mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Summary: Converting outermost zext(a) to sext(a) causes worse code when the computation of zext(a) could be reused. For example, after converting ... = array[zext(a)] ... = array[zext(a) + 1] to ... = array[sext(a)] ... = array[zext(a) + 1], the program computes sext(a), which is actually unnecessary. I added one test in split-gep-and-gvn.ll to illustrate this scenario. Also, with r211281 and r211084, we annotate more "nuw" tags to computation involving CUDA intrinsics such as threadIdx.x. These annotations help with splitting GEP a lot, rendering the benefit we get from this reverted optimization only marginal. Test Plan: make check-all Reviewers: eliben, meheff Reviewed By: meheff Subscribers: jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D4542 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213209 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			777 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			777 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Loop unrolling may create many similar GEPs for array accesses.
 | |
| // e.g., a 2-level loop
 | |
| //
 | |
| // float a[32][32]; // global variable
 | |
| //
 | |
| // for (int i = 0; i < 2; ++i) {
 | |
| //   for (int j = 0; j < 2; ++j) {
 | |
| //     ...
 | |
| //     ... = a[x + i][y + j];
 | |
| //     ...
 | |
| //   }
 | |
| // }
 | |
| //
 | |
| // will probably be unrolled to:
 | |
| //
 | |
| // gep %a, 0, %x, %y; load
 | |
| // gep %a, 0, %x, %y + 1; load
 | |
| // gep %a, 0, %x + 1, %y; load
 | |
| // gep %a, 0, %x + 1, %y + 1; load
 | |
| //
 | |
| // LLVM's GVN does not use partial redundancy elimination yet, and is thus
 | |
| // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
 | |
| // significant slowdown in targets with limited addressing modes. For instance,
 | |
| // because the PTX target does not support the reg+reg addressing mode, the
 | |
| // NVPTX backend emits PTX code that literally computes the pointer address of
 | |
| // each GEP, wasting tons of registers. It emits the following PTX for the
 | |
| // first load and similar PTX for other loads.
 | |
| //
 | |
| // mov.u32         %r1, %x;
 | |
| // mov.u32         %r2, %y;
 | |
| // mul.wide.u32    %rl2, %r1, 128;
 | |
| // mov.u64         %rl3, a;
 | |
| // add.s64         %rl4, %rl3, %rl2;
 | |
| // mul.wide.u32    %rl5, %r2, 4;
 | |
| // add.s64         %rl6, %rl4, %rl5;
 | |
| // ld.global.f32   %f1, [%rl6];
 | |
| //
 | |
| // To reduce the register pressure, the optimization implemented in this file
 | |
| // merges the common part of a group of GEPs, so we can compute each pointer
 | |
| // address by adding a simple offset to the common part, saving many registers.
 | |
| //
 | |
| // It works by splitting each GEP into a variadic base and a constant offset.
 | |
| // The variadic base can be computed once and reused by multiple GEPs, and the
 | |
| // constant offsets can be nicely folded into the reg+immediate addressing mode
 | |
| // (supported by most targets) without using any extra register.
 | |
| //
 | |
| // For instance, we transform the four GEPs and four loads in the above example
 | |
| // into:
 | |
| //
 | |
| // base = gep a, 0, x, y
 | |
| // load base
 | |
| // laod base + 1  * sizeof(float)
 | |
| // load base + 32 * sizeof(float)
 | |
| // load base + 33 * sizeof(float)
 | |
| //
 | |
| // Given the transformed IR, a backend that supports the reg+immediate
 | |
| // addressing mode can easily fold the pointer arithmetics into the loads. For
 | |
| // example, the NVPTX backend can easily fold the pointer arithmetics into the
 | |
| // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
 | |
| //
 | |
| // mov.u32         %r1, %tid.x;
 | |
| // mov.u32         %r2, %tid.y;
 | |
| // mul.wide.u32    %rl2, %r1, 128;
 | |
| // mov.u64         %rl3, a;
 | |
| // add.s64         %rl4, %rl3, %rl2;
 | |
| // mul.wide.u32    %rl5, %r2, 4;
 | |
| // add.s64         %rl6, %rl4, %rl5;
 | |
| // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
 | |
| // ld.global.f32   %f2, [%rl6+4]; // much better
 | |
| // ld.global.f32   %f3, [%rl6+128]; // much better
 | |
| // ld.global.f32   %f4, [%rl6+132]; // much better
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
 | |
|     "disable-separate-const-offset-from-gep", cl::init(false),
 | |
|     cl::desc("Do not separate the constant offset from a GEP instruction"),
 | |
|     cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// \brief A helper class for separating a constant offset from a GEP index.
 | |
| ///
 | |
| /// In real programs, a GEP index may be more complicated than a simple addition
 | |
| /// of something and a constant integer which can be trivially splitted. For
 | |
| /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
 | |
| /// constant offset, so that we can separate the index to (a << 3) + b and 5.
 | |
| ///
 | |
| /// Therefore, this class looks into the expression that computes a given GEP
 | |
| /// index, and tries to find a constant integer that can be hoisted to the
 | |
| /// outermost level of the expression as an addition. Not every constant in an
 | |
| /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
 | |
| /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
 | |
| /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
 | |
| class ConstantOffsetExtractor {
 | |
|  public:
 | |
|   /// Extracts a constant offset from the given GEP index. It outputs the
 | |
|   /// numeric value of the extracted constant offset (0 if failed), and a
 | |
|   /// new index representing the remainder (equal to the original index minus
 | |
|   /// the constant offset).
 | |
|   /// \p Idx    The given GEP index
 | |
|   /// \p NewIdx The new index to replace (output)
 | |
|   /// \p DL     The datalayout of the module
 | |
|   /// \p GEP    The given GEP
 | |
|   static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL,
 | |
|                          GetElementPtrInst *GEP);
 | |
|   /// Looks for a constant offset without extracting it. The meaning of the
 | |
|   /// arguments and the return value are the same as Extract.
 | |
|   static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
 | |
| 
 | |
|  private:
 | |
|   ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
 | |
|       : DL(Layout), IP(InsertionPt) {}
 | |
|   /// Searches the expression that computes V for a non-zero constant C s.t.
 | |
|   /// V can be reassociated into the form V' + C. If the searching is
 | |
|   /// successful, returns C and update UserChain as a def-use chain from C to V;
 | |
|   /// otherwise, UserChain is empty.
 | |
|   ///
 | |
|   /// \p V            The given expression
 | |
|   /// \p SignExtended Whether V will be sign-extended in the computation of the
 | |
|   ///                 GEP index
 | |
|   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
 | |
|   ///                 GEP index
 | |
|   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
 | |
|   ///                 an index of an inbounds GEP is guaranteed to be
 | |
|   ///                 non-negative. Levaraging this, we can better split
 | |
|   ///                 inbounds GEPs.
 | |
|   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
 | |
|   /// A helper function to look into both operands of a binary operator.
 | |
|   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
 | |
|                             bool ZeroExtended);
 | |
|   /// After finding the constant offset C from the GEP index I, we build a new
 | |
|   /// index I' s.t. I' + C = I. This function builds and returns the new
 | |
|   /// index I' according to UserChain produced by function "find".
 | |
|   ///
 | |
|   /// The building conceptually takes two steps:
 | |
|   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
 | |
|   /// that computes I
 | |
|   /// 2) reassociate the expression tree to the form I' + C.
 | |
|   ///
 | |
|   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
 | |
|   /// sext to a, b and 5 so that we have
 | |
|   ///   sext(a) + (sext(b) + 5).
 | |
|   /// Then, we reassociate it to
 | |
|   ///   (sext(a) + sext(b)) + 5.
 | |
|   /// Given this form, we know I' is sext(a) + sext(b).
 | |
|   Value *rebuildWithoutConstOffset();
 | |
|   /// After the first step of rebuilding the GEP index without the constant
 | |
|   /// offset, distribute s/zext to the operands of all operators in UserChain.
 | |
|   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
 | |
|   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
 | |
|   ///
 | |
|   /// The function also updates UserChain to point to new subexpressions after
 | |
|   /// distributing s/zext. e.g., the old UserChain of the above example is
 | |
|   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
 | |
|   /// and the new UserChain is
 | |
|   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
 | |
|   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
 | |
|   ///
 | |
|   /// \p ChainIndex The index to UserChain. ChainIndex is initially
 | |
|   ///               UserChain.size() - 1, and is decremented during
 | |
|   ///               the recursion.
 | |
|   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
 | |
|   /// Reassociates the GEP index to the form I' + C and returns I'.
 | |
|   Value *removeConstOffset(unsigned ChainIndex);
 | |
|   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
 | |
|   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
 | |
|   /// returns "sext i32 (zext i16 V to i32) to i64".
 | |
|   Value *applyExts(Value *V);
 | |
| 
 | |
|   /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
 | |
|   bool NoCommonBits(Value *LHS, Value *RHS) const;
 | |
|   /// Computes which bits are known to be one or zero.
 | |
|   /// \p KnownOne Mask of all bits that are known to be one.
 | |
|   /// \p KnownZero Mask of all bits that are known to be zero.
 | |
|   void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
 | |
|   /// A helper function that returns whether we can trace into the operands
 | |
|   /// of binary operator BO for a constant offset.
 | |
|   ///
 | |
|   /// \p SignExtended Whether BO is surrounded by sext
 | |
|   /// \p ZeroExtended Whether BO is surrounded by zext
 | |
|   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
 | |
|   ///                array index.
 | |
|   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
 | |
|                     bool NonNegative);
 | |
| 
 | |
|   /// The path from the constant offset to the old GEP index. e.g., if the GEP
 | |
|   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
 | |
|   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
 | |
|   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
 | |
|   ///
 | |
|   /// This path helps to rebuild the new GEP index.
 | |
|   SmallVector<User *, 8> UserChain;
 | |
|   /// A data structure used in rebuildWithoutConstOffset. Contains all
 | |
|   /// sext/zext instructions along UserChain.
 | |
|   SmallVector<CastInst *, 16> ExtInsts;
 | |
|   /// The data layout of the module. Used in ComputeKnownBits.
 | |
|   const DataLayout *DL;
 | |
|   Instruction *IP;  /// Insertion position of cloned instructions.
 | |
| };
 | |
| 
 | |
| /// \brief A pass that tries to split every GEP in the function into a variadic
 | |
| /// base and a constant offset. It is a FunctionPass because searching for the
 | |
| /// constant offset may inspect other basic blocks.
 | |
| class SeparateConstOffsetFromGEP : public FunctionPass {
 | |
|  public:
 | |
|   static char ID;
 | |
|   SeparateConstOffsetFromGEP() : FunctionPass(ID) {
 | |
|     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DataLayoutPass>();
 | |
|     AU.addRequired<TargetTransformInfo>();
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override {
 | |
|     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|     if (DLP == nullptr)
 | |
|       report_fatal_error("data layout missing");
 | |
|     DL = &DLP->getDataLayout();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|  private:
 | |
|   /// Tries to split the given GEP into a variadic base and a constant offset,
 | |
|   /// and returns true if the splitting succeeds.
 | |
|   bool splitGEP(GetElementPtrInst *GEP);
 | |
|   /// Finds the constant offset within each index, and accumulates them. This
 | |
|   /// function only inspects the GEP without changing it. The output
 | |
|   /// NeedsExtraction indicates whether we can extract a non-zero constant
 | |
|   /// offset from any index.
 | |
|   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
 | |
|   /// Canonicalize array indices to pointer-size integers. This helps to
 | |
|   /// simplify the logic of splitting a GEP. For example, if a + b is a
 | |
|   /// pointer-size integer, we have
 | |
|   ///   gep base, a + b = gep (gep base, a), b
 | |
|   /// However, this equality may not hold if the size of a + b is smaller than
 | |
|   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
 | |
|   /// pointer size before computing the address
 | |
|   /// (http://llvm.org/docs/LangRef.html#id181).
 | |
|   ///
 | |
|   /// This canonicalization is very likely already done in clang and
 | |
|   /// instcombine. Therefore, the program will probably remain the same.
 | |
|   ///
 | |
|   /// Returns true if the module changes.
 | |
|   ///
 | |
|   /// Verified in @i32_add in split-gep.ll
 | |
|   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
 | |
| 
 | |
|   const DataLayout *DL;
 | |
| };
 | |
| }  // anonymous namespace
 | |
| 
 | |
| char SeparateConstOffsetFromGEP::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(
 | |
|     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
 | |
|     "Split GEPs to a variadic base and a constant offset for better CSE", false,
 | |
|     false)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
 | |
| INITIALIZE_PASS_END(
 | |
|     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
 | |
|     "Split GEPs to a variadic base and a constant offset for better CSE", false,
 | |
|     false)
 | |
| 
 | |
| FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() {
 | |
|   return new SeparateConstOffsetFromGEP();
 | |
| }
 | |
| 
 | |
| bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
 | |
|                                             bool ZeroExtended,
 | |
|                                             BinaryOperator *BO,
 | |
|                                             bool NonNegative) {
 | |
|   // We only consider ADD, SUB and OR, because a non-zero constant found in
 | |
|   // expressions composed of these operations can be easily hoisted as a
 | |
|   // constant offset by reassociation.
 | |
|   if (BO->getOpcode() != Instruction::Add &&
 | |
|       BO->getOpcode() != Instruction::Sub &&
 | |
|       BO->getOpcode() != Instruction::Or) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
 | |
|   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
 | |
|   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
 | |
|   if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
 | |
|     return false;
 | |
| 
 | |
|   // In addition, tracing into BO requires that its surrounding s/zext (if
 | |
|   // any) is distributable to both operands.
 | |
|   //
 | |
|   // Suppose BO = A op B.
 | |
|   //  SignExtended | ZeroExtended | Distributable?
 | |
|   // --------------+--------------+----------------------------------
 | |
|   //       0       |      0       | true because no s/zext exists
 | |
|   //       0       |      1       | zext(BO) == zext(A) op zext(B)
 | |
|   //       1       |      0       | sext(BO) == sext(A) op sext(B)
 | |
|   //       1       |      1       | zext(sext(BO)) ==
 | |
|   //               |              |     zext(sext(A)) op zext(sext(B))
 | |
|   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
 | |
|     // If a + b >= 0 and (a >= 0 or b >= 0), then
 | |
|     //   sext(a + b) = sext(a) + sext(b)
 | |
|     // even if the addition is not marked nsw.
 | |
|     //
 | |
|     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
 | |
|     // index if the constant offset is non-negative.
 | |
|     //
 | |
|     // Verified in @sext_add in split-gep.ll.
 | |
|     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
 | |
|       if (!ConstLHS->isNegative())
 | |
|         return true;
 | |
|     }
 | |
|     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|       if (!ConstRHS->isNegative())
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
 | |
|   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
 | |
|   if (BO->getOpcode() == Instruction::Add ||
 | |
|       BO->getOpcode() == Instruction::Sub) {
 | |
|     if (SignExtended && !BO->hasNoSignedWrap())
 | |
|       return false;
 | |
|     if (ZeroExtended && !BO->hasNoUnsignedWrap())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
 | |
|                                                    bool SignExtended,
 | |
|                                                    bool ZeroExtended) {
 | |
|   // BO being non-negative does not shed light on whether its operands are
 | |
|   // non-negative. Clear the NonNegative flag here.
 | |
|   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
 | |
|                               /* NonNegative */ false);
 | |
|   // If we found a constant offset in the left operand, stop and return that.
 | |
|   // This shortcut might cause us to miss opportunities of combining the
 | |
|   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
 | |
|   // However, such cases are probably already handled by -instcombine,
 | |
|   // given this pass runs after the standard optimizations.
 | |
|   if (ConstantOffset != 0) return ConstantOffset;
 | |
|   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
 | |
|                         /* NonNegative */ false);
 | |
|   // If U is a sub operator, negate the constant offset found in the right
 | |
|   // operand.
 | |
|   if (BO->getOpcode() == Instruction::Sub)
 | |
|     ConstantOffset = -ConstantOffset;
 | |
|   return ConstantOffset;
 | |
| }
 | |
| 
 | |
| APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
 | |
|                                     bool ZeroExtended, bool NonNegative) {
 | |
|   // TODO(jingyue): We could trace into integer/pointer casts, such as
 | |
|   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
 | |
|   // integers because it gives good enough results for our benchmarks.
 | |
|   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
| 
 | |
|   // We cannot do much with Values that are not a User, such as an Argument.
 | |
|   User *U = dyn_cast<User>(V);
 | |
|   if (U == nullptr) return APInt(BitWidth, 0);
 | |
| 
 | |
|   APInt ConstantOffset(BitWidth, 0);
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     // Hooray, we found it!
 | |
|     ConstantOffset = CI->getValue();
 | |
|   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
 | |
|     // Trace into subexpressions for more hoisting opportunities.
 | |
|     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
 | |
|       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
 | |
|     }
 | |
|   } else if (isa<SExtInst>(V)) {
 | |
|     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
 | |
|                           ZeroExtended, NonNegative).sext(BitWidth);
 | |
|   } else if (isa<ZExtInst>(V)) {
 | |
|     // As an optimization, we can clear the SignExtended flag because
 | |
|     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
 | |
|     //
 | |
|     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
 | |
|     ConstantOffset =
 | |
|         find(U->getOperand(0), /* SignExtended */ false,
 | |
|              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
 | |
|   }
 | |
| 
 | |
|   // If we found a non-zero constant offset, add it to the path for
 | |
|   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
 | |
|   // help this optimization.
 | |
|   if (ConstantOffset != 0)
 | |
|     UserChain.push_back(U);
 | |
|   return ConstantOffset;
 | |
| }
 | |
| 
 | |
| Value *ConstantOffsetExtractor::applyExts(Value *V) {
 | |
|   Value *Current = V;
 | |
|   // ExtInsts is built in the use-def order. Therefore, we apply them to V
 | |
|   // in the reversed order.
 | |
|   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
 | |
|     if (Constant *C = dyn_cast<Constant>(Current)) {
 | |
|       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
 | |
|       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
 | |
|       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
 | |
|     } else {
 | |
|       Instruction *Ext = (*I)->clone();
 | |
|       Ext->setOperand(0, Current);
 | |
|       Ext->insertBefore(IP);
 | |
|       Current = Ext;
 | |
|     }
 | |
|   }
 | |
|   return Current;
 | |
| }
 | |
| 
 | |
| Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
 | |
|   distributeExtsAndCloneChain(UserChain.size() - 1);
 | |
|   // Remove all nullptrs (used to be s/zext) from UserChain.
 | |
|   unsigned NewSize = 0;
 | |
|   for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
 | |
|     if (*I != nullptr) {
 | |
|       UserChain[NewSize] = *I;
 | |
|       NewSize++;
 | |
|     }
 | |
|   }
 | |
|   UserChain.resize(NewSize);
 | |
|   return removeConstOffset(UserChain.size() - 1);
 | |
| }
 | |
| 
 | |
| Value *
 | |
| ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
 | |
|   User *U = UserChain[ChainIndex];
 | |
|   if (ChainIndex == 0) {
 | |
|     assert(isa<ConstantInt>(U));
 | |
|     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
 | |
|     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
 | |
|   }
 | |
| 
 | |
|   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
 | |
|     assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
 | |
|            "We only traced into two types of CastInst: sext and zext");
 | |
|     ExtInsts.push_back(Cast);
 | |
|     UserChain[ChainIndex] = nullptr;
 | |
|     return distributeExtsAndCloneChain(ChainIndex - 1);
 | |
|   }
 | |
| 
 | |
|   // Function find only trace into BinaryOperator and CastInst.
 | |
|   BinaryOperator *BO = cast<BinaryOperator>(U);
 | |
|   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
 | |
|   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
 | |
|   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
 | |
|   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
 | |
| 
 | |
|   BinaryOperator *NewBO = nullptr;
 | |
|   if (OpNo == 0) {
 | |
|     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
 | |
|                                    BO->getName(), IP);
 | |
|   } else {
 | |
|     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
 | |
|                                    BO->getName(), IP);
 | |
|   }
 | |
|   return UserChain[ChainIndex] = NewBO;
 | |
| }
 | |
| 
 | |
| Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
 | |
|   if (ChainIndex == 0) {
 | |
|     assert(isa<ConstantInt>(UserChain[ChainIndex]));
 | |
|     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
 | |
|   }
 | |
| 
 | |
|   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
 | |
|   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
 | |
|   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
 | |
|   Value *NextInChain = removeConstOffset(ChainIndex - 1);
 | |
|   Value *TheOther = BO->getOperand(1 - OpNo);
 | |
| 
 | |
|   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
 | |
|   // sub-expression to be just TheOther.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
 | |
|     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
 | |
|       return TheOther;
 | |
|   }
 | |
| 
 | |
|   if (BO->getOpcode() == Instruction::Or) {
 | |
|     // Rebuild "or" as "add", because "or" may be invalid for the new
 | |
|     // epxression.
 | |
|     //
 | |
|     // For instance, given
 | |
|     //   a | (b + 5) where a and b + 5 have no common bits,
 | |
|     // we can extract 5 as the constant offset.
 | |
|     //
 | |
|     // However, reusing the "or" in the new index would give us
 | |
|     //   (a | b) + 5
 | |
|     // which does not equal a | (b + 5).
 | |
|     //
 | |
|     // Replacing the "or" with "add" is fine, because
 | |
|     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
 | |
|     return BinaryOperator::CreateAdd(BO->getOperand(0), BO->getOperand(1),
 | |
|                                      BO->getName(), IP);
 | |
|   }
 | |
| 
 | |
|   // We can reuse BO in this case, because the new expression shares the same
 | |
|   // instruction type and BO is used at most once.
 | |
|   assert(BO->getNumUses() <= 1 &&
 | |
|          "distributeExtsAndCloneChain clones each BinaryOperator in "
 | |
|          "UserChain, so no one should be used more than "
 | |
|          "once");
 | |
|   BO->setOperand(OpNo, NextInChain);
 | |
|   BO->setHasNoSignedWrap(false);
 | |
|   BO->setHasNoUnsignedWrap(false);
 | |
|   // Make sure it appears after all instructions we've inserted so far.
 | |
|   BO->moveBefore(IP);
 | |
|   return BO;
 | |
| }
 | |
| 
 | |
| int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx,
 | |
|                                          const DataLayout *DL,
 | |
|                                          GetElementPtrInst *GEP) {
 | |
|   ConstantOffsetExtractor Extractor(DL, GEP);
 | |
|   // Find a non-zero constant offset first.
 | |
|   APInt ConstantOffset =
 | |
|       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
 | |
|                      GEP->isInBounds());
 | |
|   if (ConstantOffset != 0) {
 | |
|     // Separates the constant offset from the GEP index.
 | |
|     NewIdx = Extractor.rebuildWithoutConstOffset();
 | |
|   }
 | |
|   return ConstantOffset.getSExtValue();
 | |
| }
 | |
| 
 | |
| int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
 | |
|       GetElementPtrInst *GEP) {
 | |
|   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
 | |
|   return ConstantOffsetExtractor(DL, GEP)
 | |
|       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
 | |
|             GEP->isInBounds())
 | |
|       .getSExtValue();
 | |
| }
 | |
| 
 | |
| void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
 | |
|                                                APInt &KnownZero) const {
 | |
|   IntegerType *IT = cast<IntegerType>(V->getType());
 | |
|   KnownOne = APInt(IT->getBitWidth(), 0);
 | |
|   KnownZero = APInt(IT->getBitWidth(), 0);
 | |
|   llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
 | |
| }
 | |
| 
 | |
| bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "LHS and RHS should have the same type");
 | |
|   APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
 | |
|   ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
 | |
|   ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
 | |
|   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
 | |
| }
 | |
| 
 | |
| bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
 | |
|     GetElementPtrInst *GEP) {
 | |
|   bool Changed = false;
 | |
|   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
 | |
|   gep_type_iterator GTI = gep_type_begin(*GEP);
 | |
|   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
 | |
|        I != E; ++I, ++GTI) {
 | |
|     // Skip struct member indices which must be i32.
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       if ((*I)->getType() != IntPtrTy) {
 | |
|         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| int64_t
 | |
| SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
 | |
|                                                  bool &NeedsExtraction) {
 | |
|   NeedsExtraction = false;
 | |
|   int64_t AccumulativeByteOffset = 0;
 | |
|   gep_type_iterator GTI = gep_type_begin(*GEP);
 | |
|   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       // Tries to extract a constant offset from this GEP index.
 | |
|       int64_t ConstantOffset =
 | |
|           ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
 | |
|       if (ConstantOffset != 0) {
 | |
|         NeedsExtraction = true;
 | |
|         // A GEP may have multiple indices.  We accumulate the extracted
 | |
|         // constant offset to a byte offset, and later offset the remainder of
 | |
|         // the original GEP with this byte offset.
 | |
|         AccumulativeByteOffset +=
 | |
|             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return AccumulativeByteOffset;
 | |
| }
 | |
| 
 | |
| bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
 | |
|   // Skip vector GEPs.
 | |
|   if (GEP->getType()->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   // The backend can already nicely handle the case where all indices are
 | |
|   // constant.
 | |
|   if (GEP->hasAllConstantIndices())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
 | |
| 
 | |
|   bool NeedsExtraction;
 | |
|   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
 | |
| 
 | |
|   if (!NeedsExtraction)
 | |
|     return Changed;
 | |
|   // Before really splitting the GEP, check whether the backend supports the
 | |
|   // addressing mode we are about to produce. If no, this splitting probably
 | |
|   // won't be beneficial.
 | |
|   TargetTransformInfo &TTI = getAnalysis<TargetTransformInfo>();
 | |
|   if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
 | |
|                                  /*BaseGV=*/nullptr, AccumulativeByteOffset,
 | |
|                                  /*HasBaseReg=*/true, /*Scale=*/0)) {
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   // Remove the constant offset in each GEP index. The resultant GEP computes
 | |
|   // the variadic base.
 | |
|   gep_type_iterator GTI = gep_type_begin(*GEP);
 | |
|   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       Value *NewIdx = nullptr;
 | |
|       // Tries to extract a constant offset from this GEP index.
 | |
|       int64_t ConstantOffset =
 | |
|           ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP);
 | |
|       if (ConstantOffset != 0) {
 | |
|         assert(NewIdx != nullptr &&
 | |
|                "ConstantOffset != 0 implies NewIdx is set");
 | |
|         GEP->setOperand(I, NewIdx);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Clear the inbounds attribute because the new index may be off-bound.
 | |
|   // e.g.,
 | |
|   //
 | |
|   // b = add i64 a, 5
 | |
|   // addr = gep inbounds float* p, i64 b
 | |
|   //
 | |
|   // is transformed to:
 | |
|   //
 | |
|   // addr2 = gep float* p, i64 a
 | |
|   // addr = gep float* addr2, i64 5
 | |
|   //
 | |
|   // If a is -4, although the old index b is in bounds, the new index a is
 | |
|   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
 | |
|   // inbounds keyword is not present, the offsets are added to the base
 | |
|   // address with silently-wrapping two's complement arithmetic".
 | |
|   // Therefore, the final code will be a semantically equivalent.
 | |
|   //
 | |
|   // TODO(jingyue): do some range analysis to keep as many inbounds as
 | |
|   // possible. GEPs with inbounds are more friendly to alias analysis.
 | |
|   GEP->setIsInBounds(false);
 | |
| 
 | |
|   // Offsets the base with the accumulative byte offset.
 | |
|   //
 | |
|   //   %gep                        ; the base
 | |
|   //   ... %gep ...
 | |
|   //
 | |
|   // => add the offset
 | |
|   //
 | |
|   //   %gep2                       ; clone of %gep
 | |
|   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
 | |
|   //   %gep                        ; will be removed
 | |
|   //   ... %gep ...
 | |
|   //
 | |
|   // => replace all uses of %gep with %new.gep and remove %gep
 | |
|   //
 | |
|   //   %gep2                       ; clone of %gep
 | |
|   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
 | |
|   //   ... %new.gep ...
 | |
|   //
 | |
|   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
 | |
|   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
 | |
|   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
 | |
|   // type of %gep.
 | |
|   //
 | |
|   //   %gep2                       ; clone of %gep
 | |
|   //   %0       = bitcast %gep2 to i8*
 | |
|   //   %uglygep = gep %0, <offset>
 | |
|   //   %new.gep = bitcast %uglygep to <type of %gep>
 | |
|   //   ... %new.gep ...
 | |
|   Instruction *NewGEP = GEP->clone();
 | |
|   NewGEP->insertBefore(GEP);
 | |
| 
 | |
|   uint64_t ElementTypeSizeOfGEP =
 | |
|       DL->getTypeAllocSize(GEP->getType()->getElementType());
 | |
|   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
 | |
|   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
 | |
|     // Very likely. As long as %gep is natually aligned, the byte offset we
 | |
|     // extracted should be a multiple of sizeof(*%gep).
 | |
|     // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we
 | |
|     // cast ElementTypeSizeOfGEP to signed.
 | |
|     int64_t Index =
 | |
|         AccumulativeByteOffset / static_cast<int64_t>(ElementTypeSizeOfGEP);
 | |
|     NewGEP = GetElementPtrInst::Create(
 | |
|         NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
 | |
|   } else {
 | |
|     // Unlikely but possible. For example,
 | |
|     // #pragma pack(1)
 | |
|     // struct S {
 | |
|     //   int a[3];
 | |
|     //   int64 b[8];
 | |
|     // };
 | |
|     // #pragma pack()
 | |
|     //
 | |
|     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
 | |
|     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
 | |
|     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
 | |
|     // sizeof(int64).
 | |
|     //
 | |
|     // Emit an uglygep in this case.
 | |
|     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
 | |
|                                        GEP->getPointerAddressSpace());
 | |
|     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
 | |
|     NewGEP = GetElementPtrInst::Create(
 | |
|         NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
 | |
|         "uglygep", GEP);
 | |
|     if (GEP->getType() != I8PtrTy)
 | |
|       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
 | |
|   }
 | |
| 
 | |
|   GEP->replaceAllUsesWith(NewGEP);
 | |
|   GEP->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
 | |
|   if (DisableSeparateConstOffsetFromGEP)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
 | |
|     for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
 | |
|         Changed |= splitGEP(GEP);
 | |
|       }
 | |
|       // No need to split GEP ConstantExprs because all its indices are constant
 | |
|       // already.
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 |