mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117111 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1994 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1994 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full `Java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well-formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are of the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first-class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  * All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  * It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embedded into a basic block
 | |
| //  * Functions cannot take a void-typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no initializer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Metadata.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/TypeSymbolTable.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cstdarg>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {  // Anonymous namespace for class
 | |
|   struct PreVerifier : public FunctionPass {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
| 
 | |
|     PreVerifier() : FunctionPass(ID) {
 | |
|       initializePreVerifierPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|     }
 | |
| 
 | |
|     // Check that the prerequisites for successful DominatorTree construction
 | |
|     // are satisfied.
 | |
|     bool runOnFunction(Function &F) {
 | |
|       bool Broken = false;
 | |
| 
 | |
|       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | |
|         if (I->empty() || !I->back().isTerminator()) {
 | |
|           dbgs() << "Basic Block in function '" << F.getName() 
 | |
|                  << "' does not have terminator!\n";
 | |
|           WriteAsOperand(dbgs(), I, true);
 | |
|           dbgs() << "\n";
 | |
|           Broken = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Broken)
 | |
|         report_fatal_error("Broken module, no Basic Block terminator!");
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char PreVerifier::ID = 0;
 | |
| INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", 
 | |
|                 false, false)
 | |
| static char &PreVerifyID = PreVerifier::ID;
 | |
| 
 | |
| namespace {
 | |
|   class TypeSet : public AbstractTypeUser {
 | |
|   public:
 | |
|     TypeSet() {}
 | |
| 
 | |
|     /// Insert a type into the set of types.
 | |
|     bool insert(const Type *Ty) {
 | |
|       if (!Types.insert(Ty))
 | |
|         return false;
 | |
|       if (Ty->isAbstract())
 | |
|         Ty->addAbstractTypeUser(this);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Remove ourselves as abstract type listeners for any types that remain
 | |
|     // abstract when the TypeSet is destroyed.
 | |
|     ~TypeSet() {
 | |
|       for (SmallSetVector<const Type *, 16>::iterator I = Types.begin(),
 | |
|              E = Types.end(); I != E; ++I) {
 | |
|         const Type *Ty = *I;
 | |
|         if (Ty->isAbstract())
 | |
|           Ty->removeAbstractTypeUser(this);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Abstract type user interface.
 | |
| 
 | |
|     /// Remove types from the set when refined. Do not insert the type it was
 | |
|     /// refined to because that type hasn't been verified yet.
 | |
|     void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|       Types.remove(OldTy);
 | |
|       OldTy->removeAbstractTypeUser(this);
 | |
|     }
 | |
| 
 | |
|     /// Stop listening for changes to a type which is no longer abstract.
 | |
|     void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|       AbsTy->removeAbstractTypeUser(this);
 | |
|     }
 | |
| 
 | |
|     void dump() const {}
 | |
| 
 | |
|   private:
 | |
|     SmallSetVector<const Type *, 16> Types;
 | |
| 
 | |
|     // Disallow copying.
 | |
|     TypeSet(const TypeSet &);
 | |
|     TypeSet &operator=(const TypeSet &);
 | |
|   };
 | |
| 
 | |
|   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     bool Broken;          // Is this module found to be broken?
 | |
|     bool RealPass;        // Are we not being run by a PassManager?
 | |
|     VerifierFailureAction action;
 | |
|                           // What to do if verification fails.
 | |
|     Module *Mod;          // Module we are verifying right now
 | |
|     LLVMContext *Context; // Context within which we are verifying
 | |
|     DominatorTree *DT;    // Dominator Tree, caution can be null!
 | |
| 
 | |
|     std::string Messages;
 | |
|     raw_string_ostream MessagesStr;
 | |
| 
 | |
|     /// InstInThisBlock - when verifying a basic block, keep track of all of the
 | |
|     /// instructions we have seen so far.  This allows us to do efficient
 | |
|     /// dominance checks for the case when an instruction has an operand that is
 | |
|     /// an instruction in the same block.
 | |
|     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
 | |
| 
 | |
|     /// Types - keep track of the types that have been checked already.
 | |
|     TypeSet Types;
 | |
| 
 | |
|     /// MDNodes - keep track of the metadata nodes that have been checked
 | |
|     /// already.
 | |
|     SmallPtrSet<MDNode *, 32> MDNodes;
 | |
| 
 | |
|     Verifier()
 | |
|       : FunctionPass(ID), 
 | |
|       Broken(false), RealPass(true), action(AbortProcessAction),
 | |
|       Mod(0), Context(0), DT(0), MessagesStr(Messages) {
 | |
|         initializeVerifierPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
|     explicit Verifier(VerifierFailureAction ctn)
 | |
|       : FunctionPass(ID), 
 | |
|       Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0),
 | |
|       MessagesStr(Messages) {
 | |
|         initializeVerifierPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       Mod = &M;
 | |
|       Context = &M.getContext();
 | |
|       verifyTypeSymbolTable(M.getTypeSymbolTable());
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) {
 | |
|       // Get dominator information if we are being run by PassManager
 | |
|       if (RealPass) DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|       Mod = F.getParent();
 | |
|       if (!Context) Context = &F.getContext();
 | |
| 
 | |
|       visit(F);
 | |
|       InstsInThisBlock.clear();
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       if (RealPass)
 | |
|         return abortIfBroken();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool doFinalization(Module &M) {
 | |
|       // Scan through, checking all of the external function's linkage now...
 | |
|       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|         visitGlobalValue(*I);
 | |
| 
 | |
|         // Check to make sure function prototypes are okay.
 | |
|         if (I->isDeclaration()) visitFunction(*I);
 | |
|       }
 | |
| 
 | |
|       for (Module::global_iterator I = M.global_begin(), E = M.global_end(); 
 | |
|            I != E; ++I)
 | |
|         visitGlobalVariable(*I);
 | |
| 
 | |
|       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 
 | |
|            I != E; ++I)
 | |
|         visitGlobalAlias(*I);
 | |
| 
 | |
|       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
 | |
|            E = M.named_metadata_end(); I != E; ++I)
 | |
|         visitNamedMDNode(*I);
 | |
| 
 | |
|       // If the module is broken, abort at this time.
 | |
|       return abortIfBroken();
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       AU.addRequiredID(PreVerifyID);
 | |
|       if (RealPass)
 | |
|         AU.addRequired<DominatorTree>();
 | |
|     }
 | |
| 
 | |
|     /// abortIfBroken - If the module is broken and we are supposed to abort on
 | |
|     /// this condition, do so.
 | |
|     ///
 | |
|     bool abortIfBroken() {
 | |
|       if (!Broken) return false;
 | |
|       MessagesStr << "Broken module found, ";
 | |
|       switch (action) {
 | |
|       default: llvm_unreachable("Unknown action");
 | |
|       case AbortProcessAction:
 | |
|         MessagesStr << "compilation aborted!\n";
 | |
|         dbgs() << MessagesStr.str();
 | |
|         // Client should choose different reaction if abort is not desired
 | |
|         abort();
 | |
|       case PrintMessageAction:
 | |
|         MessagesStr << "verification continues.\n";
 | |
|         dbgs() << MessagesStr.str();
 | |
|         return false;
 | |
|       case ReturnStatusAction:
 | |
|         MessagesStr << "compilation terminated.\n";
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Verification methods...
 | |
|     void verifyTypeSymbolTable(TypeSymbolTable &ST);
 | |
|     void visitGlobalValue(GlobalValue &GV);
 | |
|     void visitGlobalVariable(GlobalVariable &GV);
 | |
|     void visitGlobalAlias(GlobalAlias &GA);
 | |
|     void visitNamedMDNode(NamedMDNode &NMD);
 | |
|     void visitMDNode(MDNode &MD, Function *F);
 | |
|     void visitFunction(Function &F);
 | |
|     void visitBasicBlock(BasicBlock &BB);
 | |
|     using InstVisitor<Verifier>::visit;
 | |
| 
 | |
|     void visit(Instruction &I);
 | |
| 
 | |
|     void visitTruncInst(TruncInst &I);
 | |
|     void visitZExtInst(ZExtInst &I);
 | |
|     void visitSExtInst(SExtInst &I);
 | |
|     void visitFPTruncInst(FPTruncInst &I);
 | |
|     void visitFPExtInst(FPExtInst &I);
 | |
|     void visitFPToUIInst(FPToUIInst &I);
 | |
|     void visitFPToSIInst(FPToSIInst &I);
 | |
|     void visitUIToFPInst(UIToFPInst &I);
 | |
|     void visitSIToFPInst(SIToFPInst &I);
 | |
|     void visitIntToPtrInst(IntToPtrInst &I);
 | |
|     void visitPtrToIntInst(PtrToIntInst &I);
 | |
|     void visitBitCastInst(BitCastInst &I);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitBinaryOperator(BinaryOperator &B);
 | |
|     void visitICmpInst(ICmpInst &IC);
 | |
|     void visitFCmpInst(FCmpInst &FC);
 | |
|     void visitExtractElementInst(ExtractElementInst &EI);
 | |
|     void visitInsertElementInst(InsertElementInst &EI);
 | |
|     void visitShuffleVectorInst(ShuffleVectorInst &EI);
 | |
|     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
 | |
|     void visitCallInst(CallInst &CI);
 | |
|     void visitInvokeInst(InvokeInst &II);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitInstruction(Instruction &I);
 | |
|     void visitTerminatorInst(TerminatorInst &I);
 | |
|     void visitBranchInst(BranchInst &BI);
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitSwitchInst(SwitchInst &SI);
 | |
|     void visitIndirectBrInst(IndirectBrInst &BI);
 | |
|     void visitSelectInst(SelectInst &SI);
 | |
|     void visitUserOp1(Instruction &I);
 | |
|     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
|     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
 | |
|     void visitAllocaInst(AllocaInst &AI);
 | |
|     void visitExtractValueInst(ExtractValueInst &EVI);
 | |
|     void visitInsertValueInst(InsertValueInst &IVI);
 | |
| 
 | |
|     void VerifyCallSite(CallSite CS);
 | |
|     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
 | |
|                           int VT, unsigned ArgNo, std::string &Suffix);
 | |
|     void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
 | |
|                                   unsigned RetNum, unsigned ParamNum, ...);
 | |
|     void VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
 | |
|                               bool isReturnValue, const Value *V);
 | |
|     void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
 | |
|                              const Value *V);
 | |
|     void VerifyType(const Type *Ty);
 | |
| 
 | |
|     void WriteValue(const Value *V) {
 | |
|       if (!V) return;
 | |
|       if (isa<Instruction>(V)) {
 | |
|         MessagesStr << *V << '\n';
 | |
|       } else {
 | |
|         WriteAsOperand(MessagesStr, V, true, Mod);
 | |
|         MessagesStr << '\n';
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void WriteType(const Type *T) {
 | |
|       if (!T) return;
 | |
|       MessagesStr << ' ';
 | |
|       WriteTypeSymbolic(MessagesStr, T, Mod);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // CheckFailed - A check failed, so print out the condition and the message
 | |
|     // that failed.  This provides a nice place to put a breakpoint if you want
 | |
|     // to see why something is not correct.
 | |
|     void CheckFailed(const Twine &Message,
 | |
|                      const Value *V1 = 0, const Value *V2 = 0,
 | |
|                      const Value *V3 = 0, const Value *V4 = 0) {
 | |
|       MessagesStr << Message.str() << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteValue(V2);
 | |
|       WriteValue(V3);
 | |
|       WriteValue(V4);
 | |
|       Broken = true;
 | |
|     }
 | |
| 
 | |
|     void CheckFailed(const Twine &Message, const Value *V1,
 | |
|                      const Type *T2, const Value *V3 = 0) {
 | |
|       MessagesStr << Message.str() << "\n";
 | |
|       WriteValue(V1);
 | |
|       WriteType(T2);
 | |
|       WriteValue(V3);
 | |
|       Broken = true;
 | |
|     }
 | |
| 
 | |
|     void CheckFailed(const Twine &Message, const Type *T1,
 | |
|                      const Type *T2 = 0, const Type *T3 = 0) {
 | |
|       MessagesStr << Message.str() << "\n";
 | |
|       WriteType(T1);
 | |
|       WriteType(T2);
 | |
|       WriteType(T3);
 | |
|       Broken = true;
 | |
|     }
 | |
|   };
 | |
| } // End anonymous namespace
 | |
| 
 | |
| char Verifier::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(PreVerifier)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, M) \
 | |
|   do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | |
| #define Assert1(C, M, V1) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | |
| #define Assert2(C, M, V1, V2) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | |
| #define Assert3(C, M, V1, V2, V3) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | |
| #define Assert4(C, M, V1, V2, V3, V4) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | |
| 
 | |
| void Verifier::visit(Instruction &I) {
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
 | |
|     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
 | |
|   InstVisitor<Verifier>::visit(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| void Verifier::visitGlobalValue(GlobalValue &GV) {
 | |
|   Assert1(!GV.isDeclaration() ||
 | |
|           GV.isMaterializable() ||
 | |
|           GV.hasExternalLinkage() ||
 | |
|           GV.hasDLLImportLinkage() ||
 | |
|           GV.hasExternalWeakLinkage() ||
 | |
|           (isa<GlobalAlias>(GV) &&
 | |
|            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
 | |
|   "Global is external, but doesn't have external or dllimport or weak linkage!",
 | |
|           &GV);
 | |
| 
 | |
|   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
 | |
|           "Global is marked as dllimport, but not external", &GV);
 | |
| 
 | |
|   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
 | |
|           "Only global variables can have appending linkage!", &GV);
 | |
| 
 | |
|   if (GV.hasAppendingLinkage()) {
 | |
|     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
 | |
|     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
 | |
|             "Only global arrays can have appending linkage!", GVar);
 | |
|   }
 | |
| 
 | |
|   Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
 | |
|           "linker_private_weak_def_auto can only have default visibility!",
 | |
|           &GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalVariable(GlobalVariable &GV) {
 | |
|   if (GV.hasInitializer()) {
 | |
|     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
 | |
|             "Global variable initializer type does not match global "
 | |
|             "variable type!", &GV);
 | |
| 
 | |
|     // If the global has common linkage, it must have a zero initializer and
 | |
|     // cannot be constant.
 | |
|     if (GV.hasCommonLinkage()) {
 | |
|       Assert1(GV.getInitializer()->isNullValue(),
 | |
|               "'common' global must have a zero initializer!", &GV);
 | |
|       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
 | |
|               &GV);
 | |
|     }
 | |
|   } else {
 | |
|     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
 | |
|             GV.hasExternalWeakLinkage(),
 | |
|             "invalid linkage type for global declaration", &GV);
 | |
|   }
 | |
| 
 | |
|   visitGlobalValue(GV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGlobalAlias(GlobalAlias &GA) {
 | |
|   Assert1(!GA.getName().empty(),
 | |
|           "Alias name cannot be empty!", &GA);
 | |
|   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
 | |
|           GA.hasWeakLinkage(),
 | |
|           "Alias should have external or external weak linkage!", &GA);
 | |
|   Assert1(GA.getAliasee(),
 | |
|           "Aliasee cannot be NULL!", &GA);
 | |
|   Assert1(GA.getType() == GA.getAliasee()->getType(),
 | |
|           "Alias and aliasee types should match!", &GA);
 | |
| 
 | |
|   if (!isa<GlobalValue>(GA.getAliasee())) {
 | |
|     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
 | |
|     Assert1(CE && 
 | |
|             (CE->getOpcode() == Instruction::BitCast ||
 | |
|              CE->getOpcode() == Instruction::GetElementPtr) &&
 | |
|             isa<GlobalValue>(CE->getOperand(0)),
 | |
|             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
 | |
|             &GA);
 | |
|   }
 | |
| 
 | |
|   const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
 | |
|   Assert1(Aliasee,
 | |
|           "Aliasing chain should end with function or global variable", &GA);
 | |
| 
 | |
|   visitGlobalValue(GA);
 | |
| }
 | |
| 
 | |
| void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
 | |
|   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
 | |
|     MDNode *MD = NMD.getOperand(i);
 | |
|     if (!MD)
 | |
|       continue;
 | |
| 
 | |
|     Assert1(!MD->isFunctionLocal(),
 | |
|             "Named metadata operand cannot be function local!", MD);
 | |
|     visitMDNode(*MD, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitMDNode(MDNode &MD, Function *F) {
 | |
|   // Only visit each node once.  Metadata can be mutually recursive, so this
 | |
|   // avoids infinite recursion here, as well as being an optimization.
 | |
|   if (!MDNodes.insert(&MD))
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
 | |
|     Value *Op = MD.getOperand(i);
 | |
|     if (!Op)
 | |
|       continue;
 | |
|     if (isa<Constant>(Op) || isa<MDString>(Op))
 | |
|       continue;
 | |
|     if (MDNode *N = dyn_cast<MDNode>(Op)) {
 | |
|       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
 | |
|               "Global metadata operand cannot be function local!", &MD, N);
 | |
|       visitMDNode(*N, F);
 | |
|       continue;
 | |
|     }
 | |
|     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
 | |
| 
 | |
|     // If this was an instruction, bb, or argument, verify that it is in the
 | |
|     // function that we expect.
 | |
|     Function *ActualF = 0;
 | |
|     if (Instruction *I = dyn_cast<Instruction>(Op))
 | |
|       ActualF = I->getParent()->getParent();
 | |
|     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
 | |
|       ActualF = BB->getParent();
 | |
|     else if (Argument *A = dyn_cast<Argument>(Op))
 | |
|       ActualF = A->getParent();
 | |
|     assert(ActualF && "Unimplemented function local metadata case!");
 | |
| 
 | |
|     Assert2(ActualF == F, "function-local metadata used in wrong function",
 | |
|             &MD, Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
 | |
|   for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
 | |
|     VerifyType(I->second);
 | |
| }
 | |
| 
 | |
| // VerifyParameterAttrs - Check the given attributes for an argument or return
 | |
| // value of the specified type.  The value V is printed in error messages.
 | |
| void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty,
 | |
|                                     bool isReturnValue, const Value *V) {
 | |
|   if (Attrs == Attribute::None)
 | |
|     return;
 | |
| 
 | |
|   Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
 | |
|   Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
 | |
|           " only applies to the function!", V);
 | |
| 
 | |
|   if (isReturnValue) {
 | |
|     Attributes RetI = Attrs & Attribute::ParameterOnly;
 | |
|     Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
 | |
|             " does not apply to return values!", V);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0;
 | |
|        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
 | |
|     Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
 | |
|     Assert1(!(MutI & (MutI - 1)), "Attributes " +
 | |
|             Attribute::getAsString(MutI) + " are incompatible!", V);
 | |
|   }
 | |
| 
 | |
|   Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
 | |
|   Assert1(!TypeI, "Wrong type for attribute " +
 | |
|           Attribute::getAsString(TypeI), V);
 | |
| 
 | |
|   Attributes ByValI = Attrs & Attribute::ByVal;
 | |
|   if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | |
|     Assert1(!ByValI || PTy->getElementType()->isSized(),
 | |
|             "Attribute " + Attribute::getAsString(ByValI) +
 | |
|             " does not support unsized types!", V);
 | |
|   } else {
 | |
|     Assert1(!ByValI,
 | |
|             "Attribute " + Attribute::getAsString(ByValI) +
 | |
|             " only applies to parameters with pointer type!", V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // VerifyFunctionAttrs - Check parameter attributes against a function type.
 | |
| // The value V is printed in error messages.
 | |
| void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
 | |
|                                    const AttrListPtr &Attrs,
 | |
|                                    const Value *V) {
 | |
|   if (Attrs.isEmpty())
 | |
|     return;
 | |
| 
 | |
|   bool SawNest = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
 | |
|     const AttributeWithIndex &Attr = Attrs.getSlot(i);
 | |
| 
 | |
|     const Type *Ty;
 | |
|     if (Attr.Index == 0)
 | |
|       Ty = FT->getReturnType();
 | |
|     else if (Attr.Index-1 < FT->getNumParams())
 | |
|       Ty = FT->getParamType(Attr.Index-1);
 | |
|     else
 | |
|       break;  // VarArgs attributes, verified elsewhere.
 | |
| 
 | |
|     VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
 | |
| 
 | |
|     if (Attr.Attrs & Attribute::Nest) {
 | |
|       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
 | |
|       SawNest = true;
 | |
|     }
 | |
| 
 | |
|     if (Attr.Attrs & Attribute::StructRet)
 | |
|       Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
 | |
|   }
 | |
| 
 | |
|   Attributes FAttrs = Attrs.getFnAttributes();
 | |
|   Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
 | |
|   Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
 | |
|           " does not apply to the function!", V);
 | |
| 
 | |
|   for (unsigned i = 0;
 | |
|        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
 | |
|     Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
 | |
|     Assert1(!(MutI & (MutI - 1)), "Attributes " +
 | |
|             Attribute::getAsString(MutI) + " are incompatible!", V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
 | |
|   if (Attrs.isEmpty())
 | |
|     return true;
 | |
| 
 | |
|   unsigned LastSlot = Attrs.getNumSlots() - 1;
 | |
|   unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
 | |
|   if (LastIndex <= Params
 | |
|       || (LastIndex == (unsigned)~0
 | |
|           && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))  
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(Function &F) {
 | |
|   // Check function arguments.
 | |
|   const FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.arg_size();
 | |
| 
 | |
|   Assert1(Context == &F.getContext(),
 | |
|           "Function context does not match Module context!", &F);
 | |
| 
 | |
|   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
 | |
|   Assert2(FT->getNumParams() == NumArgs,
 | |
|           "# formal arguments must match # of arguments for function type!",
 | |
|           &F, FT);
 | |
|   Assert1(F.getReturnType()->isFirstClassType() ||
 | |
|           F.getReturnType()->isVoidTy() || 
 | |
|           F.getReturnType()->isStructTy(),
 | |
|           "Functions cannot return aggregate values!", &F);
 | |
| 
 | |
|   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
 | |
|           "Invalid struct return type!", &F);
 | |
| 
 | |
|   const AttrListPtr &Attrs = F.getAttributes();
 | |
| 
 | |
|   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
 | |
|           "Attributes after last parameter!", &F);
 | |
| 
 | |
|   // Check function attributes.
 | |
|   VerifyFunctionAttrs(FT, Attrs, &F);
 | |
| 
 | |
|   // Check that this function meets the restrictions on this calling convention.
 | |
|   switch (F.getCallingConv()) {
 | |
|   default:
 | |
|     break;
 | |
|   case CallingConv::C:
 | |
|     break;
 | |
|   case CallingConv::Fast:
 | |
|   case CallingConv::Cold:
 | |
|   case CallingConv::X86_FastCall:
 | |
|   case CallingConv::X86_ThisCall:
 | |
|   case CallingConv::PTX_Kernel:
 | |
|   case CallingConv::PTX_Device:
 | |
|     Assert1(!F.isVarArg(),
 | |
|             "Varargs functions must have C calling conventions!", &F);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   bool isLLVMdotName = F.getName().size() >= 5 &&
 | |
|                        F.getName().substr(0, 5) == "llvm.";
 | |
| 
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++i) {
 | |
|     Assert2(I->getType() == FT->getParamType(i),
 | |
|             "Argument value does not match function argument type!",
 | |
|             I, FT->getParamType(i));
 | |
|     Assert1(I->getType()->isFirstClassType(),
 | |
|             "Function arguments must have first-class types!", I);
 | |
|     if (!isLLVMdotName)
 | |
|       Assert2(!I->getType()->isMetadataTy(),
 | |
|               "Function takes metadata but isn't an intrinsic", I, &F);
 | |
|   }
 | |
| 
 | |
|   if (F.isMaterializable()) {
 | |
|     // Function has a body somewhere we can't see.
 | |
|   } else if (F.isDeclaration()) {
 | |
|     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
 | |
|             F.hasExternalWeakLinkage(),
 | |
|             "invalid linkage type for function declaration", &F);
 | |
|   } else {
 | |
|     // Verify that this function (which has a body) is not named "llvm.*".  It
 | |
|     // is not legal to define intrinsics.
 | |
|     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
 | |
|     
 | |
|     // Check the entry node
 | |
|     BasicBlock *Entry = &F.getEntryBlock();
 | |
|     Assert1(pred_begin(Entry) == pred_end(Entry),
 | |
|             "Entry block to function must not have predecessors!", Entry);
 | |
|     
 | |
|     // The address of the entry block cannot be taken, unless it is dead.
 | |
|     if (Entry->hasAddressTaken()) {
 | |
|       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
 | |
|               "blockaddress may not be used with the entry block!", Entry);
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // If this function is actually an intrinsic, verify that it is only used in
 | |
|   // direct call/invokes, never having its "address taken".
 | |
|   if (F.getIntrinsicID()) {
 | |
|     const User *U;
 | |
|     if (F.hasAddressTaken(&U))
 | |
|       Assert1(0, "Invalid user of intrinsic instruction!", U); 
 | |
|   }
 | |
| }
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   InstsInThisBlock.clear();
 | |
| 
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| 
 | |
|   // Check constraints that this basic block imposes on all of the PHI nodes in
 | |
|   // it.
 | |
|   if (isa<PHINode>(BB.front())) {
 | |
|     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
 | |
|     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
 | |
|     std::sort(Preds.begin(), Preds.end());
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
 | |
|       // Ensure that PHI nodes have at least one entry!
 | |
|       Assert1(PN->getNumIncomingValues() != 0,
 | |
|               "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|               "the PHI should be removed!", PN);
 | |
|       Assert1(PN->getNumIncomingValues() == Preds.size(),
 | |
|               "PHINode should have one entry for each predecessor of its "
 | |
|               "parent basic block!", PN);
 | |
| 
 | |
|       // Get and sort all incoming values in the PHI node...
 | |
|       Values.clear();
 | |
|       Values.reserve(PN->getNumIncomingValues());
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
 | |
|                                         PN->getIncomingValue(i)));
 | |
|       std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
 | |
|         // Check to make sure that if there is more than one entry for a
 | |
|         // particular basic block in this PHI node, that the incoming values are
 | |
|         // all identical.
 | |
|         //
 | |
|         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
 | |
|                 Values[i].second == Values[i-1].second,
 | |
|                 "PHI node has multiple entries for the same basic block with "
 | |
|                 "different incoming values!", PN, Values[i].first,
 | |
|                 Values[i].second, Values[i-1].second);
 | |
| 
 | |
|         // Check to make sure that the predecessors and PHI node entries are
 | |
|         // matched up.
 | |
|         Assert3(Values[i].first == Preds[i],
 | |
|                 "PHI node entries do not match predecessors!", PN,
 | |
|                 Values[i].first, Preds[i]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert1(&I == I.getParent()->getTerminator(),
 | |
|           "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBranchInst(BranchInst &BI) {
 | |
|   if (BI.isConditional()) {
 | |
|     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
 | |
|             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
 | |
|   }
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   unsigned N = RI.getNumOperands();
 | |
|   if (F->getReturnType()->isVoidTy()) 
 | |
|     Assert2(N == 0,
 | |
|             "Found return instr that returns non-void in Function of void "
 | |
|             "return type!", &RI, F->getReturnType());
 | |
|   else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
 | |
|     // Exactly one return value and it matches the return type. Good.
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
 | |
|     // The return type is a struct; check for multiple return values.
 | |
|     Assert2(STy->getNumElements() == N,
 | |
|             "Incorrect number of return values in ret instruction!",
 | |
|             &RI, F->getReturnType());
 | |
|     for (unsigned i = 0; i != N; ++i)
 | |
|       Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
 | |
|               "Function return type does not match operand "
 | |
|               "type of return inst!", &RI, F->getReturnType());
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
 | |
|     // The return type is an array; check for multiple return values.
 | |
|     Assert2(ATy->getNumElements() == N,
 | |
|             "Incorrect number of return values in ret instruction!",
 | |
|             &RI, F->getReturnType());
 | |
|     for (unsigned i = 0; i != N; ++i)
 | |
|       Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
 | |
|               "Function return type does not match operand "
 | |
|               "type of return inst!", &RI, F->getReturnType());
 | |
|   } else {
 | |
|     CheckFailed("Function return type does not match operand "
 | |
|                 "type of return inst!", &RI, F->getReturnType());
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that the return value has necessary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSwitchInst(SwitchInst &SI) {
 | |
|   // Check to make sure that all of the constants in the switch instruction
 | |
|   // have the same type as the switched-on value.
 | |
|   const Type *SwitchTy = SI.getCondition()->getType();
 | |
|   SmallPtrSet<ConstantInt*, 32> Constants;
 | |
|   for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) {
 | |
|     Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
 | |
|             "Switch constants must all be same type as switch value!", &SI);
 | |
|     Assert2(Constants.insert(SI.getCaseValue(i)),
 | |
|             "Duplicate integer as switch case", &SI, SI.getCaseValue(i));
 | |
|   }
 | |
| 
 | |
|   visitTerminatorInst(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
 | |
|   Assert1(BI.getAddress()->getType()->isPointerTy(),
 | |
|           "Indirectbr operand must have pointer type!", &BI);
 | |
|   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
 | |
|     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
 | |
|             "Indirectbr destinations must all have pointer type!", &BI);
 | |
| 
 | |
|   visitTerminatorInst(BI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSelectInst(SelectInst &SI) {
 | |
|   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
 | |
|                                           SI.getOperand(2)),
 | |
|           "Invalid operands for select instruction!", &SI);
 | |
| 
 | |
|   Assert1(SI.getTrueValue()->getType() == SI.getType(),
 | |
|           "Select values must have same type as select instruction!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
 | |
| /// a pass, if any exist, it's an error.
 | |
| ///
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTruncInst(TruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
 | |
|   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
 | |
|   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|           "trunc source and destination must both be a vector or neither", &I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitZExtInst(ZExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
 | |
|   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
 | |
|   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|           "zext source and destination must both be a vector or neither", &I);
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSExtInst(SExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
 | |
|   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
 | |
|   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|           "sext source and destination must both be a vector or neither", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPTruncInst(FPTruncInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
 | |
|   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
 | |
|   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|           "fptrunc source and destination must both be a vector or neither",&I);
 | |
|   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPExtInst(FPExtInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
 | |
|   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
 | |
|   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
 | |
|           "fpext source and destination must both be a vector or neither", &I);
 | |
|   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitUIToFPInst(UIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,
 | |
|           "UIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isIntOrIntVectorTy(),
 | |
|           "UIToFP source must be integer or integer vector", &I);
 | |
|   Assert1(DestTy->isFPOrFPVectorTy(),
 | |
|           "UIToFP result must be FP or FP vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|             cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "UIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitSIToFPInst(SIToFPInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,
 | |
|           "SIToFP source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isIntOrIntVectorTy(),
 | |
|           "SIToFP source must be integer or integer vector", &I);
 | |
|   Assert1(DestTy->isFPOrFPVectorTy(),
 | |
|           "SIToFP result must be FP or FP vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|             cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "SIToFP source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToUIInst(FPToUIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,
 | |
|           "FPToUI source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
 | |
|           &I);
 | |
|   Assert1(DestTy->isIntOrIntVectorTy(),
 | |
|           "FPToUI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|             cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "FPToUI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFPToSIInst(FPToSIInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   bool SrcVec = SrcTy->isVectorTy();
 | |
|   bool DstVec = DestTy->isVectorTy();
 | |
| 
 | |
|   Assert1(SrcVec == DstVec,
 | |
|           "FPToSI source and dest must both be vector or scalar", &I);
 | |
|   Assert1(SrcTy->isFPOrFPVectorTy(),
 | |
|           "FPToSI source must be FP or FP vector", &I);
 | |
|   Assert1(DestTy->isIntOrIntVectorTy(),
 | |
|           "FPToSI result must be integer or integer vector", &I);
 | |
| 
 | |
|   if (SrcVec && DstVec)
 | |
|     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
 | |
|             cast<VectorType>(DestTy)->getNumElements(),
 | |
|             "FPToSI source and dest vector length mismatch", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I);
 | |
|   Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I);
 | |
|   Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitBitCastInst(BitCastInst &I) {
 | |
|   // Get the source and destination types
 | |
|   const Type *SrcTy = I.getOperand(0)->getType();
 | |
|   const Type *DestTy = I.getType();
 | |
| 
 | |
|   // Get the size of the types in bits, we'll need this later
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|   // BitCast implies a no-op cast of type only. No bits change.
 | |
|   // However, you can't cast pointers to anything but pointers.
 | |
|   Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
 | |
|           "Bitcast requires both operands to be pointer or neither", &I);
 | |
|   Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
 | |
| 
 | |
|   // Disallow aggregates.
 | |
|   Assert1(!SrcTy->isAggregateType(),
 | |
|           "Bitcast operand must not be aggregate", &I);
 | |
|   Assert1(!DestTy->isAggregateType(),
 | |
|           "Bitcast type must not be aggregate", &I);
 | |
| 
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| /// visitPHINode - Ensure that a PHI node is well formed.
 | |
| ///
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistent (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert2(&PN == &PN.getParent()->front() || 
 | |
|           isa<PHINode>(--BasicBlock::iterator(&PN)),
 | |
|           "PHI nodes not grouped at top of basic block!",
 | |
|           &PN, PN.getParent());
 | |
| 
 | |
|   // Check that all of the values of the PHI node have the same type as the
 | |
|   // result, and that the incoming blocks are really basic blocks.
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
 | |
|             "PHI node operands are not the same type as the result!", &PN);
 | |
|     Assert1(isa<BasicBlock>(PN.getOperand(
 | |
|                 PHINode::getOperandNumForIncomingBlock(i))),
 | |
|             "PHI node incoming block is not a BasicBlock!", &PN);
 | |
|   }
 | |
| 
 | |
|   // All other PHI node constraints are checked in the visitBasicBlock method.
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::VerifyCallSite(CallSite CS) {
 | |
|   Instruction *I = CS.getInstruction();
 | |
| 
 | |
|   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
 | |
|           "Called function must be a pointer!", I);
 | |
|   const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
 | |
| 
 | |
|   Assert1(FPTy->getElementType()->isFunctionTy(),
 | |
|           "Called function is not pointer to function type!", I);
 | |
|   const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert1(CS.arg_size() >= FTy->getNumParams(),
 | |
|             "Called function requires more parameters than were provided!",I);
 | |
|   else
 | |
|     Assert1(CS.arg_size() == FTy->getNumParams(),
 | |
|             "Incorrect number of arguments passed to called function!", I);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type.
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
 | |
|             "Call parameter type does not match function signature!",
 | |
|             CS.getArgument(i), FTy->getParamType(i), I);
 | |
| 
 | |
|   const AttrListPtr &Attrs = CS.getAttributes();
 | |
| 
 | |
|   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
 | |
|           "Attributes after last parameter!", I);
 | |
| 
 | |
|   // Verify call attributes.
 | |
|   VerifyFunctionAttrs(FTy, Attrs, I);
 | |
| 
 | |
|   if (FTy->isVarArg())
 | |
|     // Check attributes on the varargs part.
 | |
|     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
 | |
|       Attributes Attr = Attrs.getParamAttributes(Idx);
 | |
| 
 | |
|       VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
 | |
| 
 | |
|       Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
 | |
|       Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
 | |
|               " cannot be used for vararg call arguments!", I);
 | |
|     }
 | |
| 
 | |
|   // Verify that there's no metadata unless it's a direct call to an intrinsic.
 | |
|   if (!CS.getCalledFunction() ||
 | |
|       !CS.getCalledFunction()->getName().startswith("llvm.")) {
 | |
|     for (FunctionType::param_iterator PI = FTy->param_begin(),
 | |
|            PE = FTy->param_end(); PI != PE; ++PI)
 | |
|       Assert1(!PI->get()->isMetadataTy(),
 | |
|               "Function has metadata parameter but isn't an intrinsic", I);
 | |
|   }
 | |
| 
 | |
|   visitInstruction(*I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   VerifyCallSite(&CI);
 | |
| 
 | |
|   if (Function *F = CI.getCalledFunction())
 | |
|     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
 | |
|       visitIntrinsicFunctionCall(ID, CI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInvokeInst(InvokeInst &II) {
 | |
|   VerifyCallSite(&II);
 | |
|   visitTerminatorInst(II);
 | |
| }
 | |
| 
 | |
| /// visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| /// of the same type!
 | |
| ///
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|           "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   switch (B.getOpcode()) {
 | |
|   // Check that integer arithmetic operators are only used with
 | |
|   // integral operands.
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::URem:
 | |
|     Assert1(B.getType()->isIntOrIntVectorTy(),
 | |
|             "Integer arithmetic operators only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Integer arithmetic operators must have same type "
 | |
|             "for operands and result!", &B);
 | |
|     break;
 | |
|   // Check that floating-point arithmetic operators are only used with
 | |
|   // floating-point operands.
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::FRem:
 | |
|     Assert1(B.getType()->isFPOrFPVectorTy(),
 | |
|             "Floating-point arithmetic operators only work with "
 | |
|             "floating-point types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Floating-point arithmetic operators must have same type "
 | |
|             "for operands and result!", &B);
 | |
|     break;
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     Assert1(B.getType()->isIntOrIntVectorTy(),
 | |
|             "Logical operators only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Logical operators must have same type for operands and result!",
 | |
|             &B);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     Assert1(B.getType()->isIntOrIntVectorTy(),
 | |
|             "Shifts only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Shift return type must be same as operands!", &B);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown BinaryOperator opcode!");
 | |
|   }
 | |
| 
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitICmpInst(ICmpInst &IC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type *Op0Ty = IC.getOperand(0)->getType();
 | |
|   const Type *Op1Ty = IC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to ICmp instruction are not of the same type!", &IC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(),
 | |
|           "Invalid operand types for ICmp instruction", &IC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
 | |
|           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
 | |
|           "Invalid predicate in ICmp instruction!", &IC);
 | |
| 
 | |
|   visitInstruction(IC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitFCmpInst(FCmpInst &FC) {
 | |
|   // Check that the operands are the same type
 | |
|   const Type *Op0Ty = FC.getOperand(0)->getType();
 | |
|   const Type *Op1Ty = FC.getOperand(1)->getType();
 | |
|   Assert1(Op0Ty == Op1Ty,
 | |
|           "Both operands to FCmp instruction are not of the same type!", &FC);
 | |
|   // Check that the operands are the right type
 | |
|   Assert1(Op0Ty->isFPOrFPVectorTy(),
 | |
|           "Invalid operand types for FCmp instruction", &FC);
 | |
|   // Check that the predicate is valid.
 | |
|   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
 | |
|           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
 | |
|           "Invalid predicate in FCmp instruction!", &FC);
 | |
| 
 | |
|   visitInstruction(FC);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
 | |
|                                               EI.getOperand(1)),
 | |
|           "Invalid extractelement operands!", &EI);
 | |
|   visitInstruction(EI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
 | |
|                                              IE.getOperand(1),
 | |
|                                              IE.getOperand(2)),
 | |
|           "Invalid insertelement operands!", &IE);
 | |
|   visitInstruction(IE);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
 | |
|   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
 | |
|                                              SV.getOperand(2)),
 | |
|           "Invalid shufflevector operands!", &SV);
 | |
|   visitInstruction(SV);
 | |
| }
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
 | |
|   const Type *ElTy =
 | |
|     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
 | |
|                                       Idxs.begin(), Idxs.end());
 | |
|   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
|   Assert2(GEP.getType()->isPointerTy() &&
 | |
|           cast<PointerType>(GEP.getType())->getElementType() == ElTy,
 | |
|           "GEP is not of right type for indices!", &GEP, ElTy);
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   const PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
 | |
|   Assert1(PTy, "Load operand must be a pointer.", &LI);
 | |
|   const Type *ElTy = PTy->getElementType();
 | |
|   Assert2(ElTy == LI.getType(),
 | |
|           "Load result type does not match pointer operand type!", &LI, ElTy);
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   const PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
 | |
|   Assert1(PTy, "Store operand must be a pointer.", &SI);
 | |
|   const Type *ElTy = PTy->getElementType();
 | |
|   Assert2(ElTy == SI.getOperand(0)->getType(),
 | |
|           "Stored value type does not match pointer operand type!",
 | |
|           &SI, ElTy);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitAllocaInst(AllocaInst &AI) {
 | |
|   const PointerType *PTy = AI.getType();
 | |
|   Assert1(PTy->getAddressSpace() == 0, 
 | |
|           "Allocation instruction pointer not in the generic address space!",
 | |
|           &AI);
 | |
|   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
 | |
|           &AI);
 | |
|   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
 | |
|           "Alloca array size must have integer type", &AI);
 | |
|   visitInstruction(AI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
 | |
|   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
 | |
|                                            EVI.idx_begin(), EVI.idx_end()) ==
 | |
|           EVI.getType(),
 | |
|           "Invalid ExtractValueInst operands!", &EVI);
 | |
|   
 | |
|   visitInstruction(EVI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
 | |
|   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
 | |
|                                            IVI.idx_begin(), IVI.idx_end()) ==
 | |
|           IVI.getOperand(1)->getType(),
 | |
|           "Invalid InsertValueInst operands!", &IVI);
 | |
|   
 | |
|   visitInstruction(IVI);
 | |
| }
 | |
| 
 | |
| /// verifyInstruction - Verify that an instruction is well formed.
 | |
| ///
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();
 | |
|   Assert1(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|          UI != UE; ++UI)
 | |
|       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
 | |
|               "Only PHI nodes may reference their own value!", &I);
 | |
|   }
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
 | |
|           "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that the return value of the instruction is either void or a legal
 | |
|   // value type.
 | |
|   Assert1(I.getType()->isVoidTy() || 
 | |
|           I.getType()->isFirstClassType(),
 | |
|           "Instruction returns a non-scalar type!", &I);
 | |
| 
 | |
|   // Check that the instruction doesn't produce metadata. Calls are already
 | |
|   // checked against the callee type.
 | |
|   Assert1(!I.getType()->isMetadataTy() ||
 | |
|           isa<CallInst>(I) || isa<InvokeInst>(I),
 | |
|           "Invalid use of metadata!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     if (Instruction *Used = dyn_cast<Instruction>(*UI))
 | |
|       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
 | |
|               " embedded in a basic block!", &I, Used);
 | |
|     else {
 | |
|       CheckFailed("Use of instruction is not an instruction!", *UI);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
 | |
| 
 | |
|     // Check to make sure that only first-class-values are operands to
 | |
|     // instructions.
 | |
|     if (!I.getOperand(i)->getType()->isFirstClassType()) {
 | |
|       Assert1(0, "Instruction operands must be first-class values!", &I);
 | |
|     }
 | |
| 
 | |
|     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
 | |
|       // Check to make sure that the "address of" an intrinsic function is never
 | |
|       // taken.
 | |
|       Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
 | |
|               "Cannot take the address of an intrinsic!", &I);
 | |
|       Assert1(F->getParent() == Mod, "Referencing function in another module!",
 | |
|               &I);
 | |
|     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
 | |
|       Assert1(OpBB->getParent() == BB->getParent(),
 | |
|               "Referring to a basic block in another function!", &I);
 | |
|     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
 | |
|       Assert1(OpArg->getParent() == BB->getParent(),
 | |
|               "Referring to an argument in another function!", &I);
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
 | |
|       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
 | |
|               &I);
 | |
|     } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
 | |
|       BasicBlock *OpBlock = Op->getParent();
 | |
| 
 | |
|       // Check that a definition dominates all of its uses.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
 | |
|         // Invoke results are only usable in the normal destination, not in the
 | |
|         // exceptional destination.
 | |
|         BasicBlock *NormalDest = II->getNormalDest();
 | |
| 
 | |
|         Assert2(NormalDest != II->getUnwindDest(),
 | |
|                 "No uses of invoke possible due to dominance structure!",
 | |
|                 Op, &I);
 | |
| 
 | |
|         // PHI nodes differ from other nodes because they actually "use" the
 | |
|         // value in the predecessor basic blocks they correspond to.
 | |
|         BasicBlock *UseBlock = BB;
 | |
|         if (isa<PHINode>(I))
 | |
|           UseBlock = dyn_cast<BasicBlock>(I.getOperand(i+1));
 | |
|         Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
 | |
|                 Op, &I);
 | |
| 
 | |
|         if (isa<PHINode>(I) && UseBlock == OpBlock) {
 | |
|           // Special case of a phi node in the normal destination or the unwind
 | |
|           // destination.
 | |
|           Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
 | |
|                   "Invoke result not available in the unwind destination!",
 | |
|                   Op, &I);
 | |
|         } else {
 | |
|           Assert2(DT->dominates(NormalDest, UseBlock) ||
 | |
|                   !DT->isReachableFromEntry(UseBlock),
 | |
|                   "Invoke result does not dominate all uses!", Op, &I);
 | |
| 
 | |
|           // If the normal successor of an invoke instruction has multiple
 | |
|           // predecessors, then the normal edge from the invoke is critical,
 | |
|           // so the invoke value can only be live if the destination block
 | |
|           // dominates all of it's predecessors (other than the invoke).
 | |
|           if (!NormalDest->getSinglePredecessor() &&
 | |
|               DT->isReachableFromEntry(UseBlock))
 | |
|             // If it is used by something non-phi, then the other case is that
 | |
|             // 'NormalDest' dominates all of its predecessors other than the
 | |
|             // invoke.  In this case, the invoke value can still be used.
 | |
|             for (pred_iterator PI = pred_begin(NormalDest),
 | |
|                  E = pred_end(NormalDest); PI != E; ++PI)
 | |
|               if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) &&
 | |
|                   DT->isReachableFromEntry(*PI)) {
 | |
|                 CheckFailed("Invoke result does not dominate all uses!", Op,&I);
 | |
|                 return;
 | |
|               }
 | |
|         }
 | |
|       } else if (isa<PHINode>(I)) {
 | |
|         // PHI nodes are more difficult than other nodes because they actually
 | |
|         // "use" the value in the predecessor basic blocks they correspond to.
 | |
|         BasicBlock *PredBB = dyn_cast<BasicBlock>(I.getOperand(i+1));
 | |
|         Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
 | |
|                            !DT->isReachableFromEntry(PredBB)),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       } else {
 | |
|         if (OpBlock == BB) {
 | |
|           // If they are in the same basic block, make sure that the definition
 | |
|           // comes before the use.
 | |
|           Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB),
 | |
|                   "Instruction does not dominate all uses!", Op, &I);
 | |
|         }
 | |
| 
 | |
|         // Definition must dominate use unless use is unreachable!
 | |
|         Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
 | |
|                 !DT->isReachableFromEntry(BB),
 | |
|                 "Instruction does not dominate all uses!", Op, &I);
 | |
|       }
 | |
|     } else if (isa<InlineAsm>(I.getOperand(i))) {
 | |
|       Assert1((i + 1 == e && isa<CallInst>(I)) ||
 | |
|               (i + 3 == e && isa<InvokeInst>(I)),
 | |
|               "Cannot take the address of an inline asm!", &I);
 | |
|     }
 | |
|   }
 | |
|   InstsInThisBlock.insert(&I);
 | |
| 
 | |
|   VerifyType(I.getType());
 | |
| }
 | |
| 
 | |
| /// VerifyType - Verify that a type is well formed.
 | |
| ///
 | |
| void Verifier::VerifyType(const Type *Ty) {
 | |
|   if (!Types.insert(Ty)) return;
 | |
| 
 | |
|   Assert1(Context == &Ty->getContext(),
 | |
|           "Type context does not match Module context!", Ty);
 | |
| 
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const FunctionType *FTy = cast<FunctionType>(Ty);
 | |
| 
 | |
|     const Type *RetTy = FTy->getReturnType();
 | |
|     Assert2(FunctionType::isValidReturnType(RetTy),
 | |
|             "Function type with invalid return type", RetTy, FTy);
 | |
|     VerifyType(RetTy);
 | |
| 
 | |
|     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
 | |
|       const Type *ElTy = FTy->getParamType(i);
 | |
|       Assert2(FunctionType::isValidArgumentType(ElTy),
 | |
|               "Function type with invalid parameter type", ElTy, FTy);
 | |
|       VerifyType(ElTy);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *STy = cast<StructType>(Ty);
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       const Type *ElTy = STy->getElementType(i);
 | |
|       Assert2(StructType::isValidElementType(ElTy),
 | |
|               "Structure type with invalid element type", ElTy, STy);
 | |
|       VerifyType(ElTy);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     Assert1(ArrayType::isValidElementType(ATy->getElementType()),
 | |
|             "Array type with invalid element type", ATy);
 | |
|     VerifyType(ATy->getElementType());
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     const PointerType *PTy = cast<PointerType>(Ty);
 | |
|     Assert1(PointerType::isValidElementType(PTy->getElementType()),
 | |
|             "Pointer type with invalid element type", PTy);
 | |
|     VerifyType(PTy->getElementType());
 | |
|     break;
 | |
|   }
 | |
|   case Type::VectorTyID: {
 | |
|     const VectorType *VTy = cast<VectorType>(Ty);
 | |
|     Assert1(VectorType::isValidElementType(VTy->getElementType()),
 | |
|             "Vector type with invalid element type", VTy);
 | |
|     VerifyType(VTy->getElementType());
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Flags used by TableGen to mark intrinsic parameters with the
 | |
| // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
 | |
| static const unsigned ExtendedElementVectorType = 0x40000000;
 | |
| static const unsigned TruncatedElementVectorType = 0x20000000;
 | |
| 
 | |
| /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
 | |
| ///
 | |
| void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
 | |
|   Function *IF = CI.getCalledFunction();
 | |
|   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
 | |
|           IF);
 | |
| 
 | |
| #define GET_INTRINSIC_VERIFIER
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_INTRINSIC_VERIFIER
 | |
| 
 | |
|   // If the intrinsic takes MDNode arguments, verify that they are either global
 | |
|   // or are local to *this* function.
 | |
|   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
 | |
|     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
 | |
|       visitMDNode(*MD, CI.getParent()->getParent());
 | |
| 
 | |
|   switch (ID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
 | |
|     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
 | |
|                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
 | |
|     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
 | |
|     Assert1(MD->getNumOperands() == 1,
 | |
|                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
 | |
|   } break;
 | |
|   case Intrinsic::memcpy:
 | |
|   case Intrinsic::memmove:
 | |
|   case Intrinsic::memset:
 | |
|     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
 | |
|             "alignment argument of memory intrinsics must be a constant int",
 | |
|             &CI);
 | |
|     break;
 | |
|   case Intrinsic::gcroot:
 | |
|   case Intrinsic::gcwrite:
 | |
|   case Intrinsic::gcread:
 | |
|     if (ID == Intrinsic::gcroot) {
 | |
|       AllocaInst *AI =
 | |
|         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
 | |
|       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
 | |
|       Assert1(isa<Constant>(CI.getArgOperand(1)),
 | |
|               "llvm.gcroot parameter #2 must be a constant.", &CI);
 | |
|       if (!AI->getType()->getElementType()->isPointerTy()) {
 | |
|         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
 | |
|                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
 | |
|                 "or argument #2 must be a non-null constant.", &CI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Assert1(CI.getParent()->getParent()->hasGC(),
 | |
|             "Enclosing function does not use GC.", &CI);
 | |
|     break;
 | |
|   case Intrinsic::init_trampoline:
 | |
|     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
 | |
|             "llvm.init_trampoline parameter #2 must resolve to a function.",
 | |
|             &CI);
 | |
|     break;
 | |
|   case Intrinsic::prefetch:
 | |
|     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
 | |
|             isa<ConstantInt>(CI.getArgOperand(2)) &&
 | |
|             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
 | |
|             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
 | |
|             "invalid arguments to llvm.prefetch",
 | |
|             &CI);
 | |
|     break;
 | |
|   case Intrinsic::stackprotector:
 | |
|     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
 | |
|             "llvm.stackprotector parameter #2 must resolve to an alloca.",
 | |
|             &CI);
 | |
|     break;
 | |
|   case Intrinsic::lifetime_start:
 | |
|   case Intrinsic::lifetime_end:
 | |
|   case Intrinsic::invariant_start:
 | |
|     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
 | |
|             "size argument of memory use markers must be a constant integer",
 | |
|             &CI);
 | |
|     break;
 | |
|   case Intrinsic::invariant_end:
 | |
|     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
 | |
|             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Produce a string to identify an intrinsic parameter or return value.
 | |
| /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
 | |
| /// parameters beginning with NumRets.
 | |
| ///
 | |
| static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
 | |
|   if (ArgNo >= NumRets)
 | |
|     return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
 | |
|   if (NumRets == 1)
 | |
|     return "Intrinsic result type";
 | |
|   return "Intrinsic result type #" + utostr(ArgNo);
 | |
| }
 | |
| 
 | |
| bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
 | |
|                                 int VT, unsigned ArgNo, std::string &Suffix) {
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
| 
 | |
|   unsigned NumElts = 0;
 | |
|   const Type *EltTy = Ty;
 | |
|   const VectorType *VTy = dyn_cast<VectorType>(Ty);
 | |
|   if (VTy) {
 | |
|     EltTy = VTy->getElementType();
 | |
|     NumElts = VTy->getNumElements();
 | |
|   }
 | |
| 
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
|   const StructType *ST = dyn_cast<StructType>(RetTy);
 | |
|   unsigned NumRetVals;
 | |
|   if (RetTy->isVoidTy())
 | |
|     NumRetVals = 0;
 | |
|   else if (ST)
 | |
|     NumRetVals = ST->getNumElements();
 | |
|   else
 | |
|     NumRetVals = 1;
 | |
| 
 | |
|   if (VT < 0) {
 | |
|     int Match = ~VT;
 | |
| 
 | |
|     // Check flags that indicate a type that is an integral vector type with
 | |
|     // elements that are larger or smaller than the elements of the matched
 | |
|     // type.
 | |
|     if ((Match & (ExtendedElementVectorType |
 | |
|                   TruncatedElementVectorType)) != 0) {
 | |
|       const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
 | |
|       if (!VTy || !IEltTy) {
 | |
|         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
 | |
|                     "an integral vector type.", F);
 | |
|         return false;
 | |
|       }
 | |
|       // Adjust the current Ty (in the opposite direction) rather than
 | |
|       // the type being matched against.
 | |
|       if ((Match & ExtendedElementVectorType) != 0) {
 | |
|         if ((IEltTy->getBitWidth() & 1) != 0) {
 | |
|           CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
 | |
|                       "element bit-width is odd.", F);
 | |
|           return false;
 | |
|         }
 | |
|         Ty = VectorType::getTruncatedElementVectorType(VTy);
 | |
|       } else
 | |
|         Ty = VectorType::getExtendedElementVectorType(VTy);
 | |
|       Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
 | |
|     }
 | |
| 
 | |
|     if (Match <= static_cast<int>(NumRetVals - 1)) {
 | |
|       if (ST)
 | |
|         RetTy = ST->getElementType(Match);
 | |
| 
 | |
|       if (Ty != RetTy) {
 | |
|         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
 | |
|                     "match return type.", F);
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       if (Ty != FTy->getParamType(Match - NumRetVals)) {
 | |
|         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
 | |
|                     "match parameter %" + utostr(Match - NumRetVals) + ".", F);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   } else if (VT == MVT::iAny) {
 | |
|     if (!EltTy->isIntegerTy()) {
 | |
|       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
 | |
|                   "an integer type.", F);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
 | |
|     Suffix += ".";
 | |
| 
 | |
|     if (EltTy != Ty)
 | |
|       Suffix += "v" + utostr(NumElts);
 | |
| 
 | |
|     Suffix += "i" + utostr(GotBits);
 | |
| 
 | |
|     // Check some constraints on various intrinsics.
 | |
|     switch (ID) {
 | |
|     default: break; // Not everything needs to be checked.
 | |
|     case Intrinsic::bswap:
 | |
|       if (GotBits < 16 || GotBits % 16 != 0) {
 | |
|         CheckFailed("Intrinsic requires even byte width argument", F);
 | |
|         return false;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   } else if (VT == MVT::fAny) {
 | |
|     if (!EltTy->isFloatingPointTy()) {
 | |
|       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
 | |
|                   "a floating-point type.", F);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Suffix += ".";
 | |
| 
 | |
|     if (EltTy != Ty)
 | |
|       Suffix += "v" + utostr(NumElts);
 | |
| 
 | |
|     Suffix += EVT::getEVT(EltTy).getEVTString();
 | |
|   } else if (VT == MVT::vAny) {
 | |
|     if (!VTy) {
 | |
|       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
 | |
|                   F);
 | |
|       return false;
 | |
|     }
 | |
|     Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
 | |
|   } else if (VT == MVT::iPTR) {
 | |
|     if (!Ty->isPointerTy()) {
 | |
|       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
 | |
|                   "pointer and a pointer is required.", F);
 | |
|       return false;
 | |
|     }
 | |
|   } else if (VT == MVT::iPTRAny) {
 | |
|     // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
 | |
|     // and iPTR. In the verifier, we can not distinguish which case we have so
 | |
|     // allow either case to be legal.
 | |
|     if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
 | |
|       EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
 | |
|       if (PointeeVT == MVT::Other) {
 | |
|         CheckFailed("Intrinsic has pointer to complex type.");
 | |
|         return false;
 | |
|       }
 | |
|       Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
 | |
|         PointeeVT.getEVTString();
 | |
|     } else {
 | |
|       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
 | |
|                   "pointer and a pointer is required.", F);
 | |
|       return false;
 | |
|     }
 | |
|   } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
 | |
|     EVT VVT = EVT((MVT::SimpleValueType)VT);
 | |
| 
 | |
|     // If this is a vector argument, verify the number and type of elements.
 | |
|     if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
 | |
|       CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (VVT.getVectorNumElements() != NumElts) {
 | |
|       CheckFailed("Intrinsic prototype has incorrect number of "
 | |
|                   "vector elements!", F);
 | |
|       return false;
 | |
|     }
 | |
|   } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != 
 | |
|              EltTy) {
 | |
|     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
 | |
|     return false;
 | |
|   } else if (EltTy != Ty) {
 | |
|     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
 | |
|                 "and a scalar is required.", F);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
 | |
| /// Intrinsics.gen.  This implements a little state machine that verifies the
 | |
| /// prototype of intrinsics.
 | |
| void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
 | |
|                                         unsigned NumRetVals,
 | |
|                                         unsigned NumParams, ...) {
 | |
|   va_list VA;
 | |
|   va_start(VA, NumParams);
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
| 
 | |
|   // For overloaded intrinsics, the Suffix of the function name must match the
 | |
|   // types of the arguments. This variable keeps track of the expected
 | |
|   // suffix, to be checked at the end.
 | |
|   std::string Suffix;
 | |
| 
 | |
|   if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
 | |
|     CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const Type *Ty = FTy->getReturnType();
 | |
|   const StructType *ST = dyn_cast<StructType>(Ty);
 | |
| 
 | |
|   if (NumRetVals == 0 && !Ty->isVoidTy()) {
 | |
|     CheckFailed("Intrinsic should return void", F);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Verify the return types.
 | |
|   if (ST && ST->getNumElements() != NumRetVals) {
 | |
|     CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
 | |
|     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
 | |
| 
 | |
|     if (ST) Ty = ST->getElementType(ArgNo);
 | |
|     if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Verify the parameter types.
 | |
|   for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
 | |
|     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
 | |
| 
 | |
|     if (VT == MVT::isVoid && ArgNo > 0) {
 | |
|       if (!FTy->isVarArg())
 | |
|         CheckFailed("Intrinsic prototype has no '...'!", F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
 | |
|                           ArgNo + NumRetVals, Suffix))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   va_end(VA);
 | |
| 
 | |
|   // For intrinsics without pointer arguments, if we computed a Suffix then the
 | |
|   // intrinsic is overloaded and we need to make sure that the name of the
 | |
|   // function is correct. We add the suffix to the name of the intrinsic and
 | |
|   // compare against the given function name. If they are not the same, the
 | |
|   // function name is invalid. This ensures that overloading of intrinsics
 | |
|   // uses a sane and consistent naming convention.  Note that intrinsics with
 | |
|   // pointer argument may or may not be overloaded so we will check assuming it
 | |
|   // has a suffix and not.
 | |
|   if (!Suffix.empty()) {
 | |
|     std::string Name(Intrinsic::getName(ID));
 | |
|     if (Name + Suffix != F->getName()) {
 | |
|       CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
 | |
|                   F->getName().substr(Name.length()) + "'. It should be '" +
 | |
|                   Suffix + "'", F);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check parameter attributes.
 | |
|   Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
 | |
|           "Intrinsic has wrong parameter attributes!", F);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
 | |
|   return new Verifier(action);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// verifyFunction - Check a function for errors, printing messages on stderr.
 | |
| /// Return true if the function is corrupt.
 | |
| ///
 | |
| bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
 | |
|   Function &F = const_cast<Function&>(f);
 | |
|   assert(!F.isDeclaration() && "Cannot verify external functions");
 | |
| 
 | |
|   FunctionPassManager FPM(F.getParent());
 | |
|   Verifier *V = new Verifier(action);
 | |
|   FPM.add(V);
 | |
|   FPM.run(F);
 | |
|   return V->Broken;
 | |
| }
 | |
| 
 | |
| /// verifyModule - Check a module for errors, printing messages on stderr.
 | |
| /// Return true if the module is corrupt.
 | |
| ///
 | |
| bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
 | |
|                         std::string *ErrorInfo) {
 | |
|   PassManager PM;
 | |
|   Verifier *V = new Verifier(action);
 | |
|   PM.add(V);
 | |
|   PM.run(const_cast<Module&>(M));
 | |
| 
 | |
|   if (ErrorInfo && V->Broken)
 | |
|     *ErrorInfo = V->MessagesStr.str();
 | |
|   return V->Broken;
 | |
| }
 |