mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	perform initialization without static constructors AND without explicit initialization by the client. For the moment, passes are required to initialize both their (potential) dependencies and any passes they preserve. I hope to be able to relax the latter requirement in the future. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements simple dominator construction algorithms for finding
 | |
| // forward dominators.  Postdominators are available in libanalysis, but are not
 | |
| // included in libvmcore, because it's not needed.  Forward dominators are
 | |
| // needed to support the Verifier pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/DominatorInternals.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Always verify dominfo if expensive checking is enabled.
 | |
| #ifdef XDEBUG
 | |
| static bool VerifyDomInfo = true;
 | |
| #else
 | |
| static bool VerifyDomInfo = false;
 | |
| #endif
 | |
| static cl::opt<bool,true>
 | |
| VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
 | |
|                cl::desc("Verify dominator info (time consuming)"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Provide public access to DominatorTree information.  Implementation details
 | |
| // can be found in DominatorCalculation.h.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
 | |
| TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
 | |
| 
 | |
| char DominatorTree::ID = 0;
 | |
| INITIALIZE_PASS(DominatorTree, "domtree",
 | |
|                 "Dominator Tree Construction", true, true)
 | |
| 
 | |
| bool DominatorTree::runOnFunction(Function &F) {
 | |
|   DT->recalculate(F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DominatorTree::verifyAnalysis() const {
 | |
|   if (!VerifyDomInfo) return;
 | |
| 
 | |
|   Function &F = *getRoot()->getParent();
 | |
| 
 | |
|   DominatorTree OtherDT;
 | |
|   OtherDT.getBase().recalculate(F);
 | |
|   assert(!compare(OtherDT) && "Invalid DominatorTree info!");
 | |
| }
 | |
| 
 | |
| void DominatorTree::print(raw_ostream &OS, const Module *) const {
 | |
|   DT->print(OS);
 | |
| }
 | |
| 
 | |
| // dominates - Return true if A dominates a use in B. This performs the
 | |
| // special checks necessary if A and B are in the same basic block.
 | |
| bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
 | |
|   const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|   
 | |
|   // If A is an invoke instruction, its value is only available in this normal
 | |
|   // successor block.
 | |
|   if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
 | |
|     BBA = II->getNormalDest();
 | |
|   
 | |
|   if (BBA != BBB) return dominates(BBA, BBB);
 | |
|   
 | |
|   // It is not possible to determine dominance between two PHI nodes 
 | |
|   // based on their ordering.
 | |
|   if (isa<PHINode>(A) && isa<PHINode>(B)) 
 | |
|     return false;
 | |
|   
 | |
|   // Loop through the basic block until we find A or B.
 | |
|   BasicBlock::const_iterator I = BBA->begin();
 | |
|   for (; &*I != A && &*I != B; ++I)
 | |
|     /*empty*/;
 | |
|   
 | |
|   return &*I == A;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominanceFrontier Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| char DominanceFrontier::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
 | |
|                 "Dominance Frontier Construction", true, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
 | |
|                 "Dominance Frontier Construction", true, true)
 | |
| 
 | |
| void DominanceFrontier::verifyAnalysis() const {
 | |
|   if (!VerifyDomInfo) return;
 | |
| 
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
| 
 | |
|   DominanceFrontier OtherDF;
 | |
|   const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
 | |
|   OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
 | |
|   assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
 | |
| }
 | |
| 
 | |
| // NewBB is split and now it has one successor. Update dominance frontier to
 | |
| // reflect this change.
 | |
| void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
 | |
|   assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
 | |
|          "NewBB should have a single successor!");
 | |
|   BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|   // NewBBSucc inherits original NewBB frontier.
 | |
|   DominanceFrontier::iterator NewBBI = find(NewBB);
 | |
|   if (NewBBI != end())
 | |
|     addBasicBlock(NewBBSucc, NewBBI->second);
 | |
| 
 | |
|   // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
 | |
|   // DF(NewBBSucc) without the stuff that the new block does not dominate
 | |
|   // a predecessor of.
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|   DomTreeNode *NewBBNode = DT.getNode(NewBB);
 | |
|   DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
 | |
|   if (DT.dominates(NewBBNode, NewBBSuccNode)) {
 | |
|     DominanceFrontier::iterator DFI = find(NewBBSucc);
 | |
|     if (DFI != end()) {
 | |
|       DominanceFrontier::DomSetType Set = DFI->second;
 | |
|       // Filter out stuff in Set that we do not dominate a predecessor of.
 | |
|       for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | |
|              E = Set.end(); SetI != E;) {
 | |
|         bool DominatesPred = false;
 | |
|         for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | |
|              PI != E; ++PI)
 | |
|           if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
 | |
|             DominatesPred = true;
 | |
|             break;
 | |
|           }
 | |
|         if (!DominatesPred)
 | |
|           Set.erase(SetI++);
 | |
|         else
 | |
|           ++SetI;
 | |
|       }
 | |
| 
 | |
|       if (NewBBI != end()) {
 | |
|         for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | |
|                E = Set.end(); SetI != E; ++SetI) {
 | |
|           BasicBlock *SB = *SetI;
 | |
|           addToFrontier(NewBBI, SB);
 | |
|         }
 | |
|       } else 
 | |
|         addBasicBlock(NewBB, Set);
 | |
|     }
 | |
|     
 | |
|   } else {
 | |
|     // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | |
|     // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | |
|     // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | |
|     DominanceFrontier::DomSetType NewDFSet;
 | |
|     NewDFSet.insert(NewBBSucc);
 | |
|     addBasicBlock(NewBB, NewDFSet);
 | |
|   }
 | |
| 
 | |
|   // Now update dominance frontiers which either used to contain NewBBSucc
 | |
|   // or which now need to include NewBB.
 | |
| 
 | |
|   // Collect the set of blocks which dominate a predecessor of NewBB or
 | |
|   // NewSuccBB and which don't dominate both. This is an initial
 | |
|   // approximation of the blocks whose dominance frontiers will need updates.
 | |
|   SmallVector<DomTreeNode *, 16> AllPredDoms;
 | |
| 
 | |
|   // Compute the block which dominates both NewBBSucc and NewBB. This is
 | |
|   // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
 | |
|   // The code below which climbs dominator trees will stop at this point,
 | |
|   // because from this point up, dominance frontiers are unaffected.
 | |
|   DomTreeNode *DominatesBoth = 0;
 | |
|   if (NewBBSuccNode) {
 | |
|     DominatesBoth = NewBBSuccNode->getIDom();
 | |
|     if (DominatesBoth == NewBBNode)
 | |
|       DominatesBoth = NewBBNode->getIDom();
 | |
|   }
 | |
| 
 | |
|   // Collect the set of all blocks which dominate a predecessor of NewBB.
 | |
|   SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
 | |
|   for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
 | |
|     for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
 | |
|       if (DTN == DominatesBoth)
 | |
|         break;
 | |
|       if (!NewBBPredDoms.insert(DTN))
 | |
|         break;
 | |
|       AllPredDoms.push_back(DTN);
 | |
|     }
 | |
| 
 | |
|   // Collect the set of all blocks which dominate a predecessor of NewSuccBB.
 | |
|   SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
 | |
|   for (pred_iterator PI = pred_begin(NewBBSucc),
 | |
|        E = pred_end(NewBBSucc); PI != E; ++PI)
 | |
|     for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
 | |
|       if (DTN == DominatesBoth)
 | |
|         break;
 | |
|       if (!NewBBSuccPredDoms.insert(DTN))
 | |
|         break;
 | |
|       if (!NewBBPredDoms.count(DTN))
 | |
|         AllPredDoms.push_back(DTN);
 | |
|     }
 | |
| 
 | |
|   // Visit all relevant dominance frontiers and make any needed updates.
 | |
|   for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
 | |
|        E = AllPredDoms.end(); I != E; ++I) {
 | |
|     DomTreeNode *DTN = *I;
 | |
|     iterator DFI = find((*I)->getBlock());
 | |
| 
 | |
|     // Only consider nodes that have NewBBSucc in their dominator frontier.
 | |
|     if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
 | |
| 
 | |
|     // If the block dominates a predecessor of NewBB but does not properly
 | |
|     // dominate NewBB itself, add NewBB to its dominance frontier.
 | |
|     if (NewBBPredDoms.count(DTN) &&
 | |
|         !DT.properlyDominates(DTN, NewBBNode))
 | |
|       addToFrontier(DFI, NewBB);
 | |
| 
 | |
|     // If the block does not dominate a predecessor of NewBBSucc or
 | |
|     // properly dominates NewBBSucc itself, remove NewBBSucc from its
 | |
|     // dominance frontier.
 | |
|     if (!NewBBSuccPredDoms.count(DTN) ||
 | |
|         DT.properlyDominates(DTN, NewBBSuccNode))
 | |
|       removeFromFrontier(DFI, NewBBSucc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class DFCalculateWorkObject {
 | |
|   public:
 | |
|     DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
 | |
|                           const DomTreeNode *N,
 | |
|                           const DomTreeNode *PN)
 | |
|     : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
 | |
|     BasicBlock *currentBB;
 | |
|     BasicBlock *parentBB;
 | |
|     const DomTreeNode *Node;
 | |
|     const DomTreeNode *parentNode;
 | |
|   };
 | |
| }
 | |
| 
 | |
| const DominanceFrontier::DomSetType &
 | |
| DominanceFrontier::calculate(const DominatorTree &DT,
 | |
|                              const DomTreeNode *Node) {
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
|   DomSetType *Result = NULL;
 | |
| 
 | |
|   std::vector<DFCalculateWorkObject> workList;
 | |
|   SmallPtrSet<BasicBlock *, 32> visited;
 | |
| 
 | |
|   workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
 | |
|   do {
 | |
|     DFCalculateWorkObject *currentW = &workList.back();
 | |
|     assert (currentW && "Missing work object.");
 | |
| 
 | |
|     BasicBlock *currentBB = currentW->currentBB;
 | |
|     BasicBlock *parentBB = currentW->parentBB;
 | |
|     const DomTreeNode *currentNode = currentW->Node;
 | |
|     const DomTreeNode *parentNode = currentW->parentNode;
 | |
|     assert (currentBB && "Invalid work object. Missing current Basic Block");
 | |
|     assert (currentNode && "Invalid work object. Missing current Node");
 | |
|     DomSetType &S = Frontiers[currentBB];
 | |
| 
 | |
|     // Visit each block only once.
 | |
|     if (visited.count(currentBB) == 0) {
 | |
|       visited.insert(currentBB);
 | |
| 
 | |
|       // Loop over CFG successors to calculate DFlocal[currentNode]
 | |
|       for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
 | |
|            SI != SE; ++SI) {
 | |
|         // Does Node immediately dominate this successor?
 | |
|         if (DT[*SI]->getIDom() != currentNode)
 | |
|           S.insert(*SI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | |
|     // Loop through and visit the nodes that Node immediately dominates (Node's
 | |
|     // children in the IDomTree)
 | |
|     bool visitChild = false;
 | |
|     for (DomTreeNode::const_iterator NI = currentNode->begin(), 
 | |
|            NE = currentNode->end(); NI != NE; ++NI) {
 | |
|       DomTreeNode *IDominee = *NI;
 | |
|       BasicBlock *childBB = IDominee->getBlock();
 | |
|       if (visited.count(childBB) == 0) {
 | |
|         workList.push_back(DFCalculateWorkObject(childBB, currentBB,
 | |
|                                                  IDominee, currentNode));
 | |
|         visitChild = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If all children are visited or there is any child then pop this block
 | |
|     // from the workList.
 | |
|     if (!visitChild) {
 | |
| 
 | |
|       if (!parentBB) {
 | |
|         Result = &S;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
 | |
|       DomSetType &parentSet = Frontiers[parentBB];
 | |
|       for (; CDFI != CDFE; ++CDFI) {
 | |
|         if (!DT.properlyDominates(parentNode, DT[*CDFI]))
 | |
|           parentSet.insert(*CDFI);
 | |
|       }
 | |
|       workList.pop_back();
 | |
|     }
 | |
| 
 | |
|   } while (!workList.empty());
 | |
| 
 | |
|   return *Result;
 | |
| }
 | |
| 
 | |
| void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     OS << "  DomFrontier for BB ";
 | |
|     if (I->first)
 | |
|       WriteAsOperand(OS, I->first, false);
 | |
|     else
 | |
|       OS << " <<exit node>>";
 | |
|     OS << " is:\t";
 | |
|     
 | |
|     const std::set<BasicBlock*> &BBs = I->second;
 | |
|     
 | |
|     for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | |
|          I != E; ++I) {
 | |
|       OS << ' ';
 | |
|       if (*I)
 | |
|         WriteAsOperand(OS, *I, false);
 | |
|       else
 | |
|         OS << "<<exit node>>";
 | |
|     }
 | |
|     OS << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DominanceFrontierBase::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| 
 |