mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216525 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2968 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2968 lines
		
	
	
		
			109 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Constant* classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "ConstantFold.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Constant Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Constant::anchor() { }
 | |
| 
 | |
| bool Constant::isNegativeZeroValue() const {
 | |
|   // Floating point values have an explicit -0.0 value.
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->isZero() && CFP->isNegative();
 | |
| 
 | |
|   // Equivalent for a vector of -0.0's.
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
 | |
|       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
 | |
|         return true;
 | |
| 
 | |
|   // We've already handled true FP case; any other FP vectors can't represent -0.0.
 | |
|   if (getType()->isFPOrFPVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, just use +0.0.
 | |
|   return isNullValue();
 | |
| }
 | |
| 
 | |
| // Return true iff this constant is positive zero (floating point), negative
 | |
| // zero (floating point), or a null value.
 | |
| bool Constant::isZeroValue() const {
 | |
|   // Floating point values have an explicit -0.0 value.
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->isZero();
 | |
| 
 | |
|   // Otherwise, just use +0.0.
 | |
|   return isNullValue();
 | |
| }
 | |
| 
 | |
| bool Constant::isNullValue() const {
 | |
|   // 0 is null.
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return CI->isZero();
 | |
| 
 | |
|   // +0.0 is null.
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->isZero() && !CFP->isNegative();
 | |
| 
 | |
|   // constant zero is zero for aggregates and cpnull is null for pointers.
 | |
|   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
 | |
| }
 | |
| 
 | |
| bool Constant::isAllOnesValue() const {
 | |
|   // Check for -1 integers
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return CI->isMinusOne();
 | |
| 
 | |
|   // Check for FP which are bitcasted from -1 integers
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of -1 values.
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isAllOnesValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of -1 values.
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isAllOnesValue();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Constant::isOneValue() const {
 | |
|   // Check for 1 integers
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return CI->isOne();
 | |
| 
 | |
|   // Check for FP which are bitcasted from 1 integers
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->getValueAPF().bitcastToAPInt() == 1;
 | |
| 
 | |
|   // Check for constant vectors which are splats of 1 values.
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isOneValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of 1 values.
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isOneValue();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Constant::isMinSignedValue() const {
 | |
|   // Check for INT_MIN integers
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return CI->isMinValue(/*isSigned=*/true);
 | |
| 
 | |
|   // Check for FP which are bitcasted from INT_MIN integers
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of INT_MIN values.
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isMinSignedValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of INT_MIN values.
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isMinSignedValue();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Constant::isNotMinSignedValue() const {
 | |
|   // Check for INT_MIN integers
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return !CI->isMinValue(/*isSigned=*/true);
 | |
| 
 | |
|   // Check for FP which are bitcasted from INT_MIN integers
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
 | |
|     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of INT_MIN values.
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isNotMinSignedValue();
 | |
| 
 | |
|   // Check for constant vectors which are splats of INT_MIN values.
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     if (Constant *Splat = CV->getSplatValue())
 | |
|       return Splat->isNotMinSignedValue();
 | |
| 
 | |
|   // It *may* contain INT_MIN, we can't tell.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Constructor to create a '0' constant of arbitrary type...
 | |
| Constant *Constant::getNullValue(Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     return ConstantInt::get(Ty, 0);
 | |
|   case Type::HalfTyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat::getZero(APFloat::IEEEhalf));
 | |
|   case Type::FloatTyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat::getZero(APFloat::IEEEsingle));
 | |
|   case Type::DoubleTyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat::getZero(APFloat::IEEEdouble));
 | |
|   case Type::X86_FP80TyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat::getZero(APFloat::x87DoubleExtended));
 | |
|   case Type::FP128TyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat::getZero(APFloat::IEEEquad));
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return ConstantFP::get(Ty->getContext(),
 | |
|                            APFloat(APFloat::PPCDoubleDouble,
 | |
|                                    APInt::getNullValue(128)));
 | |
|   case Type::PointerTyID:
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID:
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   default:
 | |
|     // Function, Label, or Opaque type?
 | |
|     llvm_unreachable("Cannot create a null constant of that type!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
 | |
|   Type *ScalarTy = Ty->getScalarType();
 | |
| 
 | |
|   // Create the base integer constant.
 | |
|   Constant *C = ConstantInt::get(Ty->getContext(), V);
 | |
| 
 | |
|   // Convert an integer to a pointer, if necessary.
 | |
|   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
 | |
|     C = ConstantExpr::getIntToPtr(C, PTy);
 | |
| 
 | |
|   // Broadcast a scalar to a vector, if necessary.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     C = ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Constant *Constant::getAllOnesValue(Type *Ty) {
 | |
|   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
 | |
|     return ConstantInt::get(Ty->getContext(),
 | |
|                             APInt::getAllOnesValue(ITy->getBitWidth()));
 | |
| 
 | |
|   if (Ty->isFloatingPointTy()) {
 | |
|     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
 | |
|                                           !Ty->isPPC_FP128Ty());
 | |
|     return ConstantFP::get(Ty->getContext(), FL);
 | |
|   }
 | |
| 
 | |
|   VectorType *VTy = cast<VectorType>(Ty);
 | |
|   return ConstantVector::getSplat(VTy->getNumElements(),
 | |
|                                   getAllOnesValue(VTy->getElementType()));
 | |
| }
 | |
| 
 | |
| /// getAggregateElement - For aggregates (struct/array/vector) return the
 | |
| /// constant that corresponds to the specified element if possible, or null if
 | |
| /// not.  This can return null if the element index is a ConstantExpr, or if
 | |
| /// 'this' is a constant expr.
 | |
| Constant *Constant::getAggregateElement(unsigned Elt) const {
 | |
|   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
 | |
|     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
 | |
| 
 | |
|   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
 | |
|     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
 | |
| 
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
 | |
| 
 | |
|   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
 | |
|     return CAZ->getElementValue(Elt);
 | |
| 
 | |
|   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
 | |
|     return UV->getElementValue(Elt);
 | |
| 
 | |
|   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
 | |
|     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
 | |
|                                        : nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *Constant::getAggregateElement(Constant *Elt) const {
 | |
|   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
 | |
|     return getAggregateElement(CI->getZExtValue());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Constant::destroyConstantImpl() {
 | |
|   // When a Constant is destroyed, there may be lingering
 | |
|   // references to the constant by other constants in the constant pool.  These
 | |
|   // constants are implicitly dependent on the module that is being deleted,
 | |
|   // but they don't know that.  Because we only find out when the CPV is
 | |
|   // deleted, we must now notify all of our users (that should only be
 | |
|   // Constants) that they are, in fact, invalid now and should be deleted.
 | |
|   //
 | |
|   while (!use_empty()) {
 | |
|     Value *V = user_back();
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|     if (!isa<Constant>(V)) {
 | |
|       dbgs() << "While deleting: " << *this
 | |
|              << "\n\nUse still stuck around after Def is destroyed: "
 | |
|              << *V << "\n\n";
 | |
|     }
 | |
| #endif
 | |
|     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | |
|     cast<Constant>(V)->destroyConstant();
 | |
| 
 | |
|     // The constant should remove itself from our use list...
 | |
|     assert((use_empty() || user_back() != V) && "Constant not removed!");
 | |
|   }
 | |
| 
 | |
|   // Value has no outstanding references it is safe to delete it now...
 | |
|   delete this;
 | |
| }
 | |
| 
 | |
| static bool canTrapImpl(const Constant *C,
 | |
|                         SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
 | |
|   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
 | |
|   // The only thing that could possibly trap are constant exprs.
 | |
|   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE)
 | |
|     return false;
 | |
| 
 | |
|   // ConstantExpr traps if any operands can trap.
 | |
|   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
 | |
|     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
 | |
|       if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, only specific operations can trap.
 | |
|   switch (CE->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|     // Div and rem can trap if the RHS is not known to be non-zero.
 | |
|     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// canTrap - Return true if evaluation of this constant could trap.  This is
 | |
| /// true for things like constant expressions that could divide by zero.
 | |
| bool Constant::canTrap() const {
 | |
|   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
 | |
|   return canTrapImpl(this, NonTrappingOps);
 | |
| }
 | |
| 
 | |
| /// Check if C contains a GlobalValue for which Predicate is true.
 | |
| static bool
 | |
| ConstHasGlobalValuePredicate(const Constant *C,
 | |
|                              bool (*Predicate)(const GlobalValue *)) {
 | |
|   SmallPtrSet<const Constant *, 8> Visited;
 | |
|   SmallVector<const Constant *, 8> WorkList;
 | |
|   WorkList.push_back(C);
 | |
|   Visited.insert(C);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     const Constant *WorkItem = WorkList.pop_back_val();
 | |
|     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
 | |
|       if (Predicate(GV))
 | |
|         return true;
 | |
|     for (const Value *Op : WorkItem->operands()) {
 | |
|       const Constant *ConstOp = dyn_cast<Constant>(Op);
 | |
|       if (!ConstOp)
 | |
|         continue;
 | |
|       if (Visited.insert(ConstOp))
 | |
|         WorkList.push_back(ConstOp);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if the value can vary between threads.
 | |
| bool Constant::isThreadDependent() const {
 | |
|   auto DLLImportPredicate = [](const GlobalValue *GV) {
 | |
|     return GV->isThreadLocal();
 | |
|   };
 | |
|   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
 | |
| }
 | |
| 
 | |
| bool Constant::isDLLImportDependent() const {
 | |
|   auto DLLImportPredicate = [](const GlobalValue *GV) {
 | |
|     return GV->hasDLLImportStorageClass();
 | |
|   };
 | |
|   return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
 | |
| }
 | |
| 
 | |
| /// Return true if the constant has users other than constant exprs and other
 | |
| /// dangling things.
 | |
| bool Constant::isConstantUsed() const {
 | |
|   for (const User *U : users()) {
 | |
|     const Constant *UC = dyn_cast<Constant>(U);
 | |
|     if (!UC || isa<GlobalValue>(UC))
 | |
|       return true;
 | |
| 
 | |
|     if (UC->isConstantUsed())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getRelocationInfo - This method classifies the entry according to
 | |
| /// whether or not it may generate a relocation entry.  This must be
 | |
| /// conservative, so if it might codegen to a relocatable entry, it should say
 | |
| /// so.  The return values are:
 | |
| /// 
 | |
| ///  NoRelocation: This constant pool entry is guaranteed to never have a
 | |
| ///     relocation applied to it (because it holds a simple constant like
 | |
| ///     '4').
 | |
| ///  LocalRelocation: This entry has relocations, but the entries are
 | |
| ///     guaranteed to be resolvable by the static linker, so the dynamic
 | |
| ///     linker will never see them.
 | |
| ///  GlobalRelocations: This entry may have arbitrary relocations.
 | |
| ///
 | |
| /// FIXME: This really should not be in IR.
 | |
| Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
 | |
|     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | |
|       return LocalRelocation;  // Local to this file/library.
 | |
|     return GlobalRelocations;    // Global reference.
 | |
|   }
 | |
|   
 | |
|   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
 | |
|     return BA->getFunction()->getRelocationInfo();
 | |
|   
 | |
|   // While raw uses of blockaddress need to be relocated, differences between
 | |
|   // two of them don't when they are for labels in the same function.  This is a
 | |
|   // common idiom when creating a table for the indirect goto extension, so we
 | |
|   // handle it efficiently here.
 | |
|   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
 | |
|     if (CE->getOpcode() == Instruction::Sub) {
 | |
|       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
 | |
|       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
 | |
|       if (LHS && RHS &&
 | |
|           LHS->getOpcode() == Instruction::PtrToInt &&
 | |
|           RHS->getOpcode() == Instruction::PtrToInt &&
 | |
|           isa<BlockAddress>(LHS->getOperand(0)) &&
 | |
|           isa<BlockAddress>(RHS->getOperand(0)) &&
 | |
|           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
 | |
|             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
 | |
|         return NoRelocation;
 | |
|     }
 | |
| 
 | |
|   PossibleRelocationsTy Result = NoRelocation;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result = std::max(Result,
 | |
|                       cast<Constant>(getOperand(i))->getRelocationInfo());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
 | |
| /// it.  This involves recursively eliminating any dead users of the
 | |
| /// constantexpr.
 | |
| static bool removeDeadUsersOfConstant(const Constant *C) {
 | |
|   if (isa<GlobalValue>(C)) return false; // Cannot remove this
 | |
| 
 | |
|   while (!C->use_empty()) {
 | |
|     const Constant *User = dyn_cast<Constant>(C->user_back());
 | |
|     if (!User) return false; // Non-constant usage;
 | |
|     if (!removeDeadUsersOfConstant(User))
 | |
|       return false; // Constant wasn't dead
 | |
|   }
 | |
| 
 | |
|   const_cast<Constant*>(C)->destroyConstant();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// removeDeadConstantUsers - If there are any dead constant users dangling
 | |
| /// off of this constant, remove them.  This method is useful for clients
 | |
| /// that want to check to see if a global is unused, but don't want to deal
 | |
| /// with potentially dead constants hanging off of the globals.
 | |
| void Constant::removeDeadConstantUsers() const {
 | |
|   Value::const_user_iterator I = user_begin(), E = user_end();
 | |
|   Value::const_user_iterator LastNonDeadUser = E;
 | |
|   while (I != E) {
 | |
|     const Constant *User = dyn_cast<Constant>(*I);
 | |
|     if (!User) {
 | |
|       LastNonDeadUser = I;
 | |
|       ++I;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!removeDeadUsersOfConstant(User)) {
 | |
|       // If the constant wasn't dead, remember that this was the last live use
 | |
|       // and move on to the next constant.
 | |
|       LastNonDeadUser = I;
 | |
|       ++I;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the constant was dead, then the iterator is invalidated.
 | |
|     if (LastNonDeadUser == E) {
 | |
|       I = user_begin();
 | |
|       if (I == E) break;
 | |
|     } else {
 | |
|       I = LastNonDeadUser;
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantInt
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ConstantInt::anchor() { }
 | |
| 
 | |
| ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
 | |
|   : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
 | |
|   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   if (!pImpl->TheTrueVal)
 | |
|     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
 | |
|   return pImpl->TheTrueVal;
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   if (!pImpl->TheFalseVal)
 | |
|     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
 | |
|   return pImpl->TheFalseVal;
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::getTrue(Type *Ty) {
 | |
|   VectorType *VTy = dyn_cast<VectorType>(Ty);
 | |
|   if (!VTy) {
 | |
|     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
 | |
|     return ConstantInt::getTrue(Ty->getContext());
 | |
|   }
 | |
|   assert(VTy->getElementType()->isIntegerTy(1) &&
 | |
|          "True must be vector of i1 or i1.");
 | |
|   return ConstantVector::getSplat(VTy->getNumElements(),
 | |
|                                   ConstantInt::getTrue(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::getFalse(Type *Ty) {
 | |
|   VectorType *VTy = dyn_cast<VectorType>(Ty);
 | |
|   if (!VTy) {
 | |
|     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
 | |
|     return ConstantInt::getFalse(Ty->getContext());
 | |
|   }
 | |
|   assert(VTy->getElementType()->isIntegerTy(1) &&
 | |
|          "False must be vector of i1 or i1.");
 | |
|   return ConstantVector::getSplat(VTy->getNumElements(),
 | |
|                                   ConstantInt::getFalse(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
 | |
| // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
 | |
| // operator== and operator!= to ensure that the DenseMap doesn't attempt to
 | |
| // compare APInt's of different widths, which would violate an APInt class
 | |
| // invariant which generates an assertion.
 | |
| ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
 | |
|   // Get the corresponding integer type for the bit width of the value.
 | |
|   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
 | |
|   // get an existing value or the insertion position
 | |
|   LLVMContextImpl *pImpl = Context.pImpl;
 | |
|   ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
 | |
|   if (!Slot) Slot = new ConstantInt(ITy, V);
 | |
|   return Slot;
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
 | |
|   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
 | |
|                               bool isSigned) {
 | |
|   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
 | |
|   return get(Ty, V, true);
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
 | |
|   return get(Ty, V, true);
 | |
| }
 | |
| 
 | |
| Constant *ConstantInt::get(Type *Ty, const APInt& V) {
 | |
|   ConstantInt *C = get(Ty->getContext(), V);
 | |
|   assert(C->getType() == Ty->getScalarType() &&
 | |
|          "ConstantInt type doesn't match the type implied by its value!");
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
 | |
|                               uint8_t radix) {
 | |
|   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantFP
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
 | |
|   if (Ty->isHalfTy())
 | |
|     return &APFloat::IEEEhalf;
 | |
|   if (Ty->isFloatTy())
 | |
|     return &APFloat::IEEEsingle;
 | |
|   if (Ty->isDoubleTy())
 | |
|     return &APFloat::IEEEdouble;
 | |
|   if (Ty->isX86_FP80Ty())
 | |
|     return &APFloat::x87DoubleExtended;
 | |
|   else if (Ty->isFP128Ty())
 | |
|     return &APFloat::IEEEquad;
 | |
| 
 | |
|   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
 | |
|   return &APFloat::PPCDoubleDouble;
 | |
| }
 | |
| 
 | |
| void ConstantFP::anchor() { }
 | |
| 
 | |
| /// get() - This returns a constant fp for the specified value in the
 | |
| /// specified type.  This should only be used for simple constant values like
 | |
| /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
 | |
| Constant *ConstantFP::get(Type *Ty, double V) {
 | |
|   LLVMContext &Context = Ty->getContext();
 | |
| 
 | |
|   APFloat FV(V);
 | |
|   bool ignored;
 | |
|   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
 | |
|              APFloat::rmNearestTiesToEven, &ignored);
 | |
|   Constant *C = get(Context, FV);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *ConstantFP::get(Type *Ty, StringRef Str) {
 | |
|   LLVMContext &Context = Ty->getContext();
 | |
| 
 | |
|   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
 | |
|   Constant *C = get(Context, FV);
 | |
| 
 | |
|   // For vectors, broadcast the value.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C; 
 | |
| }
 | |
| 
 | |
| Constant *ConstantFP::getNegativeZero(Type *Ty) {
 | |
|   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
 | |
|   APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
 | |
|   Constant *C = get(Ty->getContext(), NegZero);
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
 | |
|   if (Ty->isFPOrFPVectorTy())
 | |
|     return getNegativeZero(Ty);
 | |
| 
 | |
|   return Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ConstantFP accessors.
 | |
| ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
 | |
|   LLVMContextImpl* pImpl = Context.pImpl;
 | |
| 
 | |
|   ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
 | |
| 
 | |
|   if (!Slot) {
 | |
|     Type *Ty;
 | |
|     if (&V.getSemantics() == &APFloat::IEEEhalf)
 | |
|       Ty = Type::getHalfTy(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::IEEEsingle)
 | |
|       Ty = Type::getFloatTy(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::IEEEdouble)
 | |
|       Ty = Type::getDoubleTy(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
 | |
|       Ty = Type::getX86_FP80Ty(Context);
 | |
|     else if (&V.getSemantics() == &APFloat::IEEEquad)
 | |
|       Ty = Type::getFP128Ty(Context);
 | |
|     else {
 | |
|       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
 | |
|              "Unknown FP format");
 | |
|       Ty = Type::getPPC_FP128Ty(Context);
 | |
|     }
 | |
|     Slot = new ConstantFP(Ty, V);
 | |
|   }
 | |
| 
 | |
|   return Slot;
 | |
| }
 | |
| 
 | |
| Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
 | |
|   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
 | |
|   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|     return ConstantVector::getSplat(VTy->getNumElements(), C);
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
 | |
|   : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
 | |
|   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
 | |
|          "FP type Mismatch");
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isExactlyValue(const APFloat &V) const {
 | |
|   return Val.bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   ConstantAggregateZero Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getSequentialElement - If this CAZ has array or vector type, return a zero
 | |
| /// with the right element type.
 | |
| Constant *ConstantAggregateZero::getSequentialElement() const {
 | |
|   return Constant::getNullValue(getType()->getSequentialElementType());
 | |
| }
 | |
| 
 | |
| /// getStructElement - If this CAZ has struct type, return a zero with the
 | |
| /// right element type for the specified element.
 | |
| Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
 | |
|   return Constant::getNullValue(getType()->getStructElementType(Elt));
 | |
| }
 | |
| 
 | |
| /// getElementValue - Return a zero of the right value for the specified GEP
 | |
| /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
 | |
| Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
 | |
|   if (isa<SequentialType>(getType()))
 | |
|     return getSequentialElement();
 | |
|   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
 | |
| }
 | |
| 
 | |
| /// getElementValue - Return a zero of the right value for the specified GEP
 | |
| /// index.
 | |
| Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
 | |
|   if (isa<SequentialType>(getType()))
 | |
|     return getSequentialElement();
 | |
|   return getStructElement(Idx);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         UndefValue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getSequentialElement - If this undef has array or vector type, return an
 | |
| /// undef with the right element type.
 | |
| UndefValue *UndefValue::getSequentialElement() const {
 | |
|   return UndefValue::get(getType()->getSequentialElementType());
 | |
| }
 | |
| 
 | |
| /// getStructElement - If this undef has struct type, return a zero with the
 | |
| /// right element type for the specified element.
 | |
| UndefValue *UndefValue::getStructElement(unsigned Elt) const {
 | |
|   return UndefValue::get(getType()->getStructElementType(Elt));
 | |
| }
 | |
| 
 | |
| /// getElementValue - Return an undef of the right value for the specified GEP
 | |
| /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
 | |
| UndefValue *UndefValue::getElementValue(Constant *C) const {
 | |
|   if (isa<SequentialType>(getType()))
 | |
|     return getSequentialElement();
 | |
|   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
 | |
| }
 | |
| 
 | |
| /// getElementValue - Return an undef of the right value for the specified GEP
 | |
| /// index.
 | |
| UndefValue *UndefValue::getElementValue(unsigned Idx) const {
 | |
|   if (isa<SequentialType>(getType()))
 | |
|     return getSequentialElement();
 | |
|   return getStructElement(Idx);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantXXX Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| template <typename ItTy, typename EltTy>
 | |
| static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
 | |
|   for (; Start != End; ++Start)
 | |
|     if (*Start != Elt)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
 | |
|   : Constant(T, ConstantArrayVal,
 | |
|              OperandTraits<ConstantArray>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant array");
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     assert(V[i]->getType() == T->getElementType() &&
 | |
|            "Initializer for array element doesn't match array element type!");
 | |
|   std::copy(V.begin(), V.end(), op_begin());
 | |
| }
 | |
| 
 | |
| Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
 | |
|   if (Constant *C = getImpl(Ty, V))
 | |
|     return C;
 | |
|   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
 | |
|   // Empty arrays are canonicalized to ConstantAggregateZero.
 | |
|   if (V.empty())
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
| 
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|     assert(V[i]->getType() == Ty->getElementType() &&
 | |
|            "Wrong type in array element initializer");
 | |
|   }
 | |
| 
 | |
|   // If this is an all-zero array, return a ConstantAggregateZero object.  If
 | |
|   // all undef, return an UndefValue, if "all simple", then return a
 | |
|   // ConstantDataArray.
 | |
|   Constant *C = V[0];
 | |
|   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
 | |
|     return UndefValue::get(Ty);
 | |
| 
 | |
|   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
| 
 | |
|   // Check to see if all of the elements are ConstantFP or ConstantInt and if
 | |
|   // the element type is compatible with ConstantDataVector.  If so, use it.
 | |
|   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
 | |
|     // We speculatively build the elements here even if it turns out that there
 | |
|     // is a constantexpr or something else weird in the array, since it is so
 | |
|     // uncommon for that to happen.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | |
|       if (CI->getType()->isIntegerTy(8)) {
 | |
|         SmallVector<uint8_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(16)) {
 | |
|         SmallVector<uint16_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(32)) {
 | |
|         SmallVector<uint32_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(64)) {
 | |
|         SmallVector<uint64_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|       if (CFP->getType()->isFloatTy()) {
 | |
|         SmallVector<float, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
 | |
|             Elts.push_back(CFP->getValueAPF().convertToFloat());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       } else if (CFP->getType()->isDoubleTy()) {
 | |
|         SmallVector<double, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
 | |
|             Elts.push_back(CFP->getValueAPF().convertToDouble());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataArray::get(C->getContext(), Elts);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we really do want to create a ConstantArray.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getTypeForElements - Return an anonymous struct type to use for a constant
 | |
| /// with the specified set of elements.  The list must not be empty.
 | |
| StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
 | |
|                                                ArrayRef<Constant*> V,
 | |
|                                                bool Packed) {
 | |
|   unsigned VecSize = V.size();
 | |
|   SmallVector<Type*, 16> EltTypes(VecSize);
 | |
|   for (unsigned i = 0; i != VecSize; ++i)
 | |
|     EltTypes[i] = V[i]->getType();
 | |
| 
 | |
|   return StructType::get(Context, EltTypes, Packed);
 | |
| }
 | |
| 
 | |
| 
 | |
| StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
 | |
|                                                bool Packed) {
 | |
|   assert(!V.empty() &&
 | |
|          "ConstantStruct::getTypeForElements cannot be called on empty list");
 | |
|   return getTypeForElements(V[0]->getContext(), V, Packed);
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
 | |
|   : Constant(T, ConstantStructVal,
 | |
|              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant structure");
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
 | |
|            "Initializer for struct element doesn't match struct element type!");
 | |
|   std::copy(V.begin(), V.end(), op_begin());
 | |
| }
 | |
| 
 | |
| // ConstantStruct accessors.
 | |
| Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
 | |
|   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
 | |
|          "Incorrect # elements specified to ConstantStruct::get");
 | |
| 
 | |
|   // Create a ConstantAggregateZero value if all elements are zeros.
 | |
|   bool isZero = true;
 | |
|   bool isUndef = false;
 | |
|   
 | |
|   if (!V.empty()) {
 | |
|     isUndef = isa<UndefValue>(V[0]);
 | |
|     isZero = V[0]->isNullValue();
 | |
|     if (isUndef || isZero) {
 | |
|       for (unsigned i = 0, e = V.size(); i != e; ++i) {
 | |
|         if (!V[i]->isNullValue())
 | |
|           isZero = false;
 | |
|         if (!isa<UndefValue>(V[i]))
 | |
|           isUndef = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (isZero)
 | |
|     return ConstantAggregateZero::get(ST);
 | |
|   if (isUndef)
 | |
|     return UndefValue::get(ST);
 | |
| 
 | |
|   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
 | |
| }
 | |
| 
 | |
| Constant *ConstantStruct::get(StructType *T, ...) {
 | |
|   va_list ap;
 | |
|   SmallVector<Constant*, 8> Values;
 | |
|   va_start(ap, T);
 | |
|   while (Constant *Val = va_arg(ap, llvm::Constant*))
 | |
|     Values.push_back(Val);
 | |
|   va_end(ap);
 | |
|   return get(T, Values);
 | |
| }
 | |
| 
 | |
| ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
 | |
|   : Constant(T, ConstantVectorVal,
 | |
|              OperandTraits<ConstantVector>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   for (size_t i = 0, e = V.size(); i != e; i++)
 | |
|     assert(V[i]->getType() == T->getElementType() &&
 | |
|            "Initializer for vector element doesn't match vector element type!");
 | |
|   std::copy(V.begin(), V.end(), op_begin());
 | |
| }
 | |
| 
 | |
| // ConstantVector accessors.
 | |
| Constant *ConstantVector::get(ArrayRef<Constant*> V) {
 | |
|   if (Constant *C = getImpl(V))
 | |
|     return C;
 | |
|   VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
 | |
|   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
 | |
|   assert(!V.empty() && "Vectors can't be empty");
 | |
|   VectorType *T = VectorType::get(V.front()->getType(), V.size());
 | |
| 
 | |
|   // If this is an all-undef or all-zero vector, return a
 | |
|   // ConstantAggregateZero or UndefValue.
 | |
|   Constant *C = V[0];
 | |
|   bool isZero = C->isNullValue();
 | |
|   bool isUndef = isa<UndefValue>(C);
 | |
| 
 | |
|   if (isZero || isUndef) {
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C) {
 | |
|         isZero = isUndef = false;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (isZero)
 | |
|     return ConstantAggregateZero::get(T);
 | |
|   if (isUndef)
 | |
|     return UndefValue::get(T);
 | |
| 
 | |
|   // Check to see if all of the elements are ConstantFP or ConstantInt and if
 | |
|   // the element type is compatible with ConstantDataVector.  If so, use it.
 | |
|   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
 | |
|     // We speculatively build the elements here even if it turns out that there
 | |
|     // is a constantexpr or something else weird in the array, since it is so
 | |
|     // uncommon for that to happen.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
 | |
|       if (CI->getType()->isIntegerTy(8)) {
 | |
|         SmallVector<uint8_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(16)) {
 | |
|         SmallVector<uint16_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(32)) {
 | |
|         SmallVector<uint32_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       } else if (CI->getType()->isIntegerTy(64)) {
 | |
|         SmallVector<uint64_t, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
 | |
|             Elts.push_back(CI->getZExtValue());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|       if (CFP->getType()->isFloatTy()) {
 | |
|         SmallVector<float, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
 | |
|             Elts.push_back(CFP->getValueAPF().convertToFloat());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       } else if (CFP->getType()->isDoubleTy()) {
 | |
|         SmallVector<double, 16> Elts;
 | |
|         for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
 | |
|             Elts.push_back(CFP->getValueAPF().convertToDouble());
 | |
|           else
 | |
|             break;
 | |
|         if (Elts.size() == V.size())
 | |
|           return ConstantDataVector::get(C->getContext(), Elts);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the element type isn't compatible with ConstantDataVector, or
 | |
|   // the operand list constants a ConstantExpr or something else strange.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
 | |
|   // If this splat is compatible with ConstantDataVector, use it instead of
 | |
|   // ConstantVector.
 | |
|   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
 | |
|       ConstantDataSequential::isElementTypeCompatible(V->getType()))
 | |
|     return ConstantDataVector::getSplat(NumElts, V);
 | |
| 
 | |
|   SmallVector<Constant*, 32> Elts(NumElts, V);
 | |
|   return get(Elts);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Utility function for determining if a ConstantExpr is a CastOp or not. This
 | |
| // can't be inline because we don't want to #include Instruction.h into
 | |
| // Constant.h
 | |
| bool ConstantExpr::isCast() const {
 | |
|   return Instruction::isCast(getOpcode());
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::isCompare() const {
 | |
|   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
 | |
|   if (getOpcode() != Instruction::GetElementPtr) return false;
 | |
| 
 | |
|   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
 | |
|   User::const_op_iterator OI = std::next(this->op_begin());
 | |
| 
 | |
|   // Skip the first index, as it has no static limit.
 | |
|   ++GEPI;
 | |
|   ++OI;
 | |
| 
 | |
|   // The remaining indices must be compile-time known integers within the
 | |
|   // bounds of the corresponding notional static array types.
 | |
|   for (; GEPI != E; ++GEPI, ++OI) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
 | |
|     if (!CI) return false;
 | |
|     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
 | |
|       if (CI->getValue().getActiveBits() > 64 ||
 | |
|           CI->getZExtValue() >= ATy->getNumElements())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   // All the indices checked out.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::hasIndices() const {
 | |
|   return getOpcode() == Instruction::ExtractValue ||
 | |
|          getOpcode() == Instruction::InsertValue;
 | |
| }
 | |
| 
 | |
| ArrayRef<unsigned> ConstantExpr::getIndices() const {
 | |
|   if (const ExtractValueConstantExpr *EVCE =
 | |
|         dyn_cast<ExtractValueConstantExpr>(this))
 | |
|     return EVCE->Indices;
 | |
| 
 | |
|   return cast<InsertValueConstantExpr>(this)->Indices;
 | |
| }
 | |
| 
 | |
| unsigned ConstantExpr::getPredicate() const {
 | |
|   assert(isCompare());
 | |
|   return ((const CompareConstantExpr*)this)->predicate;
 | |
| }
 | |
| 
 | |
| /// getWithOperandReplaced - Return a constant expression identical to this
 | |
| /// one, but with the specified operand set to the specified value.
 | |
| Constant *
 | |
| ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
 | |
|   assert(Op->getType() == getOperand(OpNo)->getType() &&
 | |
|          "Replacing operand with value of different type!");
 | |
|   if (getOperand(OpNo) == Op)
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
| 
 | |
|   SmallVector<Constant*, 8> NewOps;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     NewOps.push_back(i == OpNo ? Op : getOperand(i));
 | |
| 
 | |
|   return getWithOperands(NewOps);
 | |
| }
 | |
| 
 | |
| /// getWithOperands - This returns the current constant expression with the
 | |
| /// operands replaced with the specified values.  The specified array must
 | |
| /// have the same number of operands as our current one.
 | |
| Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
 | |
|                                         bool OnlyIfReduced) const {
 | |
|   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
 | |
|   bool AnyChange = Ty != getType();
 | |
|   for (unsigned i = 0; i != Ops.size(); ++i)
 | |
|     AnyChange |= Ops[i] != getOperand(i);
 | |
| 
 | |
|   if (!AnyChange)  // No operands changed, return self.
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
| 
 | |
|   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
 | |
|   case Instruction::InsertElement:
 | |
|     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
 | |
|                                           OnlyIfReducedTy);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
 | |
|   case Instruction::InsertValue:
 | |
|     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
 | |
|                                         OnlyIfReducedTy);
 | |
|   case Instruction::ExtractValue:
 | |
|     return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
 | |
|                                           OnlyIfReducedTy);
 | |
|   case Instruction::GetElementPtr:
 | |
|     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
 | |
|                                           cast<GEPOperator>(this)->isInBounds(),
 | |
|                                           OnlyIfReducedTy);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
 | |
|                                     OnlyIfReducedTy);
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
 | |
|                              OnlyIfReducedTy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      isValueValidForType implementations
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
 | |
|   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
 | |
|   if (Ty->isIntegerTy(1))
 | |
|     return Val == 0 || Val == 1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   uint64_t Max = (1ll << NumBits) - 1;
 | |
|   return Val <= Max;
 | |
| }
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
 | |
|   unsigned NumBits = Ty->getIntegerBitWidth();
 | |
|   if (Ty->isIntegerTy(1))
 | |
|     return Val == 0 || Val == 1 || Val == -1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   int64_t Min = -(1ll << (NumBits-1));
 | |
|   int64_t Max = (1ll << (NumBits-1)) - 1;
 | |
|   return (Val >= Min && Val <= Max);
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   bool losesInfo;
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as floating point!
 | |
| 
 | |
|   // FIXME rounding mode needs to be more flexible
 | |
|   case Type::HalfTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::FloatTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
 | |
|         &Val2.getSemantics() == &APFloat::IEEEsingle ||
 | |
|         &Val2.getSemantics() == &APFloat::IEEEdouble)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::X86_FP80TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
 | |
|   case Type::FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEquad;
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Factory Function Implementation
 | |
| 
 | |
| ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
 | |
|   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
 | |
|          "Cannot create an aggregate zero of non-aggregate type!");
 | |
|   
 | |
|   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
 | |
|   if (!Entry)
 | |
|     Entry = new ConstantAggregateZero(Ty);
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| /// destroyConstant - Remove the constant from the constant table.
 | |
| ///
 | |
| void ConstantAggregateZero::destroyConstant() {
 | |
|   getContext().pImpl->CAZConstants.erase(getType());
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// destroyConstant - Remove the constant from the constant table...
 | |
| ///
 | |
| void ConstantArray::destroyConstant() {
 | |
|   getType()->getContext().pImpl->ArrayConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantStruct::get() implementation...
 | |
| //
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantStruct::destroyConstant() {
 | |
|   getType()->getContext().pImpl->StructConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantVector::destroyConstant() {
 | |
|   getType()->getContext().pImpl->VectorConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// getSplatValue - If this is a splat vector constant, meaning that all of
 | |
| /// the elements have the same value, return that value. Otherwise return 0.
 | |
| Constant *Constant::getSplatValue() const {
 | |
|   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
 | |
|   if (isa<ConstantAggregateZero>(this))
 | |
|     return getNullValue(this->getType()->getVectorElementType());
 | |
|   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
 | |
|     return CV->getSplatValue();
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
 | |
|     return CV->getSplatValue();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getSplatValue - If this is a splat constant, where all of the
 | |
| /// elements have the same value, return that value. Otherwise return null.
 | |
| Constant *ConstantVector::getSplatValue() const {
 | |
|   // Check out first element.
 | |
|   Constant *Elt = getOperand(0);
 | |
|   // Then make sure all remaining elements point to the same value.
 | |
|   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
 | |
|     if (getOperand(I) != Elt)
 | |
|       return nullptr;
 | |
|   return Elt;
 | |
| }
 | |
| 
 | |
| /// If C is a constant integer then return its value, otherwise C must be a
 | |
| /// vector of constant integers, all equal, and the common value is returned.
 | |
| const APInt &Constant::getUniqueInteger() const {
 | |
|   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
 | |
|     return CI->getValue();
 | |
|   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
 | |
|   const Constant *C = this->getAggregateElement(0U);
 | |
|   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
 | |
|   return cast<ConstantInt>(C)->getValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantPointerNull::get() implementation.
 | |
| //
 | |
| 
 | |
| ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
 | |
|   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
 | |
|   if (!Entry)
 | |
|     Entry = new ConstantPointerNull(Ty);
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerNull::destroyConstant() {
 | |
|   getContext().pImpl->CPNConstants.erase(getType());
 | |
|   // Free the constant and any dangling references to it.
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- UndefValue::get() implementation.
 | |
| //
 | |
| 
 | |
| UndefValue *UndefValue::get(Type *Ty) {
 | |
|   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
 | |
|   if (!Entry)
 | |
|     Entry = new UndefValue(Ty);
 | |
| 
 | |
|   return Entry;
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void UndefValue::destroyConstant() {
 | |
|   // Free the constant and any dangling references to it.
 | |
|   getContext().pImpl->UVConstants.erase(getType());
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- BlockAddress::get() implementation.
 | |
| //
 | |
| 
 | |
| BlockAddress *BlockAddress::get(BasicBlock *BB) {
 | |
|   assert(BB->getParent() && "Block must have a parent");
 | |
|   return get(BB->getParent(), BB);
 | |
| }
 | |
| 
 | |
| BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
 | |
|   BlockAddress *&BA =
 | |
|     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
 | |
|   if (!BA)
 | |
|     BA = new BlockAddress(F, BB);
 | |
| 
 | |
|   assert(BA->getFunction() == F && "Basic block moved between functions");
 | |
|   return BA;
 | |
| }
 | |
| 
 | |
| BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
 | |
| : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
 | |
|            &Op<0>(), 2) {
 | |
|   setOperand(0, F);
 | |
|   setOperand(1, BB);
 | |
|   BB->AdjustBlockAddressRefCount(1);
 | |
| }
 | |
| 
 | |
| BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
 | |
|   if (!BB->hasAddressTaken())
 | |
|     return nullptr;
 | |
| 
 | |
|   const Function *F = BB->getParent();
 | |
|   assert(F && "Block must have a parent");
 | |
|   BlockAddress *BA =
 | |
|       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
 | |
|   assert(BA && "Refcount and block address map disagree!");
 | |
|   return BA;
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void BlockAddress::destroyConstant() {
 | |
|   getFunction()->getType()->getContext().pImpl
 | |
|     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
 | |
|   getBasicBlock()->AdjustBlockAddressRefCount(-1);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
 | |
|   // This could be replacing either the Basic Block or the Function.  In either
 | |
|   // case, we have to remove the map entry.
 | |
|   Function *NewF = getFunction();
 | |
|   BasicBlock *NewBB = getBasicBlock();
 | |
| 
 | |
|   if (U == &Op<0>())
 | |
|     NewF = cast<Function>(To->stripPointerCasts());
 | |
|   else
 | |
|     NewBB = cast<BasicBlock>(To);
 | |
| 
 | |
|   // See if the 'new' entry already exists, if not, just update this in place
 | |
|   // and return early.
 | |
|   BlockAddress *&NewBA =
 | |
|     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
 | |
|   if (NewBA) {
 | |
|     replaceUsesOfWithOnConstantImpl(NewBA);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   getBasicBlock()->AdjustBlockAddressRefCount(-1);
 | |
| 
 | |
|   // Remove the old entry, this can't cause the map to rehash (just a
 | |
|   // tombstone will get added).
 | |
|   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
 | |
|                                                           getBasicBlock()));
 | |
|   NewBA = this;
 | |
|   setOperand(0, NewF);
 | |
|   setOperand(1, NewBB);
 | |
|   getBasicBlock()->AdjustBlockAddressRefCount(1);
 | |
| }
 | |
| 
 | |
| //---- ConstantExpr::get() implementations.
 | |
| //
 | |
| 
 | |
| /// This is a utility function to handle folding of casts and lookup of the
 | |
| /// cast in the ExprConstants map. It is used by the various get* methods below.
 | |
| static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
 | |
|                                bool OnlyIfReduced = false) {
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
|   // Fold a few common cases
 | |
|   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
 | |
|     return FC;
 | |
| 
 | |
|   if (OnlyIfReduced)
 | |
|     return nullptr;
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness.
 | |
|   ConstantExprKeyType Key(opc, C);
 | |
| 
 | |
|   return pImpl->ExprConstants.getOrCreate(Ty, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
 | |
|                                 bool OnlyIfReduced) {
 | |
|   Instruction::CastOps opc = Instruction::CastOps(oc);
 | |
|   assert(Instruction::isCast(opc) && "opcode out of range");
 | |
|   assert(C && Ty && "Null arguments to getCast");
 | |
|   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
 | |
| 
 | |
|   switch (opc) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid cast opcode");
 | |
|   case Instruction::Trunc:
 | |
|     return getTrunc(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::ZExt:
 | |
|     return getZExt(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::SExt:
 | |
|     return getSExt(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::FPTrunc:
 | |
|     return getFPTrunc(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::FPExt:
 | |
|     return getFPExtend(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::UIToFP:
 | |
|     return getUIToFP(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::SIToFP:
 | |
|     return getSIToFP(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::FPToUI:
 | |
|     return getFPToUI(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::FPToSI:
 | |
|     return getFPToSI(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::PtrToInt:
 | |
|     return getPtrToInt(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::IntToPtr:
 | |
|     return getIntToPtr(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::BitCast:
 | |
|     return getBitCast(C, Ty, OnlyIfReduced);
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     return getAddrSpaceCast(C, Ty, OnlyIfReduced);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getZExt(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getSExt(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
 | |
|   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return getBitCast(C, Ty);
 | |
|   return getTrunc(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
 | |
|           "Invalid cast");
 | |
| 
 | |
|   if (Ty->isIntOrIntVectorTy())
 | |
|     return getPtrToInt(S, Ty);
 | |
| 
 | |
|   unsigned SrcAS = S->getType()->getPointerAddressSpace();
 | |
|   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
 | |
|     return getAddrSpaceCast(S, Ty);
 | |
| 
 | |
|   return getBitCast(S, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
 | |
|                                                          Type *Ty) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
| 
 | |
|   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
 | |
|     return getAddrSpaceCast(S, Ty);
 | |
| 
 | |
|   return getBitCast(S, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
 | |
|                                        bool isSigned) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          Ty->isIntOrIntVectorTy() && "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   if (SrcBits == DstBits)
 | |
|     return C; // Avoid a useless cast
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
 | |
|   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be larger than DestTy for Trunc!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
 | |
|   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for SExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
 | |
|   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
 | |
|   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for ZExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
 | |
|          "This is an illegal floating point truncation!");
 | |
|   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
 | |
|          "This is an illegal floating point extension!");
 | |
|   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "This is an illegal uint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "This is an illegal sint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "This is an illegal floating point to uint cast!");
 | |
|   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "This is an illegal floating point to sint cast!");
 | |
|   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
 | |
|                                     bool OnlyIfReduced) {
 | |
|   assert(C->getType()->getScalarType()->isPointerTy() &&
 | |
|          "PtrToInt source must be pointer or pointer vector");
 | |
|   assert(DstTy->getScalarType()->isIntegerTy() && 
 | |
|          "PtrToInt destination must be integer or integer vector");
 | |
|   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
 | |
|   if (isa<VectorType>(C->getType()))
 | |
|     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
 | |
|            "Invalid cast between a different number of vector elements");
 | |
|   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
 | |
|                                     bool OnlyIfReduced) {
 | |
|   assert(C->getType()->getScalarType()->isIntegerTy() &&
 | |
|          "IntToPtr source must be integer or integer vector");
 | |
|   assert(DstTy->getScalarType()->isPointerTy() &&
 | |
|          "IntToPtr destination must be a pointer or pointer vector");
 | |
|   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
 | |
|   if (isa<VectorType>(C->getType()))
 | |
|     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
 | |
|            "Invalid cast between a different number of vector elements");
 | |
|   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
 | |
|                                    bool OnlyIfReduced) {
 | |
|   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
 | |
|          "Invalid constantexpr bitcast!");
 | |
| 
 | |
|   // It is common to ask for a bitcast of a value to its own type, handle this
 | |
|   // speedily.
 | |
|   if (C->getType() == DstTy) return C;
 | |
| 
 | |
|   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
 | |
|                                          bool OnlyIfReduced) {
 | |
|   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
 | |
|          "Invalid constantexpr addrspacecast!");
 | |
| 
 | |
|   // Canonicalize addrspacecasts between different pointer types by first
 | |
|   // bitcasting the pointer type and then converting the address space.
 | |
|   PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
 | |
|   PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
 | |
|   Type *DstElemTy = DstScalarTy->getElementType();
 | |
|   if (SrcScalarTy->getElementType() != DstElemTy) {
 | |
|     Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
 | |
|     if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
 | |
|       // Handle vectors of pointers.
 | |
|       MidTy = VectorType::get(MidTy, VT->getNumElements());
 | |
|     }
 | |
|     C = getBitCast(C, MidTy);
 | |
|   }
 | |
|   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
 | |
|                             unsigned Flags, Type *OnlyIfReducedTy) {
 | |
|   // Check the operands for consistency first.
 | |
|   assert(Opcode >= Instruction::BinaryOpsBegin &&
 | |
|          Opcode <  Instruction::BinaryOpsEnd   &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType() == C2->getType() &&
 | |
|          "Operand types in binary constant expression should match");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an integer operation on a non-integer type!");
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create a floating-point operation on a "
 | |
|            "non-floating-point type!");
 | |
|     break;
 | |
|   case Instruction::UDiv: 
 | |
|   case Instruction::SDiv: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::URem: 
 | |
|   case Instruction::SRem: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a shift operation on a non-integer type!");
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|     return FC;          // Fold a few common cases.
 | |
| 
 | |
|   if (OnlyIfReducedTy == C1->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *ArgVec[] = { C1, C2 };
 | |
|   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = C1->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSizeOf(Type* Ty) {
 | |
|   // sizeof is implemented as: (i64) gep (Ty*)null, 1
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | |
|   Constant *GEP = getGetElementPtr(
 | |
|                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
 | |
|   return getPtrToInt(GEP, 
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getAlignOf(Type* Ty) {
 | |
|   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   Type *AligningTy = 
 | |
|     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
 | |
|   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
 | |
|   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
 | |
|   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
 | |
|   Constant *Indices[2] = { Zero, One };
 | |
|   Constant *GEP = getGetElementPtr(NullPtr, Indices);
 | |
|   return getPtrToInt(GEP,
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
 | |
|   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
 | |
|                                            FieldNo));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
 | |
|   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
 | |
|   // Note that a non-inbounds gep is used, as null isn't within any object.
 | |
|   Constant *GEPIdx[] = {
 | |
|     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
 | |
|     FieldNo
 | |
|   };
 | |
|   Constant *GEP = getGetElementPtr(
 | |
|                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
 | |
|   return getPtrToInt(GEP,
 | |
|                      Type::getInt64Ty(Ty->getContext()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
 | |
|                                    Constant *C2, bool OnlyIfReduced) {
 | |
|   assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
| 
 | |
|   switch (Predicate) {
 | |
|   default: llvm_unreachable("Invalid CmpInst predicate");
 | |
|   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
 | |
|   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
 | |
|   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
 | |
|   case CmpInst::FCMP_TRUE:
 | |
|     return getFCmp(Predicate, C1, C2, OnlyIfReduced);
 | |
| 
 | |
|   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
 | |
|   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
 | |
|   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
 | |
|   case CmpInst::ICMP_SLE:
 | |
|     return getICmp(Predicate, C1, C2, OnlyIfReduced);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
 | |
|                                   Type *OnlyIfReducedTy) {
 | |
|   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
 | |
| 
 | |
|   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
 | |
|     return SC;        // Fold common cases
 | |
| 
 | |
|   if (OnlyIfReducedTy == V1->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *ArgVec[] = { C, V1, V2 };
 | |
|   ConstantExprKeyType Key(Instruction::Select, ArgVec);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = C->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
 | |
|                                          bool InBounds, Type *OnlyIfReducedTy) {
 | |
|   assert(C->getType()->isPtrOrPtrVectorTy() &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
 | |
|     return FC;          // Fold a few common cases.
 | |
| 
 | |
|   // Get the result type of the getelementptr!
 | |
|   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   unsigned AS = C->getType()->getPointerAddressSpace();
 | |
|   Type *ReqTy = Ty->getPointerTo(AS);
 | |
|   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
 | |
|     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
 | |
| 
 | |
|   if (OnlyIfReducedTy == ReqTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.reserve(1 + Idxs.size());
 | |
|   ArgVec.push_back(C);
 | |
|   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
 | |
|     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
 | |
|            "getelementptr index type missmatch");
 | |
|     assert((!Idxs[i]->getType()->isVectorTy() ||
 | |
|             ReqTy->getVectorNumElements() ==
 | |
|             Idxs[i]->getType()->getVectorNumElements()) &&
 | |
|            "getelementptr index type missmatch");
 | |
|     ArgVec.push_back(cast<Constant>(Idxs[i]));
 | |
|   }
 | |
|   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
 | |
|                                 InBounds ? GEPOperator::IsInBounds : 0);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = C->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
 | |
|                                 Constant *RHS, bool OnlyIfReduced) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | |
|          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   if (OnlyIfReduced)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   Constant *ArgVec[] = { LHS, RHS };
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
 | |
| 
 | |
|   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
 | |
|     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
 | |
| 
 | |
|   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
 | |
|                                 Constant *RHS, bool OnlyIfReduced) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   if (OnlyIfReduced)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   Constant *ArgVec[] = { LHS, RHS };
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
 | |
| 
 | |
|   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
 | |
|     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
 | |
| 
 | |
|   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
 | |
|                                           Type *OnlyIfReducedTy) {
 | |
|   assert(Val->getType()->isVectorTy() &&
 | |
|          "Tried to create extractelement operation on non-vector type!");
 | |
|   assert(Idx->getType()->isIntegerTy() &&
 | |
|          "Extractelement index must be an integer type!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
 | |
|     return FC;          // Fold a few common cases.
 | |
| 
 | |
|   Type *ReqTy = Val->getType()->getVectorElementType();
 | |
|   if (OnlyIfReducedTy == ReqTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   Constant *ArgVec[] = { Val, Idx };
 | |
|   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Val->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
 | |
|                                          Constant *Idx, Type *OnlyIfReducedTy) {
 | |
|   assert(Val->getType()->isVectorTy() &&
 | |
|          "Tried to create insertelement operation on non-vector type!");
 | |
|   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
 | |
|          "Insertelement types must match!");
 | |
|   assert(Idx->getType()->isIntegerTy() &&
 | |
|          "Insertelement index must be i32 type!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
 | |
|     return FC;          // Fold a few common cases.
 | |
| 
 | |
|   if (OnlyIfReducedTy == Val->getType())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   Constant *ArgVec[] = { Val, Elt, Idx };
 | |
|   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Val->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
 | |
|                                          Constant *Mask, Type *OnlyIfReducedTy) {
 | |
|   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector constant expr operands!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
 | |
|     return FC;          // Fold a few common cases.
 | |
| 
 | |
|   unsigned NElts = Mask->getType()->getVectorNumElements();
 | |
|   Type *EltTy = V1->getType()->getVectorElementType();
 | |
|   Type *ShufTy = VectorType::get(EltTy, NElts);
 | |
| 
 | |
|   if (OnlyIfReducedTy == ShufTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   Constant *ArgVec[] = { V1, V2, Mask };
 | |
|   const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
 | |
|                                        ArrayRef<unsigned> Idxs,
 | |
|                                        Type *OnlyIfReducedTy) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant insertvalue expression");
 | |
| 
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(),
 | |
|                                           Idxs) == Val->getType() &&
 | |
|          "insertvalue indices invalid!");
 | |
|   Type *ReqTy = Val->getType();
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
 | |
|     return FC;
 | |
| 
 | |
|   if (OnlyIfReducedTy == ReqTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *ArgVec[] = { Agg, Val };
 | |
|   const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
 | |
|                                         Type *OnlyIfReducedTy) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Tried to create extractelement operation on non-first-class type!");
 | |
| 
 | |
|   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
 | |
|   (void)ReqTy;
 | |
|   assert(ReqTy && "extractvalue indices invalid!");
 | |
| 
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant extractvalue expression");
 | |
|   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
 | |
|     return FC;
 | |
| 
 | |
|   if (OnlyIfReducedTy == ReqTy)
 | |
|     return nullptr;
 | |
| 
 | |
|   Constant *ArgVec[] = { Agg };
 | |
|   const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
 | |
| 
 | |
|   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
 | |
|   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NEG a nonintegral value!");
 | |
|   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
 | |
|                 C, HasNUW, HasNSW);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFNeg(Constant *C) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() &&
 | |
|          "Cannot FNEG a non-floating-point value!");
 | |
|   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getNot(Constant *C) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() &&
 | |
|          "Cannot NOT a nonintegral value!");
 | |
|   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
 | |
|                                bool HasNUW, bool HasNSW) {
 | |
|   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
 | |
|                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
 | |
|   return get(Instruction::Add, C1, C2, Flags);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FAdd, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
 | |
|                                bool HasNUW, bool HasNSW) {
 | |
|   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
 | |
|                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
 | |
|   return get(Instruction::Sub, C1, C2, Flags);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FSub, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
 | |
|                                bool HasNUW, bool HasNSW) {
 | |
|   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
 | |
|                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
 | |
|   return get(Instruction::Mul, C1, C2, Flags);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FMul, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
 | |
|   return get(Instruction::UDiv, C1, C2,
 | |
|              isExact ? PossiblyExactOperator::IsExact : 0);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
 | |
|   return get(Instruction::SDiv, C1, C2,
 | |
|              isExact ? PossiblyExactOperator::IsExact : 0);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FDiv, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::URem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SRem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FRem, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::And, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Or, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Xor, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
 | |
|                                bool HasNUW, bool HasNSW) {
 | |
|   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
 | |
|                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
 | |
|   return get(Instruction::Shl, C1, C2, Flags);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
 | |
|   return get(Instruction::LShr, C1, C2,
 | |
|              isExact ? PossiblyExactOperator::IsExact : 0);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
 | |
|   return get(Instruction::AShr, C1, C2,
 | |
|              isExact ? PossiblyExactOperator::IsExact : 0);
 | |
| }
 | |
| 
 | |
| /// getBinOpIdentity - Return the identity for the given binary operation,
 | |
| /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
 | |
| /// returns null if the operator doesn't have an identity.
 | |
| Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     // Doesn't have an identity.
 | |
|     return nullptr;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return Constant::getNullValue(Ty);
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|     return ConstantInt::get(Ty, 1);
 | |
| 
 | |
|   case Instruction::And:
 | |
|     return Constant::getAllOnesValue(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getBinOpAbsorber - Return the absorbing element for the given binary
 | |
| /// operation, i.e. a constant C such that X op C = C and C op X = C for
 | |
| /// every X.  For example, this returns zero for integer multiplication.
 | |
| /// It returns null if the operator doesn't have an absorbing element.
 | |
| Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     // Doesn't have an absorber.
 | |
|     return nullptr;
 | |
| 
 | |
|   case Instruction::Or:
 | |
|     return Constant::getAllOnesValue(Ty);
 | |
| 
 | |
|   case Instruction::And:
 | |
|   case Instruction::Mul:
 | |
|     return Constant::getNullValue(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantExpr::destroyConstant() {
 | |
|   getType()->getContext().pImpl->ExprConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| const char *ConstantExpr::getOpcodeName() const {
 | |
|   return Instruction::getOpcodeName(getOpcode());
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| GetElementPtrConstantExpr::
 | |
| GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
 | |
|                           Type *DestTy)
 | |
|   : ConstantExpr(DestTy, Instruction::GetElementPtr,
 | |
|                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
 | |
|                  - (IdxList.size()+1), IdxList.size()+1) {
 | |
|   OperandList[0] = C;
 | |
|   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | |
|     OperandList[i+1] = IdxList[i];
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       ConstantData* implementations
 | |
| 
 | |
| void ConstantDataArray::anchor() {}
 | |
| void ConstantDataVector::anchor() {}
 | |
| 
 | |
| /// getElementType - Return the element type of the array/vector.
 | |
| Type *ConstantDataSequential::getElementType() const {
 | |
|   return getType()->getElementType();
 | |
| }
 | |
| 
 | |
| StringRef ConstantDataSequential::getRawDataValues() const {
 | |
|   return StringRef(DataElements, getNumElements()*getElementByteSize());
 | |
| }
 | |
| 
 | |
| /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
 | |
| /// formed with a vector or array of the specified element type.
 | |
| /// ConstantDataArray only works with normal float and int types that are
 | |
| /// stored densely in memory, not with things like i42 or x86_f80.
 | |
| bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
 | |
|   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
 | |
|   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
 | |
|     switch (IT->getBitWidth()) {
 | |
|     case 8:
 | |
|     case 16:
 | |
|     case 32:
 | |
|     case 64:
 | |
|       return true;
 | |
|     default: break;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getNumElements - Return the number of elements in the array or vector.
 | |
| unsigned ConstantDataSequential::getNumElements() const {
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
 | |
|     return AT->getNumElements();
 | |
|   return getType()->getVectorNumElements();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getElementByteSize - Return the size in bytes of the elements in the data.
 | |
| uint64_t ConstantDataSequential::getElementByteSize() const {
 | |
|   return getElementType()->getPrimitiveSizeInBits()/8;
 | |
| }
 | |
| 
 | |
| /// getElementPointer - Return the start of the specified element.
 | |
| const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
 | |
|   assert(Elt < getNumElements() && "Invalid Elt");
 | |
|   return DataElements+Elt*getElementByteSize();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isAllZeros - return true if the array is empty or all zeros.
 | |
| static bool isAllZeros(StringRef Arr) {
 | |
|   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
 | |
|     if (*I != 0)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getImpl - This is the underlying implementation of all of the
 | |
| /// ConstantDataSequential::get methods.  They all thunk down to here, providing
 | |
| /// the correct element type.  We take the bytes in as a StringRef because
 | |
| /// we *want* an underlying "char*" to avoid TBAA type punning violations.
 | |
| Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
 | |
|   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
 | |
|   // If the elements are all zero or there are no elements, return a CAZ, which
 | |
|   // is more dense and canonical.
 | |
|   if (isAllZeros(Elements))
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
| 
 | |
|   // Do a lookup to see if we have already formed one of these.
 | |
|   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
 | |
|     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
 | |
| 
 | |
|   // The bucket can point to a linked list of different CDS's that have the same
 | |
|   // body but different types.  For example, 0,0,0,1 could be a 4 element array
 | |
|   // of i8, or a 1-element array of i32.  They'll both end up in the same
 | |
|   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
 | |
|   ConstantDataSequential **Entry = &Slot.getValue();
 | |
|   for (ConstantDataSequential *Node = *Entry; Node;
 | |
|        Entry = &Node->Next, Node = *Entry)
 | |
|     if (Node->getType() == Ty)
 | |
|       return Node;
 | |
| 
 | |
|   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
 | |
|   // and return it.
 | |
|   if (isa<ArrayType>(Ty))
 | |
|     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
 | |
| 
 | |
|   assert(isa<VectorType>(Ty));
 | |
|   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
 | |
| }
 | |
| 
 | |
| void ConstantDataSequential::destroyConstant() {
 | |
|   // Remove the constant from the StringMap.
 | |
|   StringMap<ConstantDataSequential*> &CDSConstants = 
 | |
|     getType()->getContext().pImpl->CDSConstants;
 | |
| 
 | |
|   StringMap<ConstantDataSequential*>::iterator Slot =
 | |
|     CDSConstants.find(getRawDataValues());
 | |
| 
 | |
|   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
 | |
| 
 | |
|   ConstantDataSequential **Entry = &Slot->getValue();
 | |
| 
 | |
|   // Remove the entry from the hash table.
 | |
|   if (!(*Entry)->Next) {
 | |
|     // If there is only one value in the bucket (common case) it must be this
 | |
|     // entry, and removing the entry should remove the bucket completely.
 | |
|     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
 | |
|     getContext().pImpl->CDSConstants.erase(Slot);
 | |
|   } else {
 | |
|     // Otherwise, there are multiple entries linked off the bucket, unlink the 
 | |
|     // node we care about but keep the bucket around.
 | |
|     for (ConstantDataSequential *Node = *Entry; ;
 | |
|          Entry = &Node->Next, Node = *Entry) {
 | |
|       assert(Node && "Didn't find entry in its uniquing hash table!");
 | |
|       // If we found our entry, unlink it from the list and we're done.
 | |
|       if (Node == this) {
 | |
|         *Entry = Node->Next;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we were part of a list, make sure that we don't delete the list that is
 | |
|   // still owned by the uniquing map.
 | |
|   Next = nullptr;
 | |
| 
 | |
|   // Finally, actually delete it.
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// get() constructors - Return a constant with array type with an element
 | |
| /// count and element type matching the ArrayRef passed in.  Note that this
 | |
| /// can return a ConstantAggregateZero object.
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
 | |
|   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
 | |
| }
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
 | |
|   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
 | |
| }
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
 | |
|   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
 | |
| }
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
 | |
|   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
 | |
| }
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
 | |
|   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
 | |
| }
 | |
| Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
 | |
|   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
 | |
| }
 | |
| 
 | |
| /// getString - This method constructs a CDS and initializes it with a text
 | |
| /// string. The default behavior (AddNull==true) causes a null terminator to
 | |
| /// be placed at the end of the array (increasing the length of the string by
 | |
| /// one more than the StringRef would normally indicate.  Pass AddNull=false
 | |
| /// to disable this behavior.
 | |
| Constant *ConstantDataArray::getString(LLVMContext &Context,
 | |
|                                        StringRef Str, bool AddNull) {
 | |
|   if (!AddNull) {
 | |
|     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
 | |
|     return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
 | |
|                Str.size()));
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint8_t, 64> ElementVals;
 | |
|   ElementVals.append(Str.begin(), Str.end());
 | |
|   ElementVals.push_back(0);
 | |
|   return get(Context, ElementVals);
 | |
| }
 | |
| 
 | |
| /// get() constructors - Return a constant with vector type with an element
 | |
| /// count and element type matching the ArrayRef passed in.  Note that this
 | |
| /// can return a ConstantAggregateZero object.
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
 | |
|   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
 | |
| }
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
 | |
|   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
 | |
| }
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
 | |
|   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
 | |
| }
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
 | |
|   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
 | |
| }
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
 | |
|   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
 | |
| }
 | |
| Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
 | |
|   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
 | |
|   const char *Data = reinterpret_cast<const char *>(Elts.data());
 | |
|   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
 | |
|   assert(isElementTypeCompatible(V->getType()) &&
 | |
|          "Element type not compatible with ConstantData");
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (CI->getType()->isIntegerTy(8)) {
 | |
|       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
 | |
|       return get(V->getContext(), Elts);
 | |
|     }
 | |
|     if (CI->getType()->isIntegerTy(16)) {
 | |
|       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
 | |
|       return get(V->getContext(), Elts);
 | |
|     }
 | |
|     if (CI->getType()->isIntegerTy(32)) {
 | |
|       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
 | |
|       return get(V->getContext(), Elts);
 | |
|     }
 | |
|     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
 | |
|     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
 | |
|     return get(V->getContext(), Elts);
 | |
|   }
 | |
| 
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CFP->getType()->isFloatTy()) {
 | |
|       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
 | |
|       return get(V->getContext(), Elts);
 | |
|     }
 | |
|     if (CFP->getType()->isDoubleTy()) {
 | |
|       SmallVector<double, 16> Elts(NumElts,
 | |
|                                    CFP->getValueAPF().convertToDouble());
 | |
|       return get(V->getContext(), Elts);
 | |
|     }
 | |
|   }
 | |
|   return ConstantVector::getSplat(NumElts, V);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getElementAsInteger - If this is a sequential container of integers (of
 | |
| /// any size), return the specified element in the low bits of a uint64_t.
 | |
| uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
 | |
|   assert(isa<IntegerType>(getElementType()) &&
 | |
|          "Accessor can only be used when element is an integer");
 | |
|   const char *EltPtr = getElementPointer(Elt);
 | |
| 
 | |
|   // The data is stored in host byte order, make sure to cast back to the right
 | |
|   // type to load with the right endianness.
 | |
|   switch (getElementType()->getIntegerBitWidth()) {
 | |
|   default: llvm_unreachable("Invalid bitwidth for CDS");
 | |
|   case 8:
 | |
|     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
 | |
|   case 16:
 | |
|     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
 | |
|   case 32:
 | |
|     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
 | |
|   case 64:
 | |
|     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getElementAsAPFloat - If this is a sequential container of floating point
 | |
| /// type, return the specified element as an APFloat.
 | |
| APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
 | |
|   const char *EltPtr = getElementPointer(Elt);
 | |
| 
 | |
|   switch (getElementType()->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Accessor can only be used when element is float/double!");
 | |
|   case Type::FloatTyID: {
 | |
|       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
 | |
|       return APFloat(*const_cast<float *>(FloatPrt));
 | |
|     }
 | |
|   case Type::DoubleTyID: {
 | |
|       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
 | |
|       return APFloat(*const_cast<double *>(DoublePtr));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getElementAsFloat - If this is an sequential container of floats, return
 | |
| /// the specified element as a float.
 | |
| float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
 | |
|   assert(getElementType()->isFloatTy() &&
 | |
|          "Accessor can only be used when element is a 'float'");
 | |
|   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
 | |
|   return *const_cast<float *>(EltPtr);
 | |
| }
 | |
| 
 | |
| /// getElementAsDouble - If this is an sequential container of doubles, return
 | |
| /// the specified element as a float.
 | |
| double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
 | |
|   assert(getElementType()->isDoubleTy() &&
 | |
|          "Accessor can only be used when element is a 'float'");
 | |
|   const double *EltPtr =
 | |
|       reinterpret_cast<const double *>(getElementPointer(Elt));
 | |
|   return *const_cast<double *>(EltPtr);
 | |
| }
 | |
| 
 | |
| /// getElementAsConstant - Return a Constant for a specified index's element.
 | |
| /// Note that this has to compute a new constant to return, so it isn't as
 | |
| /// efficient as getElementAsInteger/Float/Double.
 | |
| Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
 | |
|   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
 | |
|     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
 | |
| 
 | |
|   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
 | |
| }
 | |
| 
 | |
| /// isString - This method returns true if this is an array of i8.
 | |
| bool ConstantDataSequential::isString() const {
 | |
|   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
 | |
| }
 | |
| 
 | |
| /// isCString - This method returns true if the array "isString", ends with a
 | |
| /// nul byte, and does not contains any other nul bytes.
 | |
| bool ConstantDataSequential::isCString() const {
 | |
|   if (!isString())
 | |
|     return false;
 | |
| 
 | |
|   StringRef Str = getAsString();
 | |
| 
 | |
|   // The last value must be nul.
 | |
|   if (Str.back() != 0) return false;
 | |
| 
 | |
|   // Other elements must be non-nul.
 | |
|   return Str.drop_back().find(0) == StringRef::npos;
 | |
| }
 | |
| 
 | |
| /// getSplatValue - If this is a splat constant, meaning that all of the
 | |
| /// elements have the same value, return that value. Otherwise return NULL.
 | |
| Constant *ConstantDataVector::getSplatValue() const {
 | |
|   const char *Base = getRawDataValues().data();
 | |
| 
 | |
|   // Compare elements 1+ to the 0'th element.
 | |
|   unsigned EltSize = getElementByteSize();
 | |
|   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
 | |
|     if (memcmp(Base, Base+i*EltSize, EltSize))
 | |
|       return nullptr;
 | |
| 
 | |
|   // If they're all the same, return the 0th one as a representative.
 | |
|   return getElementAsConstant(0);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                replaceUsesOfWithOnConstant implementations
 | |
| 
 | |
| /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
 | |
| /// 'From' to be uses of 'To'.  This must update the uniquing data structures
 | |
| /// etc.
 | |
| ///
 | |
| /// Note that we intentionally replace all uses of From with To here.  Consider
 | |
| /// a large array that uses 'From' 1000 times.  By handling this case all here,
 | |
| /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
 | |
| /// single invocation handles all 1000 uses.  Handling them one at a time would
 | |
| /// work, but would be really slow because it would have to unique each updated
 | |
| /// array instance.
 | |
| ///
 | |
| void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
 | |
|   // I do need to replace this with an existing value.
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
| 
 | |
|   // Everyone using this now uses the replacement.
 | |
|   replaceAllUsesWith(Replacement);
 | |
| 
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                 Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   SmallVector<Constant*, 8> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array.
 | |
| 
 | |
|   // Fill values with the modified operands of the constant array.  Also,
 | |
|   // compute whether this turns into an all-zeros array.
 | |
|   unsigned NumUpdated = 0;
 | |
| 
 | |
|   // Keep track of whether all the values in the array are "ToC".
 | |
|   bool AllSame = true;
 | |
|   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|     Constant *Val = cast<Constant>(O->get());
 | |
|     if (Val == From) {
 | |
|       Val = ToC;
 | |
|       ++NumUpdated;
 | |
|     }
 | |
|     Values.push_back(Val);
 | |
|     AllSame &= Val == ToC;
 | |
|   }
 | |
| 
 | |
|   if (AllSame && ToC->isNullValue()) {
 | |
|     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
 | |
|     return;
 | |
|   }
 | |
|   if (AllSame && isa<UndefValue>(ToC)) {
 | |
|     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check for any other type of constant-folding.
 | |
|   if (Constant *C = getImpl(getType(), Values)) {
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update to the new value.
 | |
|   if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
 | |
|           Values, this, From, ToC, NumUpdated, U - OperandList))
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
| }
 | |
| 
 | |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   unsigned OperandToUpdate = U-OperandList;
 | |
|   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | |
| 
 | |
|   SmallVector<Constant*, 8> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement struct.
 | |
| 
 | |
|   // Fill values with the modified operands of the constant struct.  Also,
 | |
|   // compute whether this turns into an all-zeros struct.
 | |
|   bool isAllZeros = false;
 | |
|   bool isAllUndef = false;
 | |
|   if (ToC->isNullValue()) {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   } else if (isa<UndefValue>(ToC)) {
 | |
|     isAllUndef = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
 | |
|     }
 | |
|   } else {
 | |
|     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
 | |
|       Values.push_back(cast<Constant>(O->get()));
 | |
|   }
 | |
|   Values[OperandToUpdate] = ToC;
 | |
| 
 | |
|   if (isAllZeros) {
 | |
|     replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
 | |
|     return;
 | |
|   }
 | |
|   if (isAllUndef) {
 | |
|     replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update to the new value.
 | |
|   if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
 | |
|           Values, this, From, ToC))
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
| }
 | |
| 
 | |
| void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   SmallVector<Constant*, 8> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array...
 | |
|   unsigned NumUpdated = 0;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     Constant *Val = getOperand(i);
 | |
|     if (Val == From) {
 | |
|       ++NumUpdated;
 | |
|       Val = ToC;
 | |
|     }
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   if (Constant *C = getImpl(Values)) {
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update to the new value.
 | |
|   if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
 | |
|           Values, this, From, ToC, NumUpdated, U - OperandList))
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
| }
 | |
| 
 | |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | |
|                                                Use *U) {
 | |
|   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *To = cast<Constant>(ToV);
 | |
| 
 | |
|   SmallVector<Constant*, 8> NewOps;
 | |
|   unsigned NumUpdated = 0;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     Constant *Op = getOperand(i);
 | |
|     if (Op == From) {
 | |
|       ++NumUpdated;
 | |
|       Op = To;
 | |
|     }
 | |
|     NewOps.push_back(Op);
 | |
|   }
 | |
|   assert(NumUpdated && "I didn't contain From!");
 | |
| 
 | |
|   if (Constant *C = getWithOperands(NewOps, getType(), true)) {
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update to the new value.
 | |
|   if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
 | |
|           NewOps, this, From, To, NumUpdated, U - OperandList))
 | |
|     replaceUsesOfWithOnConstantImpl(C);
 | |
| }
 | |
| 
 | |
| Instruction *ConstantExpr::getAsInstruction() {
 | |
|   SmallVector<Value*,4> ValueOperands;
 | |
|   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
 | |
|     ValueOperands.push_back(cast<Value>(I));
 | |
| 
 | |
|   ArrayRef<Value*> Ops(ValueOperands);
 | |
| 
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|     return CastInst::Create((Instruction::CastOps)getOpcode(),
 | |
|                             Ops[0], getType());
 | |
|   case Instruction::Select:
 | |
|     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::InsertElement:
 | |
|     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ExtractElementInst::Create(Ops[0], Ops[1]);
 | |
|   case Instruction::InsertValue:
 | |
|     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
 | |
|   case Instruction::ExtractValue:
 | |
|     return ExtractValueInst::Create(Ops[0], getIndices());
 | |
|   case Instruction::ShuffleVector:
 | |
|     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     if (cast<GEPOperator>(this)->isInBounds())
 | |
|       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
 | |
|     else
 | |
|       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
 | |
| 
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
 | |
|                            getPredicate(), Ops[0], Ops[1]);
 | |
| 
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     BinaryOperator *BO =
 | |
|       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
 | |
|                              Ops[0], Ops[1]);
 | |
|     if (isa<OverflowingBinaryOperator>(BO)) {
 | |
|       BO->setHasNoUnsignedWrap(SubclassOptionalData &
 | |
|                                OverflowingBinaryOperator::NoUnsignedWrap);
 | |
|       BO->setHasNoSignedWrap(SubclassOptionalData &
 | |
|                              OverflowingBinaryOperator::NoSignedWrap);
 | |
|     }
 | |
|     if (isa<PossiblyExactOperator>(BO))
 | |
|       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
 | |
|     return BO;
 | |
|   }
 | |
| }
 |