mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	In constant folding stage, "TRUNC" can't handle vector data type. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216149 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2169 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2169 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements folding of constants for LLVM.  This implements the
 | |
| // (internal) ConstantFold.h interface, which is used by the
 | |
| // ConstantExpr::get* methods to automatically fold constants when possible.
 | |
| //
 | |
| // The current constant folding implementation is implemented in two pieces: the
 | |
| // pieces that don't need DataLayout, and the pieces that do. This is to avoid
 | |
| // a dependence in IR on Target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ConstantFold.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <limits>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                ConstantFold*Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// BitCastConstantVector - Convert the specified vector Constant node to the
 | |
| /// specified vector type.  At this point, we know that the elements of the
 | |
| /// input vector constant are all simple integer or FP values.
 | |
| static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
 | |
| 
 | |
|   if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
 | |
|   if (CV->isNullValue()) return Constant::getNullValue(DstTy);
 | |
| 
 | |
|   // If this cast changes element count then we can't handle it here:
 | |
|   // doing so requires endianness information.  This should be handled by
 | |
|   // Analysis/ConstantFolding.cpp
 | |
|   unsigned NumElts = DstTy->getNumElements();
 | |
|   if (NumElts != CV->getType()->getVectorNumElements())
 | |
|     return nullptr;
 | |
|   
 | |
|   Type *DstEltTy = DstTy->getElementType();
 | |
| 
 | |
|   SmallVector<Constant*, 16> Result;
 | |
|   Type *Ty = IntegerType::get(CV->getContext(), 32);
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *C =
 | |
|       ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
 | |
|     C = ConstantExpr::getBitCast(C, DstEltTy);
 | |
|     Result.push_back(C);
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| /// This function determines which opcode to use to fold two constant cast 
 | |
| /// expressions together. It uses CastInst::isEliminableCastPair to determine
 | |
| /// the opcode. Consequently its just a wrapper around that function.
 | |
| /// @brief Determine if it is valid to fold a cast of a cast
 | |
| static unsigned
 | |
| foldConstantCastPair(
 | |
|   unsigned opc,          ///< opcode of the second cast constant expression
 | |
|   ConstantExpr *Op,      ///< the first cast constant expression
 | |
|   Type *DstTy            ///< destination type of the first cast
 | |
| ) {
 | |
|   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
 | |
|   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
 | |
|   assert(CastInst::isCast(opc) && "Invalid cast opcode");
 | |
| 
 | |
|   // The the types and opcodes for the two Cast constant expressions
 | |
|   Type *SrcTy = Op->getOperand(0)->getType();
 | |
|   Type *MidTy = Op->getType();
 | |
|   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
 | |
|   Instruction::CastOps secondOp = Instruction::CastOps(opc);
 | |
| 
 | |
|   // Assume that pointers are never more than 64 bits wide, and only use this
 | |
|   // for the middle type. Otherwise we could end up folding away illegal
 | |
|   // bitcasts between address spaces with different sizes.
 | |
|   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
 | |
| 
 | |
|   // Let CastInst::isEliminableCastPair do the heavy lifting.
 | |
|   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
 | |
|                                         nullptr, FakeIntPtrTy, nullptr);
 | |
| }
 | |
| 
 | |
| static Constant *FoldBitCast(Constant *V, Type *DestTy) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   if (SrcTy == DestTy)
 | |
|     return V; // no-op cast
 | |
| 
 | |
|   // Check to see if we are casting a pointer to an aggregate to a pointer to
 | |
|   // the first element.  If so, return the appropriate GEP instruction.
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
 | |
|     if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
 | |
|       if (PTy->getAddressSpace() == DPTy->getAddressSpace()
 | |
|           && DPTy->getElementType()->isSized()) {
 | |
|         SmallVector<Value*, 8> IdxList;
 | |
|         Value *Zero =
 | |
|           Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
 | |
|         IdxList.push_back(Zero);
 | |
|         Type *ElTy = PTy->getElementType();
 | |
|         while (ElTy != DPTy->getElementType()) {
 | |
|           if (StructType *STy = dyn_cast<StructType>(ElTy)) {
 | |
|             if (STy->getNumElements() == 0) break;
 | |
|             ElTy = STy->getElementType(0);
 | |
|             IdxList.push_back(Zero);
 | |
|           } else if (SequentialType *STy = 
 | |
|                      dyn_cast<SequentialType>(ElTy)) {
 | |
|             if (ElTy->isPointerTy()) break;  // Can't index into pointers!
 | |
|             ElTy = STy->getElementType();
 | |
|             IdxList.push_back(Zero);
 | |
|           } else {
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (ElTy == DPTy->getElementType())
 | |
|           // This GEP is inbounds because all indices are zero.
 | |
|           return ConstantExpr::getInBoundsGetElementPtr(V, IdxList);
 | |
|       }
 | |
| 
 | |
|   // Handle casts from one vector constant to another.  We know that the src 
 | |
|   // and dest type have the same size (otherwise its an illegal cast).
 | |
|   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
 | |
|     if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
 | |
|       assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
 | |
|              "Not cast between same sized vectors!");
 | |
|       SrcTy = nullptr;
 | |
|       // First, check for null.  Undef is already handled.
 | |
|       if (isa<ConstantAggregateZero>(V))
 | |
|         return Constant::getNullValue(DestTy);
 | |
| 
 | |
|       // Handle ConstantVector and ConstantAggregateVector.
 | |
|       return BitCastConstantVector(V, DestPTy);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
 | |
|     // This allows for other simplifications (although some of them
 | |
|     // can only be handled by Analysis/ConstantFolding.cpp).
 | |
|     if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
 | |
|       return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
 | |
|   }
 | |
| 
 | |
|   // Finally, implement bitcast folding now.   The code below doesn't handle
 | |
|   // bitcast right.
 | |
|   if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
 | |
|     return ConstantPointerNull::get(cast<PointerType>(DestTy));
 | |
| 
 | |
|   // Handle integral constant input.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (DestTy->isIntegerTy())
 | |
|       // Integral -> Integral. This is a no-op because the bit widths must
 | |
|       // be the same. Consequently, we just fold to V.
 | |
|       return V;
 | |
| 
 | |
|     if (DestTy->isFloatingPointTy())
 | |
|       return ConstantFP::get(DestTy->getContext(),
 | |
|                              APFloat(DestTy->getFltSemantics(),
 | |
|                                      CI->getValue()));
 | |
| 
 | |
|     // Otherwise, can't fold this (vector?)
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Handle ConstantFP input: FP -> Integral.
 | |
|   if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
 | |
|     return ConstantInt::get(FP->getContext(),
 | |
|                             FP->getValueAPF().bitcastToAPInt());
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExtractConstantBytes - V is an integer constant which only has a subset of
 | |
| /// its bytes used.  The bytes used are indicated by ByteStart (which is the
 | |
| /// first byte used, counting from the least significant byte) and ByteSize,
 | |
| /// which is the number of bytes used.
 | |
| ///
 | |
| /// This function analyzes the specified constant to see if the specified byte
 | |
| /// range can be returned as a simplified constant.  If so, the constant is
 | |
| /// returned, otherwise null is returned.
 | |
| /// 
 | |
| static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
 | |
|                                       unsigned ByteSize) {
 | |
|   assert(C->getType()->isIntegerTy() &&
 | |
|          (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
 | |
|          "Non-byte sized integer input");
 | |
|   unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
 | |
|   assert(ByteSize && "Must be accessing some piece");
 | |
|   assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
 | |
|   assert(ByteSize != CSize && "Should not extract everything");
 | |
|   
 | |
|   // Constant Integers are simple.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | |
|     APInt V = CI->getValue();
 | |
|     if (ByteStart)
 | |
|       V = V.lshr(ByteStart*8);
 | |
|     V = V.trunc(ByteSize*8);
 | |
|     return ConstantInt::get(CI->getContext(), V);
 | |
|   }
 | |
|   
 | |
|   // In the input is a constant expr, we might be able to recursively simplify.
 | |
|   // If not, we definitely can't do anything.
 | |
|   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE) return nullptr;
 | |
| 
 | |
|   switch (CE->getOpcode()) {
 | |
|   default: return nullptr;
 | |
|   case Instruction::Or: {
 | |
|     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
 | |
|     if (!RHS)
 | |
|       return nullptr;
 | |
|     
 | |
|     // X | -1 -> -1.
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
 | |
|       if (RHSC->isAllOnesValue())
 | |
|         return RHSC;
 | |
|     
 | |
|     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
 | |
|     if (!LHS)
 | |
|       return nullptr;
 | |
|     return ConstantExpr::getOr(LHS, RHS);
 | |
|   }
 | |
|   case Instruction::And: {
 | |
|     Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
 | |
|     if (!RHS)
 | |
|       return nullptr;
 | |
|     
 | |
|     // X & 0 -> 0.
 | |
|     if (RHS->isNullValue())
 | |
|       return RHS;
 | |
|     
 | |
|     Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
 | |
|     if (!LHS)
 | |
|       return nullptr;
 | |
|     return ConstantExpr::getAnd(LHS, RHS);
 | |
|   }
 | |
|   case Instruction::LShr: {
 | |
|     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
 | |
|     if (!Amt)
 | |
|       return nullptr;
 | |
|     unsigned ShAmt = Amt->getZExtValue();
 | |
|     // Cannot analyze non-byte shifts.
 | |
|     if ((ShAmt & 7) != 0)
 | |
|       return nullptr;
 | |
|     ShAmt >>= 3;
 | |
|     
 | |
|     // If the extract is known to be all zeros, return zero.
 | |
|     if (ByteStart >= CSize-ShAmt)
 | |
|       return Constant::getNullValue(IntegerType::get(CE->getContext(),
 | |
|                                                      ByteSize*8));
 | |
|     // If the extract is known to be fully in the input, extract it.
 | |
|     if (ByteStart+ByteSize+ShAmt <= CSize)
 | |
|       return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
 | |
|     
 | |
|     // TODO: Handle the 'partially zero' case.
 | |
|     return nullptr;
 | |
|   }
 | |
|     
 | |
|   case Instruction::Shl: {
 | |
|     ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
 | |
|     if (!Amt)
 | |
|       return nullptr;
 | |
|     unsigned ShAmt = Amt->getZExtValue();
 | |
|     // Cannot analyze non-byte shifts.
 | |
|     if ((ShAmt & 7) != 0)
 | |
|       return nullptr;
 | |
|     ShAmt >>= 3;
 | |
|     
 | |
|     // If the extract is known to be all zeros, return zero.
 | |
|     if (ByteStart+ByteSize <= ShAmt)
 | |
|       return Constant::getNullValue(IntegerType::get(CE->getContext(),
 | |
|                                                      ByteSize*8));
 | |
|     // If the extract is known to be fully in the input, extract it.
 | |
|     if (ByteStart >= ShAmt)
 | |
|       return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
 | |
|     
 | |
|     // TODO: Handle the 'partially zero' case.
 | |
|     return nullptr;
 | |
|   }
 | |
|       
 | |
|   case Instruction::ZExt: {
 | |
|     unsigned SrcBitSize =
 | |
|       cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
 | |
|     
 | |
|     // If extracting something that is completely zero, return 0.
 | |
|     if (ByteStart*8 >= SrcBitSize)
 | |
|       return Constant::getNullValue(IntegerType::get(CE->getContext(),
 | |
|                                                      ByteSize*8));
 | |
| 
 | |
|     // If exactly extracting the input, return it.
 | |
|     if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
 | |
|       return CE->getOperand(0);
 | |
|     
 | |
|     // If extracting something completely in the input, if if the input is a
 | |
|     // multiple of 8 bits, recurse.
 | |
|     if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
 | |
|       return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
 | |
|       
 | |
|     // Otherwise, if extracting a subset of the input, which is not multiple of
 | |
|     // 8 bits, do a shift and trunc to get the bits.
 | |
|     if ((ByteStart+ByteSize)*8 < SrcBitSize) {
 | |
|       assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
 | |
|       Constant *Res = CE->getOperand(0);
 | |
|       if (ByteStart)
 | |
|         Res = ConstantExpr::getLShr(Res, 
 | |
|                                  ConstantInt::get(Res->getType(), ByteStart*8));
 | |
|       return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
 | |
|                                                           ByteSize*8));
 | |
|     }
 | |
|     
 | |
|     // TODO: Handle the 'partially zero' case.
 | |
|     return nullptr;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
 | |
| /// on Ty, with any known factors factored out. If Folded is false,
 | |
| /// return null if no factoring was possible, to avoid endlessly
 | |
| /// bouncing an unfoldable expression back into the top-level folder.
 | |
| ///
 | |
| static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
 | |
|                                  bool Folded) {
 | |
|   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
 | |
|     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
 | |
|     return ConstantExpr::getNUWMul(E, N);
 | |
|   }
 | |
| 
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|     if (!STy->isPacked()) {
 | |
|       unsigned NumElems = STy->getNumElements();
 | |
|       // An empty struct has size zero.
 | |
|       if (NumElems == 0)
 | |
|         return ConstantExpr::getNullValue(DestTy);
 | |
|       // Check for a struct with all members having the same size.
 | |
|       Constant *MemberSize =
 | |
|         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
 | |
|       bool AllSame = true;
 | |
|       for (unsigned i = 1; i != NumElems; ++i)
 | |
|         if (MemberSize !=
 | |
|             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
 | |
|           AllSame = false;
 | |
|           break;
 | |
|         }
 | |
|       if (AllSame) {
 | |
|         Constant *N = ConstantInt::get(DestTy, NumElems);
 | |
|         return ConstantExpr::getNUWMul(MemberSize, N);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Pointer size doesn't depend on the pointee type, so canonicalize them
 | |
|   // to an arbitrary pointee.
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
 | |
|     if (!PTy->getElementType()->isIntegerTy(1))
 | |
|       return
 | |
|         getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
 | |
|                                          PTy->getAddressSpace()),
 | |
|                         DestTy, true);
 | |
| 
 | |
|   // If there's no interesting folding happening, bail so that we don't create
 | |
|   // a constant that looks like it needs folding but really doesn't.
 | |
|   if (!Folded)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Base case: Get a regular sizeof expression.
 | |
|   Constant *C = ConstantExpr::getSizeOf(Ty);
 | |
|   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                     DestTy, false),
 | |
|                             C, DestTy);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
 | |
| /// on Ty, with any known factors factored out. If Folded is false,
 | |
| /// return null if no factoring was possible, to avoid endlessly
 | |
| /// bouncing an unfoldable expression back into the top-level folder.
 | |
| ///
 | |
| static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
 | |
|                                   bool Folded) {
 | |
|   // The alignment of an array is equal to the alignment of the
 | |
|   // array element. Note that this is not always true for vectors.
 | |
|   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
 | |
|     C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                       DestTy,
 | |
|                                                       false),
 | |
|                               C, DestTy);
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     // Packed structs always have an alignment of 1.
 | |
|     if (STy->isPacked())
 | |
|       return ConstantInt::get(DestTy, 1);
 | |
| 
 | |
|     // Otherwise, struct alignment is the maximum alignment of any member.
 | |
|     // Without target data, we can't compare much, but we can check to see
 | |
|     // if all the members have the same alignment.
 | |
|     unsigned NumElems = STy->getNumElements();
 | |
|     // An empty struct has minimal alignment.
 | |
|     if (NumElems == 0)
 | |
|       return ConstantInt::get(DestTy, 1);
 | |
|     // Check for a struct with all members having the same alignment.
 | |
|     Constant *MemberAlign =
 | |
|       getFoldedAlignOf(STy->getElementType(0), DestTy, true);
 | |
|     bool AllSame = true;
 | |
|     for (unsigned i = 1; i != NumElems; ++i)
 | |
|       if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
 | |
|         AllSame = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllSame)
 | |
|       return MemberAlign;
 | |
|   }
 | |
| 
 | |
|   // Pointer alignment doesn't depend on the pointee type, so canonicalize them
 | |
|   // to an arbitrary pointee.
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
 | |
|     if (!PTy->getElementType()->isIntegerTy(1))
 | |
|       return
 | |
|         getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
 | |
|                                                            1),
 | |
|                                           PTy->getAddressSpace()),
 | |
|                          DestTy, true);
 | |
| 
 | |
|   // If there's no interesting folding happening, bail so that we don't create
 | |
|   // a constant that looks like it needs folding but really doesn't.
 | |
|   if (!Folded)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Base case: Get a regular alignof expression.
 | |
|   Constant *C = ConstantExpr::getAlignOf(Ty);
 | |
|   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                     DestTy, false),
 | |
|                             C, DestTy);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
 | |
| /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
 | |
| /// return null if no factoring was possible, to avoid endlessly
 | |
| /// bouncing an unfoldable expression back into the top-level folder.
 | |
| ///
 | |
| static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
 | |
|                                    Type *DestTy,
 | |
|                                    bool Folded) {
 | |
|   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
 | |
|                                                                 DestTy, false),
 | |
|                                         FieldNo, DestTy);
 | |
|     Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
 | |
|     return ConstantExpr::getNUWMul(E, N);
 | |
|   }
 | |
| 
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|     if (!STy->isPacked()) {
 | |
|       unsigned NumElems = STy->getNumElements();
 | |
|       // An empty struct has no members.
 | |
|       if (NumElems == 0)
 | |
|         return nullptr;
 | |
|       // Check for a struct with all members having the same size.
 | |
|       Constant *MemberSize =
 | |
|         getFoldedSizeOf(STy->getElementType(0), DestTy, true);
 | |
|       bool AllSame = true;
 | |
|       for (unsigned i = 1; i != NumElems; ++i)
 | |
|         if (MemberSize !=
 | |
|             getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
 | |
|           AllSame = false;
 | |
|           break;
 | |
|         }
 | |
|       if (AllSame) {
 | |
|         Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
 | |
|                                                                     false,
 | |
|                                                                     DestTy,
 | |
|                                                                     false),
 | |
|                                             FieldNo, DestTy);
 | |
|         return ConstantExpr::getNUWMul(MemberSize, N);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If there's no interesting folding happening, bail so that we don't create
 | |
|   // a constant that looks like it needs folding but really doesn't.
 | |
|   if (!Folded)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Base case: Get a regular offsetof expression.
 | |
|   Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
 | |
|   C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                     DestTy, false),
 | |
|                             C, DestTy);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
 | |
|                                             Type *DestTy) {
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     // zext(undef) = 0, because the top bits will be zero.
 | |
|     // sext(undef) = 0, because the top bits will all be the same.
 | |
|     // [us]itofp(undef) = 0, because the result value is bounded.
 | |
|     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
 | |
|         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
 | |
|       return Constant::getNullValue(DestTy);
 | |
|     return UndefValue::get(DestTy);
 | |
|   }
 | |
| 
 | |
|   if (V->isNullValue() && !DestTy->isX86_MMXTy())
 | |
|     return Constant::getNullValue(DestTy);
 | |
| 
 | |
|   // If the cast operand is a constant expression, there's a few things we can
 | |
|   // do to try to simplify it.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->isCast()) {
 | |
|       // Try hard to fold cast of cast because they are often eliminable.
 | |
|       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
 | |
|         return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
 | |
|     } else if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|                // Do not fold addrspacecast (gep 0, .., 0). It might make the
 | |
|                // addrspacecast uncanonicalized.
 | |
|                opc != Instruction::AddrSpaceCast) {
 | |
|       // If all of the indexes in the GEP are null values, there is no pointer
 | |
|       // adjustment going on.  We might as well cast the source pointer.
 | |
|       bool isAllNull = true;
 | |
|       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|         if (!CE->getOperand(i)->isNullValue()) {
 | |
|           isAllNull = false;
 | |
|           break;
 | |
|         }
 | |
|       if (isAllNull)
 | |
|         // This is casting one pointer type to another, always BitCast
 | |
|         return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the cast operand is a constant vector, perform the cast by
 | |
|   // operating on each element. In the cast of bitcasts, the element
 | |
|   // count may be mismatched; don't attempt to handle that here.
 | |
|   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
 | |
|       DestTy->isVectorTy() &&
 | |
|       DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
 | |
|     SmallVector<Constant*, 16> res;
 | |
|     VectorType *DestVecTy = cast<VectorType>(DestTy);
 | |
|     Type *DstEltTy = DestVecTy->getElementType();
 | |
|     Type *Ty = IntegerType::get(V->getContext(), 32);
 | |
|     for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
 | |
|       Constant *C =
 | |
|         ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
 | |
|       res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
 | |
|     }
 | |
|     return ConstantVector::get(res);
 | |
|   }
 | |
| 
 | |
|   // We actually have to do a cast now. Perform the cast according to the
 | |
|   // opcode specified.
 | |
|   switch (opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Failed to cast constant expression");
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
 | |
|       bool ignored;
 | |
|       APFloat Val = FPC->getValueAPF();
 | |
|       Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
 | |
|                   DestTy->isFloatTy() ? APFloat::IEEEsingle :
 | |
|                   DestTy->isDoubleTy() ? APFloat::IEEEdouble :
 | |
|                   DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
 | |
|                   DestTy->isFP128Ty() ? APFloat::IEEEquad :
 | |
|                   DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
 | |
|                   APFloat::Bogus,
 | |
|                   APFloat::rmNearestTiesToEven, &ignored);
 | |
|       return ConstantFP::get(V->getContext(), Val);
 | |
|     }
 | |
|     return nullptr; // Can't fold.
 | |
|   case Instruction::FPToUI: 
 | |
|   case Instruction::FPToSI:
 | |
|     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
 | |
|       const APFloat &V = FPC->getValueAPF();
 | |
|       bool ignored;
 | |
|       uint64_t x[2]; 
 | |
|       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
 | |
|       (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
 | |
|                                 APFloat::rmTowardZero, &ignored);
 | |
|       APInt Val(DestBitWidth, x);
 | |
|       return ConstantInt::get(FPC->getContext(), Val);
 | |
|     }
 | |
|     return nullptr; // Can't fold.
 | |
|   case Instruction::IntToPtr:   //always treated as unsigned
 | |
|     if (V->isNullValue())       // Is it an integral null value?
 | |
|       return ConstantPointerNull::get(cast<PointerType>(DestTy));
 | |
|     return nullptr;                   // Other pointer types cannot be casted
 | |
|   case Instruction::PtrToInt:   // always treated as unsigned
 | |
|     // Is it a null pointer value?
 | |
|     if (V->isNullValue())
 | |
|       return ConstantInt::get(DestTy, 0);
 | |
|     // If this is a sizeof-like expression, pull out multiplications by
 | |
|     // known factors to expose them to subsequent folding. If it's an
 | |
|     // alignof-like expression, factor out known factors.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|           CE->getOperand(0)->isNullValue()) {
 | |
|         Type *Ty =
 | |
|           cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
 | |
|         if (CE->getNumOperands() == 2) {
 | |
|           // Handle a sizeof-like expression.
 | |
|           Constant *Idx = CE->getOperand(1);
 | |
|           bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
 | |
|           if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
 | |
|             Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
 | |
|                                                                 DestTy, false),
 | |
|                                         Idx, DestTy);
 | |
|             return ConstantExpr::getMul(C, Idx);
 | |
|           }
 | |
|         } else if (CE->getNumOperands() == 3 &&
 | |
|                    CE->getOperand(1)->isNullValue()) {
 | |
|           // Handle an alignof-like expression.
 | |
|           if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|             if (!STy->isPacked()) {
 | |
|               ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
 | |
|               if (CI->isOne() &&
 | |
|                   STy->getNumElements() == 2 &&
 | |
|                   STy->getElementType(0)->isIntegerTy(1)) {
 | |
|                 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
 | |
|               }
 | |
|             }
 | |
|           // Handle an offsetof-like expression.
 | |
|           if (Ty->isStructTy() || Ty->isArrayTy()) {
 | |
|             if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
 | |
|                                                 DestTy, false))
 | |
|               return C;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     // Other pointer types cannot be casted
 | |
|     return nullptr;
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       APInt api = CI->getValue();
 | |
|       APFloat apf(DestTy->getFltSemantics(),
 | |
|                   APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
 | |
|       (void)apf.convertFromAPInt(api, 
 | |
|                                  opc==Instruction::SIToFP,
 | |
|                                  APFloat::rmNearestTiesToEven);
 | |
|       return ConstantFP::get(V->getContext(), apf);
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::ZExt:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
 | |
|       return ConstantInt::get(V->getContext(),
 | |
|                               CI->getValue().zext(BitWidth));
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::SExt:
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
 | |
|       return ConstantInt::get(V->getContext(),
 | |
|                               CI->getValue().sext(BitWidth));
 | |
|     }
 | |
|     return nullptr;
 | |
|   case Instruction::Trunc: {
 | |
|     if (V->getType()->isVectorTy())
 | |
|       return nullptr;
 | |
| 
 | |
|     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       return ConstantInt::get(V->getContext(),
 | |
|                               CI->getValue().trunc(DestBitWidth));
 | |
|     }
 | |
|     
 | |
|     // The input must be a constantexpr.  See if we can simplify this based on
 | |
|     // the bytes we are demanding.  Only do this if the source and dest are an
 | |
|     // even multiple of a byte.
 | |
|     if ((DestBitWidth & 7) == 0 &&
 | |
|         (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
 | |
|       if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
 | |
|         return Res;
 | |
|       
 | |
|     return nullptr;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|     return FoldBitCast(V, DestTy);
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
 | |
|                                               Constant *V1, Constant *V2) {
 | |
|   // Check for i1 and vector true/false conditions.
 | |
|   if (Cond->isNullValue()) return V2;
 | |
|   if (Cond->isAllOnesValue()) return V1;
 | |
| 
 | |
|   // If the condition is a vector constant, fold the result elementwise.
 | |
|   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
 | |
|     SmallVector<Constant*, 16> Result;
 | |
|     Type *Ty = IntegerType::get(CondV->getContext(), 32);
 | |
|     for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
 | |
|       Constant *V;
 | |
|       Constant *V1Element = ConstantExpr::getExtractElement(V1,
 | |
|                                                     ConstantInt::get(Ty, i));
 | |
|       Constant *V2Element = ConstantExpr::getExtractElement(V2,
 | |
|                                                     ConstantInt::get(Ty, i));
 | |
|       Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
 | |
|       if (V1Element == V2Element) {
 | |
|         V = V1Element;
 | |
|       } else if (isa<UndefValue>(Cond)) {
 | |
|         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
 | |
|       } else {
 | |
|         if (!isa<ConstantInt>(Cond)) break;
 | |
|         V = Cond->isNullValue() ? V2Element : V1Element;
 | |
|       }
 | |
|       Result.push_back(V);
 | |
|     }
 | |
|     
 | |
|     // If we were able to build the vector, return it.
 | |
|     if (Result.size() == V1->getType()->getVectorNumElements())
 | |
|       return ConstantVector::get(Result);
 | |
|   }
 | |
| 
 | |
|   if (isa<UndefValue>(Cond)) {
 | |
|     if (isa<UndefValue>(V1)) return V1;
 | |
|     return V2;
 | |
|   }
 | |
|   if (isa<UndefValue>(V1)) return V2;
 | |
|   if (isa<UndefValue>(V2)) return V1;
 | |
|   if (V1 == V2) return V1;
 | |
| 
 | |
|   if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
 | |
|     if (TrueVal->getOpcode() == Instruction::Select)
 | |
|       if (TrueVal->getOperand(0) == Cond)
 | |
|         return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
 | |
|   }
 | |
|   if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
 | |
|     if (FalseVal->getOpcode() == Instruction::Select)
 | |
|       if (FalseVal->getOperand(0) == Cond)
 | |
|         return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
 | |
|                                                       Constant *Idx) {
 | |
|   if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
 | |
|     return UndefValue::get(Val->getType()->getVectorElementType());
 | |
|   if (Val->isNullValue())  // ee(zero, x) -> zero
 | |
|     return Constant::getNullValue(Val->getType()->getVectorElementType());
 | |
|   // ee({w,x,y,z}, undef) -> undef
 | |
|   if (isa<UndefValue>(Idx))
 | |
|     return UndefValue::get(Val->getType()->getVectorElementType());
 | |
| 
 | |
|   if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
 | |
|     uint64_t Index = CIdx->getZExtValue();
 | |
|     // ee({w,x,y,z}, wrong_value) -> undef
 | |
|     if (Index >= Val->getType()->getVectorNumElements())
 | |
|       return UndefValue::get(Val->getType()->getVectorElementType());
 | |
|     return Val->getAggregateElement(Index);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
 | |
|                                                      Constant *Elt,
 | |
|                                                      Constant *Idx) {
 | |
|   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
 | |
|   if (!CIdx) return nullptr;
 | |
|   const APInt &IdxVal = CIdx->getValue();
 | |
|   
 | |
|   SmallVector<Constant*, 16> Result;
 | |
|   Type *Ty = IntegerType::get(Val->getContext(), 32);
 | |
|   for (unsigned i = 0, e = Val->getType()->getVectorNumElements(); i != e; ++i){
 | |
|     if (i == IdxVal) {
 | |
|       Result.push_back(Elt);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     Constant *C =
 | |
|       ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
 | |
|     Result.push_back(C);
 | |
|   }
 | |
|   
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
 | |
|                                                      Constant *V2,
 | |
|                                                      Constant *Mask) {
 | |
|   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
 | |
|   Type *EltTy = V1->getType()->getVectorElementType();
 | |
| 
 | |
|   // Undefined shuffle mask -> undefined value.
 | |
|   if (isa<UndefValue>(Mask))
 | |
|     return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
 | |
| 
 | |
|   // Don't break the bitcode reader hack.
 | |
|   if (isa<ConstantExpr>(Mask)) return nullptr;
 | |
|   
 | |
|   unsigned SrcNumElts = V1->getType()->getVectorNumElements();
 | |
| 
 | |
|   // Loop over the shuffle mask, evaluating each element.
 | |
|   SmallVector<Constant*, 32> Result;
 | |
|   for (unsigned i = 0; i != MaskNumElts; ++i) {
 | |
|     int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
 | |
|     if (Elt == -1) {
 | |
|       Result.push_back(UndefValue::get(EltTy));
 | |
|       continue;
 | |
|     }
 | |
|     Constant *InElt;
 | |
|     if (unsigned(Elt) >= SrcNumElts*2)
 | |
|       InElt = UndefValue::get(EltTy);
 | |
|     else if (unsigned(Elt) >= SrcNumElts) {
 | |
|       Type *Ty = IntegerType::get(V2->getContext(), 32);
 | |
|       InElt =
 | |
|         ConstantExpr::getExtractElement(V2,
 | |
|                                         ConstantInt::get(Ty, Elt - SrcNumElts));
 | |
|     } else {
 | |
|       Type *Ty = IntegerType::get(V1->getContext(), 32);
 | |
|       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
 | |
|     }
 | |
|     Result.push_back(InElt);
 | |
|   }
 | |
| 
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
 | |
|                                                     ArrayRef<unsigned> Idxs) {
 | |
|   // Base case: no indices, so return the entire value.
 | |
|   if (Idxs.empty())
 | |
|     return Agg;
 | |
| 
 | |
|   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
 | |
|     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
 | |
|                                                    Constant *Val,
 | |
|                                                    ArrayRef<unsigned> Idxs) {
 | |
|   // Base case: no indices, so replace the entire value.
 | |
|   if (Idxs.empty())
 | |
|     return Val;
 | |
| 
 | |
|   unsigned NumElts;
 | |
|   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
 | |
|     NumElts = ST->getNumElements();
 | |
|   else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
 | |
|     NumElts = AT->getNumElements();
 | |
|   else
 | |
|     NumElts = Agg->getType()->getVectorNumElements();
 | |
| 
 | |
|   SmallVector<Constant*, 32> Result;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *C = Agg->getAggregateElement(i);
 | |
|     if (!C) return nullptr;
 | |
| 
 | |
|     if (Idxs[0] == i)
 | |
|       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
 | |
|     
 | |
|     Result.push_back(C);
 | |
|   }
 | |
|   
 | |
|   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
 | |
|     return ConstantStruct::get(ST, Result);
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
 | |
|     return ConstantArray::get(AT, Result);
 | |
|   return ConstantVector::get(Result);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
 | |
|                                               Constant *C1, Constant *C2) {
 | |
|   // Handle UndefValue up front.
 | |
|   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Xor:
 | |
|       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
 | |
|         // Handle undef ^ undef -> 0 special case. This is a common
 | |
|         // idiom (misuse).
 | |
|         return Constant::getNullValue(C1->getType());
 | |
|       // Fallthrough
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|       return UndefValue::get(C1->getType());
 | |
|     case Instruction::And:
 | |
|       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
 | |
|         return C1;
 | |
|       return Constant::getNullValue(C1->getType());   // undef & X -> 0
 | |
|     case Instruction::Mul: {
 | |
|       ConstantInt *CI;
 | |
|       // X * undef -> undef   if X is odd or undef
 | |
|       if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
 | |
|           ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
 | |
|           (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
 | |
|         return UndefValue::get(C1->getType());
 | |
| 
 | |
|       // X * undef -> 0       otherwise
 | |
|       return Constant::getNullValue(C1->getType());
 | |
|     }
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|       // undef / 1 -> undef
 | |
|       if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
 | |
|         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
 | |
|           if (CI2->isOne())
 | |
|             return C1;
 | |
|       // FALL THROUGH
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|       if (!isa<UndefValue>(C2))                    // undef / X -> 0
 | |
|         return Constant::getNullValue(C1->getType());
 | |
|       return C2;                                   // X / undef -> undef
 | |
|     case Instruction::Or:                          // X | undef -> -1
 | |
|       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
 | |
|         return C1;
 | |
|       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
 | |
|     case Instruction::LShr:
 | |
|       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
 | |
|         return C1;                                  // undef lshr undef -> undef
 | |
|       return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
 | |
|                                                     // undef lshr X -> 0
 | |
|     case Instruction::AShr:
 | |
|       if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
 | |
|         return Constant::getAllOnesValue(C1->getType());
 | |
|       else if (isa<UndefValue>(C1)) 
 | |
|         return C1;                                  // undef ashr undef -> undef
 | |
|       else
 | |
|         return C1;                                  // X ashr undef --> X
 | |
|     case Instruction::Shl:
 | |
|       if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
 | |
|         return C1;                                  // undef shl undef -> undef
 | |
|       // undef << X -> 0   or   X << undef -> 0
 | |
|       return Constant::getNullValue(C1->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle simplifications when the RHS is a constant int.
 | |
|   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Add:
 | |
|       if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
 | |
|       break;
 | |
|     case Instruction::Sub:
 | |
|       if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
 | |
|       break;
 | |
|     case Instruction::Mul:
 | |
|       if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
 | |
|       if (CI2->equalsInt(1))
 | |
|         return C1;                                              // X * 1 == X
 | |
|       break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|       if (CI2->equalsInt(1))
 | |
|         return C1;                                            // X / 1 == X
 | |
|       if (CI2->equalsInt(0))
 | |
|         return UndefValue::get(CI2->getType());               // X / 0 == undef
 | |
|       break;
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|       if (CI2->equalsInt(1))
 | |
|         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
 | |
|       if (CI2->equalsInt(0))
 | |
|         return UndefValue::get(CI2->getType());               // X % 0 == undef
 | |
|       break;
 | |
|     case Instruction::And:
 | |
|       if (CI2->isZero()) return C2;                           // X & 0 == 0
 | |
|       if (CI2->isAllOnesValue())
 | |
|         return C1;                                            // X & -1 == X
 | |
| 
 | |
|       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
 | |
|         // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
 | |
|         if (CE1->getOpcode() == Instruction::ZExt) {
 | |
|           unsigned DstWidth = CI2->getType()->getBitWidth();
 | |
|           unsigned SrcWidth =
 | |
|             CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|           APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
 | |
|           if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
 | |
|             return C1;
 | |
|         }
 | |
| 
 | |
|         // If and'ing the address of a global with a constant, fold it.
 | |
|         if (CE1->getOpcode() == Instruction::PtrToInt && 
 | |
|             isa<GlobalValue>(CE1->getOperand(0))) {
 | |
|           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
 | |
| 
 | |
|           // Functions are at least 4-byte aligned.
 | |
|           unsigned GVAlign = GV->getAlignment();
 | |
|           if (isa<Function>(GV))
 | |
|             GVAlign = std::max(GVAlign, 4U);
 | |
| 
 | |
|           if (GVAlign > 1) {
 | |
|             unsigned DstWidth = CI2->getType()->getBitWidth();
 | |
|             unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
 | |
|             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
 | |
| 
 | |
|             // If checking bits we know are clear, return zero.
 | |
|             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
 | |
|               return Constant::getNullValue(CI2->getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case Instruction::Or:
 | |
|       if (CI2->equalsInt(0)) return C1;    // X | 0 == X
 | |
|       if (CI2->isAllOnesValue())
 | |
|         return C2;                         // X | -1 == -1
 | |
|       break;
 | |
|     case Instruction::Xor:
 | |
|       if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
 | |
| 
 | |
|       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
 | |
|         switch (CE1->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::ICmp:
 | |
|         case Instruction::FCmp:
 | |
|           // cmp pred ^ true -> cmp !pred
 | |
|           assert(CI2->equalsInt(1));
 | |
|           CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
 | |
|           pred = CmpInst::getInversePredicate(pred);
 | |
|           return ConstantExpr::getCompare(pred, CE1->getOperand(0),
 | |
|                                           CE1->getOperand(1));
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case Instruction::AShr:
 | |
|       // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
 | |
|       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
 | |
|         if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
 | |
|           return ConstantExpr::getLShr(C1, C2);
 | |
|       break;
 | |
|     }
 | |
|   } else if (isa<ConstantInt>(C1)) {
 | |
|     // If C1 is a ConstantInt and C2 is not, swap the operands.
 | |
|     if (Instruction::isCommutative(Opcode))
 | |
|       return ConstantExpr::get(Opcode, C2, C1);
 | |
|   }
 | |
| 
 | |
|   // At this point we know neither constant is an UndefValue.
 | |
|   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
 | |
|     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
 | |
|       const APInt &C1V = CI1->getValue();
 | |
|       const APInt &C2V = CI2->getValue();
 | |
|       switch (Opcode) {
 | |
|       default:
 | |
|         break;
 | |
|       case Instruction::Add:     
 | |
|         return ConstantInt::get(CI1->getContext(), C1V + C2V);
 | |
|       case Instruction::Sub:     
 | |
|         return ConstantInt::get(CI1->getContext(), C1V - C2V);
 | |
|       case Instruction::Mul:     
 | |
|         return ConstantInt::get(CI1->getContext(), C1V * C2V);
 | |
|       case Instruction::UDiv:
 | |
|         assert(!CI2->isNullValue() && "Div by zero handled above");
 | |
|         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
 | |
|       case Instruction::SDiv:
 | |
|         assert(!CI2->isNullValue() && "Div by zero handled above");
 | |
|         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
 | |
|           return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
 | |
|         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
 | |
|       case Instruction::URem:
 | |
|         assert(!CI2->isNullValue() && "Div by zero handled above");
 | |
|         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
 | |
|       case Instruction::SRem:
 | |
|         assert(!CI2->isNullValue() && "Div by zero handled above");
 | |
|         if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
 | |
|           return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
 | |
|         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
 | |
|       case Instruction::And:
 | |
|         return ConstantInt::get(CI1->getContext(), C1V & C2V);
 | |
|       case Instruction::Or:
 | |
|         return ConstantInt::get(CI1->getContext(), C1V | C2V);
 | |
|       case Instruction::Xor:
 | |
|         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
 | |
|       case Instruction::Shl: {
 | |
|         uint32_t shiftAmt = C2V.getZExtValue();
 | |
|         if (shiftAmt < C1V.getBitWidth())
 | |
|           return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
 | |
|         else
 | |
|           return UndefValue::get(C1->getType()); // too big shift is undef
 | |
|       }
 | |
|       case Instruction::LShr: {
 | |
|         uint32_t shiftAmt = C2V.getZExtValue();
 | |
|         if (shiftAmt < C1V.getBitWidth())
 | |
|           return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
 | |
|         else
 | |
|           return UndefValue::get(C1->getType()); // too big shift is undef
 | |
|       }
 | |
|       case Instruction::AShr: {
 | |
|         uint32_t shiftAmt = C2V.getZExtValue();
 | |
|         if (shiftAmt < C1V.getBitWidth())
 | |
|           return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
 | |
|         else
 | |
|           return UndefValue::get(C1->getType()); // too big shift is undef
 | |
|       }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (Opcode) {
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::Shl:
 | |
|       if (CI1->equalsInt(0)) return C1;
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
 | |
|     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
 | |
|       APFloat C1V = CFP1->getValueAPF();
 | |
|       APFloat C2V = CFP2->getValueAPF();
 | |
|       APFloat C3V = C1V;  // copy for modification
 | |
|       switch (Opcode) {
 | |
|       default:                   
 | |
|         break;
 | |
|       case Instruction::FAdd:
 | |
|         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(C1->getContext(), C3V);
 | |
|       case Instruction::FSub:
 | |
|         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(C1->getContext(), C3V);
 | |
|       case Instruction::FMul:
 | |
|         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(C1->getContext(), C3V);
 | |
|       case Instruction::FDiv:
 | |
|         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(C1->getContext(), C3V);
 | |
|       case Instruction::FRem:
 | |
|         (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
 | |
|         return ConstantFP::get(C1->getContext(), C3V);
 | |
|       }
 | |
|     }
 | |
|   } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
 | |
|     // Perform elementwise folding.
 | |
|     SmallVector<Constant*, 16> Result;
 | |
|     Type *Ty = IntegerType::get(VTy->getContext(), 32);
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *LHS =
 | |
|         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
 | |
|       Constant *RHS =
 | |
|         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
 | |
|       
 | |
|       Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
 | |
|     }
 | |
|     
 | |
|     return ConstantVector::get(Result);
 | |
|   }
 | |
| 
 | |
|   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
 | |
|     // There are many possible foldings we could do here.  We should probably
 | |
|     // at least fold add of a pointer with an integer into the appropriate
 | |
|     // getelementptr.  This will improve alias analysis a bit.
 | |
| 
 | |
|     // Given ((a + b) + c), if (b + c) folds to something interesting, return
 | |
|     // (a + (b + c)).
 | |
|     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
 | |
|       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
 | |
|       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
 | |
|         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
 | |
|     }
 | |
|   } else if (isa<ConstantExpr>(C2)) {
 | |
|     // If C2 is a constant expr and C1 isn't, flop them around and fold the
 | |
|     // other way if possible.
 | |
|     if (Instruction::isCommutative(Opcode))
 | |
|       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
 | |
|   }
 | |
| 
 | |
|   // i1 can be simplified in many cases.
 | |
|   if (C1->getType()->isIntegerTy(1)) {
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|       return ConstantExpr::getXor(C1, C2);
 | |
|     case Instruction::Mul:
 | |
|       return ConstantExpr::getAnd(C1, C2);
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|       // We can assume that C2 == 0.  If it were one the result would be
 | |
|       // undefined because the shift value is as large as the bitwidth.
 | |
|       return C1;
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::UDiv:
 | |
|       // We can assume that C2 == 1.  If it were zero the result would be
 | |
|       // undefined through division by zero.
 | |
|       return C1;
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|       // We can assume that C2 == 1.  If it were zero the result would be
 | |
|       // undefined through division by zero.
 | |
|       return ConstantInt::getFalse(C1->getContext());
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't know how to fold this.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// isZeroSizedType - This type is zero sized if its an array or structure of
 | |
| /// zero sized types.  The only leaf zero sized type is an empty structure.
 | |
| static bool isMaybeZeroSizedType(Type *Ty) {
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     if (STy->isOpaque()) return true;  // Can't say.
 | |
| 
 | |
|     // If all of elements have zero size, this does too.
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
 | |
|     return true;
 | |
| 
 | |
|   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     return isMaybeZeroSizedType(ATy->getElementType());
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IdxCompare - Compare the two constants as though they were getelementptr
 | |
| /// indices.  This allows coersion of the types to be the same thing.
 | |
| ///
 | |
| /// If the two constants are the "same" (after coersion), return 0.  If the
 | |
| /// first is less than the second, return -1, if the second is less than the
 | |
| /// first, return 1.  If the constants are not integral, return -2.
 | |
| ///
 | |
| static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
 | |
|   if (C1 == C2) return 0;
 | |
| 
 | |
|   // Ok, we found a different index.  If they are not ConstantInt, we can't do
 | |
|   // anything with them.
 | |
|   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
 | |
|     return -2; // don't know!
 | |
| 
 | |
|   // Ok, we have two differing integer indices.  Sign extend them to be the same
 | |
|   // type.  Long is always big enough, so we use it.
 | |
|   if (!C1->getType()->isIntegerTy(64))
 | |
|     C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
 | |
| 
 | |
|   if (!C2->getType()->isIntegerTy(64))
 | |
|     C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
 | |
| 
 | |
|   if (C1 == C2) return 0;  // They are equal
 | |
| 
 | |
|   // If the type being indexed over is really just a zero sized type, there is
 | |
|   // no pointer difference being made here.
 | |
|   if (isMaybeZeroSizedType(ElTy))
 | |
|     return -2; // dunno.
 | |
| 
 | |
|   // If they are really different, now that they are the same type, then we
 | |
|   // found a difference!
 | |
|   if (cast<ConstantInt>(C1)->getSExtValue() < 
 | |
|       cast<ConstantInt>(C2)->getSExtValue())
 | |
|     return -1;
 | |
|   else
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /// evaluateFCmpRelation - This function determines if there is anything we can
 | |
| /// decide about the two constants provided.  This doesn't need to handle simple
 | |
| /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
 | |
| /// If we can determine that the two constants have a particular relation to 
 | |
| /// each other, we should return the corresponding FCmpInst predicate, 
 | |
| /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
 | |
| /// ConstantFoldCompareInstruction.
 | |
| ///
 | |
| /// To simplify this code we canonicalize the relation so that the first
 | |
| /// operand is always the most "complex" of the two.  We consider ConstantFP
 | |
| /// to be the simplest, and ConstantExprs to be the most complex.
 | |
| static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
 | |
|   assert(V1->getType() == V2->getType() &&
 | |
|          "Cannot compare values of different types!");
 | |
| 
 | |
|   // Handle degenerate case quickly
 | |
|   if (V1 == V2) return FCmpInst::FCMP_OEQ;
 | |
| 
 | |
|   if (!isa<ConstantExpr>(V1)) {
 | |
|     if (!isa<ConstantExpr>(V2)) {
 | |
|       // We distilled thisUse the standard constant folder for a few cases
 | |
|       ConstantInt *R = nullptr;
 | |
|       R = dyn_cast<ConstantInt>(
 | |
|                       ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
 | |
|       if (R && !R->isZero()) 
 | |
|         return FCmpInst::FCMP_OEQ;
 | |
|       R = dyn_cast<ConstantInt>(
 | |
|                       ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
 | |
|       if (R && !R->isZero()) 
 | |
|         return FCmpInst::FCMP_OLT;
 | |
|       R = dyn_cast<ConstantInt>(
 | |
|                       ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
 | |
|       if (R && !R->isZero()) 
 | |
|         return FCmpInst::FCMP_OGT;
 | |
| 
 | |
|       // Nothing more we can do
 | |
|       return FCmpInst::BAD_FCMP_PREDICATE;
 | |
|     }
 | |
| 
 | |
|     // If the first operand is simple and second is ConstantExpr, swap operands.
 | |
|     FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
 | |
|     if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
 | |
|       return FCmpInst::getSwappedPredicate(SwappedRelation);
 | |
|   } else {
 | |
|     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
 | |
|     // constantexpr or a simple constant.
 | |
|     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
 | |
|     switch (CE1->getOpcode()) {
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|       // We might be able to do something with these but we don't right now.
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // There are MANY other foldings that we could perform here.  They will
 | |
|   // probably be added on demand, as they seem needed.
 | |
|   return FCmpInst::BAD_FCMP_PREDICATE;
 | |
| }
 | |
| 
 | |
| static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
 | |
|                                                       const GlobalValue *GV2) {
 | |
|   // Don't try to decide equality of aliases.
 | |
|   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
 | |
|     if (!GV1->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
 | |
|       return ICmpInst::ICMP_NE;
 | |
|   return ICmpInst::BAD_ICMP_PREDICATE;
 | |
| }
 | |
| 
 | |
| /// evaluateICmpRelation - This function determines if there is anything we can
 | |
| /// decide about the two constants provided.  This doesn't need to handle simple
 | |
| /// things like integer comparisons, but should instead handle ConstantExprs
 | |
| /// and GlobalValues.  If we can determine that the two constants have a
 | |
| /// particular relation to each other, we should return the corresponding ICmp
 | |
| /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
 | |
| ///
 | |
| /// To simplify this code we canonicalize the relation so that the first
 | |
| /// operand is always the most "complex" of the two.  We consider simple
 | |
| /// constants (like ConstantInt) to be the simplest, followed by
 | |
| /// GlobalValues, followed by ConstantExpr's (the most complex).
 | |
| ///
 | |
| static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
 | |
|                                                 bool isSigned) {
 | |
|   assert(V1->getType() == V2->getType() &&
 | |
|          "Cannot compare different types of values!");
 | |
|   if (V1 == V2) return ICmpInst::ICMP_EQ;
 | |
| 
 | |
|   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
 | |
|       !isa<BlockAddress>(V1)) {
 | |
|     if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
 | |
|         !isa<BlockAddress>(V2)) {
 | |
|       // We distilled this down to a simple case, use the standard constant
 | |
|       // folder.
 | |
|       ConstantInt *R = nullptr;
 | |
|       ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
 | |
|       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
 | |
|       if (R && !R->isZero()) 
 | |
|         return pred;
 | |
|       pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | |
|       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
 | |
|       if (R && !R->isZero())
 | |
|         return pred;
 | |
|       pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|       R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
 | |
|       if (R && !R->isZero())
 | |
|         return pred;
 | |
| 
 | |
|       // If we couldn't figure it out, bail.
 | |
|       return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|     }
 | |
| 
 | |
|     // If the first operand is simple, swap operands.
 | |
|     ICmpInst::Predicate SwappedRelation = 
 | |
|       evaluateICmpRelation(V2, V1, isSigned);
 | |
|     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
 | |
|       return ICmpInst::getSwappedPredicate(SwappedRelation);
 | |
| 
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
 | |
|     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
 | |
|       ICmpInst::Predicate SwappedRelation = 
 | |
|         evaluateICmpRelation(V2, V1, isSigned);
 | |
|       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
 | |
|         return ICmpInst::getSwappedPredicate(SwappedRelation);
 | |
|       return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|     }
 | |
| 
 | |
|     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
 | |
|     // constant (which, since the types must match, means that it's a
 | |
|     // ConstantPointerNull).
 | |
|     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
 | |
|       return areGlobalsPotentiallyEqual(GV, GV2);
 | |
|     } else if (isa<BlockAddress>(V2)) {
 | |
|       return ICmpInst::ICMP_NE; // Globals never equal labels.
 | |
|     } else {
 | |
|       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
 | |
|       // GlobalVals can never be null unless they have external weak linkage.
 | |
|       // We don't try to evaluate aliases here.
 | |
|       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
 | |
|         return ICmpInst::ICMP_NE;
 | |
|     }
 | |
|   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
 | |
|     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
 | |
|       ICmpInst::Predicate SwappedRelation = 
 | |
|         evaluateICmpRelation(V2, V1, isSigned);
 | |
|       if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
 | |
|         return ICmpInst::getSwappedPredicate(SwappedRelation);
 | |
|       return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|     }
 | |
|     
 | |
|     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
 | |
|     // constant (which, since the types must match, means that it is a
 | |
|     // ConstantPointerNull).
 | |
|     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
 | |
|       // Block address in another function can't equal this one, but block
 | |
|       // addresses in the current function might be the same if blocks are
 | |
|       // empty.
 | |
|       if (BA2->getFunction() != BA->getFunction())
 | |
|         return ICmpInst::ICMP_NE;
 | |
|     } else {
 | |
|       // Block addresses aren't null, don't equal the address of globals.
 | |
|       assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
 | |
|              "Canonicalization guarantee!");
 | |
|       return ICmpInst::ICMP_NE;
 | |
|     }
 | |
|   } else {
 | |
|     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
 | |
|     // constantexpr, a global, block address, or a simple constant.
 | |
|     ConstantExpr *CE1 = cast<ConstantExpr>(V1);
 | |
|     Constant *CE1Op0 = CE1->getOperand(0);
 | |
| 
 | |
|     switch (CE1->getOpcode()) {
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|       break; // We can't evaluate floating point casts or truncations.
 | |
| 
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::BitCast:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       // If the cast is not actually changing bits, and the second operand is a
 | |
|       // null pointer, do the comparison with the pre-casted value.
 | |
|       if (V2->isNullValue() &&
 | |
|           (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
 | |
|         if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
 | |
|         if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
 | |
|         return evaluateICmpRelation(CE1Op0,
 | |
|                                     Constant::getNullValue(CE1Op0->getType()), 
 | |
|                                     isSigned);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::GetElementPtr: {
 | |
|       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
 | |
|       // Ok, since this is a getelementptr, we know that the constant has a
 | |
|       // pointer type.  Check the various cases.
 | |
|       if (isa<ConstantPointerNull>(V2)) {
 | |
|         // If we are comparing a GEP to a null pointer, check to see if the base
 | |
|         // of the GEP equals the null pointer.
 | |
|         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
 | |
|           if (GV->hasExternalWeakLinkage())
 | |
|             // Weak linkage GVals could be zero or not. We're comparing that
 | |
|             // to null pointer so its greater-or-equal
 | |
|             return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
 | |
|           else 
 | |
|             // If its not weak linkage, the GVal must have a non-zero address
 | |
|             // so the result is greater-than
 | |
|             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|         } else if (isa<ConstantPointerNull>(CE1Op0)) {
 | |
|           // If we are indexing from a null pointer, check to see if we have any
 | |
|           // non-zero indices.
 | |
|           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
 | |
|             if (!CE1->getOperand(i)->isNullValue())
 | |
|               // Offsetting from null, must not be equal.
 | |
|               return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|           // Only zero indexes from null, must still be zero.
 | |
|           return ICmpInst::ICMP_EQ;
 | |
|         }
 | |
|         // Otherwise, we can't really say if the first operand is null or not.
 | |
|       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
 | |
|         if (isa<ConstantPointerNull>(CE1Op0)) {
 | |
|           if (GV2->hasExternalWeakLinkage())
 | |
|             // Weak linkage GVals could be zero or not. We're comparing it to
 | |
|             // a null pointer, so its less-or-equal
 | |
|             return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | |
|           else
 | |
|             // If its not weak linkage, the GVal must have a non-zero address
 | |
|             // so the result is less-than
 | |
|             return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | |
|         } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
 | |
|           if (GV == GV2) {
 | |
|             // If this is a getelementptr of the same global, then it must be
 | |
|             // different.  Because the types must match, the getelementptr could
 | |
|             // only have at most one index, and because we fold getelementptr's
 | |
|             // with a single zero index, it must be nonzero.
 | |
|             assert(CE1->getNumOperands() == 2 &&
 | |
|                    !CE1->getOperand(1)->isNullValue() &&
 | |
|                    "Surprising getelementptr!");
 | |
|             return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|           } else {
 | |
|             if (CE1GEP->hasAllZeroIndices())
 | |
|               return areGlobalsPotentiallyEqual(GV, GV2);
 | |
|             return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         ConstantExpr *CE2 = cast<ConstantExpr>(V2);
 | |
|         Constant *CE2Op0 = CE2->getOperand(0);
 | |
| 
 | |
|         // There are MANY other foldings that we could perform here.  They will
 | |
|         // probably be added on demand, as they seem needed.
 | |
|         switch (CE2->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::GetElementPtr:
 | |
|           // By far the most common case to handle is when the base pointers are
 | |
|           // obviously to the same global.
 | |
|           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
 | |
|             // Don't know relative ordering, but check for inequality.
 | |
|             if (CE1Op0 != CE2Op0) {
 | |
|               GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
 | |
|               if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
 | |
|                 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
 | |
|                                                   cast<GlobalValue>(CE2Op0));
 | |
|               return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|             }
 | |
|             // Ok, we know that both getelementptr instructions are based on the
 | |
|             // same global.  From this, we can precisely determine the relative
 | |
|             // ordering of the resultant pointers.
 | |
|             unsigned i = 1;
 | |
| 
 | |
|             // The logic below assumes that the result of the comparison
 | |
|             // can be determined by finding the first index that differs.
 | |
|             // This doesn't work if there is over-indexing in any
 | |
|             // subsequent indices, so check for that case first.
 | |
|             if (!CE1->isGEPWithNoNotionalOverIndexing() ||
 | |
|                 !CE2->isGEPWithNoNotionalOverIndexing())
 | |
|                return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
 | |
| 
 | |
|             // Compare all of the operands the GEP's have in common.
 | |
|             gep_type_iterator GTI = gep_type_begin(CE1);
 | |
|             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
 | |
|                  ++i, ++GTI)
 | |
|               switch (IdxCompare(CE1->getOperand(i),
 | |
|                                  CE2->getOperand(i), GTI.getIndexedType())) {
 | |
|               case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
 | |
|               case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
 | |
|               case -2: return ICmpInst::BAD_ICMP_PREDICATE;
 | |
|               }
 | |
| 
 | |
|             // Ok, we ran out of things they have in common.  If any leftovers
 | |
|             // are non-zero then we have a difference, otherwise we are equal.
 | |
|             for (; i < CE1->getNumOperands(); ++i)
 | |
|               if (!CE1->getOperand(i)->isNullValue()) {
 | |
|                 if (isa<ConstantInt>(CE1->getOperand(i)))
 | |
|                   return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|                 else
 | |
|                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
 | |
|               }
 | |
| 
 | |
|             for (; i < CE2->getNumOperands(); ++i)
 | |
|               if (!CE2->getOperand(i)->isNullValue()) {
 | |
|                 if (isa<ConstantInt>(CE2->getOperand(i)))
 | |
|                   return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | |
|                 else
 | |
|                   return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
 | |
|               }
 | |
|             return ICmpInst::ICMP_EQ;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ICmpInst::BAD_ICMP_PREDICATE;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, 
 | |
|                                                Constant *C1, Constant *C2) {
 | |
|   Type *ResultTy;
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
 | |
|     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
 | |
|                                VT->getNumElements());
 | |
|   else
 | |
|     ResultTy = Type::getInt1Ty(C1->getContext());
 | |
| 
 | |
|   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
 | |
|   if (pred == FCmpInst::FCMP_FALSE)
 | |
|     return Constant::getNullValue(ResultTy);
 | |
| 
 | |
|   if (pred == FCmpInst::FCMP_TRUE)
 | |
|     return Constant::getAllOnesValue(ResultTy);
 | |
| 
 | |
|   // Handle some degenerate cases first
 | |
|   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
 | |
|     // For EQ and NE, we can always pick a value for the undef to make the
 | |
|     // predicate pass or fail, so we can return undef.
 | |
|     // Also, if both operands are undef, we can return undef.
 | |
|     if (ICmpInst::isEquality(ICmpInst::Predicate(pred)) ||
 | |
|         (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
 | |
|       return UndefValue::get(ResultTy);
 | |
|     // Otherwise, pick the same value as the non-undef operand, and fold
 | |
|     // it to true or false.
 | |
|     return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
 | |
|   }
 | |
| 
 | |
|   // icmp eq/ne(null,GV) -> false/true
 | |
|   if (C1->isNullValue()) {
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
 | |
|       // Don't try to evaluate aliases.  External weak GV can be null.
 | |
|       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
 | |
|         if (pred == ICmpInst::ICMP_EQ)
 | |
|           return ConstantInt::getFalse(C1->getContext());
 | |
|         else if (pred == ICmpInst::ICMP_NE)
 | |
|           return ConstantInt::getTrue(C1->getContext());
 | |
|       }
 | |
|   // icmp eq/ne(GV,null) -> false/true
 | |
|   } else if (C2->isNullValue()) {
 | |
|     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
 | |
|       // Don't try to evaluate aliases.  External weak GV can be null.
 | |
|       if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
 | |
|         if (pred == ICmpInst::ICMP_EQ)
 | |
|           return ConstantInt::getFalse(C1->getContext());
 | |
|         else if (pred == ICmpInst::ICMP_NE)
 | |
|           return ConstantInt::getTrue(C1->getContext());
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is a comparison between two i1's, simplify it.
 | |
|   if (C1->getType()->isIntegerTy(1)) {
 | |
|     switch(pred) {
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (isa<ConstantInt>(C2))
 | |
|         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
 | |
|       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       return ConstantExpr::getXor(C1, C2);
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
 | |
|     APInt V1 = cast<ConstantInt>(C1)->getValue();
 | |
|     APInt V2 = cast<ConstantInt>(C2)->getValue();
 | |
|     switch (pred) {
 | |
|     default: llvm_unreachable("Invalid ICmp Predicate");
 | |
|     case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
 | |
|     case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
 | |
|     case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
 | |
|     case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
 | |
|     case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
 | |
|     case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
 | |
|     case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
 | |
|     case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
 | |
|     case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
 | |
|     case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
 | |
|     }
 | |
|   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
 | |
|     APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
 | |
|     APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
 | |
|     APFloat::cmpResult R = C1V.compare(C2V);
 | |
|     switch (pred) {
 | |
|     default: llvm_unreachable("Invalid FCmp Predicate");
 | |
|     case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
 | |
|     case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
 | |
|     case FCmpInst::FCMP_UNO:
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
 | |
|     case FCmpInst::FCMP_ORD:
 | |
|       return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
 | |
|     case FCmpInst::FCMP_UEQ:
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
 | |
|                                         R==APFloat::cmpEqual);
 | |
|     case FCmpInst::FCMP_OEQ:   
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
 | |
|     case FCmpInst::FCMP_UNE:
 | |
|       return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
 | |
|     case FCmpInst::FCMP_ONE:   
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
 | |
|                                         R==APFloat::cmpGreaterThan);
 | |
|     case FCmpInst::FCMP_ULT: 
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
 | |
|                                         R==APFloat::cmpLessThan);
 | |
|     case FCmpInst::FCMP_OLT:   
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
 | |
|     case FCmpInst::FCMP_UGT:
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
 | |
|                                         R==APFloat::cmpGreaterThan);
 | |
|     case FCmpInst::FCMP_OGT:
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
 | |
|     case FCmpInst::FCMP_ULE:
 | |
|       return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
 | |
|     case FCmpInst::FCMP_OLE: 
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
 | |
|                                         R==APFloat::cmpEqual);
 | |
|     case FCmpInst::FCMP_UGE:
 | |
|       return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
 | |
|     case FCmpInst::FCMP_OGE: 
 | |
|       return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
 | |
|                                         R==APFloat::cmpEqual);
 | |
|     }
 | |
|   } else if (C1->getType()->isVectorTy()) {
 | |
|     // If we can constant fold the comparison of each element, constant fold
 | |
|     // the whole vector comparison.
 | |
|     SmallVector<Constant*, 4> ResElts;
 | |
|     Type *Ty = IntegerType::get(C1->getContext(), 32);
 | |
|     // Compare the elements, producing an i1 result or constant expr.
 | |
|     for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
 | |
|       Constant *C1E =
 | |
|         ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
 | |
|       Constant *C2E =
 | |
|         ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
 | |
|       
 | |
|       ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
 | |
|     }
 | |
|     
 | |
|     return ConstantVector::get(ResElts);
 | |
|   }
 | |
| 
 | |
|   if (C1->getType()->isFloatingPointTy()) {
 | |
|     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
 | |
|     switch (evaluateFCmpRelation(C1, C2)) {
 | |
|     default: llvm_unreachable("Unknown relation!");
 | |
|     case FCmpInst::FCMP_UNO:
 | |
|     case FCmpInst::FCMP_ORD:
 | |
|     case FCmpInst::FCMP_UEQ:
 | |
|     case FCmpInst::FCMP_UNE:
 | |
|     case FCmpInst::FCMP_ULT:
 | |
|     case FCmpInst::FCMP_UGT:
 | |
|     case FCmpInst::FCMP_ULE:
 | |
|     case FCmpInst::FCMP_UGE:
 | |
|     case FCmpInst::FCMP_TRUE:
 | |
|     case FCmpInst::FCMP_FALSE:
 | |
|     case FCmpInst::BAD_FCMP_PREDICATE:
 | |
|       break; // Couldn't determine anything about these constants.
 | |
|     case FCmpInst::FCMP_OEQ: // We know that C1 == C2
 | |
|       Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
 | |
|                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
 | |
|                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
 | |
|       break;
 | |
|     case FCmpInst::FCMP_OLT: // We know that C1 < C2
 | |
|       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
 | |
|                 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
 | |
|                 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
 | |
|       break;
 | |
|     case FCmpInst::FCMP_OGT: // We know that C1 > C2
 | |
|       Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
 | |
|                 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
 | |
|                 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
 | |
|       break;
 | |
|     case FCmpInst::FCMP_OLE: // We know that C1 <= C2
 | |
|       // We can only partially decide this relation.
 | |
|       if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
 | |
|         Result = 0;
 | |
|       else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
 | |
|         Result = 1;
 | |
|       break;
 | |
|     case FCmpInst::FCMP_OGE: // We known that C1 >= C2
 | |
|       // We can only partially decide this relation.
 | |
|       if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) 
 | |
|         Result = 0;
 | |
|       else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) 
 | |
|         Result = 1;
 | |
|       break;
 | |
|     case FCmpInst::FCMP_ONE: // We know that C1 != C2
 | |
|       // We can only partially decide this relation.
 | |
|       if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) 
 | |
|         Result = 0;
 | |
|       else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) 
 | |
|         Result = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If we evaluated the result, return it now.
 | |
|     if (Result != -1)
 | |
|       return ConstantInt::get(ResultTy, Result);
 | |
| 
 | |
|   } else {
 | |
|     // Evaluate the relation between the two constants, per the predicate.
 | |
|     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
 | |
|     switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
 | |
|     default: llvm_unreachable("Unknown relational!");
 | |
|     case ICmpInst::BAD_ICMP_PREDICATE:
 | |
|       break;  // Couldn't determine anything about these constants.
 | |
|     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
 | |
|       // If we know the constants are equal, we can decide the result of this
 | |
|       // computation precisely.
 | |
|       Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       switch (pred) {
 | |
|       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
 | |
|         Result = 1; break;
 | |
|       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
 | |
|         Result = 0; break;
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       switch (pred) {
 | |
|       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
 | |
|         Result = 1; break;
 | |
|       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
 | |
|         Result = 0; break;
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       switch (pred) {
 | |
|       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
 | |
|         Result = 1; break;
 | |
|       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
 | |
|         Result = 0; break;
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       switch (pred) {
 | |
|       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
 | |
|         Result = 1; break;
 | |
|       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
 | |
|         Result = 0; break;
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if (pred == ICmpInst::ICMP_UGT) Result = 0;
 | |
|       if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       if (pred == ICmpInst::ICMP_SGT) Result = 0;
 | |
|       if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       if (pred == ICmpInst::ICMP_ULT) Result = 0;
 | |
|       if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       if (pred == ICmpInst::ICMP_SLT) Result = 0;
 | |
|       if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (pred == ICmpInst::ICMP_EQ) Result = 0;
 | |
|       if (pred == ICmpInst::ICMP_NE) Result = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If we evaluated the result, return it now.
 | |
|     if (Result != -1)
 | |
|       return ConstantInt::get(ResultTy, Result);
 | |
| 
 | |
|     // If the right hand side is a bitcast, try using its inverse to simplify
 | |
|     // it by moving it to the left hand side.  We can't do this if it would turn
 | |
|     // a vector compare into a scalar compare or visa versa.
 | |
|     if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
 | |
|       Constant *CE2Op0 = CE2->getOperand(0);
 | |
|       if (CE2->getOpcode() == Instruction::BitCast &&
 | |
|           CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
 | |
|         Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
 | |
|         return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the left hand side is an extension, try eliminating it.
 | |
|     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
 | |
|       if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
 | |
|           (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
 | |
|         Constant *CE1Op0 = CE1->getOperand(0);
 | |
|         Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
 | |
|         if (CE1Inverse == CE1Op0) {
 | |
|           // Check whether we can safely truncate the right hand side.
 | |
|           Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
 | |
|           if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
 | |
|                                     C2->getType()) == C2)
 | |
|             return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
 | |
|         (C1->isNullValue() && !C2->isNullValue())) {
 | |
|       // If C2 is a constant expr and C1 isn't, flip them around and fold the
 | |
|       // other way if possible.
 | |
|       // Also, if C1 is null and C2 isn't, flip them around.
 | |
|       pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
 | |
|       return ConstantExpr::getICmp(pred, C2, C1);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
 | |
| /// is "inbounds".
 | |
| template<typename IndexTy>
 | |
| static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
 | |
|   // No indices means nothing that could be out of bounds.
 | |
|   if (Idxs.empty()) return true;
 | |
| 
 | |
|   // If the first index is zero, it's in bounds.
 | |
|   if (cast<Constant>(Idxs[0])->isNullValue()) return true;
 | |
| 
 | |
|   // If the first index is one and all the rest are zero, it's in bounds,
 | |
|   // by the one-past-the-end rule.
 | |
|   if (!cast<ConstantInt>(Idxs[0])->isOne())
 | |
|     return false;
 | |
|   for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
 | |
|     if (!cast<Constant>(Idxs[i])->isNullValue())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Test whether a given ConstantInt is in-range for a SequentialType.
 | |
| static bool isIndexInRangeOfSequentialType(const SequentialType *STy,
 | |
|                                            const ConstantInt *CI) {
 | |
|   if (const PointerType *PTy = dyn_cast<PointerType>(STy))
 | |
|     // Only handle pointers to sized types, not pointers to functions.
 | |
|     return PTy->getElementType()->isSized();
 | |
| 
 | |
|   uint64_t NumElements = 0;
 | |
|   // Determine the number of elements in our sequential type.
 | |
|   if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
 | |
|     NumElements = ATy->getNumElements();
 | |
|   else if (const VectorType *VTy = dyn_cast<VectorType>(STy))
 | |
|     NumElements = VTy->getNumElements();
 | |
| 
 | |
|   assert((isa<ArrayType>(STy) || NumElements > 0) &&
 | |
|          "didn't expect non-array type to have zero elements!");
 | |
| 
 | |
|   // We cannot bounds check the index if it doesn't fit in an int64_t.
 | |
|   if (CI->getValue().getActiveBits() > 64)
 | |
|     return false;
 | |
| 
 | |
|   // A negative index or an index past the end of our sequential type is
 | |
|   // considered out-of-range.
 | |
|   int64_t IndexVal = CI->getSExtValue();
 | |
|   if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, it is in-range.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| template<typename IndexTy>
 | |
| static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
 | |
|                                                bool inBounds,
 | |
|                                                ArrayRef<IndexTy> Idxs) {
 | |
|   if (Idxs.empty()) return C;
 | |
|   Constant *Idx0 = cast<Constant>(Idxs[0]);
 | |
|   if ((Idxs.size() == 1 && Idx0->isNullValue()))
 | |
|     return C;
 | |
| 
 | |
|   if (isa<UndefValue>(C)) {
 | |
|     PointerType *Ptr = cast<PointerType>(C->getType());
 | |
|     Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
 | |
|     assert(Ty && "Invalid indices for GEP!");
 | |
|     return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
 | |
|   }
 | |
| 
 | |
|   if (C->isNullValue()) {
 | |
|     bool isNull = true;
 | |
|     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
 | |
|       if (!cast<Constant>(Idxs[i])->isNullValue()) {
 | |
|         isNull = false;
 | |
|         break;
 | |
|       }
 | |
|     if (isNull) {
 | |
|       PointerType *Ptr = cast<PointerType>(C->getType());
 | |
|       Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs);
 | |
|       assert(Ty && "Invalid indices for GEP!");
 | |
|       return ConstantPointerNull::get(PointerType::get(Ty,
 | |
|                                                        Ptr->getAddressSpace()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|     // is a getelementptr instruction, combine the indices of the two
 | |
|     // getelementptr instructions into a single instruction.
 | |
|     //
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|       Type *LastTy = nullptr;
 | |
|       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | |
|            I != E; ++I)
 | |
|         LastTy = *I;
 | |
| 
 | |
|       // We cannot combine indices if doing so would take us outside of an
 | |
|       // array or vector.  Doing otherwise could trick us if we evaluated such a
 | |
|       // GEP as part of a load.
 | |
|       //
 | |
|       // e.g. Consider if the original GEP was:
 | |
|       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
 | |
|       //                    i32 0, i32 0, i64 0)
 | |
|       //
 | |
|       // If we then tried to offset it by '8' to get to the third element,
 | |
|       // an i8, we should *not* get:
 | |
|       // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
 | |
|       //                    i32 0, i32 0, i64 8)
 | |
|       //
 | |
|       // This GEP tries to index array element '8  which runs out-of-bounds.
 | |
|       // Subsequent evaluation would get confused and produce erroneous results.
 | |
|       //
 | |
|       // The following prohibits such a GEP from being formed by checking to see
 | |
|       // if the index is in-range with respect to an array or vector.
 | |
|       bool PerformFold = false;
 | |
|       if (Idx0->isNullValue())
 | |
|         PerformFold = true;
 | |
|       else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
 | |
|         if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
 | |
|           PerformFold = isIndexInRangeOfSequentialType(STy, CI);
 | |
| 
 | |
|       if (PerformFold) {
 | |
|         SmallVector<Value*, 16> NewIndices;
 | |
|         NewIndices.reserve(Idxs.size() + CE->getNumOperands());
 | |
|         for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
 | |
|           NewIndices.push_back(CE->getOperand(i));
 | |
| 
 | |
|         // Add the last index of the source with the first index of the new GEP.
 | |
|         // Make sure to handle the case when they are actually different types.
 | |
|         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
 | |
|         // Otherwise it must be an array.
 | |
|         if (!Idx0->isNullValue()) {
 | |
|           Type *IdxTy = Combined->getType();
 | |
|           if (IdxTy != Idx0->getType()) {
 | |
|             Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
 | |
|             Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
 | |
|             Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
 | |
|             Combined = ConstantExpr::get(Instruction::Add, C1, C2);
 | |
|           } else {
 | |
|             Combined =
 | |
|               ConstantExpr::get(Instruction::Add, Idx0, Combined);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         NewIndices.push_back(Combined);
 | |
|         NewIndices.append(Idxs.begin() + 1, Idxs.end());
 | |
|         return
 | |
|           ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices,
 | |
|                                          inBounds &&
 | |
|                                            cast<GEPOperator>(CE)->isInBounds());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Attempt to fold casts to the same type away.  For example, folding:
 | |
|     //
 | |
|     //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
 | |
|     //                       i64 0, i64 0)
 | |
|     // into:
 | |
|     //
 | |
|     //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
 | |
|     //
 | |
|     // Don't fold if the cast is changing address spaces.
 | |
|     if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
 | |
|       PointerType *SrcPtrTy =
 | |
|         dyn_cast<PointerType>(CE->getOperand(0)->getType());
 | |
|       PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
 | |
|       if (SrcPtrTy && DstPtrTy) {
 | |
|         ArrayType *SrcArrayTy =
 | |
|           dyn_cast<ArrayType>(SrcPtrTy->getElementType());
 | |
|         ArrayType *DstArrayTy =
 | |
|           dyn_cast<ArrayType>(DstPtrTy->getElementType());
 | |
|         if (SrcArrayTy && DstArrayTy
 | |
|             && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
 | |
|             && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
 | |
|           return ConstantExpr::getGetElementPtr((Constant*)CE->getOperand(0),
 | |
|                                                 Idxs, inBounds);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if any array indices are not within the corresponding
 | |
|   // notional array or vector bounds. If so, try to determine if they can be
 | |
|   // factored out into preceding dimensions.
 | |
|   bool Unknown = false;
 | |
|   SmallVector<Constant *, 8> NewIdxs;
 | |
|   Type *Ty = C->getType();
 | |
|   Type *Prev = nullptr;
 | |
|   for (unsigned i = 0, e = Idxs.size(); i != e;
 | |
|        Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
 | |
|       if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
 | |
|         if (CI->getSExtValue() > 0 &&
 | |
|             !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
 | |
|           if (isa<SequentialType>(Prev)) {
 | |
|             // It's out of range, but we can factor it into the prior
 | |
|             // dimension.
 | |
|             NewIdxs.resize(Idxs.size());
 | |
|             uint64_t NumElements = 0;
 | |
|             if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
 | |
|               NumElements = ATy->getNumElements();
 | |
|             else
 | |
|               NumElements = cast<VectorType>(Ty)->getNumElements();
 | |
| 
 | |
|             ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
 | |
|             NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
 | |
| 
 | |
|             Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
 | |
|             Constant *Div = ConstantExpr::getSDiv(CI, Factor);
 | |
| 
 | |
|             // Before adding, extend both operands to i64 to avoid
 | |
|             // overflow trouble.
 | |
|             if (!PrevIdx->getType()->isIntegerTy(64))
 | |
|               PrevIdx = ConstantExpr::getSExt(PrevIdx,
 | |
|                                            Type::getInt64Ty(Div->getContext()));
 | |
|             if (!Div->getType()->isIntegerTy(64))
 | |
|               Div = ConstantExpr::getSExt(Div,
 | |
|                                           Type::getInt64Ty(Div->getContext()));
 | |
| 
 | |
|             NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
 | |
|           } else {
 | |
|             // It's out of range, but the prior dimension is a struct
 | |
|             // so we can't do anything about it.
 | |
|             Unknown = true;
 | |
|           }
 | |
|         }
 | |
|     } else {
 | |
|       // We don't know if it's in range or not.
 | |
|       Unknown = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we did any factoring, start over with the adjusted indices.
 | |
|   if (!NewIdxs.empty()) {
 | |
|     for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
 | |
|       if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
 | |
|     return ConstantExpr::getGetElementPtr(C, NewIdxs, inBounds);
 | |
|   }
 | |
| 
 | |
|   // If all indices are known integers and normalized, we can do a simple
 | |
|   // check for the "inbounds" property.
 | |
|   if (!Unknown && !inBounds)
 | |
|     if (auto *GV = dyn_cast<GlobalVariable>(C))
 | |
|       if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
 | |
|         return ConstantExpr::getInBoundsGetElementPtr(C, Idxs);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
 | |
|                                           bool inBounds,
 | |
|                                           ArrayRef<Constant *> Idxs) {
 | |
|   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
 | |
|                                           bool inBounds,
 | |
|                                           ArrayRef<Value *> Idxs) {
 | |
|   return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs);
 | |
| }
 |