mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			760 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			760 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Loops should be simplified before this analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
 | |
| #include "llvm/ADT/SCCIterator.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <numeric>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::bfi_detail;
 | |
| 
 | |
| #define DEBUG_TYPE "block-freq"
 | |
| 
 | |
| ScaledNumber<uint64_t> BlockMass::toScaled() const {
 | |
|   if (isFull())
 | |
|     return ScaledNumber<uint64_t>(1, 0);
 | |
|   return ScaledNumber<uint64_t>(getMass() + 1, -64);
 | |
| }
 | |
| 
 | |
| void BlockMass::dump() const { print(dbgs()); }
 | |
| 
 | |
| static char getHexDigit(int N) {
 | |
|   assert(N < 16);
 | |
|   if (N < 10)
 | |
|     return '0' + N;
 | |
|   return 'a' + N - 10;
 | |
| }
 | |
| raw_ostream &BlockMass::print(raw_ostream &OS) const {
 | |
|   for (int Digits = 0; Digits < 16; ++Digits)
 | |
|     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
 | |
| typedef BlockFrequencyInfoImplBase::Distribution Distribution;
 | |
| typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
 | |
| typedef BlockFrequencyInfoImplBase::Scaled64 Scaled64;
 | |
| typedef BlockFrequencyInfoImplBase::LoopData LoopData;
 | |
| typedef BlockFrequencyInfoImplBase::Weight Weight;
 | |
| typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
 | |
| 
 | |
| /// \brief Dithering mass distributer.
 | |
| ///
 | |
| /// This class splits up a single mass into portions by weight, dithering to
 | |
| /// spread out error.  No mass is lost.  The dithering precision depends on the
 | |
| /// precision of the product of \a BlockMass and \a BranchProbability.
 | |
| ///
 | |
| /// The distribution algorithm follows.
 | |
| ///
 | |
| ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
 | |
| ///     mass to distribute in \a RemMass.
 | |
| ///
 | |
| ///  2. For each portion:
 | |
| ///
 | |
| ///      1. Construct a branch probability, P, as the portion's weight divided
 | |
| ///         by the current value of \a RemWeight.
 | |
| ///      2. Calculate the portion's mass as \a RemMass times P.
 | |
| ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
 | |
| ///         the current portion's weight and mass.
 | |
| struct DitheringDistributer {
 | |
|   uint32_t RemWeight;
 | |
|   BlockMass RemMass;
 | |
| 
 | |
|   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
 | |
| 
 | |
|   BlockMass takeMass(uint32_t Weight);
 | |
| };
 | |
| 
 | |
| } // end namespace
 | |
| 
 | |
| DitheringDistributer::DitheringDistributer(Distribution &Dist,
 | |
|                                            const BlockMass &Mass) {
 | |
|   Dist.normalize();
 | |
|   RemWeight = Dist.Total;
 | |
|   RemMass = Mass;
 | |
| }
 | |
| 
 | |
| BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
 | |
|   assert(Weight && "invalid weight");
 | |
|   assert(Weight <= RemWeight);
 | |
|   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
 | |
| 
 | |
|   // Decrement totals (dither).
 | |
|   RemWeight -= Weight;
 | |
|   RemMass -= Mass;
 | |
|   return Mass;
 | |
| }
 | |
| 
 | |
| void Distribution::add(const BlockNode &Node, uint64_t Amount,
 | |
|                        Weight::DistType Type) {
 | |
|   assert(Amount && "invalid weight of 0");
 | |
|   uint64_t NewTotal = Total + Amount;
 | |
| 
 | |
|   // Check for overflow.  It should be impossible to overflow twice.
 | |
|   bool IsOverflow = NewTotal < Total;
 | |
|   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
 | |
|   DidOverflow |= IsOverflow;
 | |
| 
 | |
|   // Update the total.
 | |
|   Total = NewTotal;
 | |
| 
 | |
|   // Save the weight.
 | |
|   Weights.push_back(Weight(Type, Node, Amount));
 | |
| }
 | |
| 
 | |
| static void combineWeight(Weight &W, const Weight &OtherW) {
 | |
|   assert(OtherW.TargetNode.isValid());
 | |
|   if (!W.Amount) {
 | |
|     W = OtherW;
 | |
|     return;
 | |
|   }
 | |
|   assert(W.Type == OtherW.Type);
 | |
|   assert(W.TargetNode == OtherW.TargetNode);
 | |
|   assert(OtherW.Amount && "Expected non-zero weight");
 | |
|   if (W.Amount > W.Amount + OtherW.Amount)
 | |
|     // Saturate on overflow.
 | |
|     W.Amount = UINT64_MAX;
 | |
|   else
 | |
|     W.Amount += OtherW.Amount;
 | |
| }
 | |
| static void combineWeightsBySorting(WeightList &Weights) {
 | |
|   // Sort so edges to the same node are adjacent.
 | |
|   std::sort(Weights.begin(), Weights.end(),
 | |
|             [](const Weight &L,
 | |
|                const Weight &R) { return L.TargetNode < R.TargetNode; });
 | |
| 
 | |
|   // Combine adjacent edges.
 | |
|   WeightList::iterator O = Weights.begin();
 | |
|   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
 | |
|        ++O, (I = L)) {
 | |
|     *O = *I;
 | |
| 
 | |
|     // Find the adjacent weights to the same node.
 | |
|     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
 | |
|       combineWeight(*O, *L);
 | |
|   }
 | |
| 
 | |
|   // Erase extra entries.
 | |
|   Weights.erase(O, Weights.end());
 | |
|   return;
 | |
| }
 | |
| static void combineWeightsByHashing(WeightList &Weights) {
 | |
|   // Collect weights into a DenseMap.
 | |
|   typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
 | |
|   HashTable Combined(NextPowerOf2(2 * Weights.size()));
 | |
|   for (const Weight &W : Weights)
 | |
|     combineWeight(Combined[W.TargetNode.Index], W);
 | |
| 
 | |
|   // Check whether anything changed.
 | |
|   if (Weights.size() == Combined.size())
 | |
|     return;
 | |
| 
 | |
|   // Fill in the new weights.
 | |
|   Weights.clear();
 | |
|   Weights.reserve(Combined.size());
 | |
|   for (const auto &I : Combined)
 | |
|     Weights.push_back(I.second);
 | |
| }
 | |
| static void combineWeights(WeightList &Weights) {
 | |
|   // Use a hash table for many successors to keep this linear.
 | |
|   if (Weights.size() > 128) {
 | |
|     combineWeightsByHashing(Weights);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   combineWeightsBySorting(Weights);
 | |
| }
 | |
| static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
 | |
|   assert(Shift >= 0);
 | |
|   assert(Shift < 64);
 | |
|   if (!Shift)
 | |
|     return N;
 | |
|   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
 | |
| }
 | |
| void Distribution::normalize() {
 | |
|   // Early exit for termination nodes.
 | |
|   if (Weights.empty())
 | |
|     return;
 | |
| 
 | |
|   // Only bother if there are multiple successors.
 | |
|   if (Weights.size() > 1)
 | |
|     combineWeights(Weights);
 | |
| 
 | |
|   // Early exit when combined into a single successor.
 | |
|   if (Weights.size() == 1) {
 | |
|     Total = 1;
 | |
|     Weights.front().Amount = 1;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Determine how much to shift right so that the total fits into 32-bits.
 | |
|   //
 | |
|   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
 | |
|   // for each weight can cause a 32-bit overflow.
 | |
|   int Shift = 0;
 | |
|   if (DidOverflow)
 | |
|     Shift = 33;
 | |
|   else if (Total > UINT32_MAX)
 | |
|     Shift = 33 - countLeadingZeros(Total);
 | |
| 
 | |
|   // Early exit if nothing needs to be scaled.
 | |
|   if (!Shift) {
 | |
|     // If we didn't overflow then combineWeights() shouldn't have changed the
 | |
|     // sum of the weights, but let's double-check.
 | |
|     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
 | |
|                                     [](uint64_t Sum, const Weight &W) {
 | |
|                       return Sum + W.Amount;
 | |
|                     }) &&
 | |
|            "Expected total to be correct");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Recompute the total through accumulation (rather than shifting it) so that
 | |
|   // it's accurate after shifting and any changes combineWeights() made above.
 | |
|   Total = 0;
 | |
| 
 | |
|   // Sum the weights to each node and shift right if necessary.
 | |
|   for (Weight &W : Weights) {
 | |
|     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
 | |
|     // can round here without concern about overflow.
 | |
|     assert(W.TargetNode.isValid());
 | |
|     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
 | |
|     assert(W.Amount <= UINT32_MAX);
 | |
| 
 | |
|     // Update the total.
 | |
|     Total += W.Amount;
 | |
|   }
 | |
|   assert(Total <= UINT32_MAX);
 | |
| }
 | |
| 
 | |
| void BlockFrequencyInfoImplBase::clear() {
 | |
|   // Swap with a default-constructed std::vector, since std::vector<>::clear()
 | |
|   // does not actually clear heap storage.
 | |
|   std::vector<FrequencyData>().swap(Freqs);
 | |
|   std::vector<WorkingData>().swap(Working);
 | |
|   Loops.clear();
 | |
| }
 | |
| 
 | |
| /// \brief Clear all memory not needed downstream.
 | |
| ///
 | |
| /// Releases all memory not used downstream.  In particular, saves Freqs.
 | |
| static void cleanup(BlockFrequencyInfoImplBase &BFI) {
 | |
|   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
 | |
|   BFI.clear();
 | |
|   BFI.Freqs = std::move(SavedFreqs);
 | |
| }
 | |
| 
 | |
| bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
 | |
|                                            const LoopData *OuterLoop,
 | |
|                                            const BlockNode &Pred,
 | |
|                                            const BlockNode &Succ,
 | |
|                                            uint64_t Weight) {
 | |
|   if (!Weight)
 | |
|     Weight = 1;
 | |
| 
 | |
|   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
 | |
|     return OuterLoop && OuterLoop->isHeader(Node);
 | |
|   };
 | |
| 
 | |
|   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   auto debugSuccessor = [&](const char *Type) {
 | |
|     dbgs() << "  =>"
 | |
|            << " [" << Type << "] weight = " << Weight;
 | |
|     if (!isLoopHeader(Resolved))
 | |
|       dbgs() << ", succ = " << getBlockName(Succ);
 | |
|     if (Resolved != Succ)
 | |
|       dbgs() << ", resolved = " << getBlockName(Resolved);
 | |
|     dbgs() << "\n";
 | |
|   };
 | |
|   (void)debugSuccessor;
 | |
| #endif
 | |
| 
 | |
|   if (isLoopHeader(Resolved)) {
 | |
|     DEBUG(debugSuccessor("backedge"));
 | |
|     Dist.addBackedge(Resolved, Weight);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
 | |
|     DEBUG(debugSuccessor("  exit  "));
 | |
|     Dist.addExit(Resolved, Weight);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Resolved < Pred) {
 | |
|     if (!isLoopHeader(Pred)) {
 | |
|       // If OuterLoop is an irreducible loop, we can't actually handle this.
 | |
|       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
 | |
|              "unhandled irreducible control flow");
 | |
| 
 | |
|       // Irreducible backedge.  Abort.
 | |
|       DEBUG(debugSuccessor("abort!!!"));
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If "Pred" is a loop header, then this isn't really a backedge; rather,
 | |
|     // OuterLoop must be irreducible.  These false backedges can come only from
 | |
|     // secondary loop headers.
 | |
|     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
 | |
|            "unhandled irreducible control flow");
 | |
|   }
 | |
| 
 | |
|   DEBUG(debugSuccessor(" local  "));
 | |
|   Dist.addLocal(Resolved, Weight);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
 | |
|     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
 | |
|   // Copy the exit map into Dist.
 | |
|   for (const auto &I : Loop.Exits)
 | |
|     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
 | |
|                    I.second.getMass()))
 | |
|       // Irreducible backedge.
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Compute the loop scale for a loop.
 | |
| void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
 | |
|   // Compute loop scale.
 | |
|   DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
 | |
| 
 | |
|   // Infinite loops need special handling. If we give the back edge an infinite
 | |
|   // mass, they may saturate all the other scales in the function down to 1,
 | |
|   // making all the other region temperatures look exactly the same. Choose an
 | |
|   // arbitrary scale to avoid these issues.
 | |
|   //
 | |
|   // FIXME: An alternate way would be to select a symbolic scale which is later
 | |
|   // replaced to be the maximum of all computed scales plus 1. This would
 | |
|   // appropriately describe the loop as having a large scale, without skewing
 | |
|   // the final frequency computation.
 | |
|   const Scaled64 InifiniteLoopScale(1, 12);
 | |
| 
 | |
|   // LoopScale == 1 / ExitMass
 | |
|   // ExitMass == HeadMass - BackedgeMass
 | |
|   BlockMass TotalBackedgeMass;
 | |
|   for (auto &Mass : Loop.BackedgeMass)
 | |
|     TotalBackedgeMass += Mass;
 | |
|   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
 | |
| 
 | |
|   // Block scale stores the inverse of the scale. If this is an infinite loop,
 | |
|   // its exit mass will be zero. In this case, use an arbitrary scale for the
 | |
|   // loop scale.
 | |
|   Loop.Scale =
 | |
|       ExitMass.isEmpty() ? InifiniteLoopScale : ExitMass.toScaled().inverse();
 | |
| 
 | |
|   DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
 | |
|                << " - " << TotalBackedgeMass << ")\n"
 | |
|                << " - scale = " << Loop.Scale << "\n");
 | |
| }
 | |
| 
 | |
| /// \brief Package up a loop.
 | |
| void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
 | |
|   DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
 | |
| 
 | |
|   // Clear the subloop exits to prevent quadratic memory usage.
 | |
|   for (const BlockNode &M : Loop.Nodes) {
 | |
|     if (auto *Loop = Working[M.Index].getPackagedLoop())
 | |
|       Loop->Exits.clear();
 | |
|     DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
 | |
|   }
 | |
|   Loop.IsPackaged = true;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
 | |
|                         const DitheringDistributer &D, const BlockNode &T,
 | |
|                         const BlockMass &M, const char *Desc) {
 | |
|   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
 | |
|   if (Desc)
 | |
|     dbgs() << " [" << Desc << "]";
 | |
|   if (T.isValid())
 | |
|     dbgs() << " to " << BFI.getBlockName(T);
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
 | |
|                                                 LoopData *OuterLoop,
 | |
|                                                 Distribution &Dist) {
 | |
|   BlockMass Mass = Working[Source.Index].getMass();
 | |
|   DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
 | |
| 
 | |
|   // Distribute mass to successors as laid out in Dist.
 | |
|   DitheringDistributer D(Dist, Mass);
 | |
| 
 | |
|   for (const Weight &W : Dist.Weights) {
 | |
|     // Check for a local edge (non-backedge and non-exit).
 | |
|     BlockMass Taken = D.takeMass(W.Amount);
 | |
|     if (W.Type == Weight::Local) {
 | |
|       Working[W.TargetNode.Index].getMass() += Taken;
 | |
|       DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Backedges and exits only make sense if we're processing a loop.
 | |
|     assert(OuterLoop && "backedge or exit outside of loop");
 | |
| 
 | |
|     // Check for a backedge.
 | |
|     if (W.Type == Weight::Backedge) {
 | |
|       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
 | |
|       DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // This must be an exit.
 | |
|     assert(W.Type == Weight::Exit);
 | |
|     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
 | |
|     DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
 | |
|                                      const Scaled64 &Min, const Scaled64 &Max) {
 | |
|   // Scale the Factor to a size that creates integers.  Ideally, integers would
 | |
|   // be scaled so that Max == UINT64_MAX so that they can be best
 | |
|   // differentiated.  However, in the presence of large frequency values, small
 | |
|   // frequencies are scaled down to 1, making it impossible to differentiate
 | |
|   // small, unequal numbers. When the spread between Min and Max frequencies
 | |
|   // fits well within MaxBits, we make the scale be at least 8.
 | |
|   const unsigned MaxBits = 64;
 | |
|   const unsigned SpreadBits = (Max / Min).lg();
 | |
|   Scaled64 ScalingFactor;
 | |
|   if (SpreadBits <= MaxBits - 3) {
 | |
|     // If the values are small enough, make the scaling factor at least 8 to
 | |
|     // allow distinguishing small values.
 | |
|     ScalingFactor = Min.inverse();
 | |
|     ScalingFactor <<= 3;
 | |
|   } else {
 | |
|     // If the values need more than MaxBits to be represented, saturate small
 | |
|     // frequency values down to 1 by using a scaling factor that benefits large
 | |
|     // frequency values.
 | |
|     ScalingFactor = Scaled64(1, MaxBits) / Max;
 | |
|   }
 | |
| 
 | |
|   // Translate the floats to integers.
 | |
|   DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
 | |
|                << ", factor = " << ScalingFactor << "\n");
 | |
|   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
 | |
|     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
 | |
|     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
 | |
|     DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
 | |
|                  << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
 | |
|                  << ", int = " << BFI.Freqs[Index].Integer << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Unwrap a loop package.
 | |
| ///
 | |
| /// Visits all the members of a loop, adjusting their BlockData according to
 | |
| /// the loop's pseudo-node.
 | |
| static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
 | |
|   DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
 | |
|                << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
 | |
|                << "\n");
 | |
|   Loop.Scale *= Loop.Mass.toScaled();
 | |
|   Loop.IsPackaged = false;
 | |
|   DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
 | |
| 
 | |
|   // Propagate the head scale through the loop.  Since members are visited in
 | |
|   // RPO, the head scale will be updated by the loop scale first, and then the
 | |
|   // final head scale will be used for updated the rest of the members.
 | |
|   for (const BlockNode &N : Loop.Nodes) {
 | |
|     const auto &Working = BFI.Working[N.Index];
 | |
|     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
 | |
|                                        : BFI.Freqs[N.Index].Scaled;
 | |
|     Scaled64 New = Loop.Scale * F;
 | |
|     DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New
 | |
|                  << "\n");
 | |
|     F = New;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BlockFrequencyInfoImplBase::unwrapLoops() {
 | |
|   // Set initial frequencies from loop-local masses.
 | |
|   for (size_t Index = 0; Index < Working.size(); ++Index)
 | |
|     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
 | |
| 
 | |
|   for (LoopData &Loop : Loops)
 | |
|     unwrapLoop(*this, Loop);
 | |
| }
 | |
| 
 | |
| void BlockFrequencyInfoImplBase::finalizeMetrics() {
 | |
|   // Unwrap loop packages in reverse post-order, tracking min and max
 | |
|   // frequencies.
 | |
|   auto Min = Scaled64::getLargest();
 | |
|   auto Max = Scaled64::getZero();
 | |
|   for (size_t Index = 0; Index < Working.size(); ++Index) {
 | |
|     // Update min/max scale.
 | |
|     Min = std::min(Min, Freqs[Index].Scaled);
 | |
|     Max = std::max(Max, Freqs[Index].Scaled);
 | |
|   }
 | |
| 
 | |
|   // Convert to integers.
 | |
|   convertFloatingToInteger(*this, Min, Max);
 | |
| 
 | |
|   // Clean up data structures.
 | |
|   cleanup(*this);
 | |
| 
 | |
|   // Print out the final stats.
 | |
|   DEBUG(dump());
 | |
| }
 | |
| 
 | |
| BlockFrequency
 | |
| BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
 | |
|   if (!Node.isValid())
 | |
|     return 0;
 | |
|   return Freqs[Node.Index].Integer;
 | |
| }
 | |
| Scaled64
 | |
| BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
 | |
|   if (!Node.isValid())
 | |
|     return Scaled64::getZero();
 | |
|   return Freqs[Node.Index].Scaled;
 | |
| }
 | |
| 
 | |
| std::string
 | |
| BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
 | |
|   return std::string();
 | |
| }
 | |
| std::string
 | |
| BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
 | |
|   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
 | |
| }
 | |
| 
 | |
| raw_ostream &
 | |
| BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | |
|                                            const BlockNode &Node) const {
 | |
|   return OS << getFloatingBlockFreq(Node);
 | |
| }
 | |
| 
 | |
| raw_ostream &
 | |
| BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
 | |
|                                            const BlockFrequency &Freq) const {
 | |
|   Scaled64 Block(Freq.getFrequency(), 0);
 | |
|   Scaled64 Entry(getEntryFreq(), 0);
 | |
| 
 | |
|   return OS << Block / Entry;
 | |
| }
 | |
| 
 | |
| void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
 | |
|   Start = OuterLoop.getHeader();
 | |
|   Nodes.reserve(OuterLoop.Nodes.size());
 | |
|   for (auto N : OuterLoop.Nodes)
 | |
|     addNode(N);
 | |
|   indexNodes();
 | |
| }
 | |
| void IrreducibleGraph::addNodesInFunction() {
 | |
|   Start = 0;
 | |
|   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
 | |
|     if (!BFI.Working[Index].isPackaged())
 | |
|       addNode(Index);
 | |
|   indexNodes();
 | |
| }
 | |
| void IrreducibleGraph::indexNodes() {
 | |
|   for (auto &I : Nodes)
 | |
|     Lookup[I.Node.Index] = &I;
 | |
| }
 | |
| void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
 | |
|                                const BFIBase::LoopData *OuterLoop) {
 | |
|   if (OuterLoop && OuterLoop->isHeader(Succ))
 | |
|     return;
 | |
|   auto L = Lookup.find(Succ.Index);
 | |
|   if (L == Lookup.end())
 | |
|     return;
 | |
|   IrrNode &SuccIrr = *L->second;
 | |
|   Irr.Edges.push_back(&SuccIrr);
 | |
|   SuccIrr.Edges.push_front(&Irr);
 | |
|   ++SuccIrr.NumIn;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct GraphTraits<IrreducibleGraph> {
 | |
|   typedef bfi_detail::IrreducibleGraph GraphT;
 | |
| 
 | |
|   typedef const GraphT::IrrNode NodeType;
 | |
|   typedef GraphT::IrrNode::iterator ChildIteratorType;
 | |
| 
 | |
|   static const NodeType *getEntryNode(const GraphT &G) {
 | |
|     return G.StartIrr;
 | |
|   }
 | |
|   static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); }
 | |
|   static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Find extra irreducible headers.
 | |
| ///
 | |
| /// Find entry blocks and other blocks with backedges, which exist when \c G
 | |
| /// contains irreducible sub-SCCs.
 | |
| static void findIrreducibleHeaders(
 | |
|     const BlockFrequencyInfoImplBase &BFI,
 | |
|     const IrreducibleGraph &G,
 | |
|     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
 | |
|     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
 | |
|   // Map from nodes in the SCC to whether it's an entry block.
 | |
|   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
 | |
| 
 | |
|   // InSCC also acts the set of nodes in the graph.  Seed it.
 | |
|   for (const auto *I : SCC)
 | |
|     InSCC[I] = false;
 | |
| 
 | |
|   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
 | |
|     auto &Irr = *I->first;
 | |
|     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
 | |
|       if (InSCC.count(P))
 | |
|         continue;
 | |
| 
 | |
|       // This is an entry block.
 | |
|       I->second = true;
 | |
|       Headers.push_back(Irr.Node);
 | |
|       DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) << "\n");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   assert(Headers.size() >= 2 &&
 | |
|          "Expected irreducible CFG; -loop-info is likely invalid");
 | |
|   if (Headers.size() == InSCC.size()) {
 | |
|     // Every block is a header.
 | |
|     std::sort(Headers.begin(), Headers.end());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look for extra headers from irreducible sub-SCCs.
 | |
|   for (const auto &I : InSCC) {
 | |
|     // Entry blocks are already headers.
 | |
|     if (I.second)
 | |
|       continue;
 | |
| 
 | |
|     auto &Irr = *I.first;
 | |
|     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
 | |
|       // Skip forward edges.
 | |
|       if (P->Node < Irr.Node)
 | |
|         continue;
 | |
| 
 | |
|       // Skip predecessors from entry blocks.  These can have inverted
 | |
|       // ordering.
 | |
|       if (InSCC.lookup(P))
 | |
|         continue;
 | |
| 
 | |
|       // Store the extra header.
 | |
|       Headers.push_back(Irr.Node);
 | |
|       DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) << "\n");
 | |
|       break;
 | |
|     }
 | |
|     if (Headers.back() == Irr.Node)
 | |
|       // Added this as a header.
 | |
|       continue;
 | |
| 
 | |
|     // This is not a header.
 | |
|     Others.push_back(Irr.Node);
 | |
|     DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
 | |
|   }
 | |
|   std::sort(Headers.begin(), Headers.end());
 | |
|   std::sort(Others.begin(), Others.end());
 | |
| }
 | |
| 
 | |
| static void createIrreducibleLoop(
 | |
|     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
 | |
|     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
 | |
|     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
 | |
|   // Translate the SCC into RPO.
 | |
|   DEBUG(dbgs() << " - found-scc\n");
 | |
| 
 | |
|   LoopData::NodeList Headers;
 | |
|   LoopData::NodeList Others;
 | |
|   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
 | |
| 
 | |
|   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
 | |
|                                 Headers.end(), Others.begin(), Others.end());
 | |
| 
 | |
|   // Update loop hierarchy.
 | |
|   for (const auto &N : Loop->Nodes)
 | |
|     if (BFI.Working[N.Index].isLoopHeader())
 | |
|       BFI.Working[N.Index].Loop->Parent = &*Loop;
 | |
|     else
 | |
|       BFI.Working[N.Index].Loop = &*Loop;
 | |
| }
 | |
| 
 | |
| iterator_range<std::list<LoopData>::iterator>
 | |
| BlockFrequencyInfoImplBase::analyzeIrreducible(
 | |
|     const IrreducibleGraph &G, LoopData *OuterLoop,
 | |
|     std::list<LoopData>::iterator Insert) {
 | |
|   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
 | |
|   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
 | |
| 
 | |
|   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
 | |
|     if (I->size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     // Translate the SCC into RPO.
 | |
|     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
 | |
|   }
 | |
| 
 | |
|   if (OuterLoop)
 | |
|     return make_range(std::next(Prev), Insert);
 | |
|   return make_range(Loops.begin(), Insert);
 | |
| }
 | |
| 
 | |
| void
 | |
| BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
 | |
|   OuterLoop.Exits.clear();
 | |
|   for (auto &Mass : OuterLoop.BackedgeMass)
 | |
|     Mass = BlockMass::getEmpty();
 | |
|   auto O = OuterLoop.Nodes.begin() + 1;
 | |
|   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
 | |
|     if (!Working[I->Index].isPackaged())
 | |
|       *O++ = *I;
 | |
|   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
 | |
| }
 | |
| 
 | |
| void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
 | |
|   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
 | |
| 
 | |
|   // Since the loop has more than one header block, the mass flowing back into
 | |
|   // each header will be different. Adjust the mass in each header loop to
 | |
|   // reflect the masses flowing through back edges.
 | |
|   //
 | |
|   // To do this, we distribute the initial mass using the backedge masses
 | |
|   // as weights for the distribution.
 | |
|   BlockMass LoopMass = BlockMass::getFull();
 | |
|   Distribution Dist;
 | |
| 
 | |
|   DEBUG(dbgs() << "adjust-loop-header-mass:\n");
 | |
|   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
 | |
|     auto &HeaderNode = Loop.Nodes[H];
 | |
|     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
 | |
|     DEBUG(dbgs() << " - Add back edge mass for node "
 | |
|                  << getBlockName(HeaderNode) << ": " << BackedgeMass << "\n");
 | |
|     Dist.addLocal(HeaderNode, BackedgeMass.getMass());
 | |
|   }
 | |
| 
 | |
|   DitheringDistributer D(Dist, LoopMass);
 | |
| 
 | |
|   DEBUG(dbgs() << " Distribute loop mass " << LoopMass
 | |
|                << " to headers using above weights\n");
 | |
|   for (const Weight &W : Dist.Weights) {
 | |
|     BlockMass Taken = D.takeMass(W.Amount);
 | |
|     assert(W.Type == Weight::Local && "all weights should be local");
 | |
|     Working[W.TargetNode.Index].getMass() = Taken;
 | |
|     DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
 | |
|   }
 | |
| }
 |