mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The functions {pred,succ,use,user}_{begin,end} exist, but many users
have to check *_begin() with *_end() by hand to determine if the
BasicBlock or User is empty. Fix this with a standard *_empty(),
demonstrating a few usecases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225760 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			237 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This family of functions performs analyses on basic blocks, and instructions
 | 
						|
// contained within basic blocks.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// FindFunctionBackedges - Analyze the specified function to find all of the
 | 
						|
/// loop backedges in the function and return them.  This is a relatively cheap
 | 
						|
/// (compared to computing dominators and loop info) analysis.
 | 
						|
///
 | 
						|
/// The output is added to Result, as pairs of <from,to> edge info.
 | 
						|
void llvm::FindFunctionBackedges(const Function &F,
 | 
						|
     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
 | 
						|
  const BasicBlock *BB = &F.getEntryBlock();
 | 
						|
  if (succ_empty(BB))
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallPtrSet<const BasicBlock*, 8> Visited;
 | 
						|
  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
 | 
						|
  SmallPtrSet<const BasicBlock*, 8> InStack;
 | 
						|
 | 
						|
  Visited.insert(BB);
 | 
						|
  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | 
						|
  InStack.insert(BB);
 | 
						|
  do {
 | 
						|
    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
 | 
						|
    const BasicBlock *ParentBB = Top.first;
 | 
						|
    succ_const_iterator &I = Top.second;
 | 
						|
 | 
						|
    bool FoundNew = false;
 | 
						|
    while (I != succ_end(ParentBB)) {
 | 
						|
      BB = *I++;
 | 
						|
      if (Visited.insert(BB).second) {
 | 
						|
        FoundNew = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      // Successor is in VisitStack, it's a back edge.
 | 
						|
      if (InStack.count(BB))
 | 
						|
        Result.push_back(std::make_pair(ParentBB, BB));
 | 
						|
    }
 | 
						|
 | 
						|
    if (FoundNew) {
 | 
						|
      // Go down one level if there is a unvisited successor.
 | 
						|
      InStack.insert(BB);
 | 
						|
      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
 | 
						|
    } else {
 | 
						|
      // Go up one level.
 | 
						|
      InStack.erase(VisitStack.pop_back_val().first);
 | 
						|
    }
 | 
						|
  } while (!VisitStack.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// GetSuccessorNumber - Search for the specified successor of basic block BB
 | 
						|
/// and return its position in the terminator instruction's list of
 | 
						|
/// successors.  It is an error to call this with a block that is not a
 | 
						|
/// successor.
 | 
						|
unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
 | 
						|
  TerminatorInst *Term = BB->getTerminator();
 | 
						|
#ifndef NDEBUG
 | 
						|
  unsigned e = Term->getNumSuccessors();
 | 
						|
#endif
 | 
						|
  for (unsigned i = 0; ; ++i) {
 | 
						|
    assert(i != e && "Didn't find edge?");
 | 
						|
    if (Term->getSuccessor(i) == Succ)
 | 
						|
      return i;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isCriticalEdge - Return true if the specified edge is a critical edge.
 | 
						|
/// Critical edges are edges from a block with multiple successors to a block
 | 
						|
/// with multiple predecessors.
 | 
						|
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
 | 
						|
                          bool AllowIdenticalEdges) {
 | 
						|
  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
 | 
						|
  if (TI->getNumSuccessors() == 1) return false;
 | 
						|
 | 
						|
  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
 | 
						|
  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
 | 
						|
 | 
						|
  // If there is more than one predecessor, this is a critical edge...
 | 
						|
  assert(I != E && "No preds, but we have an edge to the block?");
 | 
						|
  const BasicBlock *FirstPred = *I;
 | 
						|
  ++I;        // Skip one edge due to the incoming arc from TI.
 | 
						|
  if (!AllowIdenticalEdges)
 | 
						|
    return I != E;
 | 
						|
 | 
						|
  // If AllowIdenticalEdges is true, then we allow this edge to be considered
 | 
						|
  // non-critical iff all preds come from TI's block.
 | 
						|
  for (; I != E; ++I)
 | 
						|
    if (*I != FirstPred)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// LoopInfo contains a mapping from basic block to the innermost loop. Find
 | 
						|
// the outermost loop in the loop nest that contains BB.
 | 
						|
static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
 | 
						|
  const Loop *L = LI->getLoopFor(BB);
 | 
						|
  if (L) {
 | 
						|
    while (const Loop *Parent = L->getParentLoop())
 | 
						|
      L = Parent;
 | 
						|
  }
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
// True if there is a loop which contains both BB1 and BB2.
 | 
						|
static bool loopContainsBoth(const LoopInfo *LI,
 | 
						|
                             const BasicBlock *BB1, const BasicBlock *BB2) {
 | 
						|
  const Loop *L1 = getOutermostLoop(LI, BB1);
 | 
						|
  const Loop *L2 = getOutermostLoop(LI, BB2);
 | 
						|
  return L1 != nullptr && L1 == L2;
 | 
						|
}
 | 
						|
 | 
						|
static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
 | 
						|
                                        BasicBlock *StopBB,
 | 
						|
                                        const DominatorTree *DT,
 | 
						|
                                        const LoopInfo *LI) {
 | 
						|
  // When the stop block is unreachable, it's dominated from everywhere,
 | 
						|
  // regardless of whether there's a path between the two blocks.
 | 
						|
  if (DT && !DT->isReachableFromEntry(StopBB))
 | 
						|
    DT = nullptr;
 | 
						|
 | 
						|
  // Limit the number of blocks we visit. The goal is to avoid run-away compile
 | 
						|
  // times on large CFGs without hampering sensible code. Arbitrarily chosen.
 | 
						|
  unsigned Limit = 32;
 | 
						|
  SmallSet<const BasicBlock*, 64> Visited;
 | 
						|
  do {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
    if (!Visited.insert(BB).second)
 | 
						|
      continue;
 | 
						|
    if (BB == StopBB)
 | 
						|
      return true;
 | 
						|
    if (DT && DT->dominates(BB, StopBB))
 | 
						|
      return true;
 | 
						|
    if (LI && loopContainsBoth(LI, BB, StopBB))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!--Limit) {
 | 
						|
      // We haven't been able to prove it one way or the other. Conservatively
 | 
						|
      // answer true -- that there is potentially a path.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) {
 | 
						|
      // All blocks in a single loop are reachable from all other blocks. From
 | 
						|
      // any of these blocks, we can skip directly to the exits of the loop,
 | 
						|
      // ignoring any other blocks inside the loop body.
 | 
						|
      Outer->getExitBlocks(Worklist);
 | 
						|
    } else {
 | 
						|
      Worklist.append(succ_begin(BB), succ_end(BB));
 | 
						|
    }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  // We have exhausted all possible paths and are certain that 'To' can not be
 | 
						|
  // reached from 'From'.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
 | 
						|
                                  const DominatorTree *DT, const LoopInfo *LI) {
 | 
						|
  assert(A->getParent() == B->getParent() &&
 | 
						|
         "This analysis is function-local!");
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 32> Worklist;
 | 
						|
  Worklist.push_back(const_cast<BasicBlock*>(A));
 | 
						|
 | 
						|
  return isPotentiallyReachableInner(Worklist, const_cast<BasicBlock*>(B),
 | 
						|
                                     DT, LI);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
 | 
						|
                                  const DominatorTree *DT, const LoopInfo *LI) {
 | 
						|
  assert(A->getParent()->getParent() == B->getParent()->getParent() &&
 | 
						|
         "This analysis is function-local!");
 | 
						|
 | 
						|
  SmallVector<BasicBlock*, 32> Worklist;
 | 
						|
 | 
						|
  if (A->getParent() == B->getParent()) {
 | 
						|
    // The same block case is special because it's the only time we're looking
 | 
						|
    // within a single block to see which instruction comes first. Once we
 | 
						|
    // start looking at multiple blocks, the first instruction of the block is
 | 
						|
    // reachable, so we only need to determine reachability between whole
 | 
						|
    // blocks.
 | 
						|
    BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
 | 
						|
 | 
						|
    // If the block is in a loop then we can reach any instruction in the block
 | 
						|
    // from any other instruction in the block by going around a backedge.
 | 
						|
    if (LI && LI->getLoopFor(BB) != nullptr)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Linear scan, start at 'A', see whether we hit 'B' or the end first.
 | 
						|
    for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
 | 
						|
      if (&*I == B)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Can't be in a loop if it's the entry block -- the entry block may not
 | 
						|
    // have predecessors.
 | 
						|
    if (BB == &BB->getParent()->getEntryBlock())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Otherwise, continue doing the normal per-BB CFG walk.
 | 
						|
    Worklist.append(succ_begin(BB), succ_end(BB));
 | 
						|
 | 
						|
    if (Worklist.empty()) {
 | 
						|
      // We've proven that there's no path!
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
 | 
						|
    return true;
 | 
						|
  if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isPotentiallyReachableInner(Worklist,
 | 
						|
                                     const_cast<BasicBlock*>(B->getParent()),
 | 
						|
                                     DT, LI);
 | 
						|
}
 |