mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117667 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			968 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			968 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass munges the code in the input function to better prepare it for
 | |
| // SelectionDAG-based code generation. This works around limitations in it's
 | |
| // basic-block-at-a-time approach. It should eventually be removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "codegenprepare"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/ProfileInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Transforms/Utils/AddrModeMatcher.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BuildLibCalls.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| STATISTIC(NumElim,  "Number of blocks eliminated");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| CriticalEdgeSplit("cgp-critical-edge-splitting",
 | |
|                   cl::desc("Split critical edges during codegen prepare"),
 | |
|                   cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
|   class CodeGenPrepare : public FunctionPass {
 | |
|     /// TLI - Keep a pointer of a TargetLowering to consult for determining
 | |
|     /// transformation profitability.
 | |
|     const TargetLowering *TLI;
 | |
|     ProfileInfo *PFI;
 | |
| 
 | |
|     /// BackEdges - Keep a set of all the loop back edges.
 | |
|     ///
 | |
|     SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit CodeGenPrepare(const TargetLowering *tli = 0)
 | |
|       : FunctionPass(ID), TLI(tli) {
 | |
|         initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<ProfileInfo>();
 | |
|     }
 | |
| 
 | |
|     virtual void releaseMemory() {
 | |
|       BackEdges.clear();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     bool EliminateMostlyEmptyBlocks(Function &F);
 | |
|     bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
 | |
|     void EliminateMostlyEmptyBlock(BasicBlock *BB);
 | |
|     bool OptimizeBlock(BasicBlock &BB);
 | |
|     bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
 | |
|                             DenseMap<Value*,Value*> &SunkAddrs);
 | |
|     bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
 | |
|                                DenseMap<Value*,Value*> &SunkAddrs);
 | |
|     bool OptimizeCallInst(CallInst *CI);
 | |
|     bool MoveExtToFormExtLoad(Instruction *I);
 | |
|     bool OptimizeExtUses(Instruction *I);
 | |
|     void findLoopBackEdges(const Function &F);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CodeGenPrepare::ID = 0;
 | |
| INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
 | |
|                 "Optimize for code generation", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
 | |
|   return new CodeGenPrepare(TLI);
 | |
| }
 | |
| 
 | |
| /// findLoopBackEdges - Do a DFS walk to find loop back edges.
 | |
| ///
 | |
| void CodeGenPrepare::findLoopBackEdges(const Function &F) {
 | |
|   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | |
|   FindFunctionBackedges(F, Edges);
 | |
|   
 | |
|   BackEdges.insert(Edges.begin(), Edges.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CodeGenPrepare::runOnFunction(Function &F) {
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   PFI = getAnalysisIfAvailable<ProfileInfo>();
 | |
|   // First pass, eliminate blocks that contain only PHI nodes and an
 | |
|   // unconditional branch.
 | |
|   EverMadeChange |= EliminateMostlyEmptyBlocks(F);
 | |
| 
 | |
|   // Now find loop back edges.
 | |
|   findLoopBackEdges(F);
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|       MadeChange |= OptimizeBlock(*BB);
 | |
|     EverMadeChange |= MadeChange;
 | |
|   }
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
 | |
| /// debug info directives, and an unconditional branch.  Passes before isel
 | |
| /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
 | |
| /// isel.  Start by eliminating these blocks so we can split them the way we
 | |
| /// want them.
 | |
| bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   // Note that this intentionally skips the entry block.
 | |
|   for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
 | |
|     BasicBlock *BB = I++;
 | |
| 
 | |
|     // If this block doesn't end with an uncond branch, ignore it.
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     // If the instruction before the branch (skipping debug info) isn't a phi
 | |
|     // node, then other stuff is happening here.
 | |
|     BasicBlock::iterator BBI = BI;
 | |
|     if (BBI != BB->begin()) {
 | |
|       --BBI;
 | |
|       while (isa<DbgInfoIntrinsic>(BBI)) {
 | |
|         if (BBI == BB->begin())
 | |
|           break;
 | |
|         --BBI;
 | |
|       }
 | |
|       if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Do not break infinite loops.
 | |
|     BasicBlock *DestBB = BI->getSuccessor(0);
 | |
|     if (DestBB == BB)
 | |
|       continue;
 | |
| 
 | |
|     if (!CanMergeBlocks(BB, DestBB))
 | |
|       continue;
 | |
| 
 | |
|     EliminateMostlyEmptyBlock(BB);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
 | |
| /// single uncond branch between them, and BB contains no other non-phi
 | |
| /// instructions.
 | |
| bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
 | |
|                                     const BasicBlock *DestBB) const {
 | |
|   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
 | |
|   // the successor.  If there are more complex condition (e.g. preheaders),
 | |
|   // don't mess around with them.
 | |
|   BasicBlock::const_iterator BBI = BB->begin();
 | |
|   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|     for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       const Instruction *User = cast<Instruction>(*UI);
 | |
|       if (User->getParent() != DestBB || !isa<PHINode>(User))
 | |
|         return false;
 | |
|       // If User is inside DestBB block and it is a PHINode then check
 | |
|       // incoming value. If incoming value is not from BB then this is
 | |
|       // a complex condition (e.g. preheaders) we want to avoid here.
 | |
|       if (User->getParent() == DestBB) {
 | |
|         if (const PHINode *UPN = dyn_cast<PHINode>(User))
 | |
|           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
 | |
|             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
 | |
|             if (Insn && Insn->getParent() == BB &&
 | |
|                 Insn->getParent() != UPN->getIncomingBlock(I))
 | |
|               return false;
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
 | |
|   // and DestBB may have conflicting incoming values for the block.  If so, we
 | |
|   // can't merge the block.
 | |
|   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
 | |
|   if (!DestBBPN) return true;  // no conflict.
 | |
| 
 | |
|   // Collect the preds of BB.
 | |
|   SmallPtrSet<const BasicBlock*, 16> BBPreds;
 | |
|   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // It is faster to get preds from a PHI than with pred_iterator.
 | |
|     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|       BBPreds.insert(BBPN->getIncomingBlock(i));
 | |
|   } else {
 | |
|     BBPreds.insert(pred_begin(BB), pred_end(BB));
 | |
|   }
 | |
| 
 | |
|   // Walk the preds of DestBB.
 | |
|   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
 | |
|     if (BBPreds.count(Pred)) {   // Common predecessor?
 | |
|       BBI = DestBB->begin();
 | |
|       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
 | |
|         const Value *V1 = PN->getIncomingValueForBlock(Pred);
 | |
|         const Value *V2 = PN->getIncomingValueForBlock(BB);
 | |
| 
 | |
|         // If V2 is a phi node in BB, look up what the mapped value will be.
 | |
|         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
 | |
|           if (V2PN->getParent() == BB)
 | |
|             V2 = V2PN->getIncomingValueForBlock(Pred);
 | |
| 
 | |
|         // If there is a conflict, bail out.
 | |
|         if (V1 != V2) return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
 | |
| /// an unconditional branch in it.
 | |
| void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   BasicBlock *DestBB = BI->getSuccessor(0);
 | |
| 
 | |
|   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
 | |
| 
 | |
|   // If the destination block has a single pred, then this is a trivial edge,
 | |
|   // just collapse it.
 | |
|   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
 | |
|     if (SinglePred != DestBB) {
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(DestBB, this);
 | |
| 
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
|       
 | |
|       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
 | |
|   // to handle the new incoming edges it is about to have.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator BBI = DestBB->begin();
 | |
|        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|     // Remove the incoming value for BB, and remember it.
 | |
|     Value *InVal = PN->removeIncomingValue(BB, false);
 | |
| 
 | |
|     // Two options: either the InVal is a phi node defined in BB or it is some
 | |
|     // value that dominates BB.
 | |
|     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
 | |
|     if (InValPhi && InValPhi->getParent() == BB) {
 | |
|       // Add all of the input values of the input PHI as inputs of this phi.
 | |
|       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
 | |
|         PN->addIncoming(InValPhi->getIncomingValue(i),
 | |
|                         InValPhi->getIncomingBlock(i));
 | |
|     } else {
 | |
|       // Otherwise, add one instance of the dominating value for each edge that
 | |
|       // we will be adding.
 | |
|       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
 | |
|         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
 | |
|           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
 | |
|       } else {
 | |
|         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|           PN->addIncoming(InVal, *PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The PHIs are now updated, change everything that refers to BB to use
 | |
|   // DestBB and remove BB.
 | |
|   BB->replaceAllUsesWith(DestBB);
 | |
|   if (PFI) {
 | |
|     PFI->replaceAllUses(BB, DestBB);
 | |
|     PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
 | |
|   }
 | |
|   BB->eraseFromParent();
 | |
|   ++NumElim;
 | |
| 
 | |
|   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
 | |
| }
 | |
| 
 | |
| /// FindReusablePredBB - Check all of the predecessors of the block DestPHI
 | |
| /// lives in to see if there is a block that we can reuse as a critical edge
 | |
| /// from TIBB.
 | |
| static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) {
 | |
|   BasicBlock *Dest = DestPHI->getParent();
 | |
|   
 | |
|   /// TIPHIValues - This array is lazily computed to determine the values of
 | |
|   /// PHIs in Dest that TI would provide.
 | |
|   SmallVector<Value*, 32> TIPHIValues;
 | |
|   
 | |
|   /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
 | |
|   unsigned TIBBEntryNo = 0;
 | |
|   
 | |
|   // Check to see if Dest has any blocks that can be used as a split edge for
 | |
|   // this terminator.
 | |
|   for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) {
 | |
|     BasicBlock *Pred = DestPHI->getIncomingBlock(pi);
 | |
|     // To be usable, the pred has to end with an uncond branch to the dest.
 | |
|     BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
 | |
|     if (!PredBr || !PredBr->isUnconditional())
 | |
|       continue;
 | |
|     // Must be empty other than the branch and debug info.
 | |
|     BasicBlock::iterator I = Pred->begin();
 | |
|     while (isa<DbgInfoIntrinsic>(I))
 | |
|       I++;
 | |
|     if (&*I != PredBr)
 | |
|       continue;
 | |
|     // Cannot be the entry block; its label does not get emitted.
 | |
|     if (Pred == &Dest->getParent()->getEntryBlock())
 | |
|       continue;
 | |
|     
 | |
|     // Finally, since we know that Dest has phi nodes in it, we have to make
 | |
|     // sure that jumping to Pred will have the same effect as going to Dest in
 | |
|     // terms of PHI values.
 | |
|     PHINode *PN;
 | |
|     unsigned PHINo = 0;
 | |
|     unsigned PredEntryNo = pi;
 | |
|     
 | |
|     bool FoundMatch = true;
 | |
|     for (BasicBlock::iterator I = Dest->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
 | |
|       if (PHINo == TIPHIValues.size()) {
 | |
|         if (PN->getIncomingBlock(TIBBEntryNo) != TIBB)
 | |
|           TIBBEntryNo = PN->getBasicBlockIndex(TIBB);
 | |
|         TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo));
 | |
|       }
 | |
|       
 | |
|       // If the PHI entry doesn't work, we can't use this pred.
 | |
|       if (PN->getIncomingBlock(PredEntryNo) != Pred)
 | |
|         PredEntryNo = PN->getBasicBlockIndex(Pred);
 | |
|       
 | |
|       if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) {
 | |
|         FoundMatch = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If we found a workable predecessor, change TI to branch to Succ.
 | |
|     if (FoundMatch)
 | |
|       return Pred;
 | |
|   }
 | |
|   return 0;  
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SplitEdgeNicely - Split the critical edge from TI to its specified
 | |
| /// successor if it will improve codegen.  We only do this if the successor has
 | |
| /// phi nodes (otherwise critical edges are ok).  If there is already another
 | |
| /// predecessor of the succ that is empty (and thus has no phi nodes), use it
 | |
| /// instead of introducing a new block.
 | |
| static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
 | |
|                      SmallSet<std::pair<const BasicBlock*,
 | |
|                                         const BasicBlock*>, 8> &BackEdges,
 | |
|                              Pass *P) {
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | |
|   assert(isa<PHINode>(Dest->begin()) &&
 | |
|          "This should only be called if Dest has a PHI!");
 | |
|   PHINode *DestPHI = cast<PHINode>(Dest->begin());
 | |
| 
 | |
|   // Do not split edges to EH landing pads.
 | |
|   if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI))
 | |
|     if (Invoke->getSuccessor(1) == Dest)
 | |
|       return;
 | |
| 
 | |
|   // As a hack, never split backedges of loops.  Even though the copy for any
 | |
|   // PHIs inserted on the backedge would be dead for exits from the loop, we
 | |
|   // assume that the cost of *splitting* the backedge would be too high.
 | |
|   if (BackEdges.count(std::make_pair(TIBB, Dest)))
 | |
|     return;
 | |
| 
 | |
|   if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) {
 | |
|     ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>();
 | |
|     if (PFI)
 | |
|       PFI->splitEdge(TIBB, Dest, ReuseBB);
 | |
|     Dest->removePredecessor(TIBB);
 | |
|     TI->setSuccessor(SuccNum, ReuseBB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SplitCriticalEdge(TI, SuccNum, P, true);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
 | |
| /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
 | |
| /// sink it into user blocks to reduce the number of virtual
 | |
| /// registers that must be created and coalesced.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| ///
 | |
| static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
 | |
|   // If this is a noop copy,
 | |
|   EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
 | |
|   EVT DstVT = TLI.getValueType(CI->getType());
 | |
| 
 | |
|   // This is an fp<->int conversion?
 | |
|   if (SrcVT.isInteger() != DstVT.isInteger())
 | |
|     return false;
 | |
| 
 | |
|   // If this is an extension, it will be a zero or sign extension, which
 | |
|   // isn't a noop.
 | |
|   if (SrcVT.bitsLT(DstVT)) return false;
 | |
| 
 | |
|   // If these values will be promoted, find out what they will be promoted
 | |
|   // to.  This helps us consider truncates on PPC as noop copies when they
 | |
|   // are.
 | |
|   if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
 | |
|     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
 | |
|   if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
 | |
|     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
 | |
| 
 | |
|   // If, after promotion, these are the same types, this is a noop copy.
 | |
|   if (SrcVT != DstVT)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCasts - Only insert a cast in each block once.
 | |
|   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this cast is used in.  For PHI's this is the
 | |
|     // appropriate predecessor block.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       UserBB = PN->getIncomingBlock(UI);
 | |
|     }
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // If this user is in the same block as the cast, don't change the cast.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cast into this block, use it.
 | |
|     CastInst *&InsertedCast = InsertedCasts[UserBB];
 | |
| 
 | |
|     if (!InsertedCast) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | |
| 
 | |
|       InsertedCast =
 | |
|         CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
 | |
|                          InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cast with a use of the new cast.
 | |
|     TheUse = InsertedCast;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cast.
 | |
|   if (CI->use_empty()) {
 | |
|     CI->eraseFromParent();
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
 | |
| /// the number of virtual registers that must be created and coalesced.  This is
 | |
| /// a clear win except on targets with multiple condition code registers
 | |
| ///  (PowerPC), where it might lose; some adjustment may be wanted there.
 | |
| ///
 | |
| /// Return true if any changes are made.
 | |
| static bool OptimizeCmpExpression(CmpInst *CI) {
 | |
|   BasicBlock *DefBB = CI->getParent();
 | |
| 
 | |
|   /// InsertedCmp - Only insert a cmp in each block once.
 | |
|   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
 | |
|        UI != E; ) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Preincrement use iterator so we don't invalidate it.
 | |
|     ++UI;
 | |
| 
 | |
|     // Don't bother for PHI nodes.
 | |
|     if (isa<PHINode>(User))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out which BB this cmp is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
| 
 | |
|     // If this user is in the same block as the cmp, don't change the cmp.
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // If we have already inserted a cmp into this block, use it.
 | |
|     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
 | |
| 
 | |
|     if (!InsertedCmp) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | |
| 
 | |
|       InsertedCmp =
 | |
|         CmpInst::Create(CI->getOpcode(),
 | |
|                         CI->getPredicate(),  CI->getOperand(0),
 | |
|                         CI->getOperand(1), "", InsertPt);
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the cmp with a use of the new cmp.
 | |
|     TheUse = InsertedCmp;
 | |
|   }
 | |
| 
 | |
|   // If we removed all uses, nuke the cmp.
 | |
|   if (CI->use_empty())
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
 | |
| protected:
 | |
|   void replaceCall(Value *With) {
 | |
|     CI->replaceAllUsesWith(With);
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
|   bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
 | |
|       if (ConstantInt *SizeCI =
 | |
|                              dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
 | |
|         return SizeCI->isAllOnesValue();
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
 | |
|   // Lower all uses of llvm.objectsize.*
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
 | |
|   if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
 | |
|     bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
 | |
|     const Type *ReturnTy = CI->getType();
 | |
|     Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);    
 | |
|     CI->replaceAllUsesWith(RetVal);
 | |
|     CI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // From here on out we're working with named functions.
 | |
|   if (CI->getCalledFunction() == 0) return false;
 | |
|   
 | |
|   // We'll need TargetData from here on out.
 | |
|   const TargetData *TD = TLI ? TLI->getTargetData() : 0;
 | |
|   if (!TD) return false;
 | |
|   
 | |
|   // Lower all default uses of _chk calls.  This is very similar
 | |
|   // to what InstCombineCalls does, but here we are only lowering calls
 | |
|   // that have the default "don't know" as the objectsize.  Anything else
 | |
|   // should be left alone.
 | |
|   CodeGenPrepareFortifiedLibCalls Simplifier;
 | |
|   return Simplifier.fold(CI, TD);
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Optimization
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IsNonLocalValue - Return true if the specified values are defined in a
 | |
| /// different basic block than BB.
 | |
| static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() != BB;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// OptimizeMemoryInst - Load and Store Instructions often have
 | |
| /// addressing modes that can do significant amounts of computation.  As such,
 | |
| /// instruction selection will try to get the load or store to do as much
 | |
| /// computation as possible for the program.  The problem is that isel can only
 | |
| /// see within a single block.  As such, we sink as much legal addressing mode
 | |
| /// stuff into the block as possible.
 | |
| ///
 | |
| /// This method is used to optimize both load/store and inline asms with memory
 | |
| /// operands.
 | |
| bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
 | |
|                                         const Type *AccessTy,
 | |
|                                         DenseMap<Value*,Value*> &SunkAddrs) {
 | |
|   // Figure out what addressing mode will be built up for this operation.
 | |
|   SmallVector<Instruction*, 16> AddrModeInsts;
 | |
|   ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
 | |
|                                                       AddrModeInsts, *TLI);
 | |
| 
 | |
|   // Check to see if any of the instructions supersumed by this addr mode are
 | |
|   // non-local to I's BB.
 | |
|   bool AnyNonLocal = false;
 | |
|   for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
 | |
|     if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
 | |
|       AnyNonLocal = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If all the instructions matched are already in this BB, don't do anything.
 | |
|   if (!AnyNonLocal) {
 | |
|     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Insert this computation right after this user.  Since our caller is
 | |
|   // scanning from the top of the BB to the bottom, reuse of the expr are
 | |
|   // guaranteed to happen later.
 | |
|   BasicBlock::iterator InsertPt = MemoryInst;
 | |
| 
 | |
|   // Now that we determined the addressing expression we want to use and know
 | |
|   // that we have to sink it into this block.  Check to see if we have already
 | |
|   // done this for some other load/store instr in this block.  If so, reuse the
 | |
|   // computation.
 | |
|   Value *&SunkAddr = SunkAddrs[Addr];
 | |
|   if (SunkAddr) {
 | |
|     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst);
 | |
|     if (SunkAddr->getType() != Addr->getType())
 | |
|       SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
 | |
|   } else {
 | |
|     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
 | |
|                  << *MemoryInst);
 | |
|     const Type *IntPtrTy =
 | |
|           TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
 | |
| 
 | |
|     Value *Result = 0;
 | |
| 
 | |
|     // Start with the base register. Do this first so that subsequent address
 | |
|     // matching finds it last, which will prevent it from trying to match it
 | |
|     // as the scaled value in case it happens to be a mul. That would be
 | |
|     // problematic if we've sunk a different mul for the scale, because then
 | |
|     // we'd end up sinking both muls.
 | |
|     if (AddrMode.BaseReg) {
 | |
|       Value *V = AddrMode.BaseReg;
 | |
|       if (V->getType()->isPointerTy())
 | |
|         V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       if (V->getType() != IntPtrTy)
 | |
|         V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
 | |
|                                         "sunkaddr", InsertPt);
 | |
|       Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add the scale value.
 | |
|     if (AddrMode.Scale) {
 | |
|       Value *V = AddrMode.ScaledReg;
 | |
|       if (V->getType() == IntPtrTy) {
 | |
|         // done.
 | |
|       } else if (V->getType()->isPointerTy()) {
 | |
|         V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
 | |
|                  cast<IntegerType>(V->getType())->getBitWidth()) {
 | |
|         V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       } else {
 | |
|         V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
 | |
|       }
 | |
|       if (AddrMode.Scale != 1)
 | |
|         V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
 | |
|                                                                 AddrMode.Scale),
 | |
|                                       "sunkaddr", InsertPt);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the BaseGV if present.
 | |
|     if (AddrMode.BaseGV) {
 | |
|       Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
 | |
|                                   InsertPt);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     // Add in the Base Offset if present.
 | |
|     if (AddrMode.BaseOffs) {
 | |
|       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
 | |
|       if (Result)
 | |
|         Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
 | |
|       else
 | |
|         Result = V;
 | |
|     }
 | |
| 
 | |
|     if (Result == 0)
 | |
|       SunkAddr = Constant::getNullValue(Addr->getType());
 | |
|     else
 | |
|       SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
 | |
|   }
 | |
| 
 | |
|   MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
 | |
| 
 | |
|   if (Addr->use_empty()) {
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(Addr);
 | |
|     // This address is now available for reassignment, so erase the table entry;
 | |
|     // we don't want to match some completely different instruction.
 | |
|     SunkAddrs[Addr] = 0;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeInlineAsmInst - If there are any memory operands, use
 | |
| /// OptimizeMemoryInst to sink their address computing into the block when
 | |
| /// possible / profitable.
 | |
| bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
 | |
|                                            DenseMap<Value*,Value*> &SunkAddrs) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS);
 | |
|   unsigned ArgNo = 0;
 | |
|   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
 | |
|     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
 | |
|     
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     TLI->ComputeConstraintToUse(OpInfo, SDValue());
 | |
| 
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         OpInfo.isIndirect) {
 | |
|       Value *OpVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|       MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
 | |
|     } else if (OpInfo.Type == InlineAsm::isInput)
 | |
|       ArgNo++;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
 | |
| /// basic block as the load, unless conditions are unfavorable. This allows
 | |
| /// SelectionDAG to fold the extend into the load.
 | |
| ///
 | |
| bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
 | |
|   // Look for a load being extended.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
 | |
|   if (!LI) return false;
 | |
| 
 | |
|   // If they're already in the same block, there's nothing to do.
 | |
|   if (LI->getParent() == I->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // If the load has other users and the truncate is not free, this probably
 | |
|   // isn't worthwhile.
 | |
|   if (!LI->hasOneUse() &&
 | |
|       TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
 | |
|               !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
 | |
|       !TLI->isTruncateFree(I->getType(), LI->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the target supports casts folded into loads.
 | |
|   unsigned LType;
 | |
|   if (isa<ZExtInst>(I))
 | |
|     LType = ISD::ZEXTLOAD;
 | |
|   else {
 | |
|     assert(isa<SExtInst>(I) && "Unexpected ext type!");
 | |
|     LType = ISD::SEXTLOAD;
 | |
|   }
 | |
|   if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
 | |
|     return false;
 | |
| 
 | |
|   // Move the extend into the same block as the load, so that SelectionDAG
 | |
|   // can fold it.
 | |
|   I->removeFromParent();
 | |
|   I->insertAfter(LI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
 | |
|   BasicBlock *DefBB = I->getParent();
 | |
| 
 | |
|   // If the result of a {s|z}ext and its source are both live out, rewrite all
 | |
|   // other uses of the source with result of extension.
 | |
|   Value *Src = I->getOperand(0);
 | |
|   if (Src->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Only do this xform if truncating is free.
 | |
|   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Only safe to perform the optimization if the source is also defined in
 | |
|   // this block.
 | |
|   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
 | |
|     return false;
 | |
| 
 | |
|   bool DefIsLiveOut = false;
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     DefIsLiveOut = true;
 | |
|     break;
 | |
|   }
 | |
|   if (!DefIsLiveOut)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure non of the uses are PHI nodes.
 | |
|   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
|     // Be conservative. We don't want this xform to end up introducing
 | |
|     // reloads just before load / store instructions.
 | |
|     if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // InsertedTruncs - Only insert one trunc in each block once.
 | |
|   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Figure out which BB this ext is used in.
 | |
|     BasicBlock *UserBB = User->getParent();
 | |
|     if (UserBB == DefBB) continue;
 | |
| 
 | |
|     // Both src and def are live in this block. Rewrite the use.
 | |
|     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
 | |
| 
 | |
|     if (!InsertedTrunc) {
 | |
|       BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
 | |
| 
 | |
|       InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
 | |
|     }
 | |
| 
 | |
|     // Replace a use of the {s|z}ext source with a use of the result.
 | |
|     TheUse = InsertedTrunc;
 | |
| 
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // In this pass we look for GEP and cast instructions that are used
 | |
| // across basic blocks and rewrite them to improve basic-block-at-a-time
 | |
| // selection.
 | |
| bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Split all critical edges where the dest block has a PHI.
 | |
|   if (CriticalEdgeSplit) {
 | |
|     TerminatorInst *BBTI = BB.getTerminator();
 | |
|     if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
 | |
|       for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
 | |
|         BasicBlock *SuccBB = BBTI->getSuccessor(i);
 | |
|         if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
 | |
|           SplitEdgeNicely(BBTI, i, BackEdges, this);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Keep track of non-local addresses that have been sunk into this block.
 | |
|   // This allows us to avoid inserting duplicate code for blocks with multiple
 | |
|   // load/stores of the same address.
 | |
|   DenseMap<Value*, Value*> SunkAddrs;
 | |
| 
 | |
|   for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
 | |
|     Instruction *I = BBI++;
 | |
| 
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|       // If the source of the cast is a constant, then this should have
 | |
|       // already been constant folded.  The only reason NOT to constant fold
 | |
|       // it is if something (e.g. LSR) was careful to place the constant
 | |
|       // evaluation in a block other than then one that uses it (e.g. to hoist
 | |
|       // the address of globals out of a loop).  If this is the case, we don't
 | |
|       // want to forward-subst the cast.
 | |
|       if (isa<Constant>(CI->getOperand(0)))
 | |
|         continue;
 | |
| 
 | |
|       bool Change = false;
 | |
|       if (TLI) {
 | |
|         Change = OptimizeNoopCopyExpression(CI, *TLI);
 | |
|         MadeChange |= Change;
 | |
|       }
 | |
| 
 | |
|       if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
 | |
|         MadeChange |= MoveExtToFormExtLoad(I);
 | |
|         MadeChange |= OptimizeExtUses(I);
 | |
|       }
 | |
|     } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
 | |
|       MadeChange |= OptimizeCmpExpression(CI);
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       if (TLI)
 | |
|         MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
 | |
|                                          SunkAddrs);
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|       if (TLI)
 | |
|         MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
 | |
|                                          SI->getOperand(0)->getType(),
 | |
|                                          SunkAddrs);
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       if (GEPI->hasAllZeroIndices()) {
 | |
|         /// The GEP operand must be a pointer, so must its result -> BitCast
 | |
|         Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
 | |
|                                           GEPI->getName(), GEPI);
 | |
|         GEPI->replaceAllUsesWith(NC);
 | |
|         GEPI->eraseFromParent();
 | |
|         MadeChange = true;
 | |
|         BBI = NC;
 | |
|       }
 | |
|     } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       // If we found an inline asm expession, and if the target knows how to
 | |
|       // lower it to normal LLVM code, do so now.
 | |
|       if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
 | |
|         if (TLI->ExpandInlineAsm(CI)) {
 | |
|           BBI = BB.begin();
 | |
|           // Avoid processing instructions out of order, which could cause
 | |
|           // reuse before a value is defined.
 | |
|           SunkAddrs.clear();
 | |
|         } else
 | |
|           // Sink address computing for memory operands into the block.
 | |
|           MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
 | |
|       } else {
 | |
|         // Other CallInst optimizations that don't need to muck with the
 | |
|         // enclosing iterator here.
 | |
|         MadeChange |= OptimizeCallInst(CI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |