mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This does not require -ffast-math, and it gives CSE/GVN more options to eliminate duplicate expressions in, e.g.: return ((x + 0.1234 * y) * (x - 0.1234 * y)); Differential Revision: http://reviews.llvm.org/D4904 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216169 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2204 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2204 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass reassociates commutative expressions in an order that is designed
 | |
| // to promote better constant propagation, GCSE, LICM, PRE, etc.
 | |
| //
 | |
| // For example: 4 + (x + 5) -> x + (4 + 5)
 | |
| //
 | |
| // In the implementation of this algorithm, constants are assigned rank = 0,
 | |
| // function arguments are rank = 1, and other values are assigned ranks
 | |
| // corresponding to the reverse post order traversal of current function
 | |
| // (starting at 2), which effectively gives values in deep loops higher rank
 | |
| // than values not in loops.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "reassociate"
 | |
| 
 | |
| STATISTIC(NumChanged, "Number of insts reassociated");
 | |
| STATISTIC(NumAnnihil, "Number of expr tree annihilated");
 | |
| STATISTIC(NumFactor , "Number of multiplies factored");
 | |
| 
 | |
| namespace {
 | |
|   struct ValueEntry {
 | |
|     unsigned Rank;
 | |
|     Value *Op;
 | |
|     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
 | |
|   };
 | |
|   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
 | |
|     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// PrintOps - Print out the expression identified in the Ops list.
 | |
| ///
 | |
| static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   Module *M = I->getParent()->getParent()->getParent();
 | |
|   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
 | |
|        << *Ops[0].Op->getType() << '\t';
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     dbgs() << "[ ";
 | |
|     Ops[i].Op->printAsOperand(dbgs(), false, M);
 | |
|     dbgs() << ", #" << Ops[i].Rank << "] ";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
|   /// \brief Utility class representing a base and exponent pair which form one
 | |
|   /// factor of some product.
 | |
|   struct Factor {
 | |
|     Value *Base;
 | |
|     unsigned Power;
 | |
| 
 | |
|     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
 | |
| 
 | |
|     /// \brief Sort factors by their Base.
 | |
|     struct BaseSorter {
 | |
|       bool operator()(const Factor &LHS, const Factor &RHS) {
 | |
|         return LHS.Base < RHS.Base;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// \brief Compare factors for equal bases.
 | |
|     struct BaseEqual {
 | |
|       bool operator()(const Factor &LHS, const Factor &RHS) {
 | |
|         return LHS.Base == RHS.Base;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// \brief Sort factors in descending order by their power.
 | |
|     struct PowerDescendingSorter {
 | |
|       bool operator()(const Factor &LHS, const Factor &RHS) {
 | |
|         return LHS.Power > RHS.Power;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// \brief Compare factors for equal powers.
 | |
|     struct PowerEqual {
 | |
|       bool operator()(const Factor &LHS, const Factor &RHS) {
 | |
|         return LHS.Power == RHS.Power;
 | |
|       }
 | |
|     };
 | |
|   };
 | |
|   
 | |
|   /// Utility class representing a non-constant Xor-operand. We classify
 | |
|   /// non-constant Xor-Operands into two categories:
 | |
|   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
 | |
|   ///  C2)
 | |
|   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
 | |
|   ///          constant.
 | |
|   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
 | |
|   ///          operand as "E | 0"
 | |
|   class XorOpnd {
 | |
|   public:
 | |
|     XorOpnd(Value *V);
 | |
| 
 | |
|     bool isInvalid() const { return SymbolicPart == nullptr; }
 | |
|     bool isOrExpr() const { return isOr; }
 | |
|     Value *getValue() const { return OrigVal; }
 | |
|     Value *getSymbolicPart() const { return SymbolicPart; }
 | |
|     unsigned getSymbolicRank() const { return SymbolicRank; }
 | |
|     const APInt &getConstPart() const { return ConstPart; }
 | |
| 
 | |
|     void Invalidate() { SymbolicPart = OrigVal = nullptr; }
 | |
|     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
 | |
| 
 | |
|     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
 | |
|     // The purpose is twofold:
 | |
|     // 1) Cluster together the operands sharing the same symbolic-value.
 | |
|     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 
 | |
|     //   could potentially shorten crital path, and expose more loop-invariants.
 | |
|     //   Note that values' rank are basically defined in RPO order (FIXME). 
 | |
|     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 
 | |
|     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
 | |
|     //   "z" in the order of X-Y-Z is better than any other orders.
 | |
|     struct PtrSortFunctor {
 | |
|       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
 | |
|         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
 | |
|       }
 | |
|     };
 | |
|   private:
 | |
|     Value *OrigVal;
 | |
|     Value *SymbolicPart;
 | |
|     APInt ConstPart;
 | |
|     unsigned SymbolicRank;
 | |
|     bool isOr;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class Reassociate : public FunctionPass {
 | |
|     DenseMap<BasicBlock*, unsigned> RankMap;
 | |
|     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
 | |
|     SetVector<AssertingVH<Instruction> > RedoInsts;
 | |
|     bool MadeChange;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     Reassociate() : FunctionPass(ID) {
 | |
|       initializeReassociatePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   private:
 | |
|     void BuildRankMap(Function &F);
 | |
|     unsigned getRank(Value *V);
 | |
|     void ReassociateExpression(BinaryOperator *I);
 | |
|     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
 | |
|     Value *OptimizeExpression(BinaryOperator *I,
 | |
|                               SmallVectorImpl<ValueEntry> &Ops);
 | |
|     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
 | |
|     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
 | |
|     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
 | |
|                         Value *&Res);
 | |
|     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
 | |
|                         APInt &ConstOpnd, Value *&Res);
 | |
|     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
 | |
|                                 SmallVectorImpl<Factor> &Factors);
 | |
|     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 | |
|                                    SmallVectorImpl<Factor> &Factors);
 | |
|     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
 | |
|     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
 | |
|     void EraseInst(Instruction *I);
 | |
|     void optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I,
 | |
|                              int OperandNr);
 | |
|     void OptimizeInst(Instruction *I);
 | |
|   };
 | |
| }
 | |
| 
 | |
| XorOpnd::XorOpnd(Value *V) {
 | |
|   assert(!isa<ConstantInt>(V) && "No ConstantInt");
 | |
|   OrigVal = V;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   SymbolicRank = 0;
 | |
| 
 | |
|   if (I && (I->getOpcode() == Instruction::Or ||
 | |
|             I->getOpcode() == Instruction::And)) {
 | |
|     Value *V0 = I->getOperand(0);
 | |
|     Value *V1 = I->getOperand(1);
 | |
|     if (isa<ConstantInt>(V0))
 | |
|       std::swap(V0, V1);
 | |
| 
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
 | |
|       ConstPart = C->getValue();
 | |
|       SymbolicPart = V0;
 | |
|       isOr = (I->getOpcode() == Instruction::Or);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // view the operand as "V | 0"
 | |
|   SymbolicPart = V;
 | |
|   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
 | |
|   isOr = true;
 | |
| }
 | |
| 
 | |
| char Reassociate::ID = 0;
 | |
| INITIALIZE_PASS(Reassociate, "reassociate",
 | |
|                 "Reassociate expressions", false, false)
 | |
| 
 | |
| // Public interface to the Reassociate pass
 | |
| FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 | |
| 
 | |
| /// isReassociableOp - Return true if V is an instruction of the specified
 | |
| /// opcode and if it only has one use.
 | |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
 | |
|   if (V->hasOneUse() && isa<Instruction>(V) &&
 | |
|       cast<Instruction>(V)->getOpcode() == Opcode)
 | |
|     return cast<BinaryOperator>(V);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
 | |
|                                         unsigned Opcode2) {
 | |
|   if (V->hasOneUse() && isa<Instruction>(V) &&
 | |
|       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
 | |
|        cast<Instruction>(V)->getOpcode() == Opcode2))
 | |
|     return cast<BinaryOperator>(V);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool isUnmovableInstruction(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::LandingPad:
 | |
|   case Instruction::Alloca:
 | |
|   case Instruction::Load:
 | |
|   case Instruction::Invoke:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|     return true;
 | |
|   case Instruction::Call:
 | |
|     return !isa<DbgInfoIntrinsic>(I);
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Reassociate::BuildRankMap(Function &F) {
 | |
|   unsigned i = 2;
 | |
| 
 | |
|   // Assign distinct ranks to function arguments
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
 | |
|     ValueRankMap[&*I] = ++i;
 | |
| 
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|          E = RPOT.end(); I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     unsigned BBRank = RankMap[BB] = ++i << 16;
 | |
| 
 | |
|     // Walk the basic block, adding precomputed ranks for any instructions that
 | |
|     // we cannot move.  This ensures that the ranks for these instructions are
 | |
|     // all different in the block.
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (isUnmovableInstruction(I))
 | |
|         ValueRankMap[&*I] = ++BBRank;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned Reassociate::getRank(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
 | |
|     return 0;  // Otherwise it's a global or constant, rank 0.
 | |
|   }
 | |
| 
 | |
|   if (unsigned Rank = ValueRankMap[I])
 | |
|     return Rank;    // Rank already known?
 | |
| 
 | |
|   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | |
|   // we can reassociate expressions for code motion!  Since we do not recurse
 | |
|   // for PHI nodes, we cannot have infinite recursion here, because there
 | |
|   // cannot be loops in the value graph that do not go through PHI nodes.
 | |
|   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | |
|   for (unsigned i = 0, e = I->getNumOperands();
 | |
|        i != e && Rank != MaxRank; ++i)
 | |
|     Rank = std::max(Rank, getRank(I->getOperand(i)));
 | |
| 
 | |
|   // If this is a not or neg instruction, do not count it for rank.  This
 | |
|   // assures us that X and ~X will have the same rank.
 | |
|   Type *Ty = V->getType();
 | |
|   if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
 | |
|       (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
 | |
|        !BinaryOperator::isFNeg(I)))
 | |
|     ++Rank;
 | |
| 
 | |
|   //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
 | |
|   //     << Rank << "\n");
 | |
| 
 | |
|   return ValueRankMap[I] = Rank;
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntegerTy())
 | |
|     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res =
 | |
|         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntegerTy())
 | |
|     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res =
 | |
|       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntegerTy())
 | |
|     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerNegateToMultiply - Replace 0-X with X*-1.
 | |
| ///
 | |
| static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
 | |
|   Type *Ty = Neg->getType();
 | |
|   Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
 | |
|                                        : ConstantFP::get(Ty, -1.0);
 | |
| 
 | |
|   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
 | |
|   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
 | |
|   Res->takeName(Neg);
 | |
|   Neg->replaceAllUsesWith(Res);
 | |
|   Res->setDebugLoc(Neg->getDebugLoc());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
 | |
| /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
 | |
| /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
 | |
| /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
 | |
| /// even x in Bitwidth-bit arithmetic.
 | |
| static unsigned CarmichaelShift(unsigned Bitwidth) {
 | |
|   if (Bitwidth < 3)
 | |
|     return Bitwidth - 1;
 | |
|   return Bitwidth - 2;
 | |
| }
 | |
| 
 | |
| /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
 | |
| /// reducing the combined weight using any special properties of the operation.
 | |
| /// The existing weight LHS represents the computation X op X op ... op X where
 | |
| /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
 | |
| /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
 | |
| /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
 | |
| /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
 | |
| static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
 | |
|   // If we were working with infinite precision arithmetic then the combined
 | |
|   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
 | |
|   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
 | |
|   // for nilpotent operations and addition, but not for idempotent operations
 | |
|   // and multiplication), so it is important to correctly reduce the combined
 | |
|   // weight back into range if wrapping would be wrong.
 | |
| 
 | |
|   // If RHS is zero then the weight didn't change.
 | |
|   if (RHS.isMinValue())
 | |
|     return;
 | |
|   // If LHS is zero then the combined weight is RHS.
 | |
|   if (LHS.isMinValue()) {
 | |
|     LHS = RHS;
 | |
|     return;
 | |
|   }
 | |
|   // From this point on we know that neither LHS nor RHS is zero.
 | |
| 
 | |
|   if (Instruction::isIdempotent(Opcode)) {
 | |
|     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
 | |
|     // weight of 1.  Keeping weights at zero or one also means that wrapping is
 | |
|     // not a problem.
 | |
|     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | |
|     return; // Return a weight of 1.
 | |
|   }
 | |
|   if (Instruction::isNilpotent(Opcode)) {
 | |
|     // Nilpotent means X op X === 0, so reduce weights modulo 2.
 | |
|     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | |
|     LHS = 0; // 1 + 1 === 0 modulo 2.
 | |
|     return;
 | |
|   }
 | |
|   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
 | |
|     // TODO: Reduce the weight by exploiting nsw/nuw?
 | |
|     LHS += RHS;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
 | |
|          "Unknown associative operation!");
 | |
|   unsigned Bitwidth = LHS.getBitWidth();
 | |
|   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
 | |
|   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
 | |
|   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
 | |
|   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
 | |
|   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
 | |
|   // which by a happy accident means that they can always be represented using
 | |
|   // Bitwidth bits.
 | |
|   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
 | |
|   // the Carmichael number).
 | |
|   if (Bitwidth > 3) {
 | |
|     /// CM - The value of Carmichael's lambda function.
 | |
|     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
 | |
|     // Any weight W >= Threshold can be replaced with W - CM.
 | |
|     APInt Threshold = CM + Bitwidth;
 | |
|     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
 | |
|     // For Bitwidth 4 or more the following sum does not overflow.
 | |
|     LHS += RHS;
 | |
|     while (LHS.uge(Threshold))
 | |
|       LHS -= CM;
 | |
|   } else {
 | |
|     // To avoid problems with overflow do everything the same as above but using
 | |
|     // a larger type.
 | |
|     unsigned CM = 1U << CarmichaelShift(Bitwidth);
 | |
|     unsigned Threshold = CM + Bitwidth;
 | |
|     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
 | |
|            "Weights not reduced!");
 | |
|     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
 | |
|     while (Total >= Threshold)
 | |
|       Total -= CM;
 | |
|     LHS = Total;
 | |
|   }
 | |
| }
 | |
| 
 | |
| typedef std::pair<Value*, APInt> RepeatedValue;
 | |
| 
 | |
| /// LinearizeExprTree - Given an associative binary expression, return the leaf
 | |
| /// nodes in Ops along with their weights (how many times the leaf occurs).  The
 | |
| /// original expression is the same as
 | |
| ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
 | |
| /// op
 | |
| ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
 | |
| /// op
 | |
| ///   ...
 | |
| /// op
 | |
| ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
 | |
| ///
 | |
| /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
 | |
| ///
 | |
| /// This routine may modify the function, in which case it returns 'true'.  The
 | |
| /// changes it makes may well be destructive, changing the value computed by 'I'
 | |
| /// to something completely different.  Thus if the routine returns 'true' then
 | |
| /// you MUST either replace I with a new expression computed from the Ops array,
 | |
| /// or use RewriteExprTree to put the values back in.
 | |
| ///
 | |
| /// A leaf node is either not a binary operation of the same kind as the root
 | |
| /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
 | |
| /// opcode), or is the same kind of binary operator but has a use which either
 | |
| /// does not belong to the expression, or does belong to the expression but is
 | |
| /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
 | |
| /// of the expression, while for non-leaf nodes (except for the root 'I') every
 | |
| /// use is a non-leaf node of the expression.
 | |
| ///
 | |
| /// For example:
 | |
| ///           expression graph        node names
 | |
| ///
 | |
| ///                     +        |        I
 | |
| ///                    / \       |
 | |
| ///                   +   +      |      A,  B
 | |
| ///                  / \ / \     |
 | |
| ///                 *   +   *    |    C,  D,  E
 | |
| ///                / \ / \ / \   |
 | |
| ///                   +   *      |      F,  G
 | |
| ///
 | |
| /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
 | |
| /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
 | |
| ///
 | |
| /// The expression is maximal: if some instruction is a binary operator of the
 | |
| /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
 | |
| /// then the instruction also belongs to the expression, is not a leaf node of
 | |
| /// it, and its operands also belong to the expression (but may be leaf nodes).
 | |
| ///
 | |
| /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
 | |
| /// order to ensure that every non-root node in the expression has *exactly one*
 | |
| /// use by a non-leaf node of the expression.  This destruction means that the
 | |
| /// caller MUST either replace 'I' with a new expression or use something like
 | |
| /// RewriteExprTree to put the values back in if the routine indicates that it
 | |
| /// made a change by returning 'true'.
 | |
| ///
 | |
| /// In the above example either the right operand of A or the left operand of B
 | |
| /// will be replaced by undef.  If it is B's operand then this gives:
 | |
| ///
 | |
| ///                     +        |        I
 | |
| ///                    / \       |
 | |
| ///                   +   +      |      A,  B - operand of B replaced with undef
 | |
| ///                  / \   \     |
 | |
| ///                 *   +   *    |    C,  D,  E
 | |
| ///                / \ / \ / \   |
 | |
| ///                   +   *      |      F,  G
 | |
| ///
 | |
| /// Note that such undef operands can only be reached by passing through 'I'.
 | |
| /// For example, if you visit operands recursively starting from a leaf node
 | |
| /// then you will never see such an undef operand unless you get back to 'I',
 | |
| /// which requires passing through a phi node.
 | |
| ///
 | |
| /// Note that this routine may also mutate binary operators of the wrong type
 | |
| /// that have all uses inside the expression (i.e. only used by non-leaf nodes
 | |
| /// of the expression) if it can turn them into binary operators of the right
 | |
| /// type and thus make the expression bigger.
 | |
| 
 | |
| static bool LinearizeExprTree(BinaryOperator *I,
 | |
|                               SmallVectorImpl<RepeatedValue> &Ops) {
 | |
|   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
 | |
|   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   assert(I->isAssociative() && I->isCommutative() &&
 | |
|          "Expected an associative and commutative operation!");
 | |
| 
 | |
|   // Visit all operands of the expression, keeping track of their weight (the
 | |
|   // number of paths from the expression root to the operand, or if you like
 | |
|   // the number of times that operand occurs in the linearized expression).
 | |
|   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
 | |
|   // while A has weight two.
 | |
| 
 | |
|   // Worklist of non-leaf nodes (their operands are in the expression too) along
 | |
|   // with their weights, representing a certain number of paths to the operator.
 | |
|   // If an operator occurs in the worklist multiple times then we found multiple
 | |
|   // ways to get to it.
 | |
|   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
 | |
|   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Leaves of the expression are values that either aren't the right kind of
 | |
|   // operation (eg: a constant, or a multiply in an add tree), or are, but have
 | |
|   // some uses that are not inside the expression.  For example, in I = X + X,
 | |
|   // X = A + B, the value X has two uses (by I) that are in the expression.  If
 | |
|   // X has any other uses, for example in a return instruction, then we consider
 | |
|   // X to be a leaf, and won't analyze it further.  When we first visit a value,
 | |
|   // if it has more than one use then at first we conservatively consider it to
 | |
|   // be a leaf.  Later, as the expression is explored, we may discover some more
 | |
|   // uses of the value from inside the expression.  If all uses turn out to be
 | |
|   // from within the expression (and the value is a binary operator of the right
 | |
|   // kind) then the value is no longer considered to be a leaf, and its operands
 | |
|   // are explored.
 | |
| 
 | |
|   // Leaves - Keeps track of the set of putative leaves as well as the number of
 | |
|   // paths to each leaf seen so far.
 | |
|   typedef DenseMap<Value*, APInt> LeafMap;
 | |
|   LeafMap Leaves; // Leaf -> Total weight so far.
 | |
|   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
 | |
| #endif
 | |
|   while (!Worklist.empty()) {
 | |
|     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
 | |
|     I = P.first; // We examine the operands of this binary operator.
 | |
| 
 | |
|     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
 | |
|       Value *Op = I->getOperand(OpIdx);
 | |
|       APInt Weight = P.second; // Number of paths to this operand.
 | |
|       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
 | |
|       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
 | |
| 
 | |
|       // If this is a binary operation of the right kind with only one use then
 | |
|       // add its operands to the expression.
 | |
|       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | |
|         assert(Visited.insert(Op) && "Not first visit!");
 | |
|         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
 | |
|         Worklist.push_back(std::make_pair(BO, Weight));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Appears to be a leaf.  Is the operand already in the set of leaves?
 | |
|       LeafMap::iterator It = Leaves.find(Op);
 | |
|       if (It == Leaves.end()) {
 | |
|         // Not in the leaf map.  Must be the first time we saw this operand.
 | |
|         assert(Visited.insert(Op) && "Not first visit!");
 | |
|         if (!Op->hasOneUse()) {
 | |
|           // This value has uses not accounted for by the expression, so it is
 | |
|           // not safe to modify.  Mark it as being a leaf.
 | |
|           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
 | |
|           LeafOrder.push_back(Op);
 | |
|           Leaves[Op] = Weight;
 | |
|           continue;
 | |
|         }
 | |
|         // No uses outside the expression, try morphing it.
 | |
|       } else if (It != Leaves.end()) {
 | |
|         // Already in the leaf map.
 | |
|         assert(Visited.count(Op) && "In leaf map but not visited!");
 | |
| 
 | |
|         // Update the number of paths to the leaf.
 | |
|         IncorporateWeight(It->second, Weight, Opcode);
 | |
| 
 | |
| #if 0   // TODO: Re-enable once PR13021 is fixed.
 | |
|         // The leaf already has one use from inside the expression.  As we want
 | |
|         // exactly one such use, drop this new use of the leaf.
 | |
|         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
 | |
|         I->setOperand(OpIdx, UndefValue::get(I->getType()));
 | |
|         MadeChange = true;
 | |
| 
 | |
|         // If the leaf is a binary operation of the right kind and we now see
 | |
|         // that its multiple original uses were in fact all by nodes belonging
 | |
|         // to the expression, then no longer consider it to be a leaf and add
 | |
|         // its operands to the expression.
 | |
|         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | |
|           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
 | |
|           Worklist.push_back(std::make_pair(BO, It->second));
 | |
|           Leaves.erase(It);
 | |
|           continue;
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         // If we still have uses that are not accounted for by the expression
 | |
|         // then it is not safe to modify the value.
 | |
|         if (!Op->hasOneUse())
 | |
|           continue;
 | |
| 
 | |
|         // No uses outside the expression, try morphing it.
 | |
|         Weight = It->second;
 | |
|         Leaves.erase(It); // Since the value may be morphed below.
 | |
|       }
 | |
| 
 | |
|       // At this point we have a value which, first of all, is not a binary
 | |
|       // expression of the right kind, and secondly, is only used inside the
 | |
|       // expression.  This means that it can safely be modified.  See if we
 | |
|       // can usefully morph it into an expression of the right kind.
 | |
|       assert((!isa<Instruction>(Op) ||
 | |
|               cast<Instruction>(Op)->getOpcode() != Opcode) &&
 | |
|              "Should have been handled above!");
 | |
|       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
 | |
| 
 | |
|       // If this is a multiply expression, turn any internal negations into
 | |
|       // multiplies by -1 so they can be reassociated.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
 | |
|         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
 | |
|             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
 | |
|           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
 | |
|           BO = LowerNegateToMultiply(BO);
 | |
|           DEBUG(dbgs() << *BO << '\n');
 | |
|           Worklist.push_back(std::make_pair(BO, Weight));
 | |
|           MadeChange = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       // Failed to morph into an expression of the right type.  This really is
 | |
|       // a leaf.
 | |
|       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
 | |
|       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
 | |
|       LeafOrder.push_back(Op);
 | |
|       Leaves[Op] = Weight;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The leaves, repeated according to their weights, represent the linearized
 | |
|   // form of the expression.
 | |
|   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
 | |
|     Value *V = LeafOrder[i];
 | |
|     LeafMap::iterator It = Leaves.find(V);
 | |
|     if (It == Leaves.end())
 | |
|       // Node initially thought to be a leaf wasn't.
 | |
|       continue;
 | |
|     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
 | |
|     APInt Weight = It->second;
 | |
|     if (Weight.isMinValue())
 | |
|       // Leaf already output or weight reduction eliminated it.
 | |
|       continue;
 | |
|     // Ensure the leaf is only output once.
 | |
|     It->second = 0;
 | |
|     Ops.push_back(std::make_pair(V, Weight));
 | |
|   }
 | |
| 
 | |
|   // For nilpotent operations or addition there may be no operands, for example
 | |
|   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
 | |
|   // in both cases the weight reduces to 0 causing the value to be skipped.
 | |
|   if (Ops.empty()) {
 | |
|     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
 | |
|     assert(Identity && "Associative operation without identity!");
 | |
|     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // RewriteExprTree - Now that the operands for this expression tree are
 | |
| // linearized and optimized, emit them in-order.
 | |
| void Reassociate::RewriteExprTree(BinaryOperator *I,
 | |
|                                   SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   assert(Ops.size() > 1 && "Single values should be used directly!");
 | |
| 
 | |
|   // Since our optimizations should never increase the number of operations, the
 | |
|   // new expression can usually be written reusing the existing binary operators
 | |
|   // from the original expression tree, without creating any new instructions,
 | |
|   // though the rewritten expression may have a completely different topology.
 | |
|   // We take care to not change anything if the new expression will be the same
 | |
|   // as the original.  If more than trivial changes (like commuting operands)
 | |
|   // were made then we are obliged to clear out any optional subclass data like
 | |
|   // nsw flags.
 | |
| 
 | |
|   /// NodesToRewrite - Nodes from the original expression available for writing
 | |
|   /// the new expression into.
 | |
|   SmallVector<BinaryOperator*, 8> NodesToRewrite;
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   BinaryOperator *Op = I;
 | |
| 
 | |
|   /// NotRewritable - The operands being written will be the leaves of the new
 | |
|   /// expression and must not be used as inner nodes (via NodesToRewrite) by
 | |
|   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
 | |
|   /// (if they were they would have been incorporated into the expression and so
 | |
|   /// would not be leaves), so most of the time there is no danger of this.  But
 | |
|   /// in rare cases a leaf may become reassociable if an optimization kills uses
 | |
|   /// of it, or it may momentarily become reassociable during rewriting (below)
 | |
|   /// due it being removed as an operand of one of its uses.  Ensure that misuse
 | |
|   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
 | |
|   /// leaves and refusing to reuse any of them as inner nodes.
 | |
|   SmallPtrSet<Value*, 8> NotRewritable;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     NotRewritable.insert(Ops[i].Op);
 | |
| 
 | |
|   // ExpressionChanged - Non-null if the rewritten expression differs from the
 | |
|   // original in some non-trivial way, requiring the clearing of optional flags.
 | |
|   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
 | |
|   BinaryOperator *ExpressionChanged = nullptr;
 | |
|   for (unsigned i = 0; ; ++i) {
 | |
|     // The last operation (which comes earliest in the IR) is special as both
 | |
|     // operands will come from Ops, rather than just one with the other being
 | |
|     // a subexpression.
 | |
|     if (i+2 == Ops.size()) {
 | |
|       Value *NewLHS = Ops[i].Op;
 | |
|       Value *NewRHS = Ops[i+1].Op;
 | |
|       Value *OldLHS = Op->getOperand(0);
 | |
|       Value *OldRHS = Op->getOperand(1);
 | |
| 
 | |
|       if (NewLHS == OldLHS && NewRHS == OldRHS)
 | |
|         // Nothing changed, leave it alone.
 | |
|         break;
 | |
| 
 | |
|       if (NewLHS == OldRHS && NewRHS == OldLHS) {
 | |
|         // The order of the operands was reversed.  Swap them.
 | |
|         DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|         Op->swapOperands();
 | |
|         DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|         MadeChange = true;
 | |
|         ++NumChanged;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The new operation differs non-trivially from the original. Overwrite
 | |
|       // the old operands with the new ones.
 | |
|       DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|       if (NewLHS != OldLHS) {
 | |
|         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(0, NewLHS);
 | |
|       }
 | |
|       if (NewRHS != OldRHS) {
 | |
|         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(1, NewRHS);
 | |
|       }
 | |
|       DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
| 
 | |
|       ExpressionChanged = Op;
 | |
|       MadeChange = true;
 | |
|       ++NumChanged;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Not the last operation.  The left-hand side will be a sub-expression
 | |
|     // while the right-hand side will be the current element of Ops.
 | |
|     Value *NewRHS = Ops[i].Op;
 | |
|     if (NewRHS != Op->getOperand(1)) {
 | |
|       DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|       if (NewRHS == Op->getOperand(0)) {
 | |
|         // The new right-hand side was already present as the left operand.  If
 | |
|         // we are lucky then swapping the operands will sort out both of them.
 | |
|         Op->swapOperands();
 | |
|       } else {
 | |
|         // Overwrite with the new right-hand side.
 | |
|         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(1, NewRHS);
 | |
|         ExpressionChanged = Op;
 | |
|       }
 | |
|       DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|       MadeChange = true;
 | |
|       ++NumChanged;
 | |
|     }
 | |
| 
 | |
|     // Now deal with the left-hand side.  If this is already an operation node
 | |
|     // from the original expression then just rewrite the rest of the expression
 | |
|     // into it.
 | |
|     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
 | |
|     if (BO && !NotRewritable.count(BO)) {
 | |
|       Op = BO;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, grab a spare node from the original expression and use that as
 | |
|     // the left-hand side.  If there are no nodes left then the optimizers made
 | |
|     // an expression with more nodes than the original!  This usually means that
 | |
|     // they did something stupid but it might mean that the problem was just too
 | |
|     // hard (finding the mimimal number of multiplications needed to realize a
 | |
|     // multiplication expression is NP-complete).  Whatever the reason, smart or
 | |
|     // stupid, create a new node if there are none left.
 | |
|     BinaryOperator *NewOp;
 | |
|     if (NodesToRewrite.empty()) {
 | |
|       Constant *Undef = UndefValue::get(I->getType());
 | |
|       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
 | |
|                                      Undef, Undef, "", I);
 | |
|       if (NewOp->getType()->isFloatingPointTy())
 | |
|         NewOp->setFastMathFlags(I->getFastMathFlags());
 | |
|     } else {
 | |
|       NewOp = NodesToRewrite.pop_back_val();
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|     Op->setOperand(0, NewOp);
 | |
|     DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|     ExpressionChanged = Op;
 | |
|     MadeChange = true;
 | |
|     ++NumChanged;
 | |
|     Op = NewOp;
 | |
|   }
 | |
| 
 | |
|   // If the expression changed non-trivially then clear out all subclass data
 | |
|   // starting from the operator specified in ExpressionChanged, and compactify
 | |
|   // the operators to just before the expression root to guarantee that the
 | |
|   // expression tree is dominated by all of Ops.
 | |
|   if (ExpressionChanged)
 | |
|     do {
 | |
|       // Preserve FastMathFlags.
 | |
|       if (isa<FPMathOperator>(I)) {
 | |
|         FastMathFlags Flags = I->getFastMathFlags();
 | |
|         ExpressionChanged->clearSubclassOptionalData();
 | |
|         ExpressionChanged->setFastMathFlags(Flags);
 | |
|       } else
 | |
|         ExpressionChanged->clearSubclassOptionalData();
 | |
| 
 | |
|       if (ExpressionChanged == I)
 | |
|         break;
 | |
|       ExpressionChanged->moveBefore(I);
 | |
|       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
 | |
|     } while (1);
 | |
| 
 | |
|   // Throw away any left over nodes from the original expression.
 | |
|   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
 | |
|     RedoInsts.insert(NodesToRewrite[i]);
 | |
| }
 | |
| 
 | |
| /// NegateValue - Insert instructions before the instruction pointed to by BI,
 | |
| /// that computes the negative version of the value specified.  The negative
 | |
| /// version of the value is returned, and BI is left pointing at the instruction
 | |
| /// that should be processed next by the reassociation pass.
 | |
| static Value *NegateValue(Value *V, Instruction *BI) {
 | |
|   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | |
|     return ConstantExpr::getFNeg(C);
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   // We are trying to expose opportunity for reassociation.  One of the things
 | |
|   // that we want to do to achieve this is to push a negation as deep into an
 | |
|   // expression chain as possible, to expose the add instructions.  In practice,
 | |
|   // this means that we turn this:
 | |
|   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | |
|   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | |
|   // the constants.  We assume that instcombine will clean up the mess later if
 | |
|   // we introduce tons of unnecessary negation instructions.
 | |
|   //
 | |
|   if (BinaryOperator *I =
 | |
|           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
 | |
|     // Push the negates through the add.
 | |
|     I->setOperand(0, NegateValue(I->getOperand(0), BI));
 | |
|     I->setOperand(1, NegateValue(I->getOperand(1), BI));
 | |
| 
 | |
|     // We must move the add instruction here, because the neg instructions do
 | |
|     // not dominate the old add instruction in general.  By moving it, we are
 | |
|     // assured that the neg instructions we just inserted dominate the
 | |
|     // instruction we are about to insert after them.
 | |
|     //
 | |
|     I->moveBefore(BI);
 | |
|     I->setName(I->getName()+".neg");
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   // Okay, we need to materialize a negated version of V with an instruction.
 | |
|   // Scan the use lists of V to see if we have one already.
 | |
|   for (User *U : V->users()) {
 | |
|     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
 | |
|       continue;
 | |
| 
 | |
|     // We found one!  Now we have to make sure that the definition dominates
 | |
|     // this use.  We do this by moving it to the entry block (if it is a
 | |
|     // non-instruction value) or right after the definition.  These negates will
 | |
|     // be zapped by reassociate later, so we don't need much finesse here.
 | |
|     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
 | |
| 
 | |
|     // Verify that the negate is in this function, V might be a constant expr.
 | |
|     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock::iterator InsertPt;
 | |
|     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
 | |
|         InsertPt = II->getNormalDest()->begin();
 | |
|       } else {
 | |
|         InsertPt = InstInput;
 | |
|         ++InsertPt;
 | |
|       }
 | |
|       while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|     } else {
 | |
|       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
 | |
|     }
 | |
|     TheNeg->moveBefore(InsertPt);
 | |
|     return TheNeg;
 | |
|   }
 | |
| 
 | |
|   // Insert a 'neg' instruction that subtracts the value from zero to get the
 | |
|   // negation.
 | |
|   return CreateNeg(V, V->getName() + ".neg", BI, BI);
 | |
| }
 | |
| 
 | |
| /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
 | |
| /// X-Y into (X + -Y).
 | |
| static bool ShouldBreakUpSubtract(Instruction *Sub) {
 | |
|   // If this is a negation, we can't split it up!
 | |
|   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
 | |
|     return false;
 | |
| 
 | |
|   // Don't bother to break this up unless either the LHS is an associable add or
 | |
|   // subtract or if this is only used by one.
 | |
|   Value *V0 = Sub->getOperand(0);
 | |
|   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
 | |
|       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
 | |
|     return true;
 | |
|   Value *V1 = Sub->getOperand(1);
 | |
|   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
 | |
|       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
 | |
|     return true;
 | |
|   Value *VB = Sub->user_back();
 | |
|   if (Sub->hasOneUse() &&
 | |
|       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
 | |
|        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
 | |
| /// only used by an add, transform this into (X+(0-Y)) to promote better
 | |
| /// reassociation.
 | |
| static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
 | |
|   // Convert a subtract into an add and a neg instruction. This allows sub
 | |
|   // instructions to be commuted with other add instructions.
 | |
|   //
 | |
|   // Calculate the negative value of Operand 1 of the sub instruction,
 | |
|   // and set it as the RHS of the add instruction we just made.
 | |
|   //
 | |
|   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
 | |
|   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
 | |
|   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | |
|   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | |
|   New->takeName(Sub);
 | |
| 
 | |
|   // Everyone now refers to the add instruction.
 | |
|   Sub->replaceAllUsesWith(New);
 | |
|   New->setDebugLoc(Sub->getDebugLoc());
 | |
| 
 | |
|   DEBUG(dbgs() << "Negated: " << *New << '\n');
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
 | |
| /// by one, change this into a multiply by a constant to assist with further
 | |
| /// reassociation.
 | |
| static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
 | |
|   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
 | |
|   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
 | |
| 
 | |
|   BinaryOperator *Mul =
 | |
|     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
 | |
|   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
 | |
|   Mul->takeName(Shl);
 | |
|   Shl->replaceAllUsesWith(Mul);
 | |
|   Mul->setDebugLoc(Shl->getDebugLoc());
 | |
|   return Mul;
 | |
| }
 | |
| 
 | |
| /// FindInOperandList - Scan backwards and forwards among values with the same
 | |
| /// rank as element i to see if X exists.  If X does not exist, return i.  This
 | |
| /// is useful when scanning for 'x' when we see '-x' because they both get the
 | |
| /// same rank.
 | |
| static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
 | |
|                                   Value *X) {
 | |
|   unsigned XRank = Ops[i].Rank;
 | |
|   unsigned e = Ops.size();
 | |
|   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|   // Scan backwards.
 | |
|   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
 | |
| /// and returning the result.  Insert the tree before I.
 | |
| static Value *EmitAddTreeOfValues(Instruction *I,
 | |
|                                   SmallVectorImpl<WeakVH> &Ops){
 | |
|   if (Ops.size() == 1) return Ops.back();
 | |
| 
 | |
|   Value *V1 = Ops.back();
 | |
|   Ops.pop_back();
 | |
|   Value *V2 = EmitAddTreeOfValues(I, Ops);
 | |
|   return CreateAdd(V2, V1, "tmp", I, I);
 | |
| }
 | |
| 
 | |
| /// RemoveFactorFromExpression - If V is an expression tree that is a
 | |
| /// multiplication sequence, and if this sequence contains a multiply by Factor,
 | |
| /// remove Factor from the tree and return the new tree.
 | |
| Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
 | |
|   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
 | |
|   if (!BO)
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<RepeatedValue, 8> Tree;
 | |
|   MadeChange |= LinearizeExprTree(BO, Tree);
 | |
|   SmallVector<ValueEntry, 8> Factors;
 | |
|   Factors.reserve(Tree.size());
 | |
|   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | |
|     RepeatedValue E = Tree[i];
 | |
|     Factors.append(E.second.getZExtValue(),
 | |
|                    ValueEntry(getRank(E.first), E.first));
 | |
|   }
 | |
| 
 | |
|   bool FoundFactor = false;
 | |
|   bool NeedsNegate = false;
 | |
|   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | |
|     if (Factors[i].Op == Factor) {
 | |
|       FoundFactor = true;
 | |
|       Factors.erase(Factors.begin()+i);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a negative version of this factor, remove it.
 | |
|     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
 | |
|       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
 | |
|         if (FC1->getValue() == -FC2->getValue()) {
 | |
|           FoundFactor = NeedsNegate = true;
 | |
|           Factors.erase(Factors.begin()+i);
 | |
|           break;
 | |
|         }
 | |
|     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
 | |
|       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
 | |
|         APFloat F1(FC1->getValueAPF());
 | |
|         APFloat F2(FC2->getValueAPF());
 | |
|         F2.changeSign();
 | |
|         if (F1.compare(F2) == APFloat::cmpEqual) {
 | |
|           FoundFactor = NeedsNegate = true;
 | |
|           Factors.erase(Factors.begin() + i);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundFactor) {
 | |
|     // Make sure to restore the operands to the expression tree.
 | |
|     RewriteExprTree(BO, Factors);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPt = BO; ++InsertPt;
 | |
| 
 | |
|   // If this was just a single multiply, remove the multiply and return the only
 | |
|   // remaining operand.
 | |
|   if (Factors.size() == 1) {
 | |
|     RedoInsts.insert(BO);
 | |
|     V = Factors[0].Op;
 | |
|   } else {
 | |
|     RewriteExprTree(BO, Factors);
 | |
|     V = BO;
 | |
|   }
 | |
| 
 | |
|   if (NeedsNegate)
 | |
|     V = CreateNeg(V, "neg", InsertPt, BO);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
 | |
| /// add its operands as factors, otherwise add V to the list of factors.
 | |
| ///
 | |
| /// Ops is the top-level list of add operands we're trying to factor.
 | |
| static void FindSingleUseMultiplyFactors(Value *V,
 | |
|                                          SmallVectorImpl<Value*> &Factors,
 | |
|                                        const SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
 | |
|   if (!BO) {
 | |
|     Factors.push_back(V);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, add the LHS and RHS to the list of factors.
 | |
|   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
 | |
|   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
 | |
| }
 | |
| 
 | |
| /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
 | |
| /// instruction.  This optimizes based on identities.  If it can be reduced to
 | |
| /// a single Value, it is returned, otherwise the Ops list is mutated as
 | |
| /// necessary.
 | |
| static Value *OptimizeAndOrXor(unsigned Opcode,
 | |
|                                SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
 | |
|   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     // First, check for X and ~X in the operand list.
 | |
|     assert(i < Ops.size());
 | |
|     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
 | |
|       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
 | |
|       unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|       if (FoundX != i) {
 | |
|         if (Opcode == Instruction::And)   // ...&X&~X = 0
 | |
|           return Constant::getNullValue(X->getType());
 | |
| 
 | |
|         if (Opcode == Instruction::Or)    // ...|X|~X = -1
 | |
|           return Constant::getAllOnesValue(X->getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Next, check for duplicate pairs of values, which we assume are next to
 | |
|     // each other, due to our sorting criteria.
 | |
|     assert(i < Ops.size());
 | |
|     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
 | |
|       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | |
|         // Drop duplicate values for And and Or.
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|         ++NumAnnihil;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Drop pairs of values for Xor.
 | |
|       assert(Opcode == Instruction::Xor);
 | |
|       if (e == 2)
 | |
|         return Constant::getNullValue(Ops[0].Op->getType());
 | |
| 
 | |
|       // Y ^ X^X -> Y
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | |
|       i -= 1; e -= 2;
 | |
|       ++NumAnnihil;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
 | |
| /// instruction with the given two operands, and return the resulting
 | |
| /// instruction. There are two special cases: 1) if the constant operand is 0,
 | |
| /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
 | |
| /// be returned.
 | |
| static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
 | |
|                              const APInt &ConstOpnd) {
 | |
|   if (ConstOpnd != 0) {
 | |
|     if (!ConstOpnd.isAllOnesValue()) {
 | |
|       LLVMContext &Ctx = Opnd->getType()->getContext();
 | |
|       Instruction *I;
 | |
|       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
 | |
|                                     "and.ra", InsertBefore);
 | |
|       I->setDebugLoc(InsertBefore->getDebugLoc());
 | |
|       return I;
 | |
|     }
 | |
|     return Opnd;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
 | |
| // into "R ^ C", where C would be 0, and R is a symbolic value.
 | |
| //
 | |
| // If it was successful, true is returned, and the "R" and "C" is returned
 | |
| // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
 | |
| // and both "Res" and "ConstOpnd" remain unchanged.
 | |
| //  
 | |
| bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
 | |
|                                  APInt &ConstOpnd, Value *&Res) {
 | |
|   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
 | |
|   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
 | |
|   //                       = (x & ~c1) ^ (c1 ^ c2)
 | |
|   // It is useful only when c1 == c2.
 | |
|   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
 | |
|     if (!Opnd1->getValue()->hasOneUse())
 | |
|       return false;
 | |
| 
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     if (C1 != ConstOpnd)
 | |
|       return false;
 | |
| 
 | |
|     Value *X = Opnd1->getSymbolicPart();
 | |
|     Res = createAndInstr(I, X, ~C1);
 | |
|     // ConstOpnd was C2, now C1 ^ C2.
 | |
|     ConstOpnd ^= C1;
 | |
| 
 | |
|     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | |
|       RedoInsts.insert(T);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
|                            
 | |
| // Helper function of OptimizeXor(). It tries to simplify
 | |
| // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
 | |
| // symbolic value. 
 | |
| // 
 | |
| // If it was successful, true is returned, and the "R" and "C" is returned 
 | |
| // via "Res" and "ConstOpnd", respectively (If the entire expression is
 | |
| // evaluated to a constant, the Res is set to NULL); otherwise, false is
 | |
| // returned, and both "Res" and "ConstOpnd" remain unchanged.
 | |
| bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
 | |
|                                  APInt &ConstOpnd, Value *&Res) {
 | |
|   Value *X = Opnd1->getSymbolicPart();
 | |
|   if (X != Opnd2->getSymbolicPart())
 | |
|     return false;
 | |
| 
 | |
|   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
 | |
|   int DeadInstNum = 1;
 | |
|   if (Opnd1->getValue()->hasOneUse())
 | |
|     DeadInstNum++;
 | |
|   if (Opnd2->getValue()->hasOneUse())
 | |
|     DeadInstNum++;
 | |
| 
 | |
|   // Xor-Rule 2:
 | |
|   //  (x | c1) ^ (x & c2)
 | |
|   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
 | |
|   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
 | |
|   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
 | |
|   //
 | |
|   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
 | |
|     if (Opnd2->isOrExpr())
 | |
|       std::swap(Opnd1, Opnd2);
 | |
| 
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3((~C1) ^ C2);
 | |
| 
 | |
|     // Do not increase code size!
 | |
|     if (C3 != 0 && !C3.isAllOnesValue()) {
 | |
|       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
 | |
|       if (NewInstNum > DeadInstNum)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|     ConstOpnd ^= C1;
 | |
| 
 | |
|   } else if (Opnd1->isOrExpr()) {
 | |
|     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
 | |
|     //
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3 = C1 ^ C2;
 | |
|     
 | |
|     // Do not increase code size
 | |
|     if (C3 != 0 && !C3.isAllOnesValue()) {
 | |
|       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
 | |
|       if (NewInstNum > DeadInstNum)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|     ConstOpnd ^= C3;
 | |
|   } else {
 | |
|     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
 | |
|     //
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3 = C1 ^ C2;
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|   }
 | |
| 
 | |
|   // Put the original operands in the Redo list; hope they will be deleted
 | |
|   // as dead code.
 | |
|   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | |
|     RedoInsts.insert(T);
 | |
|   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
 | |
|     RedoInsts.insert(T);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
 | |
| /// to a single Value, it is returned, otherwise the Ops list is mutated as
 | |
| /// necessary.
 | |
| Value *Reassociate::OptimizeXor(Instruction *I,
 | |
|                                 SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
 | |
|     return V;
 | |
|       
 | |
|   if (Ops.size() == 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<XorOpnd, 8> Opnds;
 | |
|   SmallVector<XorOpnd*, 8> OpndPtrs;
 | |
|   Type *Ty = Ops[0].Op->getType();
 | |
|   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
 | |
| 
 | |
|   // Step 1: Convert ValueEntry to XorOpnd
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     Value *V = Ops[i].Op;
 | |
|     if (!isa<ConstantInt>(V)) {
 | |
|       XorOpnd O(V);
 | |
|       O.setSymbolicRank(getRank(O.getSymbolicPart()));
 | |
|       Opnds.push_back(O);
 | |
|     } else
 | |
|       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
 | |
|   }
 | |
| 
 | |
|   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
 | |
|   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
 | |
|   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
 | |
|   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
 | |
|   //  when new elements are added to the vector.
 | |
|   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
 | |
|     OpndPtrs.push_back(&Opnds[i]);
 | |
| 
 | |
|   // Step 2: Sort the Xor-Operands in a way such that the operands containing
 | |
|   //  the same symbolic value cluster together. For instance, the input operand
 | |
|   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
 | |
|   //  ("x | 123", "x & 789", "y & 456").
 | |
|   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
 | |
| 
 | |
|   // Step 3: Combine adjacent operands
 | |
|   XorOpnd *PrevOpnd = nullptr;
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
 | |
|     XorOpnd *CurrOpnd = OpndPtrs[i];
 | |
|     // The combined value
 | |
|     Value *CV;
 | |
| 
 | |
|     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
 | |
|     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
 | |
|       Changed = true;
 | |
|       if (CV)
 | |
|         *CurrOpnd = XorOpnd(CV);
 | |
|       else {
 | |
|         CurrOpnd->Invalidate();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
 | |
|       PrevOpnd = CurrOpnd;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // step 3.2: When previous and current operands share the same symbolic
 | |
|     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
 | |
|     //    
 | |
|     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
 | |
|       // Remove previous operand
 | |
|       PrevOpnd->Invalidate();
 | |
|       if (CV) {
 | |
|         *CurrOpnd = XorOpnd(CV);
 | |
|         PrevOpnd = CurrOpnd;
 | |
|       } else {
 | |
|         CurrOpnd->Invalidate();
 | |
|         PrevOpnd = nullptr;
 | |
|       }
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step 4: Reassemble the Ops
 | |
|   if (Changed) {
 | |
|     Ops.clear();
 | |
|     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
 | |
|       XorOpnd &O = Opnds[i];
 | |
|       if (O.isInvalid())
 | |
|         continue;
 | |
|       ValueEntry VE(getRank(O.getValue()), O.getValue());
 | |
|       Ops.push_back(VE);
 | |
|     }
 | |
|     if (ConstOpnd != 0) {
 | |
|       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
 | |
|       ValueEntry VE(getRank(C), C);
 | |
|       Ops.push_back(VE);
 | |
|     }
 | |
|     int Sz = Ops.size();
 | |
|     if (Sz == 1)
 | |
|       return Ops.back().Op;
 | |
|     else if (Sz == 0) {
 | |
|       assert(ConstOpnd == 0);
 | |
|       return ConstantInt::get(Ty->getContext(), ConstOpnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
 | |
| /// optimizes based on identities.  If it can be reduced to a single Value, it
 | |
| /// is returned, otherwise the Ops list is mutated as necessary.
 | |
| Value *Reassociate::OptimizeAdd(Instruction *I,
 | |
|                                 SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Scan the operand lists looking for X and -X pairs.  If we find any, we
 | |
|   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
 | |
|   // scan for any
 | |
|   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
 | |
| 
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     Value *TheOp = Ops[i].Op;
 | |
|     // Check to see if we've seen this operand before.  If so, we factor all
 | |
|     // instances of the operand together.  Due to our sorting criteria, we know
 | |
|     // that these need to be next to each other in the vector.
 | |
|     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
 | |
|       // Rescan the list, remove all instances of this operand from the expr.
 | |
|       unsigned NumFound = 0;
 | |
|       do {
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         ++NumFound;
 | |
|       } while (i != Ops.size() && Ops[i].Op == TheOp);
 | |
| 
 | |
|       DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
 | |
|       ++NumFactor;
 | |
| 
 | |
|       // Insert a new multiply.
 | |
|       Type *Ty = TheOp->getType();
 | |
|       Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
 | |
|                                       : ConstantFP::get(Ty, NumFound);
 | |
|       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
 | |
| 
 | |
|       // Now that we have inserted a multiply, optimize it. This allows us to
 | |
|       // handle cases that require multiple factoring steps, such as this:
 | |
|       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
 | |
|       RedoInsts.insert(Mul);
 | |
| 
 | |
|       // If every add operand was a duplicate, return the multiply.
 | |
|       if (Ops.empty())
 | |
|         return Mul;
 | |
| 
 | |
|       // Otherwise, we had some input that didn't have the dupe, such as
 | |
|       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
 | |
|       // things being added by this operation.
 | |
|       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
 | |
| 
 | |
|       --i;
 | |
|       e = Ops.size();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for X and -X or X and ~X in the operand list.
 | |
|     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
 | |
|         !BinaryOperator::isNot(TheOp))
 | |
|       continue;
 | |
| 
 | |
|     Value *X = nullptr;
 | |
|     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
 | |
|       X = BinaryOperator::getNegArgument(TheOp);
 | |
|     else if (BinaryOperator::isNot(TheOp))
 | |
|       X = BinaryOperator::getNotArgument(TheOp);
 | |
| 
 | |
|     unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|     if (FoundX == i)
 | |
|       continue;
 | |
| 
 | |
|     // Remove X and -X from the operand list.
 | |
|     if (Ops.size() == 2 &&
 | |
|         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
 | |
|       return Constant::getNullValue(X->getType());
 | |
| 
 | |
|     // Remove X and ~X from the operand list.
 | |
|     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
 | |
|       return Constant::getAllOnesValue(X->getType());
 | |
| 
 | |
|     Ops.erase(Ops.begin()+i);
 | |
|     if (i < FoundX)
 | |
|       --FoundX;
 | |
|     else
 | |
|       --i;   // Need to back up an extra one.
 | |
|     Ops.erase(Ops.begin()+FoundX);
 | |
|     ++NumAnnihil;
 | |
|     --i;     // Revisit element.
 | |
|     e -= 2;  // Removed two elements.
 | |
| 
 | |
|     // if X and ~X we append -1 to the operand list.
 | |
|     if (BinaryOperator::isNot(TheOp)) {
 | |
|       Value *V = Constant::getAllOnesValue(X->getType());
 | |
|       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
 | |
|       e += 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan the operand list, checking to see if there are any common factors
 | |
|   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
 | |
|   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
 | |
|   // To efficiently find this, we count the number of times a factor occurs
 | |
|   // for any ADD operands that are MULs.
 | |
|   DenseMap<Value*, unsigned> FactorOccurrences;
 | |
| 
 | |
|   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
 | |
|   // where they are actually the same multiply.
 | |
|   unsigned MaxOcc = 0;
 | |
|   Value *MaxOccVal = nullptr;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     BinaryOperator *BOp =
 | |
|         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
 | |
|     if (!BOp)
 | |
|       continue;
 | |
| 
 | |
|     // Compute all of the factors of this added value.
 | |
|     SmallVector<Value*, 8> Factors;
 | |
|     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
 | |
|     assert(Factors.size() > 1 && "Bad linearize!");
 | |
| 
 | |
|     // Add one to FactorOccurrences for each unique factor in this op.
 | |
|     SmallPtrSet<Value*, 8> Duplicates;
 | |
|     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | |
|       Value *Factor = Factors[i];
 | |
|       if (!Duplicates.insert(Factor))
 | |
|         continue;
 | |
| 
 | |
|       unsigned Occ = ++FactorOccurrences[Factor];
 | |
|       if (Occ > MaxOcc) {
 | |
|         MaxOcc = Occ;
 | |
|         MaxOccVal = Factor;
 | |
|       }
 | |
| 
 | |
|       // If Factor is a negative constant, add the negated value as a factor
 | |
|       // because we can percolate the negate out.  Watch for minint, which
 | |
|       // cannot be positivified.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
 | |
|         if (CI->isNegative() && !CI->isMinValue(true)) {
 | |
|           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
 | |
|           assert(!Duplicates.count(Factor) &&
 | |
|                  "Shouldn't have two constant factors, missed a canonicalize");
 | |
|           unsigned Occ = ++FactorOccurrences[Factor];
 | |
|           if (Occ > MaxOcc) {
 | |
|             MaxOcc = Occ;
 | |
|             MaxOccVal = Factor;
 | |
|           }
 | |
|         }
 | |
|       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
 | |
|         if (CF->isNegative()) {
 | |
|           APFloat F(CF->getValueAPF());
 | |
|           F.changeSign();
 | |
|           Factor = ConstantFP::get(CF->getContext(), F);
 | |
|           assert(!Duplicates.count(Factor) &&
 | |
|                  "Shouldn't have two constant factors, missed a canonicalize");
 | |
|           unsigned Occ = ++FactorOccurrences[Factor];
 | |
|           if (Occ > MaxOcc) {
 | |
|             MaxOcc = Occ;
 | |
|             MaxOccVal = Factor;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If any factor occurred more than one time, we can pull it out.
 | |
|   if (MaxOcc > 1) {
 | |
|     DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
 | |
|     ++NumFactor;
 | |
| 
 | |
|     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
 | |
|     // this, we could otherwise run into situations where removing a factor
 | |
|     // from an expression will drop a use of maxocc, and this can cause
 | |
|     // RemoveFactorFromExpression on successive values to behave differently.
 | |
|     Instruction *DummyInst =
 | |
|         I->getType()->isIntegerTy()
 | |
|             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
 | |
|             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
 | |
| 
 | |
|     SmallVector<WeakVH, 4> NewMulOps;
 | |
|     for (unsigned i = 0; i != Ops.size(); ++i) {
 | |
|       // Only try to remove factors from expressions we're allowed to.
 | |
|       BinaryOperator *BOp =
 | |
|           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
 | |
|       if (!BOp)
 | |
|         continue;
 | |
| 
 | |
|       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
 | |
|         // The factorized operand may occur several times.  Convert them all in
 | |
|         // one fell swoop.
 | |
|         for (unsigned j = Ops.size(); j != i;) {
 | |
|           --j;
 | |
|           if (Ops[j].Op == Ops[i].Op) {
 | |
|             NewMulOps.push_back(V);
 | |
|             Ops.erase(Ops.begin()+j);
 | |
|           }
 | |
|         }
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // No need for extra uses anymore.
 | |
|     delete DummyInst;
 | |
| 
 | |
|     unsigned NumAddedValues = NewMulOps.size();
 | |
|     Value *V = EmitAddTreeOfValues(I, NewMulOps);
 | |
| 
 | |
|     // Now that we have inserted the add tree, optimize it. This allows us to
 | |
|     // handle cases that require multiple factoring steps, such as this:
 | |
|     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
 | |
|     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
 | |
|     (void)NumAddedValues;
 | |
|     if (Instruction *VI = dyn_cast<Instruction>(V))
 | |
|       RedoInsts.insert(VI);
 | |
| 
 | |
|     // Create the multiply.
 | |
|     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
 | |
| 
 | |
|     // Rerun associate on the multiply in case the inner expression turned into
 | |
|     // a multiply.  We want to make sure that we keep things in canonical form.
 | |
|     RedoInsts.insert(V2);
 | |
| 
 | |
|     // If every add operand included the factor (e.g. "A*B + A*C"), then the
 | |
|     // entire result expression is just the multiply "A*(B+C)".
 | |
|     if (Ops.empty())
 | |
|       return V2;
 | |
| 
 | |
|     // Otherwise, we had some input that didn't have the factor, such as
 | |
|     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
 | |
|     // things being added by this operation.
 | |
|     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Build up a vector of value/power pairs factoring a product.
 | |
| ///
 | |
| /// Given a series of multiplication operands, build a vector of factors and
 | |
| /// the powers each is raised to when forming the final product. Sort them in
 | |
| /// the order of descending power.
 | |
| ///
 | |
| ///      (x*x)          -> [(x, 2)]
 | |
| ///     ((x*x)*x)       -> [(x, 3)]
 | |
| ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
 | |
| ///
 | |
| /// \returns Whether any factors have a power greater than one.
 | |
| bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
 | |
|                                          SmallVectorImpl<Factor> &Factors) {
 | |
|   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
 | |
|   // Compute the sum of powers of simplifiable factors.
 | |
|   unsigned FactorPowerSum = 0;
 | |
|   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
 | |
|     Value *Op = Ops[Idx-1].Op;
 | |
| 
 | |
|     // Count the number of occurrences of this value.
 | |
|     unsigned Count = 1;
 | |
|     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
 | |
|       ++Count;
 | |
|     // Track for simplification all factors which occur 2 or more times.
 | |
|     if (Count > 1)
 | |
|       FactorPowerSum += Count;
 | |
|   }
 | |
| 
 | |
|   // We can only simplify factors if the sum of the powers of our simplifiable
 | |
|   // factors is 4 or higher. When that is the case, we will *always* have
 | |
|   // a simplification. This is an important invariant to prevent cyclicly
 | |
|   // trying to simplify already minimal formations.
 | |
|   if (FactorPowerSum < 4)
 | |
|     return false;
 | |
| 
 | |
|   // Now gather the simplifiable factors, removing them from Ops.
 | |
|   FactorPowerSum = 0;
 | |
|   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
 | |
|     Value *Op = Ops[Idx-1].Op;
 | |
| 
 | |
|     // Count the number of occurrences of this value.
 | |
|     unsigned Count = 1;
 | |
|     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
 | |
|       ++Count;
 | |
|     if (Count == 1)
 | |
|       continue;
 | |
|     // Move an even number of occurrences to Factors.
 | |
|     Count &= ~1U;
 | |
|     Idx -= Count;
 | |
|     FactorPowerSum += Count;
 | |
|     Factors.push_back(Factor(Op, Count));
 | |
|     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
 | |
|   }
 | |
| 
 | |
|   // None of the adjustments above should have reduced the sum of factor powers
 | |
|   // below our mininum of '4'.
 | |
|   assert(FactorPowerSum >= 4);
 | |
| 
 | |
|   std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Build a tree of multiplies, computing the product of Ops.
 | |
| static Value *buildMultiplyTree(IRBuilder<> &Builder,
 | |
|                                 SmallVectorImpl<Value*> &Ops) {
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops.back();
 | |
| 
 | |
|   Value *LHS = Ops.pop_back_val();
 | |
|   do {
 | |
|     if (LHS->getType()->isIntegerTy())
 | |
|       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
 | |
|     else
 | |
|       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
 | |
|   } while (!Ops.empty());
 | |
| 
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
 | |
| ///
 | |
| /// Given a vector of values raised to various powers, where no two values are
 | |
| /// equal and the powers are sorted in decreasing order, compute the minimal
 | |
| /// DAG of multiplies to compute the final product, and return that product
 | |
| /// value.
 | |
| Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 | |
|                                             SmallVectorImpl<Factor> &Factors) {
 | |
|   assert(Factors[0].Power);
 | |
|   SmallVector<Value *, 4> OuterProduct;
 | |
|   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
 | |
|        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
 | |
|     if (Factors[Idx].Power != Factors[LastIdx].Power) {
 | |
|       LastIdx = Idx;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We want to multiply across all the factors with the same power so that
 | |
|     // we can raise them to that power as a single entity. Build a mini tree
 | |
|     // for that.
 | |
|     SmallVector<Value *, 4> InnerProduct;
 | |
|     InnerProduct.push_back(Factors[LastIdx].Base);
 | |
|     do {
 | |
|       InnerProduct.push_back(Factors[Idx].Base);
 | |
|       ++Idx;
 | |
|     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
 | |
| 
 | |
|     // Reset the base value of the first factor to the new expression tree.
 | |
|     // We'll remove all the factors with the same power in a second pass.
 | |
|     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
 | |
|     if (Instruction *MI = dyn_cast<Instruction>(M))
 | |
|       RedoInsts.insert(MI);
 | |
| 
 | |
|     LastIdx = Idx;
 | |
|   }
 | |
|   // Unique factors with equal powers -- we've folded them into the first one's
 | |
|   // base.
 | |
|   Factors.erase(std::unique(Factors.begin(), Factors.end(),
 | |
|                             Factor::PowerEqual()),
 | |
|                 Factors.end());
 | |
| 
 | |
|   // Iteratively collect the base of each factor with an add power into the
 | |
|   // outer product, and halve each power in preparation for squaring the
 | |
|   // expression.
 | |
|   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
 | |
|     if (Factors[Idx].Power & 1)
 | |
|       OuterProduct.push_back(Factors[Idx].Base);
 | |
|     Factors[Idx].Power >>= 1;
 | |
|   }
 | |
|   if (Factors[0].Power) {
 | |
|     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
 | |
|     OuterProduct.push_back(SquareRoot);
 | |
|     OuterProduct.push_back(SquareRoot);
 | |
|   }
 | |
|   if (OuterProduct.size() == 1)
 | |
|     return OuterProduct.front();
 | |
| 
 | |
|   Value *V = buildMultiplyTree(Builder, OuterProduct);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *Reassociate::OptimizeMul(BinaryOperator *I,
 | |
|                                 SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // We can only optimize the multiplies when there is a chain of more than
 | |
|   // three, such that a balanced tree might require fewer total multiplies.
 | |
|   if (Ops.size() < 4)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to turn linear trees of multiplies without other uses of the
 | |
|   // intermediate stages into minimal multiply DAGs with perfect sub-expression
 | |
|   // re-use.
 | |
|   SmallVector<Factor, 4> Factors;
 | |
|   if (!collectMultiplyFactors(Ops, Factors))
 | |
|     return nullptr; // All distinct factors, so nothing left for us to do.
 | |
| 
 | |
|   IRBuilder<> Builder(I);
 | |
|   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
 | |
|   if (Ops.empty())
 | |
|     return V;
 | |
| 
 | |
|   ValueEntry NewEntry = ValueEntry(getRank(V), V);
 | |
|   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *Reassociate::OptimizeExpression(BinaryOperator *I,
 | |
|                                        SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Now that we have the linearized expression tree, try to optimize it.
 | |
|   // Start by folding any constants that we found.
 | |
|   Constant *Cst = nullptr;
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
 | |
|     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
 | |
|     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
 | |
|   }
 | |
|   // If there was nothing but constants then we are done.
 | |
|   if (Ops.empty())
 | |
|     return Cst;
 | |
| 
 | |
|   // Put the combined constant back at the end of the operand list, except if
 | |
|   // there is no point.  For example, an add of 0 gets dropped here, while a
 | |
|   // multiplication by zero turns the whole expression into zero.
 | |
|   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
 | |
|     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
 | |
|       return Cst;
 | |
|     Ops.push_back(ValueEntry(0, Cst));
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0].Op;
 | |
| 
 | |
|   // Handle destructive annihilation due to identities between elements in the
 | |
|   // argument list here.
 | |
|   unsigned NumOps = Ops.size();
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Xor:
 | |
|     if (Value *Result = OptimizeXor(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|     if (Value *Result = OptimizeAdd(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|     if (Value *Result = OptimizeMul(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() != NumOps)
 | |
|     return OptimizeExpression(I, Ops);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// EraseInst - Zap the given instruction, adding interesting operands to the
 | |
| /// work list.
 | |
| void Reassociate::EraseInst(Instruction *I) {
 | |
|   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
 | |
|   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | |
|   // Erase the dead instruction.
 | |
|   ValueRankMap.erase(I);
 | |
|   RedoInsts.remove(I);
 | |
|   I->eraseFromParent();
 | |
|   // Optimize its operands.
 | |
|   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
 | |
|       // If this is a node in an expression tree, climb to the expression root
 | |
|       // and add that since that's where optimization actually happens.
 | |
|       unsigned Opcode = Op->getOpcode();
 | |
|       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
 | |
|              Visited.insert(Op))
 | |
|         Op = Op->user_back();
 | |
|       RedoInsts.insert(Op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Reassociate::optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I,
 | |
|                                       int OperandNr) {
 | |
|   // Change the sign of the constant.
 | |
|   APFloat Val = ConstOperand->getValueAPF();
 | |
|   Val.changeSign();
 | |
|   I->setOperand(0, ConstantFP::get(ConstOperand->getContext(), Val));
 | |
| 
 | |
|   assert(I->hasOneUse() && "Only a single use can be replaced.");
 | |
|   Instruction *Parent = I->user_back();
 | |
| 
 | |
|   Value *OtherOperand = Parent->getOperand(1 - OperandNr);
 | |
| 
 | |
|   unsigned Opcode = Parent->getOpcode();
 | |
|   assert(Opcode == Instruction::FAdd ||
 | |
|          (Opcode == Instruction::FSub && Parent->getOperand(1) == I));
 | |
| 
 | |
|   BinaryOperator *NI = Opcode == Instruction::FAdd
 | |
|                            ? BinaryOperator::CreateFSub(OtherOperand, I)
 | |
|                            : BinaryOperator::CreateFAdd(OtherOperand, I);
 | |
|   NI->setFastMathFlags(cast<FPMathOperator>(Parent)->getFastMathFlags());
 | |
|   NI->insertBefore(Parent);
 | |
|   NI->setName(Parent->getName() + ".repl");
 | |
|   Parent->replaceAllUsesWith(NI);
 | |
|   NI->setDebugLoc(I->getDebugLoc());
 | |
|   MadeChange = true;
 | |
| }
 | |
| 
 | |
| /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
 | |
| /// instructions is not allowed.
 | |
| void Reassociate::OptimizeInst(Instruction *I) {
 | |
|   // Only consider operations that we understand.
 | |
|   if (!isa<BinaryOperator>(I))
 | |
|     return;
 | |
| 
 | |
|   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
 | |
|     // If an operand of this shift is a reassociable multiply, or if the shift
 | |
|     // is used by a reassociable multiply or add, turn into a multiply.
 | |
|     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
 | |
|         (I->hasOneUse() &&
 | |
|          (isReassociableOp(I->user_back(), Instruction::Mul) ||
 | |
|           isReassociableOp(I->user_back(), Instruction::Add)))) {
 | |
|       Instruction *NI = ConvertShiftToMul(I);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     }
 | |
| 
 | |
|   // Commute floating point binary operators, to canonicalize the order of their
 | |
|   // operands.  This can potentially expose more CSE opportunities, and makes
 | |
|   // writing other transformations simpler.
 | |
|   if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) {
 | |
| 
 | |
|     // FAdd and FMul can be commuted.
 | |
|     unsigned Opcode = I->getOpcode();
 | |
|     if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) {
 | |
|       Value *LHS = I->getOperand(0);
 | |
|       Value *RHS = I->getOperand(1);
 | |
|       unsigned LHSRank = getRank(LHS);
 | |
|       unsigned RHSRank = getRank(RHS);
 | |
| 
 | |
|       // Sort the operands by rank.
 | |
|       if (RHSRank < LHSRank) {
 | |
|         I->setOperand(0, RHS);
 | |
|         I->setOperand(1, LHS);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Reassociate: x + -ConstantFP * y -> x - ConstantFP * y
 | |
|     // The FMul can also be an FDiv, and FAdd can be a FSub.
 | |
|     if (Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
 | |
|       if (ConstantFP *LHSConst = dyn_cast<ConstantFP>(I->getOperand(0))) {
 | |
|         if (LHSConst->isNegative() && I->hasOneUse()) {
 | |
|           Instruction *Parent = I->user_back();
 | |
|           if (Parent->getOpcode() == Instruction::FAdd) {
 | |
|             if (Parent->getOperand(0) == I)
 | |
|               optimizeFAddNegExpr(LHSConst, I, 0);
 | |
|             else if (Parent->getOperand(1) == I)
 | |
|               optimizeFAddNegExpr(LHSConst, I, 1);
 | |
|           } else if (Parent->getOpcode() == Instruction::FSub)
 | |
|             if (Parent->getOperand(1) == I)
 | |
|               optimizeFAddNegExpr(LHSConst, I, 1);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // FIXME: We should commute vector instructions as well.  However, this 
 | |
|     // requires further analysis to determine the effect on later passes.
 | |
| 
 | |
|     // Don't try to optimize vector instructions or anything that doesn't have
 | |
|     // unsafe algebra.
 | |
|     if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Do not reassociate boolean (i1) expressions.  We want to preserve the
 | |
|   // original order of evaluation for short-circuited comparisons that
 | |
|   // SimplifyCFG has folded to AND/OR expressions.  If the expression
 | |
|   // is not further optimized, it is likely to be transformed back to a
 | |
|   // short-circuited form for code gen, and the source order may have been
 | |
|   // optimized for the most likely conditions.
 | |
|   if (I->getType()->isIntegerTy(1))
 | |
|     return;
 | |
| 
 | |
|   // If this is a subtract instruction which is not already in negate form,
 | |
|   // see if we can convert it to X+-Y.
 | |
|   if (I->getOpcode() == Instruction::Sub) {
 | |
|     if (ShouldBreakUpSubtract(I)) {
 | |
|       Instruction *NI = BreakUpSubtract(I);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     } else if (BinaryOperator::isNeg(I)) {
 | |
|       // Otherwise, this is a negation.  See if the operand is a multiply tree
 | |
|       // and if this is not an inner node of a multiply tree.
 | |
|       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
 | |
|           (!I->hasOneUse() ||
 | |
|            !isReassociableOp(I->user_back(), Instruction::Mul))) {
 | |
|         Instruction *NI = LowerNegateToMultiply(I);
 | |
|         RedoInsts.insert(I);
 | |
|         MadeChange = true;
 | |
|         I = NI;
 | |
|       }
 | |
|     }
 | |
|   } else if (I->getOpcode() == Instruction::FSub) {
 | |
|     if (ShouldBreakUpSubtract(I)) {
 | |
|       Instruction *NI = BreakUpSubtract(I);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     } else if (BinaryOperator::isFNeg(I)) {
 | |
|       // Otherwise, this is a negation.  See if the operand is a multiply tree
 | |
|       // and if this is not an inner node of a multiply tree.
 | |
|       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
 | |
|           (!I->hasOneUse() ||
 | |
|            !isReassociableOp(I->user_back(), Instruction::FMul))) {
 | |
|         Instruction *NI = LowerNegateToMultiply(I);
 | |
|         RedoInsts.insert(I);
 | |
|         MadeChange = true;
 | |
|         I = NI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this instruction is an associative binary operator, process it.
 | |
|   if (!I->isAssociative()) return;
 | |
|   BinaryOperator *BO = cast<BinaryOperator>(I);
 | |
| 
 | |
|   // If this is an interior node of a reassociable tree, ignore it until we
 | |
|   // get to the root of the tree, to avoid N^2 analysis.
 | |
|   unsigned Opcode = BO->getOpcode();
 | |
|   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
 | |
|     return;
 | |
| 
 | |
|   // If this is an add tree that is used by a sub instruction, ignore it
 | |
|   // until we process the subtract.
 | |
|   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
 | |
|       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
 | |
|     return;
 | |
|   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
 | |
|       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
 | |
|     return;
 | |
| 
 | |
|   ReassociateExpression(BO);
 | |
| }
 | |
| 
 | |
| void Reassociate::ReassociateExpression(BinaryOperator *I) {
 | |
|   assert(!I->getType()->isVectorTy() &&
 | |
|          "Reassociation of vector instructions is not supported.");
 | |
| 
 | |
|   // First, walk the expression tree, linearizing the tree, collecting the
 | |
|   // operand information.
 | |
|   SmallVector<RepeatedValue, 8> Tree;
 | |
|   MadeChange |= LinearizeExprTree(I, Tree);
 | |
|   SmallVector<ValueEntry, 8> Ops;
 | |
|   Ops.reserve(Tree.size());
 | |
|   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | |
|     RepeatedValue E = Tree[i];
 | |
|     Ops.append(E.second.getZExtValue(),
 | |
|                ValueEntry(getRank(E.first), E.first));
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | |
| 
 | |
|   // Now that we have linearized the tree to a list and have gathered all of
 | |
|   // the operands and their ranks, sort the operands by their rank.  Use a
 | |
|   // stable_sort so that values with equal ranks will have their relative
 | |
|   // positions maintained (and so the compiler is deterministic).  Note that
 | |
|   // this sorts so that the highest ranking values end up at the beginning of
 | |
|   // the vector.
 | |
|   std::stable_sort(Ops.begin(), Ops.end());
 | |
| 
 | |
|   // OptimizeExpression - Now that we have the expression tree in a convenient
 | |
|   // sorted form, optimize it globally if possible.
 | |
|   if (Value *V = OptimizeExpression(I, Ops)) {
 | |
|     if (V == I)
 | |
|       // Self-referential expression in unreachable code.
 | |
|       return;
 | |
|     // This expression tree simplified to something that isn't a tree,
 | |
|     // eliminate it.
 | |
|     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
 | |
|     I->replaceAllUsesWith(V);
 | |
|     if (Instruction *VI = dyn_cast<Instruction>(V))
 | |
|       VI->setDebugLoc(I->getDebugLoc());
 | |
|     RedoInsts.insert(I);
 | |
|     ++NumAnnihil;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We want to sink immediates as deeply as possible except in the case where
 | |
|   // this is a multiply tree used only by an add, and the immediate is a -1.
 | |
|   // In this case we reassociate to put the negation on the outside so that we
 | |
|   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
 | |
|   if (I->hasOneUse()) {
 | |
|     if (I->getOpcode() == Instruction::Mul &&
 | |
|         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
 | |
|         isa<ConstantInt>(Ops.back().Op) &&
 | |
|         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
 | |
|       ValueEntry Tmp = Ops.pop_back_val();
 | |
|       Ops.insert(Ops.begin(), Tmp);
 | |
|     } else if (I->getOpcode() == Instruction::FMul &&
 | |
|                cast<Instruction>(I->user_back())->getOpcode() ==
 | |
|                    Instruction::FAdd &&
 | |
|                isa<ConstantFP>(Ops.back().Op) &&
 | |
|                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
 | |
|       ValueEntry Tmp = Ops.pop_back_val();
 | |
|       Ops.insert(Ops.begin(), Tmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | |
| 
 | |
|   if (Ops.size() == 1) {
 | |
|     if (Ops[0].Op == I)
 | |
|       // Self-referential expression in unreachable code.
 | |
|       return;
 | |
| 
 | |
|     // This expression tree simplified to something that isn't a tree,
 | |
|     // eliminate it.
 | |
|     I->replaceAllUsesWith(Ops[0].Op);
 | |
|     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
 | |
|       OI->setDebugLoc(I->getDebugLoc());
 | |
|     RedoInsts.insert(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Now that we ordered and optimized the expressions, splat them back into
 | |
|   // the expression tree, removing any unneeded nodes.
 | |
|   RewriteExprTree(I, Ops);
 | |
| }
 | |
| 
 | |
| bool Reassociate::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   // Calculate the rank map for F
 | |
|   BuildRankMap(F);
 | |
| 
 | |
|   MadeChange = false;
 | |
|   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
 | |
|     // Optimize every instruction in the basic block.
 | |
|     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
 | |
|       if (isInstructionTriviallyDead(II)) {
 | |
|         EraseInst(II++);
 | |
|       } else {
 | |
|         OptimizeInst(II);
 | |
|         assert(II->getParent() == BI && "Moved to a different block!");
 | |
|         ++II;
 | |
|       }
 | |
| 
 | |
|     // If this produced extra instructions to optimize, handle them now.
 | |
|     while (!RedoInsts.empty()) {
 | |
|       Instruction *I = RedoInsts.pop_back_val();
 | |
|       if (isInstructionTriviallyDead(I))
 | |
|         EraseInst(I);
 | |
|       else
 | |
|         OptimizeInst(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We are done with the rank map.
 | |
|   RankMap.clear();
 | |
|   ValueRankMap.clear();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |