mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			780 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			780 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs a simple dominator tree walk that eliminates trivially
 | |
| // redundant instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/EarlyCSE.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/ScopedHashTable.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/RecyclingAllocator.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <deque>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "early-cse"
 | |
| 
 | |
| STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
 | |
| STATISTIC(NumCSE,      "Number of instructions CSE'd");
 | |
| STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
 | |
| STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
 | |
| STATISTIC(NumDSE,      "Number of trivial dead stores removed");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SimpleValue
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Struct representing the available values in the scoped hash table.
 | |
| struct SimpleValue {
 | |
|   Instruction *Inst;
 | |
| 
 | |
|   SimpleValue(Instruction *I) : Inst(I) {
 | |
|     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | |
|   }
 | |
| 
 | |
|   bool isSentinel() const {
 | |
|     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
 | |
|            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
| 
 | |
|   static bool canHandle(Instruction *Inst) {
 | |
|     // This can only handle non-void readnone functions.
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(Inst))
 | |
|       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
 | |
|     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | |
|            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
 | |
|            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
 | |
|            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
 | |
|            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<SimpleValue> {
 | |
|   static inline SimpleValue getEmptyKey() {
 | |
|     return DenseMapInfo<Instruction *>::getEmptyKey();
 | |
|   }
 | |
|   static inline SimpleValue getTombstoneKey() {
 | |
|     return DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
|   static unsigned getHashValue(SimpleValue Val);
 | |
|   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
 | |
| };
 | |
| }
 | |
| 
 | |
| unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
 | |
|   Instruction *Inst = Val.Inst;
 | |
|   // Hash in all of the operands as pointers.
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
 | |
|     Value *LHS = BinOp->getOperand(0);
 | |
|     Value *RHS = BinOp->getOperand(1);
 | |
|     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
 | |
|       std::swap(LHS, RHS);
 | |
| 
 | |
|     if (isa<OverflowingBinaryOperator>(BinOp)) {
 | |
|       // Hash the overflow behavior
 | |
|       unsigned Overflow =
 | |
|           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
 | |
|           BinOp->hasNoUnsignedWrap() *
 | |
|               OverflowingBinaryOperator::NoUnsignedWrap;
 | |
|       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
 | |
|     }
 | |
| 
 | |
|     return hash_combine(BinOp->getOpcode(), LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
 | |
|     Value *LHS = CI->getOperand(0);
 | |
|     Value *RHS = CI->getOperand(1);
 | |
|     CmpInst::Predicate Pred = CI->getPredicate();
 | |
|     if (Inst->getOperand(0) > Inst->getOperand(1)) {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = CI->getSwappedPredicate();
 | |
|     }
 | |
|     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(Inst))
 | |
|     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
 | |
| 
 | |
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
 | |
|     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
 | |
|                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
 | |
| 
 | |
|   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
 | |
|     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
 | |
|                         IVI->getOperand(1),
 | |
|                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
 | |
| 
 | |
|   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
 | |
|           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
 | |
|           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
 | |
|           isa<ShuffleVectorInst>(Inst)) &&
 | |
|          "Invalid/unknown instruction");
 | |
| 
 | |
|   // Mix in the opcode.
 | |
|   return hash_combine(
 | |
|       Inst->getOpcode(),
 | |
|       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
 | |
| }
 | |
| 
 | |
| bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
 | |
|   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | |
| 
 | |
|   if (LHS.isSentinel() || RHS.isSentinel())
 | |
|     return LHSI == RHSI;
 | |
| 
 | |
|   if (LHSI->getOpcode() != RHSI->getOpcode())
 | |
|     return false;
 | |
|   if (LHSI->isIdenticalTo(RHSI))
 | |
|     return true;
 | |
| 
 | |
|   // If we're not strictly identical, we still might be a commutable instruction
 | |
|   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
 | |
|     if (!LHSBinOp->isCommutative())
 | |
|       return false;
 | |
| 
 | |
|     assert(isa<BinaryOperator>(RHSI) &&
 | |
|            "same opcode, but different instruction type?");
 | |
|     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
 | |
| 
 | |
|     // Check overflow attributes
 | |
|     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
 | |
|       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
 | |
|              "same opcode, but different operator type?");
 | |
|       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
 | |
|           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Commuted equality
 | |
|     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
 | |
|            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
 | |
|   }
 | |
|   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
 | |
|     assert(isa<CmpInst>(RHSI) &&
 | |
|            "same opcode, but different instruction type?");
 | |
|     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
 | |
|     // Commuted equality
 | |
|     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
 | |
|            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
 | |
|            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CallValue
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Struct representing the available call values in the scoped hash
 | |
| /// table.
 | |
| struct CallValue {
 | |
|   Instruction *Inst;
 | |
| 
 | |
|   CallValue(Instruction *I) : Inst(I) {
 | |
|     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
 | |
|   }
 | |
| 
 | |
|   bool isSentinel() const {
 | |
|     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
 | |
|            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
| 
 | |
|   static bool canHandle(Instruction *Inst) {
 | |
|     // Don't value number anything that returns void.
 | |
|     if (Inst->getType()->isVoidTy())
 | |
|       return false;
 | |
| 
 | |
|     CallInst *CI = dyn_cast<CallInst>(Inst);
 | |
|     if (!CI || !CI->onlyReadsMemory())
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<CallValue> {
 | |
|   static inline CallValue getEmptyKey() {
 | |
|     return DenseMapInfo<Instruction *>::getEmptyKey();
 | |
|   }
 | |
|   static inline CallValue getTombstoneKey() {
 | |
|     return DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
|   static unsigned getHashValue(CallValue Val);
 | |
|   static bool isEqual(CallValue LHS, CallValue RHS);
 | |
| };
 | |
| }
 | |
| 
 | |
| unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
 | |
|   Instruction *Inst = Val.Inst;
 | |
|   // Hash all of the operands as pointers and mix in the opcode.
 | |
|   return hash_combine(
 | |
|       Inst->getOpcode(),
 | |
|       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
 | |
| }
 | |
| 
 | |
| bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
 | |
|   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
 | |
|   if (LHS.isSentinel() || RHS.isSentinel())
 | |
|     return LHSI == RHSI;
 | |
|   return LHSI->isIdenticalTo(RHSI);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // EarlyCSE implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief A simple and fast domtree-based CSE pass.
 | |
| ///
 | |
| /// This pass does a simple depth-first walk over the dominator tree,
 | |
| /// eliminating trivially redundant instructions and using instsimplify to
 | |
| /// canonicalize things as it goes. It is intended to be fast and catch obvious
 | |
| /// cases so that instcombine and other passes are more effective. It is
 | |
| /// expected that a later pass of GVN will catch the interesting/hard cases.
 | |
| class EarlyCSE {
 | |
| public:
 | |
|   Function &F;
 | |
|   const TargetLibraryInfo &TLI;
 | |
|   const TargetTransformInfo &TTI;
 | |
|   DominatorTree &DT;
 | |
|   AssumptionCache &AC;
 | |
|   typedef RecyclingAllocator<
 | |
|       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
 | |
|   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
 | |
|                           AllocatorTy> ScopedHTType;
 | |
| 
 | |
|   /// \brief A scoped hash table of the current values of all of our simple
 | |
|   /// scalar expressions.
 | |
|   ///
 | |
|   /// As we walk down the domtree, we look to see if instructions are in this:
 | |
|   /// if so, we replace them with what we find, otherwise we insert them so
 | |
|   /// that dominated values can succeed in their lookup.
 | |
|   ScopedHTType AvailableValues;
 | |
| 
 | |
|   /// \brief A scoped hash table of the current values of loads.
 | |
|   ///
 | |
|   /// This allows us to get efficient access to dominating loads when we have
 | |
|   /// a fully redundant load.  In addition to the most recent load, we keep
 | |
|   /// track of a generation count of the read, which is compared against the
 | |
|   /// current generation count.  The current generation count is incremented
 | |
|   /// after every possibly writing memory operation, which ensures that we only
 | |
|   /// CSE loads with other loads that have no intervening store.
 | |
|   typedef RecyclingAllocator<
 | |
|       BumpPtrAllocator,
 | |
|       ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
 | |
|       LoadMapAllocator;
 | |
|   typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
 | |
|                           DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
 | |
|   LoadHTType AvailableLoads;
 | |
| 
 | |
|   /// \brief A scoped hash table of the current values of read-only call
 | |
|   /// values.
 | |
|   ///
 | |
|   /// It uses the same generation count as loads.
 | |
|   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
 | |
|   CallHTType AvailableCalls;
 | |
| 
 | |
|   /// \brief This is the current generation of the memory value.
 | |
|   unsigned CurrentGeneration;
 | |
| 
 | |
|   /// \brief Set up the EarlyCSE runner for a particular function.
 | |
|   EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
 | |
|            const TargetTransformInfo &TTI, DominatorTree &DT,
 | |
|            AssumptionCache &AC)
 | |
|       : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
 | |
| 
 | |
|   bool run();
 | |
| 
 | |
| private:
 | |
|   // Almost a POD, but needs to call the constructors for the scoped hash
 | |
|   // tables so that a new scope gets pushed on. These are RAII so that the
 | |
|   // scope gets popped when the NodeScope is destroyed.
 | |
|   class NodeScope {
 | |
|   public:
 | |
|     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
 | |
|               CallHTType &AvailableCalls)
 | |
|         : Scope(AvailableValues), LoadScope(AvailableLoads),
 | |
|           CallScope(AvailableCalls) {}
 | |
| 
 | |
|   private:
 | |
|     NodeScope(const NodeScope &) = delete;
 | |
|     void operator=(const NodeScope &) = delete;
 | |
| 
 | |
|     ScopedHTType::ScopeTy Scope;
 | |
|     LoadHTType::ScopeTy LoadScope;
 | |
|     CallHTType::ScopeTy CallScope;
 | |
|   };
 | |
| 
 | |
|   // Contains all the needed information to create a stack for doing a depth
 | |
|   // first tranversal of the tree. This includes scopes for values, loads, and
 | |
|   // calls as well as the generation. There is a child iterator so that the
 | |
|   // children do not need to be store spearately.
 | |
|   class StackNode {
 | |
|   public:
 | |
|     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
 | |
|               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
 | |
|               DomTreeNode::iterator child, DomTreeNode::iterator end)
 | |
|         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
 | |
|           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
 | |
|           Processed(false) {}
 | |
| 
 | |
|     // Accessors.
 | |
|     unsigned currentGeneration() { return CurrentGeneration; }
 | |
|     unsigned childGeneration() { return ChildGeneration; }
 | |
|     void childGeneration(unsigned generation) { ChildGeneration = generation; }
 | |
|     DomTreeNode *node() { return Node; }
 | |
|     DomTreeNode::iterator childIter() { return ChildIter; }
 | |
|     DomTreeNode *nextChild() {
 | |
|       DomTreeNode *child = *ChildIter;
 | |
|       ++ChildIter;
 | |
|       return child;
 | |
|     }
 | |
|     DomTreeNode::iterator end() { return EndIter; }
 | |
|     bool isProcessed() { return Processed; }
 | |
|     void process() { Processed = true; }
 | |
| 
 | |
|   private:
 | |
|     StackNode(const StackNode &) = delete;
 | |
|     void operator=(const StackNode &) = delete;
 | |
| 
 | |
|     // Members.
 | |
|     unsigned CurrentGeneration;
 | |
|     unsigned ChildGeneration;
 | |
|     DomTreeNode *Node;
 | |
|     DomTreeNode::iterator ChildIter;
 | |
|     DomTreeNode::iterator EndIter;
 | |
|     NodeScope Scopes;
 | |
|     bool Processed;
 | |
|   };
 | |
| 
 | |
|   /// \brief Wrapper class to handle memory instructions, including loads,
 | |
|   /// stores and intrinsic loads and stores defined by the target.
 | |
|   class ParseMemoryInst {
 | |
|   public:
 | |
|     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
 | |
|         : Load(false), Store(false), Vol(false), MayReadFromMemory(false),
 | |
|           MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) {
 | |
|       MayReadFromMemory = Inst->mayReadFromMemory();
 | |
|       MayWriteToMemory = Inst->mayWriteToMemory();
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|         MemIntrinsicInfo Info;
 | |
|         if (!TTI.getTgtMemIntrinsic(II, Info))
 | |
|           return;
 | |
|         if (Info.NumMemRefs == 1) {
 | |
|           Store = Info.WriteMem;
 | |
|           Load = Info.ReadMem;
 | |
|           MatchingId = Info.MatchingId;
 | |
|           MayReadFromMemory = Info.ReadMem;
 | |
|           MayWriteToMemory = Info.WriteMem;
 | |
|           Vol = Info.Vol;
 | |
|           Ptr = Info.PtrVal;
 | |
|         }
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|         Load = true;
 | |
|         Vol = !LI->isSimple();
 | |
|         Ptr = LI->getPointerOperand();
 | |
|       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|         Store = true;
 | |
|         Vol = !SI->isSimple();
 | |
|         Ptr = SI->getPointerOperand();
 | |
|       }
 | |
|     }
 | |
|     bool isLoad() { return Load; }
 | |
|     bool isStore() { return Store; }
 | |
|     bool isVolatile() { return Vol; }
 | |
|     bool isMatchingMemLoc(const ParseMemoryInst &Inst) {
 | |
|       return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId;
 | |
|     }
 | |
|     bool isValid() { return Ptr != nullptr; }
 | |
|     int getMatchingId() { return MatchingId; }
 | |
|     Value *getPtr() { return Ptr; }
 | |
|     bool mayReadFromMemory() { return MayReadFromMemory; }
 | |
|     bool mayWriteToMemory() { return MayWriteToMemory; }
 | |
| 
 | |
|   private:
 | |
|     bool Load;
 | |
|     bool Store;
 | |
|     bool Vol;
 | |
|     bool MayReadFromMemory;
 | |
|     bool MayWriteToMemory;
 | |
|     // For regular (non-intrinsic) loads/stores, this is set to -1. For
 | |
|     // intrinsic loads/stores, the id is retrieved from the corresponding
 | |
|     // field in the MemIntrinsicInfo structure.  That field contains
 | |
|     // non-negative values only.
 | |
|     int MatchingId;
 | |
|     Value *Ptr;
 | |
|   };
 | |
| 
 | |
|   bool processNode(DomTreeNode *Node);
 | |
| 
 | |
|   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|       return LI;
 | |
|     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|       return SI->getValueOperand();
 | |
|     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
 | |
|     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
 | |
|                                                  ExpectedType);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| bool EarlyCSE::processNode(DomTreeNode *Node) {
 | |
|   BasicBlock *BB = Node->getBlock();
 | |
| 
 | |
|   // If this block has a single predecessor, then the predecessor is the parent
 | |
|   // of the domtree node and all of the live out memory values are still current
 | |
|   // in this block.  If this block has multiple predecessors, then they could
 | |
|   // have invalidated the live-out memory values of our parent value.  For now,
 | |
|   // just be conservative and invalidate memory if this block has multiple
 | |
|   // predecessors.
 | |
|   if (!BB->getSinglePredecessor())
 | |
|     ++CurrentGeneration;
 | |
| 
 | |
|   // If this node has a single predecessor which ends in a conditional branch,
 | |
|   // we can infer the value of the branch condition given that we took this
 | |
|   // path.  We need the single predeccesor to ensure there's not another path
 | |
|   // which reaches this block where the condition might hold a different
 | |
|   // value.  Since we're adding this to the scoped hash table (like any other
 | |
|   // def), it will have been popped if we encounter a future merge block.
 | |
|   if (BasicBlock *Pred = BB->getSinglePredecessor())
 | |
|     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
 | |
|       if (BI->isConditional())
 | |
|         if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
 | |
|           if (SimpleValue::canHandle(CondInst)) {
 | |
|             assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
 | |
|             auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
 | |
|               ConstantInt::getTrue(BB->getContext()) :
 | |
|               ConstantInt::getFalse(BB->getContext());
 | |
|             AvailableValues.insert(CondInst, ConditionalConstant);
 | |
|             DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
 | |
|                   << CondInst->getName() << "' as " << *ConditionalConstant
 | |
|                   << " in " << BB->getName() << "\n");
 | |
|             // Replace all dominated uses with the known value
 | |
|             replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
 | |
|                                      BasicBlockEdge(Pred, BB));
 | |
|           }
 | |
| 
 | |
|   /// LastStore - Keep track of the last non-volatile store that we saw... for
 | |
|   /// as long as there in no instruction that reads memory.  If we see a store
 | |
|   /// to the same location, we delete the dead store.  This zaps trivial dead
 | |
|   /// stores which can occur in bitfield code among other things.
 | |
|   Instruction *LastStore = nullptr;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
| 
 | |
|   // See if any instructions in the block can be eliminated.  If so, do it.  If
 | |
|   // not, add them to AvailableValues.
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|     Instruction *Inst = I++;
 | |
| 
 | |
|     // Dead instructions should just be removed.
 | |
|     if (isInstructionTriviallyDead(Inst, &TLI)) {
 | |
|       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
 | |
|       Inst->eraseFromParent();
 | |
|       Changed = true;
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Skip assume intrinsics, they don't really have side effects (although
 | |
|     // they're marked as such to ensure preservation of control dependencies),
 | |
|     // and this pass will not disturb any of the assumption's control
 | |
|     // dependencies.
 | |
|     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
 | |
|       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
 | |
|     // its simpler value.
 | |
|     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
 | |
|       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
 | |
|       Inst->replaceAllUsesWith(V);
 | |
|       Inst->eraseFromParent();
 | |
|       Changed = true;
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a simple instruction that we can value number, process it.
 | |
|     if (SimpleValue::canHandle(Inst)) {
 | |
|       // See if the instruction has an available value.  If so, use it.
 | |
|       if (Value *V = AvailableValues.lookup(Inst)) {
 | |
|         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
 | |
|         Inst->replaceAllUsesWith(V);
 | |
|         Inst->eraseFromParent();
 | |
|         Changed = true;
 | |
|         ++NumCSE;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, just remember that this value is available.
 | |
|       AvailableValues.insert(Inst, Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ParseMemoryInst MemInst(Inst, TTI);
 | |
|     // If this is a non-volatile load, process it.
 | |
|     if (MemInst.isValid() && MemInst.isLoad()) {
 | |
|       // Ignore volatile loads.
 | |
|       if (MemInst.isVolatile()) {
 | |
|         LastStore = nullptr;
 | |
|         // Don't CSE across synchronization boundaries.
 | |
|         if (Inst->mayWriteToMemory())
 | |
|           ++CurrentGeneration;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we have an available version of this load, and if it is the right
 | |
|       // generation, replace this instruction.
 | |
|       std::pair<Value *, unsigned> InVal =
 | |
|           AvailableLoads.lookup(MemInst.getPtr());
 | |
|       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | |
|         Value *Op = getOrCreateResult(InVal.first, Inst->getType());
 | |
|         if (Op != nullptr) {
 | |
|           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
 | |
|                        << "  to: " << *InVal.first << '\n');
 | |
|           if (!Inst->use_empty())
 | |
|             Inst->replaceAllUsesWith(Op);
 | |
|           Inst->eraseFromParent();
 | |
|           Changed = true;
 | |
|           ++NumCSELoad;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, remember that we have this instruction.
 | |
|       AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
 | |
|                                                   Inst, CurrentGeneration));
 | |
|       LastStore = nullptr;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this instruction may read from memory, forget LastStore.
 | |
|     // Load/store intrinsics will indicate both a read and a write to
 | |
|     // memory.  The target may override this (e.g. so that a store intrinsic
 | |
|     // does not read  from memory, and thus will be treated the same as a
 | |
|     // regular store for commoning purposes).
 | |
|     if (Inst->mayReadFromMemory() &&
 | |
|         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
 | |
|       LastStore = nullptr;
 | |
| 
 | |
|     // If this is a read-only call, process it.
 | |
|     if (CallValue::canHandle(Inst)) {
 | |
|       // If we have an available version of this call, and if it is the right
 | |
|       // generation, replace this instruction.
 | |
|       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
 | |
|       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
 | |
|         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
 | |
|                      << "  to: " << *InVal.first << '\n');
 | |
|         if (!Inst->use_empty())
 | |
|           Inst->replaceAllUsesWith(InVal.first);
 | |
|         Inst->eraseFromParent();
 | |
|         Changed = true;
 | |
|         ++NumCSECall;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, remember that we have this instruction.
 | |
|       AvailableCalls.insert(
 | |
|           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Okay, this isn't something we can CSE at all.  Check to see if it is
 | |
|     // something that could modify memory.  If so, our available memory values
 | |
|     // cannot be used so bump the generation count.
 | |
|     if (Inst->mayWriteToMemory()) {
 | |
|       ++CurrentGeneration;
 | |
| 
 | |
|       if (MemInst.isValid() && MemInst.isStore()) {
 | |
|         // We do a trivial form of DSE if there are two stores to the same
 | |
|         // location with no intervening loads.  Delete the earlier store.
 | |
|         if (LastStore) {
 | |
|           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
 | |
|           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
 | |
|             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
 | |
|                          << "  due to: " << *Inst << '\n');
 | |
|             LastStore->eraseFromParent();
 | |
|             Changed = true;
 | |
|             ++NumDSE;
 | |
|             LastStore = nullptr;
 | |
|           }
 | |
|           // fallthrough - we can exploit information about this store
 | |
|         }
 | |
| 
 | |
|         // Okay, we just invalidated anything we knew about loaded values.  Try
 | |
|         // to salvage *something* by remembering that the stored value is a live
 | |
|         // version of the pointer.  It is safe to forward from volatile stores
 | |
|         // to non-volatile loads, so we don't have to check for volatility of
 | |
|         // the store.
 | |
|         AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
 | |
|                                                     Inst, CurrentGeneration));
 | |
| 
 | |
|         // Remember that this was the last store we saw for DSE.
 | |
|         if (!MemInst.isVolatile())
 | |
|           LastStore = Inst;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool EarlyCSE::run() {
 | |
|   // Note, deque is being used here because there is significant performance
 | |
|   // gains over vector when the container becomes very large due to the
 | |
|   // specific access patterns. For more information see the mailing list
 | |
|   // discussion on this:
 | |
|   // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
 | |
|   std::deque<StackNode *> nodesToProcess;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Process the root node.
 | |
|   nodesToProcess.push_back(new StackNode(
 | |
|       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
 | |
|       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
 | |
| 
 | |
|   // Save the current generation.
 | |
|   unsigned LiveOutGeneration = CurrentGeneration;
 | |
| 
 | |
|   // Process the stack.
 | |
|   while (!nodesToProcess.empty()) {
 | |
|     // Grab the first item off the stack. Set the current generation, remove
 | |
|     // the node from the stack, and process it.
 | |
|     StackNode *NodeToProcess = nodesToProcess.back();
 | |
| 
 | |
|     // Initialize class members.
 | |
|     CurrentGeneration = NodeToProcess->currentGeneration();
 | |
| 
 | |
|     // Check if the node needs to be processed.
 | |
|     if (!NodeToProcess->isProcessed()) {
 | |
|       // Process the node.
 | |
|       Changed |= processNode(NodeToProcess->node());
 | |
|       NodeToProcess->childGeneration(CurrentGeneration);
 | |
|       NodeToProcess->process();
 | |
|     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
 | |
|       // Push the next child onto the stack.
 | |
|       DomTreeNode *child = NodeToProcess->nextChild();
 | |
|       nodesToProcess.push_back(
 | |
|           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
 | |
|                         NodeToProcess->childGeneration(), child, child->begin(),
 | |
|                         child->end()));
 | |
|     } else {
 | |
|       // It has been processed, and there are no more children to process,
 | |
|       // so delete it and pop it off the stack.
 | |
|       delete NodeToProcess;
 | |
|       nodesToProcess.pop_back();
 | |
|     }
 | |
|   } // while (!nodes...)
 | |
| 
 | |
|   // Reset the current generation.
 | |
|   CurrentGeneration = LiveOutGeneration;
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses EarlyCSEPass::run(Function &F,
 | |
|                                     AnalysisManager<Function> *AM) {
 | |
|   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
 | |
|   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
 | |
|   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &AC = AM->getResult<AssumptionAnalysis>(F);
 | |
| 
 | |
|   EarlyCSE CSE(F, TLI, TTI, DT, AC);
 | |
| 
 | |
|   if (!CSE.run())
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   // CSE preserves the dominator tree because it doesn't mutate the CFG.
 | |
|   // FIXME: Bundle this with other CFG-preservation.
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief A simple and fast domtree-based CSE pass.
 | |
| ///
 | |
| /// This pass does a simple depth-first walk over the dominator tree,
 | |
| /// eliminating trivially redundant instructions and using instsimplify to
 | |
| /// canonicalize things as it goes. It is intended to be fast and catch obvious
 | |
| /// cases so that instcombine and other passes are more effective. It is
 | |
| /// expected that a later pass of GVN will catch the interesting/hard cases.
 | |
| class EarlyCSELegacyPass : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   EarlyCSELegacyPass() : FunctionPass(ID) {
 | |
|     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipOptnoneFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
| 
 | |
|     EarlyCSE CSE(F, TLI, TTI, DT, AC);
 | |
| 
 | |
|     return CSE.run();
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char EarlyCSELegacyPass::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
 |