 
						|
 | 
						|
    reference &operator=(reference t) {
 | 
						|
      *this = bool(t);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    reference& operator=(bool t) {
 | 
						|
      if (t)
 | 
						|
        *WordRef |= 1L << BitPos;
 | 
						|
      else
 | 
						|
        *WordRef &= ~(1L << BitPos);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    operator bool() const {
 | 
						|
      return ((*WordRef) & (1L << BitPos)) ? true : false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  /// BitVector default ctor - Creates an empty bitvector.
 | 
						|
  BitVector() : Size(0), Capacity(0) {
 | 
						|
    Bits = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// BitVector ctor - Creates a bitvector of specified number of bits. All
 | 
						|
  /// bits are initialized to the specified value.
 | 
						|
  explicit BitVector(unsigned s, bool t = false) : Size(s) {
 | 
						|
    Capacity = NumBitWords(s);
 | 
						|
    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | 
						|
    init_words(Bits, Capacity, t);
 | 
						|
    if (t)
 | 
						|
      clear_unused_bits();
 | 
						|
  }
 | 
						|
 | 
						|
  /// BitVector copy ctor.
 | 
						|
  BitVector(const BitVector &RHS) : Size(RHS.size()) {
 | 
						|
    if (Size == 0) {
 | 
						|
      Bits = 0;
 | 
						|
      Capacity = 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Capacity = NumBitWords(RHS.size());
 | 
						|
    Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | 
						|
    std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
 | 
						|
  }
 | 
						|
 | 
						|
#if LLVM_HAS_RVALUE_REFERENCES
 | 
						|
  BitVector(BitVector &&RHS)
 | 
						|
    : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
 | 
						|
    RHS.Bits = 0;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  ~BitVector() {
 | 
						|
    std::free(Bits);
 | 
						|
  }
 | 
						|
 | 
						|
  /// empty - Tests whether there are no bits in this bitvector.
 | 
						|
  bool empty() const { return Size == 0; }
 | 
						|
 | 
						|
  /// size - Returns the number of bits in this bitvector.
 | 
						|
  unsigned size() const { return Size; }
 | 
						|
 | 
						|
  /// count - Returns the number of bits which are set.
 | 
						|
  unsigned count() const {
 | 
						|
    unsigned NumBits = 0;
 | 
						|
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | 
						|
      if (sizeof(BitWord) == 4)
 | 
						|
        NumBits += CountPopulation_32((uint32_t)Bits[i]);
 | 
						|
      else if (sizeof(BitWord) == 8)
 | 
						|
        NumBits += CountPopulation_64(Bits[i]);
 | 
						|
      else
 | 
						|
        llvm_unreachable("Unsupported!");
 | 
						|
    return NumBits;
 | 
						|
  }
 | 
						|
 | 
						|
  /// any - Returns true if any bit is set.
 | 
						|
  bool any() const {
 | 
						|
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | 
						|
      if (Bits[i] != 0)
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// all - Returns true if all bits are set.
 | 
						|
  bool all() const {
 | 
						|
    // TODO: Optimize this.
 | 
						|
    return count() == size();
 | 
						|
  }
 | 
						|
 | 
						|
  /// none - Returns true if none of the bits are set.
 | 
						|
  bool none() const {
 | 
						|
    return !any();
 | 
						|
  }
 | 
						|
 | 
						|
  /// find_first - Returns the index of the first set bit, -1 if none
 | 
						|
  /// of the bits are set.
 | 
						|
  int find_first() const {
 | 
						|
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | 
						|
      if (Bits[i] != 0) {
 | 
						|
        if (sizeof(BitWord) == 4)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
 | 
						|
        if (sizeof(BitWord) == 8)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | 
						|
        llvm_unreachable("Unsupported!");
 | 
						|
      }
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// find_next - Returns the index of the next set bit following the
 | 
						|
  /// "Prev" bit. Returns -1 if the next set bit is not found.
 | 
						|
  int find_next(unsigned Prev) const {
 | 
						|
    ++Prev;
 | 
						|
    if (Prev >= Size)
 | 
						|
      return -1;
 | 
						|
 | 
						|
    unsigned WordPos = Prev / BITWORD_SIZE;
 | 
						|
    unsigned BitPos = Prev % BITWORD_SIZE;
 | 
						|
    BitWord Copy = Bits[WordPos];
 | 
						|
    // Mask off previous bits.
 | 
						|
    Copy &= ~0UL << BitPos;
 | 
						|
 | 
						|
    if (Copy != 0) {
 | 
						|
      if (sizeof(BitWord) == 4)
 | 
						|
        return WordPos * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Copy);
 | 
						|
      if (sizeof(BitWord) == 8)
 | 
						|
        return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
 | 
						|
      llvm_unreachable("Unsupported!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Check subsequent words.
 | 
						|
    for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
 | 
						|
      if (Bits[i] != 0) {
 | 
						|
        if (sizeof(BitWord) == 4)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_32((uint32_t)Bits[i]);
 | 
						|
        if (sizeof(BitWord) == 8)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | 
						|
        llvm_unreachable("Unsupported!");
 | 
						|
      }
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// clear - Clear all bits.
 | 
						|
  void clear() {
 | 
						|
    Size = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// resize - Grow or shrink the bitvector.
 | 
						|
  void resize(unsigned N, bool t = false) {
 | 
						|
    if (N > Capacity * BITWORD_SIZE) {
 | 
						|
      unsigned OldCapacity = Capacity;
 | 
						|
      grow(N);
 | 
						|
      init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set any old unused bits that are now included in the BitVector. This
 | 
						|
    // may set bits that are not included in the new vector, but we will clear
 | 
						|
    // them back out below.
 | 
						|
    if (N > Size)
 | 
						|
      set_unused_bits(t);
 | 
						|
 | 
						|
    // Update the size, and clear out any bits that are now unused
 | 
						|
    unsigned OldSize = Size;
 | 
						|
    Size = N;
 | 
						|
    if (t || N < OldSize)
 | 
						|
      clear_unused_bits();
 | 
						|
  }
 | 
						|
 | 
						|
  void reserve(unsigned N) {
 | 
						|
    if (N > Capacity * BITWORD_SIZE)
 | 
						|
      grow(N);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set, reset, flip
 | 
						|
  BitVector &set() {
 | 
						|
    init_words(Bits, Capacity, true);
 | 
						|
    clear_unused_bits();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &set(unsigned Idx) {
 | 
						|
    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// set - Efficiently set a range of bits in [I, E)
 | 
						|
  BitVector &set(unsigned I, unsigned E) {
 | 
						|
    assert(I <= E && "Attempted to set backwards range!");
 | 
						|
    assert(E <= size() && "Attempted to set out-of-bounds range!");
 | 
						|
 | 
						|
    if (I == E) return *this;
 | 
						|
 | 
						|
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
 | 
						|
      BitWord EMask = 1UL << (E % BITWORD_SIZE);
 | 
						|
      BitWord IMask = 1UL << (I % BITWORD_SIZE);
 | 
						|
      BitWord Mask = EMask - IMask;
 | 
						|
      Bits[I / BITWORD_SIZE] |= Mask;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
 | 
						|
    Bits[I / BITWORD_SIZE] |= PrefixMask;
 | 
						|
    I = RoundUpToAlignment(I, BITWORD_SIZE);
 | 
						|
 | 
						|
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
 | 
						|
      Bits[I / BITWORD_SIZE] = ~0UL;
 | 
						|
 | 
						|
    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
 | 
						|
    Bits[I / BITWORD_SIZE] |= PostfixMask;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &reset() {
 | 
						|
    init_words(Bits, Capacity, false);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &reset(unsigned Idx) {
 | 
						|
    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// reset - Efficiently reset a range of bits in [I, E)
 | 
						|
  BitVector &reset(unsigned I, unsigned E) {
 | 
						|
    assert(I <= E && "Attempted to reset backwards range!");
 | 
						|
    assert(E <= size() && "Attempted to reset out-of-bounds range!");
 | 
						|
 | 
						|
    if (I == E) return *this;
 | 
						|
 | 
						|
    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
 | 
						|
      BitWord EMask = 1UL << (E % BITWORD_SIZE);
 | 
						|
      BitWord IMask = 1UL << (I % BITWORD_SIZE);
 | 
						|
      BitWord Mask = EMask - IMask;
 | 
						|
      Bits[I / BITWORD_SIZE] &= ~Mask;
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
 | 
						|
    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
 | 
						|
    I = RoundUpToAlignment(I, BITWORD_SIZE);
 | 
						|
 | 
						|
    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
 | 
						|
      Bits[I / BITWORD_SIZE] = 0UL;
 | 
						|
 | 
						|
    BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
 | 
						|
    Bits[I / BITWORD_SIZE] &= ~PostfixMask;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &flip() {
 | 
						|
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
 | 
						|
      Bits[i] = ~Bits[i];
 | 
						|
    clear_unused_bits();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &flip(unsigned Idx) {
 | 
						|
    Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Indexing.
 | 
						|
  reference operator[](unsigned Idx) {
 | 
						|
    assert (Idx < Size && "Out-of-bounds Bit access.");
 | 
						|
    return reference(*this, Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator[](unsigned Idx) const {
 | 
						|
    assert (Idx < Size && "Out-of-bounds Bit access.");
 | 
						|
    BitWord Mask = 1L << (Idx % BITWORD_SIZE);
 | 
						|
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
 | 
						|
  }
 | 
						|
 | 
						|
  bool test(unsigned Idx) const {
 | 
						|
    return (*this)[Idx];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Test if any common bits are set.
 | 
						|
  bool anyCommon(const BitVector &RHS) const {
 | 
						|
    unsigned ThisWords = NumBitWords(size());
 | 
						|
    unsigned RHSWords  = NumBitWords(RHS.size());
 | 
						|
    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
 | 
						|
      if (Bits[i] & RHS.Bits[i])
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Comparison operators.
 | 
						|
  bool operator==(const BitVector &RHS) const {
 | 
						|
    unsigned ThisWords = NumBitWords(size());
 | 
						|
    unsigned RHSWords  = NumBitWords(RHS.size());
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | 
						|
      if (Bits[i] != RHS.Bits[i])
 | 
						|
        return false;
 | 
						|
 | 
						|
    // Verify that any extra words are all zeros.
 | 
						|
    if (i != ThisWords) {
 | 
						|
      for (; i != ThisWords; ++i)
 | 
						|
        if (Bits[i])
 | 
						|
          return false;
 | 
						|
    } else if (i != RHSWords) {
 | 
						|
      for (; i != RHSWords; ++i)
 | 
						|
        if (RHS.Bits[i])
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const BitVector &RHS) const {
 | 
						|
    return !(*this == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Intersection, union, disjoint union.
 | 
						|
  BitVector &operator&=(const BitVector &RHS) {
 | 
						|
    unsigned ThisWords = NumBitWords(size());
 | 
						|
    unsigned RHSWords  = NumBitWords(RHS.size());
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | 
						|
      Bits[i] &= RHS.Bits[i];
 | 
						|
 | 
						|
    // Any bits that are just in this bitvector become zero, because they aren't
 | 
						|
    // in the RHS bit vector.  Any words only in RHS are ignored because they
 | 
						|
    // are already zero in the LHS.
 | 
						|
    for (; i != ThisWords; ++i)
 | 
						|
      Bits[i] = 0;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
 | 
						|
  BitVector &reset(const BitVector &RHS) {
 | 
						|
    unsigned ThisWords = NumBitWords(size());
 | 
						|
    unsigned RHSWords  = NumBitWords(RHS.size());
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | 
						|
      Bits[i] &= ~RHS.Bits[i];
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// test - Check if (This - RHS) is zero.
 | 
						|
  /// This is the same as reset(RHS) and any().
 | 
						|
  bool test(const BitVector &RHS) const {
 | 
						|
    unsigned ThisWords = NumBitWords(size());
 | 
						|
    unsigned RHSWords  = NumBitWords(RHS.size());
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
 | 
						|
      if ((Bits[i] & ~RHS.Bits[i]) != 0)
 | 
						|
        return true;
 | 
						|
 | 
						|
    for (; i != ThisWords ; ++i)
 | 
						|
      if (Bits[i] != 0)
 | 
						|
        return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &operator|=(const BitVector &RHS) {
 | 
						|
    if (size() < RHS.size())
 | 
						|
      resize(RHS.size());
 | 
						|
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
 | 
						|
      Bits[i] |= RHS.Bits[i];
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  BitVector &operator^=(const BitVector &RHS) {
 | 
						|
    if (size() < RHS.size())
 | 
						|
      resize(RHS.size());
 | 
						|
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
 | 
						|
      Bits[i] ^= RHS.Bits[i];
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Assignment operator.
 | 
						|
  const BitVector &operator=(const BitVector &RHS) {
 | 
						|
    if (this == &RHS) return *this;
 | 
						|
 | 
						|
    Size = RHS.size();
 | 
						|
    unsigned RHSWords = NumBitWords(Size);
 | 
						|
    if (Size <= Capacity * BITWORD_SIZE) {
 | 
						|
      if (Size)
 | 
						|
        std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
 | 
						|
      clear_unused_bits();
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    // Grow the bitvector to have enough elements.
 | 
						|
    Capacity = RHSWords;
 | 
						|
    BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
 | 
						|
    std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
 | 
						|
 | 
						|
    // Destroy the old bits.
 | 
						|
    std::free(Bits);
 | 
						|
    Bits = NewBits;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
#if LLVM_HAS_RVALUE_REFERENCES
 | 
						|
  const BitVector &operator=(BitVector &&RHS) {
 | 
						|
    if (this == &RHS) return *this;
 | 
						|
 | 
						|
    std::free(Bits);
 | 
						|
    Bits = RHS.Bits;
 | 
						|
    Size = RHS.Size;
 | 
						|
    Capacity = RHS.Capacity;
 | 
						|
 | 
						|
    RHS.Bits = 0;
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  void swap(BitVector &RHS) {
 | 
						|
    std::swap(Bits, RHS.Bits);
 | 
						|
    std::swap(Size, RHS.Size);
 | 
						|
    std::swap(Capacity, RHS.Capacity);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Portable bit mask operations.
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
 | 
						|
  // fixed word size makes it easier to work with literal bit vector constants
 | 
						|
  // in portable code.
 | 
						|
  //
 | 
						|
  // The LSB in each word is the lowest numbered bit.  The size of a portable
 | 
						|
  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
 | 
						|
  // given, the bit mask is assumed to cover the entire BitVector.
 | 
						|
 | 
						|
  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
 | 
						|
  /// This computes "*this |= Mask".
 | 
						|
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | 
						|
    applyMask<true, false>(Mask, MaskWords);
 | 
						|
  }
 | 
						|
 | 
						|
  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
 | 
						|
  /// Don't resize. This computes "*this &= ~Mask".
 | 
						|
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | 
						|
    applyMask<false, false>(Mask, MaskWords);
 | 
						|
  }
 | 
						|
 | 
						|
  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
 | 
						|
  /// Don't resize.  This computes "*this |= ~Mask".
 | 
						|
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | 
						|
    applyMask<true, true>(Mask, MaskWords);
 | 
						|
  }
 | 
						|
 | 
						|
  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
 | 
						|
  /// Don't resize.  This computes "*this &= Mask".
 | 
						|
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
 | 
						|
    applyMask<false, true>(Mask, MaskWords);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned NumBitWords(unsigned S) const {
 | 
						|
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the unused bits in the high words.
 | 
						|
  void set_unused_bits(bool t = true) {
 | 
						|
    //  Set high words first.
 | 
						|
    unsigned UsedWords = NumBitWords(Size);
 | 
						|
    if (Capacity > UsedWords)
 | 
						|
      init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
 | 
						|
 | 
						|
    //  Then set any stray high bits of the last used word.
 | 
						|
    unsigned ExtraBits = Size % BITWORD_SIZE;
 | 
						|
    if (ExtraBits) {
 | 
						|
      BitWord ExtraBitMask = ~0UL << ExtraBits;
 | 
						|
      if (t)
 | 
						|
        Bits[UsedWords-1] |= ExtraBitMask;
 | 
						|
      else
 | 
						|
        Bits[UsedWords-1] &= ~ExtraBitMask;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear the unused bits in the high words.
 | 
						|
  void clear_unused_bits() {
 | 
						|
    set_unused_bits(false);
 | 
						|
  }
 | 
						|
 | 
						|
  void grow(unsigned NewSize) {
 | 
						|
    Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
 | 
						|
    Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
 | 
						|
 | 
						|
    clear_unused_bits();
 | 
						|
  }
 | 
						|
 | 
						|
  void init_words(BitWord *B, unsigned NumWords, bool t) {
 | 
						|
    memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
 | 
						|
  }
 | 
						|
 | 
						|
  template<bool AddBits, bool InvertMask>
 | 
						|
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
 | 
						|
    assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
 | 
						|
    MaskWords = std::min(MaskWords, (size() + 31) / 32);
 | 
						|
    const unsigned Scale = BITWORD_SIZE / 32;
 | 
						|
    unsigned i;
 | 
						|
    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
 | 
						|
      BitWord BW = Bits[i];
 | 
						|
      // This inner loop should unroll completely when BITWORD_SIZE > 32.
 | 
						|
      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
 | 
						|
        uint32_t M = *Mask++;
 | 
						|
        if (InvertMask) M = ~M;
 | 
						|
        if (AddBits) BW |=   BitWord(M) << b;
 | 
						|
        else         BW &= ~(BitWord(M) << b);
 | 
						|
      }
 | 
						|
      Bits[i] = BW;
 | 
						|
    }
 | 
						|
    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
 | 
						|
      uint32_t M = *Mask++;
 | 
						|
      if (InvertMask) M = ~M;
 | 
						|
      if (AddBits) Bits[i] |=   BitWord(M) << b;
 | 
						|
      else         Bits[i] &= ~(BitWord(M) << b);
 | 
						|
    }
 | 
						|
    if (AddBits)
 | 
						|
      clear_unused_bits();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
namespace std {
 | 
						|
  /// Implement std::swap in terms of BitVector swap.
 | 
						|
  inline void
 | 
						|
  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
 | 
						|
    LHS.swap(RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |