mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	...and set max vector register size based on target This patch is based on discussion on the llvmdev mailing list: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/087405.html and also solves: https://llvm.org/bugs/show_bug.cgi?id=17170 Several FIXME/TODO items are noted in comments as potential improvements. Differential Revision: http://reviews.llvm.org/D10950 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241760 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4052 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4052 lines
		
	
	
		
			140 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | |
| // stores that can be put together into vector-stores. Next, it attempts to
 | |
| // construct vectorizable tree using the use-def chains. If a profitable tree
 | |
| // was found, the SLP vectorizer performs vectorization on the tree.
 | |
| //
 | |
| // The pass is inspired by the work described in the paper:
 | |
| //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define SV_NAME "slp-vectorizer"
 | |
| #define DEBUG_TYPE "SLP"
 | |
| 
 | |
| STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
 | |
| 
 | |
| static cl::opt<int>
 | |
|     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | |
|                      cl::desc("Only vectorize if you gain more than this "
 | |
|                               "number "));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
 | |
|                    cl::desc("Attempt to vectorize horizontal reductions"));
 | |
| 
 | |
| static cl::opt<bool> ShouldStartVectorizeHorAtStore(
 | |
|     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Attempt to vectorize horizontal reductions feeding into a store"));
 | |
| 
 | |
| static cl::opt<int>
 | |
| MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
 | |
|     cl::desc("Attempt to vectorize for this register size in bits"));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // FIXME: Set this via cl::opt to allow overriding.
 | |
| static const unsigned MinVecRegSize = 128;
 | |
| 
 | |
| static const unsigned RecursionMaxDepth = 12;
 | |
| 
 | |
| // Limit the number of alias checks. The limit is chosen so that
 | |
| // it has no negative effect on the llvm benchmarks.
 | |
| static const unsigned AliasedCheckLimit = 10;
 | |
| 
 | |
| // Another limit for the alias checks: The maximum distance between load/store
 | |
| // instructions where alias checks are done.
 | |
| // This limit is useful for very large basic blocks.
 | |
| static const unsigned MaxMemDepDistance = 160;
 | |
| 
 | |
| /// \brief Predicate for the element types that the SLP vectorizer supports.
 | |
| ///
 | |
| /// The most important thing to filter here are types which are invalid in LLVM
 | |
| /// vectors. We also filter target specific types which have absolutely no
 | |
| /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
 | |
| /// avoids spending time checking the cost model and realizing that they will
 | |
| /// be inevitably scalarized.
 | |
| static bool isValidElementType(Type *Ty) {
 | |
|   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
 | |
|          !Ty->isPPC_FP128Ty();
 | |
| }
 | |
| 
 | |
| /// \returns the parent basic block if all of the instructions in \p VL
 | |
| /// are in the same block or null otherwise.
 | |
| static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return nullptr;
 | |
|   BasicBlock *BB = I0->getParent();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I)
 | |
|       return nullptr;
 | |
| 
 | |
|     if (BB != I->getParent())
 | |
|       return nullptr;
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are constants.
 | |
| static bool allConstant(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     if (!isa<Constant>(VL[i]))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are identical.
 | |
| static bool isSplat(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     if (VL[i] != VL[0])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ///\returns Opcode that can be clubbed with \p Op to create an alternate
 | |
| /// sequence which can later be merged as a ShuffleVector instruction.
 | |
| static unsigned getAltOpcode(unsigned Op) {
 | |
|   switch (Op) {
 | |
|   case Instruction::FAdd:
 | |
|     return Instruction::FSub;
 | |
|   case Instruction::FSub:
 | |
|     return Instruction::FAdd;
 | |
|   case Instruction::Add:
 | |
|     return Instruction::Sub;
 | |
|   case Instruction::Sub:
 | |
|     return Instruction::Add;
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ///\returns bool representing if Opcode \p Op can be part
 | |
| /// of an alternate sequence which can later be merged as
 | |
| /// a ShuffleVector instruction.
 | |
| static bool canCombineAsAltInst(unsigned Op) {
 | |
|   if (Op == Instruction::FAdd || Op == Instruction::FSub ||
 | |
|       Op == Instruction::Sub || Op == Instruction::Add)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \returns ShuffleVector instruction if intructions in \p VL have
 | |
| ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
 | |
| /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
 | |
| static unsigned isAltInst(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   unsigned Opcode = I0->getOpcode();
 | |
|   unsigned AltOpcode = getAltOpcode(Opcode);
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
 | |
|       return 0;
 | |
|   }
 | |
|   return Instruction::ShuffleVector;
 | |
| }
 | |
| 
 | |
| /// \returns The opcode if all of the Instructions in \p VL have the same
 | |
| /// opcode, or zero.
 | |
| static unsigned getSameOpcode(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return 0;
 | |
|   unsigned Opcode = I0->getOpcode();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I || Opcode != I->getOpcode()) {
 | |
|       if (canCombineAsAltInst(Opcode) && i == 1)
 | |
|         return isAltInst(VL);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return Opcode;
 | |
| }
 | |
| 
 | |
| /// Get the intersection (logical and) of all of the potential IR flags
 | |
| /// of each scalar operation (VL) that will be converted into a vector (I).
 | |
| /// Flag set: NSW, NUW, exact, and all of fast-math.
 | |
| static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
 | |
|   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
 | |
|     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
 | |
|       // Intersection is initialized to the 0th scalar,
 | |
|       // so start counting from index '1'.
 | |
|       for (int i = 1, e = VL.size(); i < e; ++i) {
 | |
|         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
 | |
|           Intersection->andIRFlags(Scalar);
 | |
|       }
 | |
|       VecOp->copyIRFlags(Intersection);
 | |
|     }
 | |
|   }
 | |
| }
 | |
|   
 | |
| /// \returns \p I after propagating metadata from \p VL.
 | |
| static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = cast<Instruction>(VL[0]);
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | |
|   I0->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
| 
 | |
|   for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
 | |
|     unsigned Kind = Metadata[i].first;
 | |
|     MDNode *MD = Metadata[i].second;
 | |
| 
 | |
|     for (int i = 1, e = VL.size(); MD && i != e; i++) {
 | |
|       Instruction *I = cast<Instruction>(VL[i]);
 | |
|       MDNode *IMD = I->getMetadata(Kind);
 | |
| 
 | |
|       switch (Kind) {
 | |
|       default:
 | |
|         MD = nullptr; // Remove unknown metadata
 | |
|         break;
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         MD = MDNode::getMostGenericTBAA(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_alias_scope:
 | |
|         MD = MDNode::getMostGenericAliasScope(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_noalias:
 | |
|         MD = MDNode::intersect(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         MD = MDNode::getMostGenericFPMath(MD, IMD);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     I->setMetadata(Kind, MD);
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// \returns The type that all of the values in \p VL have or null if there
 | |
| /// are different types.
 | |
| static Type* getSameType(ArrayRef<Value *> VL) {
 | |
|   Type *Ty = VL[0]->getType();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++)
 | |
|     if (VL[i]->getType() != Ty)
 | |
|       return nullptr;
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// \returns True if the ExtractElement instructions in VL can be vectorized
 | |
| /// to use the original vector.
 | |
| static bool CanReuseExtract(ArrayRef<Value *> VL) {
 | |
|   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
 | |
|   // Check if all of the extracts come from the same vector and from the
 | |
|   // correct offset.
 | |
|   Value *VL0 = VL[0];
 | |
|   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
 | |
|   Value *Vec = E0->getOperand(0);
 | |
| 
 | |
|   // We have to extract from the same vector type.
 | |
|   unsigned NElts = Vec->getType()->getVectorNumElements();
 | |
| 
 | |
|   if (NElts != VL.size())
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of the indices extract from the correct offset.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
 | |
|   if (!CI || CI->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | |
| 
 | |
|     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if in-tree use also needs extract. This refers to
 | |
| /// possible scalar operand in vectorized instruction.
 | |
| static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
 | |
|                                     TargetLibraryInfo *TLI) {
 | |
| 
 | |
|   unsigned Opcode = UserInst->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Load: {
 | |
|     LoadInst *LI = cast<LoadInst>(UserInst);
 | |
|     return (LI->getPointerOperand() == Scalar);
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     StoreInst *SI = cast<StoreInst>(UserInst);
 | |
|     return (SI->getPointerOperand() == Scalar);
 | |
|   }
 | |
|   case Instruction::Call: {
 | |
|     CallInst *CI = cast<CallInst>(UserInst);
 | |
|     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | |
|       return (CI->getArgOperand(1) == Scalar);
 | |
|     }
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \returns the AA location that is being access by the instruction.
 | |
| static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return MemoryLocation::get(SI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return MemoryLocation::get(LI);
 | |
|   return MemoryLocation();
 | |
| }
 | |
| 
 | |
| /// \returns True if the instruction is not a volatile or atomic load/store.
 | |
| static bool isSimple(Instruction *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isSimple();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isSimple();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return !MI->isVolatile();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Bottom Up SLP Vectorizer.
 | |
| class BoUpSLP {
 | |
| public:
 | |
|   typedef SmallVector<Value *, 8> ValueList;
 | |
|   typedef SmallVector<Instruction *, 16> InstrList;
 | |
|   typedef SmallPtrSet<Value *, 16> ValueSet;
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
| 
 | |
|   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
 | |
|           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
 | |
|           DominatorTree *Dt, AssumptionCache *AC)
 | |
|       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
 | |
|         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
 | |
|         Builder(Se->getContext()) {
 | |
|     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
 | |
|   }
 | |
| 
 | |
|   /// \brief Vectorize the tree that starts with the elements in \p VL.
 | |
|   /// Returns the vectorized root.
 | |
|   Value *vectorizeTree();
 | |
| 
 | |
|   /// \returns the cost incurred by unwanted spills and fills, caused by
 | |
|   /// holding live values over call sites.
 | |
|   int getSpillCost();
 | |
| 
 | |
|   /// \returns the vectorization cost of the subtree that starts at \p VL.
 | |
|   /// A negative number means that this is profitable.
 | |
|   int getTreeCost();
 | |
| 
 | |
|   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | |
|   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
 | |
|   void buildTree(ArrayRef<Value *> Roots,
 | |
|                  ArrayRef<Value *> UserIgnoreLst = None);
 | |
| 
 | |
|   /// Clear the internal data structures that are created by 'buildTree'.
 | |
|   void deleteTree() {
 | |
|     VectorizableTree.clear();
 | |
|     ScalarToTreeEntry.clear();
 | |
|     MustGather.clear();
 | |
|     ExternalUses.clear();
 | |
|     NumLoadsWantToKeepOrder = 0;
 | |
|     NumLoadsWantToChangeOrder = 0;
 | |
|     for (auto &Iter : BlocksSchedules) {
 | |
|       BlockScheduling *BS = Iter.second.get();
 | |
|       BS->clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \returns true if the memory operations A and B are consecutive.
 | |
|   bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
 | |
| 
 | |
|   /// \brief Perform LICM and CSE on the newly generated gather sequences.
 | |
|   void optimizeGatherSequence();
 | |
| 
 | |
|   /// \returns true if it is benefitial to reverse the vector order.
 | |
|   bool shouldReorder() const {
 | |
|     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   struct TreeEntry;
 | |
| 
 | |
|   /// \returns the cost of the vectorizable entry.
 | |
|   int getEntryCost(TreeEntry *E);
 | |
| 
 | |
|   /// This is the recursive part of buildTree.
 | |
|   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
 | |
| 
 | |
|   /// Vectorize a single entry in the tree.
 | |
|   Value *vectorizeTree(TreeEntry *E);
 | |
| 
 | |
|   /// Vectorize a single entry in the tree, starting in \p VL.
 | |
|   Value *vectorizeTree(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the pointer to the vectorized value if \p VL is already
 | |
|   /// vectorized, or NULL. They may happen in cycles.
 | |
|   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
 | |
| 
 | |
|   /// \brief Take the pointer operand from the Load/Store instruction.
 | |
|   /// \returns NULL if this is not a valid Load/Store instruction.
 | |
|   static Value *getPointerOperand(Value *I);
 | |
| 
 | |
|   /// \brief Take the address space operand from the Load/Store instruction.
 | |
|   /// \returns -1 if this is not a valid Load/Store instruction.
 | |
|   static unsigned getAddressSpaceOperand(Value *I);
 | |
| 
 | |
|   /// \returns the scalarization cost for this type. Scalarization in this
 | |
|   /// context means the creation of vectors from a group of scalars.
 | |
|   int getGatherCost(Type *Ty);
 | |
| 
 | |
|   /// \returns the scalarization cost for this list of values. Assuming that
 | |
|   /// this subtree gets vectorized, we may need to extract the values from the
 | |
|   /// roots. This method calculates the cost of extracting the values.
 | |
|   int getGatherCost(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \brief Set the Builder insert point to one after the last instruction in
 | |
|   /// the bundle
 | |
|   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns a vector from a collection of scalars in \p VL.
 | |
|   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | |
| 
 | |
|   /// \returns whether the VectorizableTree is fully vectoriable and will
 | |
|   /// be beneficial even the tree height is tiny.
 | |
|   bool isFullyVectorizableTinyTree();
 | |
| 
 | |
|   /// \reorder commutative operands in alt shuffle if they result in
 | |
|   ///  vectorized code.
 | |
|   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
 | |
|                                  SmallVectorImpl<Value *> &Left,
 | |
|                                  SmallVectorImpl<Value *> &Right);
 | |
|   /// \reorder commutative operands to get better probability of
 | |
|   /// generating vectorized code.
 | |
|   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | |
|                                       SmallVectorImpl<Value *> &Left,
 | |
|                                       SmallVectorImpl<Value *> &Right);
 | |
|   struct TreeEntry {
 | |
|     TreeEntry() : Scalars(), VectorizedValue(nullptr),
 | |
|     NeedToGather(0) {}
 | |
| 
 | |
|     /// \returns true if the scalars in VL are equal to this entry.
 | |
|     bool isSame(ArrayRef<Value *> VL) const {
 | |
|       assert(VL.size() == Scalars.size() && "Invalid size");
 | |
|       return std::equal(VL.begin(), VL.end(), Scalars.begin());
 | |
|     }
 | |
| 
 | |
|     /// A vector of scalars.
 | |
|     ValueList Scalars;
 | |
| 
 | |
|     /// The Scalars are vectorized into this value. It is initialized to Null.
 | |
|     Value *VectorizedValue;
 | |
| 
 | |
|     /// Do we need to gather this sequence ?
 | |
|     bool NeedToGather;
 | |
|   };
 | |
| 
 | |
|   /// Create a new VectorizableTree entry.
 | |
|   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
 | |
|     VectorizableTree.emplace_back();
 | |
|     int idx = VectorizableTree.size() - 1;
 | |
|     TreeEntry *Last = &VectorizableTree[idx];
 | |
|     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | |
|     Last->NeedToGather = !Vectorized;
 | |
|     if (Vectorized) {
 | |
|       for (int i = 0, e = VL.size(); i != e; ++i) {
 | |
|         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
 | |
|         ScalarToTreeEntry[VL[i]] = idx;
 | |
|       }
 | |
|     } else {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|     }
 | |
|     return Last;
 | |
|   }
 | |
|   
 | |
|   /// -- Vectorization State --
 | |
|   /// Holds all of the tree entries.
 | |
|   std::vector<TreeEntry> VectorizableTree;
 | |
| 
 | |
|   /// Maps a specific scalar to its tree entry.
 | |
|   SmallDenseMap<Value*, int> ScalarToTreeEntry;
 | |
| 
 | |
|   /// A list of scalars that we found that we need to keep as scalars.
 | |
|   ValueSet MustGather;
 | |
| 
 | |
|   /// This POD struct describes one external user in the vectorized tree.
 | |
|   struct ExternalUser {
 | |
|     ExternalUser (Value *S, llvm::User *U, int L) :
 | |
|       Scalar(S), User(U), Lane(L){};
 | |
|     // Which scalar in our function.
 | |
|     Value *Scalar;
 | |
|     // Which user that uses the scalar.
 | |
|     llvm::User *User;
 | |
|     // Which lane does the scalar belong to.
 | |
|     int Lane;
 | |
|   };
 | |
|   typedef SmallVector<ExternalUser, 16> UserList;
 | |
| 
 | |
|   /// Checks if two instructions may access the same memory.
 | |
|   ///
 | |
|   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
 | |
|   /// is invariant in the calling loop.
 | |
|   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
 | |
|                  Instruction *Inst2) {
 | |
| 
 | |
|     // First check if the result is already in the cache.
 | |
|     AliasCacheKey key = std::make_pair(Inst1, Inst2);
 | |
|     Optional<bool> &result = AliasCache[key];
 | |
|     if (result.hasValue()) {
 | |
|       return result.getValue();
 | |
|     }
 | |
|     MemoryLocation Loc2 = getLocation(Inst2, AA);
 | |
|     bool aliased = true;
 | |
|     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
 | |
|       // Do the alias check.
 | |
|       aliased = AA->alias(Loc1, Loc2);
 | |
|     }
 | |
|     // Store the result in the cache.
 | |
|     result = aliased;
 | |
|     return aliased;
 | |
|   }
 | |
| 
 | |
|   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
 | |
| 
 | |
|   /// Cache for alias results.
 | |
|   /// TODO: consider moving this to the AliasAnalysis itself.
 | |
|   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
 | |
| 
 | |
|   /// Removes an instruction from its block and eventually deletes it.
 | |
|   /// It's like Instruction::eraseFromParent() except that the actual deletion
 | |
|   /// is delayed until BoUpSLP is destructed.
 | |
|   /// This is required to ensure that there are no incorrect collisions in the
 | |
|   /// AliasCache, which can happen if a new instruction is allocated at the
 | |
|   /// same address as a previously deleted instruction.
 | |
|   void eraseInstruction(Instruction *I) {
 | |
|     I->removeFromParent();
 | |
|     I->dropAllReferences();
 | |
|     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
 | |
|   }
 | |
| 
 | |
|   /// Temporary store for deleted instructions. Instructions will be deleted
 | |
|   /// eventually when the BoUpSLP is destructed.
 | |
|   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
 | |
| 
 | |
|   /// A list of values that need to extracted out of the tree.
 | |
|   /// This list holds pairs of (Internal Scalar : External User).
 | |
|   UserList ExternalUses;
 | |
| 
 | |
|   /// Values used only by @llvm.assume calls.
 | |
|   SmallPtrSet<const Value *, 32> EphValues;
 | |
| 
 | |
|   /// Holds all of the instructions that we gathered.
 | |
|   SetVector<Instruction *> GatherSeq;
 | |
|   /// A list of blocks that we are going to CSE.
 | |
|   SetVector<BasicBlock *> CSEBlocks;
 | |
| 
 | |
|   /// Contains all scheduling relevant data for an instruction.
 | |
|   /// A ScheduleData either represents a single instruction or a member of an
 | |
|   /// instruction bundle (= a group of instructions which is combined into a
 | |
|   /// vector instruction).
 | |
|   struct ScheduleData {
 | |
| 
 | |
|     // The initial value for the dependency counters. It means that the
 | |
|     // dependencies are not calculated yet.
 | |
|     enum { InvalidDeps = -1 };
 | |
| 
 | |
|     ScheduleData()
 | |
|         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
 | |
|           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
 | |
|           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
 | |
|           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
 | |
| 
 | |
|     void init(int BlockSchedulingRegionID) {
 | |
|       FirstInBundle = this;
 | |
|       NextInBundle = nullptr;
 | |
|       NextLoadStore = nullptr;
 | |
|       IsScheduled = false;
 | |
|       SchedulingRegionID = BlockSchedulingRegionID;
 | |
|       UnscheduledDepsInBundle = UnscheduledDeps;
 | |
|       clearDependencies();
 | |
|     }
 | |
| 
 | |
|     /// Returns true if the dependency information has been calculated.
 | |
|     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
 | |
| 
 | |
|     /// Returns true for single instructions and for bundle representatives
 | |
|     /// (= the head of a bundle).
 | |
|     bool isSchedulingEntity() const { return FirstInBundle == this; }
 | |
| 
 | |
|     /// Returns true if it represents an instruction bundle and not only a
 | |
|     /// single instruction.
 | |
|     bool isPartOfBundle() const {
 | |
|       return NextInBundle != nullptr || FirstInBundle != this;
 | |
|     }
 | |
| 
 | |
|     /// Returns true if it is ready for scheduling, i.e. it has no more
 | |
|     /// unscheduled depending instructions/bundles.
 | |
|     bool isReady() const {
 | |
|       assert(isSchedulingEntity() &&
 | |
|              "can't consider non-scheduling entity for ready list");
 | |
|       return UnscheduledDepsInBundle == 0 && !IsScheduled;
 | |
|     }
 | |
| 
 | |
|     /// Modifies the number of unscheduled dependencies, also updating it for
 | |
|     /// the whole bundle.
 | |
|     int incrementUnscheduledDeps(int Incr) {
 | |
|       UnscheduledDeps += Incr;
 | |
|       return FirstInBundle->UnscheduledDepsInBundle += Incr;
 | |
|     }
 | |
| 
 | |
|     /// Sets the number of unscheduled dependencies to the number of
 | |
|     /// dependencies.
 | |
|     void resetUnscheduledDeps() {
 | |
|       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
 | |
|     }
 | |
| 
 | |
|     /// Clears all dependency information.
 | |
|     void clearDependencies() {
 | |
|       Dependencies = InvalidDeps;
 | |
|       resetUnscheduledDeps();
 | |
|       MemoryDependencies.clear();
 | |
|     }
 | |
| 
 | |
|     void dump(raw_ostream &os) const {
 | |
|       if (!isSchedulingEntity()) {
 | |
|         os << "/ " << *Inst;
 | |
|       } else if (NextInBundle) {
 | |
|         os << '[' << *Inst;
 | |
|         ScheduleData *SD = NextInBundle;
 | |
|         while (SD) {
 | |
|           os << ';' << *SD->Inst;
 | |
|           SD = SD->NextInBundle;
 | |
|         }
 | |
|         os << ']';
 | |
|       } else {
 | |
|         os << *Inst;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Instruction *Inst;
 | |
| 
 | |
|     /// Points to the head in an instruction bundle (and always to this for
 | |
|     /// single instructions).
 | |
|     ScheduleData *FirstInBundle;
 | |
| 
 | |
|     /// Single linked list of all instructions in a bundle. Null if it is a
 | |
|     /// single instruction.
 | |
|     ScheduleData *NextInBundle;
 | |
| 
 | |
|     /// Single linked list of all memory instructions (e.g. load, store, call)
 | |
|     /// in the block - until the end of the scheduling region.
 | |
|     ScheduleData *NextLoadStore;
 | |
| 
 | |
|     /// The dependent memory instructions.
 | |
|     /// This list is derived on demand in calculateDependencies().
 | |
|     SmallVector<ScheduleData *, 4> MemoryDependencies;
 | |
| 
 | |
|     /// This ScheduleData is in the current scheduling region if this matches
 | |
|     /// the current SchedulingRegionID of BlockScheduling.
 | |
|     int SchedulingRegionID;
 | |
| 
 | |
|     /// Used for getting a "good" final ordering of instructions.
 | |
|     int SchedulingPriority;
 | |
| 
 | |
|     /// The number of dependencies. Constitutes of the number of users of the
 | |
|     /// instruction plus the number of dependent memory instructions (if any).
 | |
|     /// This value is calculated on demand.
 | |
|     /// If InvalidDeps, the number of dependencies is not calculated yet.
 | |
|     ///
 | |
|     int Dependencies;
 | |
| 
 | |
|     /// The number of dependencies minus the number of dependencies of scheduled
 | |
|     /// instructions. As soon as this is zero, the instruction/bundle gets ready
 | |
|     /// for scheduling.
 | |
|     /// Note that this is negative as long as Dependencies is not calculated.
 | |
|     int UnscheduledDeps;
 | |
| 
 | |
|     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
 | |
|     /// single instructions.
 | |
|     int UnscheduledDepsInBundle;
 | |
| 
 | |
|     /// True if this instruction is scheduled (or considered as scheduled in the
 | |
|     /// dry-run).
 | |
|     bool IsScheduled;
 | |
|   };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   friend raw_ostream &operator<<(raw_ostream &os,
 | |
|                                  const BoUpSLP::ScheduleData &SD);
 | |
| #endif
 | |
| 
 | |
|   /// Contains all scheduling data for a basic block.
 | |
|   ///
 | |
|   struct BlockScheduling {
 | |
| 
 | |
|     BlockScheduling(BasicBlock *BB)
 | |
|         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
 | |
|           ScheduleStart(nullptr), ScheduleEnd(nullptr),
 | |
|           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
 | |
|           // Make sure that the initial SchedulingRegionID is greater than the
 | |
|           // initial SchedulingRegionID in ScheduleData (which is 0).
 | |
|           SchedulingRegionID(1) {}
 | |
| 
 | |
|     void clear() {
 | |
|       ReadyInsts.clear();
 | |
|       ScheduleStart = nullptr;
 | |
|       ScheduleEnd = nullptr;
 | |
|       FirstLoadStoreInRegion = nullptr;
 | |
|       LastLoadStoreInRegion = nullptr;
 | |
| 
 | |
|       // Make a new scheduling region, i.e. all existing ScheduleData is not
 | |
|       // in the new region yet.
 | |
|       ++SchedulingRegionID;
 | |
|     }
 | |
| 
 | |
|     ScheduleData *getScheduleData(Value *V) {
 | |
|       ScheduleData *SD = ScheduleDataMap[V];
 | |
|       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | |
|         return SD;
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     bool isInSchedulingRegion(ScheduleData *SD) {
 | |
|       return SD->SchedulingRegionID == SchedulingRegionID;
 | |
|     }
 | |
| 
 | |
|     /// Marks an instruction as scheduled and puts all dependent ready
 | |
|     /// instructions into the ready-list.
 | |
|     template <typename ReadyListType>
 | |
|     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
 | |
|       SD->IsScheduled = true;
 | |
|       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
 | |
| 
 | |
|       ScheduleData *BundleMember = SD;
 | |
|       while (BundleMember) {
 | |
|         // Handle the def-use chain dependencies.
 | |
|         for (Use &U : BundleMember->Inst->operands()) {
 | |
|           ScheduleData *OpDef = getScheduleData(U.get());
 | |
|           if (OpDef && OpDef->hasValidDependencies() &&
 | |
|               OpDef->incrementUnscheduledDeps(-1) == 0) {
 | |
|             // There are no more unscheduled dependencies after decrementing,
 | |
|             // so we can put the dependent instruction into the ready list.
 | |
|             ScheduleData *DepBundle = OpDef->FirstInBundle;
 | |
|             assert(!DepBundle->IsScheduled &&
 | |
|                    "already scheduled bundle gets ready");
 | |
|             ReadyList.insert(DepBundle);
 | |
|             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
 | |
|           }
 | |
|         }
 | |
|         // Handle the memory dependencies.
 | |
|         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
 | |
|           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
 | |
|             // There are no more unscheduled dependencies after decrementing,
 | |
|             // so we can put the dependent instruction into the ready list.
 | |
|             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
 | |
|             assert(!DepBundle->IsScheduled &&
 | |
|                    "already scheduled bundle gets ready");
 | |
|             ReadyList.insert(DepBundle);
 | |
|             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
 | |
|           }
 | |
|         }
 | |
|         BundleMember = BundleMember->NextInBundle;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Put all instructions into the ReadyList which are ready for scheduling.
 | |
|     template <typename ReadyListType>
 | |
|     void initialFillReadyList(ReadyListType &ReadyList) {
 | |
|       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|         ScheduleData *SD = getScheduleData(I);
 | |
|         if (SD->isSchedulingEntity() && SD->isReady()) {
 | |
|           ReadyList.insert(SD);
 | |
|           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Checks if a bundle of instructions can be scheduled, i.e. has no
 | |
|     /// cyclic dependencies. This is only a dry-run, no instructions are
 | |
|     /// actually moved at this stage.
 | |
|     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
 | |
| 
 | |
|     /// Un-bundles a group of instructions.
 | |
|     void cancelScheduling(ArrayRef<Value *> VL);
 | |
| 
 | |
|     /// Extends the scheduling region so that V is inside the region.
 | |
|     void extendSchedulingRegion(Value *V);
 | |
| 
 | |
|     /// Initialize the ScheduleData structures for new instructions in the
 | |
|     /// scheduling region.
 | |
|     void initScheduleData(Instruction *FromI, Instruction *ToI,
 | |
|                           ScheduleData *PrevLoadStore,
 | |
|                           ScheduleData *NextLoadStore);
 | |
| 
 | |
|     /// Updates the dependency information of a bundle and of all instructions/
 | |
|     /// bundles which depend on the original bundle.
 | |
|     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
 | |
|                                BoUpSLP *SLP);
 | |
| 
 | |
|     /// Sets all instruction in the scheduling region to un-scheduled.
 | |
|     void resetSchedule();
 | |
| 
 | |
|     BasicBlock *BB;
 | |
| 
 | |
|     /// Simple memory allocation for ScheduleData.
 | |
|     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
 | |
| 
 | |
|     /// The size of a ScheduleData array in ScheduleDataChunks.
 | |
|     int ChunkSize;
 | |
| 
 | |
|     /// The allocator position in the current chunk, which is the last entry
 | |
|     /// of ScheduleDataChunks.
 | |
|     int ChunkPos;
 | |
| 
 | |
|     /// Attaches ScheduleData to Instruction.
 | |
|     /// Note that the mapping survives during all vectorization iterations, i.e.
 | |
|     /// ScheduleData structures are recycled.
 | |
|     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
 | |
| 
 | |
|     struct ReadyList : SmallVector<ScheduleData *, 8> {
 | |
|       void insert(ScheduleData *SD) { push_back(SD); }
 | |
|     };
 | |
| 
 | |
|     /// The ready-list for scheduling (only used for the dry-run).
 | |
|     ReadyList ReadyInsts;
 | |
| 
 | |
|     /// The first instruction of the scheduling region.
 | |
|     Instruction *ScheduleStart;
 | |
| 
 | |
|     /// The first instruction _after_ the scheduling region.
 | |
|     Instruction *ScheduleEnd;
 | |
| 
 | |
|     /// The first memory accessing instruction in the scheduling region
 | |
|     /// (can be null).
 | |
|     ScheduleData *FirstLoadStoreInRegion;
 | |
| 
 | |
|     /// The last memory accessing instruction in the scheduling region
 | |
|     /// (can be null).
 | |
|     ScheduleData *LastLoadStoreInRegion;
 | |
| 
 | |
|     /// The ID of the scheduling region. For a new vectorization iteration this
 | |
|     /// is incremented which "removes" all ScheduleData from the region.
 | |
|     int SchedulingRegionID;
 | |
|   };
 | |
| 
 | |
|   /// Attaches the BlockScheduling structures to basic blocks.
 | |
|   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
 | |
| 
 | |
|   /// Performs the "real" scheduling. Done before vectorization is actually
 | |
|   /// performed in a basic block.
 | |
|   void scheduleBlock(BlockScheduling *BS);
 | |
| 
 | |
|   /// List of users to ignore during scheduling and that don't need extracting.
 | |
|   ArrayRef<Value *> UserIgnoreList;
 | |
| 
 | |
|   // Number of load-bundles, which contain consecutive loads.
 | |
|   int NumLoadsWantToKeepOrder;
 | |
| 
 | |
|   // Number of load-bundles of size 2, which are consecutive loads if reversed.
 | |
|   int NumLoadsWantToChangeOrder;
 | |
| 
 | |
|   // Analysis and block reference.
 | |
|   Function *F;
 | |
|   ScalarEvolution *SE;
 | |
|   TargetTransformInfo *TTI;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   /// Instruction builder to construct the vectorized tree.
 | |
|   IRBuilder<> Builder;
 | |
| };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
 | |
|   SD.dump(os);
 | |
|   return os;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | |
|                         ArrayRef<Value *> UserIgnoreLst) {
 | |
|   deleteTree();
 | |
|   UserIgnoreList = UserIgnoreLst;
 | |
|   if (!getSameType(Roots))
 | |
|     return;
 | |
|   buildTree_rec(Roots, 0);
 | |
| 
 | |
|   // Collect the values that we need to extract from the tree.
 | |
|   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | |
|     TreeEntry *Entry = &VectorizableTree[EIdx];
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
| 
 | |
|       // No need to handle users of gathered values.
 | |
|       if (Entry->NeedToGather)
 | |
|         continue;
 | |
| 
 | |
|       for (User *U : Scalar->users()) {
 | |
|         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
 | |
| 
 | |
|         Instruction *UserInst = dyn_cast<Instruction>(U);
 | |
|         if (!UserInst)
 | |
|           continue;
 | |
| 
 | |
|         // Skip in-tree scalars that become vectors
 | |
|         if (ScalarToTreeEntry.count(U)) {
 | |
|           int Idx = ScalarToTreeEntry[U];
 | |
|           TreeEntry *UseEntry = &VectorizableTree[Idx];
 | |
|           Value *UseScalar = UseEntry->Scalars[0];
 | |
|           // Some in-tree scalars will remain as scalar in vectorized
 | |
|           // instructions. If that is the case, the one in Lane 0 will
 | |
|           // be used.
 | |
|           if (UseScalar != U ||
 | |
|               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
 | |
|             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
 | |
|                          << ".\n");
 | |
|             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Ignore users in the user ignore list.
 | |
|         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
 | |
|             UserIgnoreList.end())
 | |
|           continue;
 | |
| 
 | |
|         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
 | |
|               Lane << " from " << *Scalar << ".\n");
 | |
|         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
 | |
|   bool SameTy = getSameType(VL); (void)SameTy;
 | |
|   bool isAltShuffle = false;
 | |
|   assert(SameTy && "Invalid types!");
 | |
| 
 | |
|   if (Depth == RecursionMaxDepth) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't handle vectors.
 | |
|   if (VL[0]->getType()->isVectorTy()) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     if (SI->getValueOperand()->getType()->isVectorTy()) {
 | |
|       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   unsigned Opcode = getSameOpcode(VL);
 | |
| 
 | |
|   // Check that this shuffle vector refers to the alternate
 | |
|   // sequence of opcodes.
 | |
|   if (Opcode == Instruction::ShuffleVector) {
 | |
|     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|     unsigned Op = I0->getOpcode();
 | |
|     if (Op != Instruction::ShuffleVector)
 | |
|       isAltShuffle = true;
 | |
|   }
 | |
| 
 | |
|   // If all of the operands are identical or constant we have a simple solution.
 | |
|   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
 | |
|     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We now know that this is a vector of instructions of the same type from
 | |
|   // the same block.
 | |
| 
 | |
|   // Don't vectorize ephemeral values.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (EphValues.count(VL[i])) {
 | |
|       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | |
|             ") is ephemeral.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if this is a duplicate of another entry.
 | |
|   if (ScalarToTreeEntry.count(VL[0])) {
 | |
|     int Idx = ScalarToTreeEntry[VL[0]];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
 | |
|       if (E->Scalars[i] != VL[i]) {
 | |
|         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check that none of the instructions in the bundle are already in the tree.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (ScalarToTreeEntry.count(VL[i])) {
 | |
|       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
 | |
|             ") is already in tree.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If any of the scalars is marked as a value that needs to stay scalar then
 | |
|   // we need to gather the scalars.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (MustGather.count(VL[i])) {
 | |
|       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
 | |
|       newTreeEntry(VL, false);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all of the users of the scalars that we want to vectorize are
 | |
|   // schedulable.
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
 | |
| 
 | |
|   if (!DT->isReachableFromEntry(BB)) {
 | |
|     // Don't go into unreachable blocks. They may contain instructions with
 | |
|     // dependency cycles which confuse the final scheduling.
 | |
|     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Check that every instructions appears once in this bundle.
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i)
 | |
|     for (unsigned j = i+1; j < e; ++j)
 | |
|       if (VL[i] == VL[j]) {
 | |
|         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | |
|         newTreeEntry(VL, false);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|   auto &BSRef = BlocksSchedules[BB];
 | |
|   if (!BSRef) {
 | |
|     BSRef = llvm::make_unique<BlockScheduling>(BB);
 | |
|   }
 | |
|   BlockScheduling &BS = *BSRef.get();
 | |
| 
 | |
|   if (!BS.tryScheduleBundle(VL, this)) {
 | |
|     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
 | |
|     BS.cancelScheduling(VL);
 | |
|     newTreeEntry(VL, false);
 | |
|     return;
 | |
|   }
 | |
|   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
| 
 | |
|       // Check for terminator values (e.g. invoke).
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|           TerminatorInst *Term = dyn_cast<TerminatorInst>(
 | |
|               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
 | |
|           if (Term) {
 | |
|             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
 | |
|             BS.cancelScheduling(VL);
 | |
|             newTreeEntry(VL, false);
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
 | |
|               PH->getIncomingBlock(i)));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ExtractElement: {
 | |
|       bool Reuse = CanReuseExtract(VL);
 | |
|       if (Reuse) {
 | |
|         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
 | |
|       } else {
 | |
|         BS.cancelScheduling(VL);
 | |
|       }
 | |
|       newTreeEntry(VL, Reuse);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Check if the loads are consecutive or of we need to swizzle them.
 | |
|       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
 | |
|         LoadInst *L = cast<LoadInst>(VL[i]);
 | |
|         if (!L->isSimple()) {
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
 | |
|           return;
 | |
|         }
 | |
|         const DataLayout &DL = F->getParent()->getDataLayout();
 | |
|         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
 | |
|           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
 | |
|             ++NumLoadsWantToChangeOrder;
 | |
|           }
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       ++NumLoadsWantToKeepOrder;
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
|       for (unsigned i = 0; i < VL.size(); ++i) {
 | |
|         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
 | |
|         if (Ty != SrcTy || !isValidElementType(Ty)) {
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       // Check that all of the compares have the same predicate.
 | |
|       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | |
|       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
 | |
|       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|         CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | |
|         if (Cmp->getPredicate() != P0 ||
 | |
|             Cmp->getOperand(0)->getType() != ComparedTy) {
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Select:
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
 | |
| 
 | |
|       // Sort operands of the instructions so that each side is more likely to
 | |
|       // have the same opcode.
 | |
|       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
 | |
|         ValueList Left, Right;
 | |
|         reorderInputsAccordingToOpcode(VL, Left, Right);
 | |
|         buildTree_rec(Left, Depth + 1);
 | |
|         buildTree_rec(Right, Depth + 1);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth+1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // We don't combine GEPs with complicated (nested) indexing.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
 | |
|           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We can't combine several GEPs into one vector if they operate on
 | |
|       // different types.
 | |
|       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
 | |
|         if (Ty0 != CurTy) {
 | |
|           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We don't combine GEPs with non-constant indexes.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         auto Op = cast<Instruction>(VL[j])->getOperand(1);
 | |
|         if (!isa<ConstantInt>(Op)) {
 | |
|           DEBUG(
 | |
|               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
 | |
|       for (unsigned i = 0, e = 2; i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       const DataLayout &DL = F->getParent()->getDataLayout();
 | |
|       // Check if the stores are consecutive or of we need to swizzle them.
 | |
|       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | |
|         if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | |
| 
 | |
|       ValueList Operands;
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
 | |
| 
 | |
|       buildTree_rec(Operands, Depth + 1);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       // Check if the calls are all to the same vectorizable intrinsic.
 | |
|       CallInst *CI = cast<CallInst>(VL[0]);
 | |
|       // Check if this is an Intrinsic call or something that can be
 | |
|       // represented by an intrinsic call
 | |
|       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|       if (!isTriviallyVectorizable(ID)) {
 | |
|         BS.cancelScheduling(VL);
 | |
|         newTreeEntry(VL, false);
 | |
|         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
 | |
|         return;
 | |
|       }
 | |
|       Function *Int = CI->getCalledFunction();
 | |
|       Value *A1I = nullptr;
 | |
|       if (hasVectorInstrinsicScalarOpd(ID, 1))
 | |
|         A1I = CI->getArgOperand(1);
 | |
|       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | |
|         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
 | |
|         if (!CI2 || CI2->getCalledFunction() != Int ||
 | |
|             getIntrinsicIDForCall(CI2, TLI) != ID) {
 | |
|           BS.cancelScheduling(VL);
 | |
|           newTreeEntry(VL, false);
 | |
|           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
 | |
|                        << "\n");
 | |
|           return;
 | |
|         }
 | |
|         // ctlz,cttz and powi are special intrinsics whose second argument
 | |
|         // should be same in order for them to be vectorized.
 | |
|         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | |
|           Value *A1J = CI2->getArgOperand(1);
 | |
|           if (A1I != A1J) {
 | |
|             BS.cancelScheduling(VL);
 | |
|             newTreeEntry(VL, false);
 | |
|             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
 | |
|                          << " argument "<< A1I<<"!=" << A1J
 | |
|                          << "\n");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true);
 | |
|       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|           CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
 | |
|           Operands.push_back(CI2->getArgOperand(i));
 | |
|         }
 | |
|         buildTree_rec(Operands, Depth + 1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       // If this is not an alternate sequence of opcode like add-sub
 | |
|       // then do not vectorize this instruction.
 | |
|       if (!isAltShuffle) {
 | |
|         BS.cancelScheduling(VL);
 | |
|         newTreeEntry(VL, false);
 | |
|         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
 | |
|         return;
 | |
|       }
 | |
|       newTreeEntry(VL, true);
 | |
|       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
 | |
| 
 | |
|       // Reorder operands if reordering would enable vectorization.
 | |
|       if (isa<BinaryOperator>(VL0)) {
 | |
|         ValueList Left, Right;
 | |
|         reorderAltShuffleOperands(VL, Left, Right);
 | |
|         buildTree_rec(Left, Depth + 1);
 | |
|         buildTree_rec(Right, Depth + 1);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (unsigned j = 0; j < VL.size(); ++j)
 | |
|           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     default:
 | |
|       BS.cancelScheduling(VL);
 | |
|       newTreeEntry(VL, false);
 | |
|       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getEntryCost(TreeEntry *E) {
 | |
|   ArrayRef<Value*> VL = E->Scalars;
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   if (E->NeedToGather) {
 | |
|     if (allConstant(VL))
 | |
|       return 0;
 | |
|     if (isSplat(VL)) {
 | |
|       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | |
|     }
 | |
|     return getGatherCost(E->Scalars);
 | |
|   }
 | |
|   unsigned Opcode = getSameOpcode(VL);
 | |
|   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       return 0;
 | |
|     }
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (CanReuseExtract(VL)) {
 | |
|         int DeadCost = 0;
 | |
|         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|           ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
 | |
|           if (E->hasOneUse())
 | |
|             // Take credit for instruction that will become dead.
 | |
|             DeadCost +=
 | |
|                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
 | |
|         }
 | |
|         return -DeadCost;
 | |
|       }
 | |
|       return getGatherCost(VecTy);
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
| 
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
 | |
|                                                          VL0->getType(), SrcTy);
 | |
| 
 | |
|       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | |
|       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarCost = 0;
 | |
|       int VecCost = 0;
 | |
|       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
 | |
|           Opcode == Instruction::Select) {
 | |
|         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | |
|         ScalarCost = VecTy->getNumElements() *
 | |
|         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
 | |
|         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
 | |
|       } else {
 | |
|         // Certain instructions can be cheaper to vectorize if they have a
 | |
|         // constant second vector operand.
 | |
|         TargetTransformInfo::OperandValueKind Op1VK =
 | |
|             TargetTransformInfo::OK_AnyValue;
 | |
|         TargetTransformInfo::OperandValueKind Op2VK =
 | |
|             TargetTransformInfo::OK_UniformConstantValue;
 | |
|         TargetTransformInfo::OperandValueProperties Op1VP =
 | |
|             TargetTransformInfo::OP_None;
 | |
|         TargetTransformInfo::OperandValueProperties Op2VP =
 | |
|             TargetTransformInfo::OP_None;
 | |
| 
 | |
|         // If all operands are exactly the same ConstantInt then set the
 | |
|         // operand kind to OK_UniformConstantValue.
 | |
|         // If instead not all operands are constants, then set the operand kind
 | |
|         // to OK_AnyValue. If all operands are constants but not the same,
 | |
|         // then set the operand kind to OK_NonUniformConstantValue.
 | |
|         ConstantInt *CInt = nullptr;
 | |
|         for (unsigned i = 0; i < VL.size(); ++i) {
 | |
|           const Instruction *I = cast<Instruction>(VL[i]);
 | |
|           if (!isa<ConstantInt>(I->getOperand(1))) {
 | |
|             Op2VK = TargetTransformInfo::OK_AnyValue;
 | |
|             break;
 | |
|           }
 | |
|           if (i == 0) {
 | |
|             CInt = cast<ConstantInt>(I->getOperand(1));
 | |
|             continue;
 | |
|           }
 | |
|           if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|               CInt != cast<ConstantInt>(I->getOperand(1)))
 | |
|             Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|         }
 | |
|         // FIXME: Currently cost of model modification for division by
 | |
|         // power of 2 is handled only for X86. Add support for other targets.
 | |
|         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
 | |
|             CInt->getValue().isPowerOf2())
 | |
|           Op2VP = TargetTransformInfo::OP_PowerOf2;
 | |
| 
 | |
|         ScalarCost = VecTy->getNumElements() *
 | |
|                      TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
 | |
|                                                  Op1VP, Op2VP);
 | |
|         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
 | |
|                                               Op1VP, Op2VP);
 | |
|       }
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       TargetTransformInfo::OperandValueKind Op1VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Op2VK =
 | |
|           TargetTransformInfo::OK_UniformConstantValue;
 | |
| 
 | |
|       int ScalarCost =
 | |
|           VecTy->getNumElements() *
 | |
|           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
 | |
|       int VecCost =
 | |
|           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
 | |
| 
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Cost of wide load - cost of scalar loads.
 | |
|       int ScalarLdCost = VecTy->getNumElements() *
 | |
|       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
 | |
|       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
 | |
|       return VecLdCost - ScalarLdCost;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       // We know that we can merge the stores. Calculate the cost.
 | |
|       int ScalarStCost = VecTy->getNumElements() *
 | |
|       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
 | |
|       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
 | |
|       return VecStCost - ScalarStCost;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       CallInst *CI = cast<CallInst>(VL0);
 | |
|       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
| 
 | |
|       // Calculate the cost of the scalar and vector calls.
 | |
|       SmallVector<Type*, 4> ScalarTys, VecTys;
 | |
|       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
 | |
|         ScalarTys.push_back(CI->getArgOperand(op)->getType());
 | |
|         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
 | |
|                                          VecTy->getNumElements()));
 | |
|       }
 | |
| 
 | |
|       int ScalarCallCost = VecTy->getNumElements() *
 | |
|           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
 | |
| 
 | |
|       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
 | |
| 
 | |
|       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
 | |
|             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
 | |
|             << " for " << *CI << "\n");
 | |
| 
 | |
|       return VecCallCost - ScalarCallCost;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       TargetTransformInfo::OperandValueKind Op1VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Op2VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       int ScalarCost = 0;
 | |
|       int VecCost = 0;
 | |
|       for (unsigned i = 0; i < VL.size(); ++i) {
 | |
|         Instruction *I = cast<Instruction>(VL[i]);
 | |
|         if (!I)
 | |
|           break;
 | |
|         ScalarCost +=
 | |
|             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
 | |
|       }
 | |
|       // VecCost is equal to sum of the cost of creating 2 vectors
 | |
|       // and the cost of creating shuffle.
 | |
|       Instruction *I0 = cast<Instruction>(VL[0]);
 | |
|       VecCost =
 | |
|           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
 | |
|       Instruction *I1 = cast<Instruction>(VL[1]);
 | |
|       VecCost +=
 | |
|           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
 | |
|       VecCost +=
 | |
|           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown instruction");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::isFullyVectorizableTinyTree() {
 | |
|   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
 | |
|         VectorizableTree.size() << " is fully vectorizable .\n");
 | |
| 
 | |
|   // We only handle trees of height 2.
 | |
|   if (VectorizableTree.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Handle splat and all-constants stores.
 | |
|   if (!VectorizableTree[0].NeedToGather &&
 | |
|       (allConstant(VectorizableTree[1].Scalars) ||
 | |
|        isSplat(VectorizableTree[1].Scalars)))
 | |
|     return true;
 | |
| 
 | |
|   // Gathering cost would be too much for tiny trees.
 | |
|   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getSpillCost() {
 | |
|   // Walk from the bottom of the tree to the top, tracking which values are
 | |
|   // live. When we see a call instruction that is not part of our tree,
 | |
|   // query TTI to see if there is a cost to keeping values live over it
 | |
|   // (for example, if spills and fills are required).
 | |
|   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
 | |
|   int Cost = 0;
 | |
| 
 | |
|   SmallPtrSet<Instruction*, 4> LiveValues;
 | |
|   Instruction *PrevInst = nullptr; 
 | |
| 
 | |
|   for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
 | |
|     Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
 | |
|     if (!Inst)
 | |
|       continue;
 | |
| 
 | |
|     if (!PrevInst) {
 | |
|       PrevInst = Inst;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     DEBUG(
 | |
|       dbgs() << "SLP: #LV: " << LiveValues.size();
 | |
|       for (auto *X : LiveValues)
 | |
|         dbgs() << " " << X->getName();
 | |
|       dbgs() << ", Looking at ";
 | |
|       Inst->dump();
 | |
|       );
 | |
| 
 | |
|     // Update LiveValues.
 | |
|     LiveValues.erase(PrevInst);
 | |
|     for (auto &J : PrevInst->operands()) {
 | |
|       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
 | |
|         LiveValues.insert(cast<Instruction>(&*J));
 | |
|     }    
 | |
| 
 | |
|     // Now find the sequence of instructions between PrevInst and Inst.
 | |
|     BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
 | |
|     --PrevInstIt;
 | |
|     while (InstIt != PrevInstIt) {
 | |
|       if (PrevInstIt == PrevInst->getParent()->rend()) {
 | |
|         PrevInstIt = Inst->getParent()->rbegin();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
 | |
|         SmallVector<Type*, 4> V;
 | |
|         for (auto *II : LiveValues)
 | |
|           V.push_back(VectorType::get(II->getType(), BundleWidth));
 | |
|         Cost += TTI->getCostOfKeepingLiveOverCall(V);
 | |
|       }
 | |
| 
 | |
|       ++PrevInstIt;
 | |
|     }
 | |
| 
 | |
|     PrevInst = Inst;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getTreeCost() {
 | |
|   int Cost = 0;
 | |
|   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
 | |
|         VectorizableTree.size() << ".\n");
 | |
| 
 | |
|   // We only vectorize tiny trees if it is fully vectorizable.
 | |
|   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
 | |
|     if (VectorizableTree.empty()) {
 | |
|       assert(!ExternalUses.size() && "We should not have any external users");
 | |
|     }
 | |
|     return INT_MAX;
 | |
|   }
 | |
| 
 | |
|   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
 | |
| 
 | |
|   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
 | |
|     int C = getEntryCost(&VectorizableTree[i]);
 | |
|     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
 | |
|           << *VectorizableTree[i].Scalars[0] << " .\n");
 | |
|     Cost += C;
 | |
|   }
 | |
| 
 | |
|   SmallSet<Value *, 16> ExtractCostCalculated;
 | |
|   int ExtractCost = 0;
 | |
|   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
 | |
|        I != E; ++I) {
 | |
|     // We only add extract cost once for the same scalar.
 | |
|     if (!ExtractCostCalculated.insert(I->Scalar).second)
 | |
|       continue;
 | |
| 
 | |
|     // Uses by ephemeral values are free (because the ephemeral value will be
 | |
|     // removed prior to code generation, and so the extraction will be
 | |
|     // removed as well).
 | |
|     if (EphValues.count(I->User))
 | |
|       continue;
 | |
| 
 | |
|     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
 | |
|     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
 | |
|                                            I->Lane);
 | |
|   }
 | |
| 
 | |
|   Cost += getSpillCost();
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
 | |
|   return  Cost + ExtractCost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(Type *Ty) {
 | |
|   int Cost = 0;
 | |
|   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | |
|     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
 | |
|   // Find the type of the operands in VL.
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
|   // Find the cost of inserting/extracting values from the vector.
 | |
|   return getGatherCost(VecTy);
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::getPointerOperand(Value *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->getPointerOperand();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getPointerOperand();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I))
 | |
|     return L->getPointerAddressSpace();
 | |
|   if (StoreInst *S = dyn_cast<StoreInst>(I))
 | |
|     return S->getPointerAddressSpace();
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
 | |
|   Value *PtrA = getPointerOperand(A);
 | |
|   Value *PtrB = getPointerOperand(B);
 | |
|   unsigned ASA = getAddressSpaceOperand(A);
 | |
|   unsigned ASB = getAddressSpaceOperand(B);
 | |
| 
 | |
|   // Check that the address spaces match and that the pointers are valid.
 | |
|   if (!PtrA || !PtrB || (ASA != ASB))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that A and B are different pointers of the same type.
 | |
|   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
 | |
|     return false;
 | |
| 
 | |
|   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
 | |
|   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
 | |
|   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
 | |
| 
 | |
|   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
 | |
|   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
 | |
|   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
 | |
| 
 | |
|   APInt OffsetDelta = OffsetB - OffsetA;
 | |
| 
 | |
|   // Check if they are based on the same pointer. That makes the offsets
 | |
|   // sufficient.
 | |
|   if (PtrA == PtrB)
 | |
|     return OffsetDelta == Size;
 | |
| 
 | |
|   // Compute the necessary base pointer delta to have the necessary final delta
 | |
|   // equal to the size.
 | |
|   APInt BaseDelta = Size - OffsetDelta;
 | |
| 
 | |
|   // Otherwise compute the distance with SCEV between the base pointers.
 | |
|   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
 | |
|   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
 | |
|   const SCEV *C = SE->getConstant(BaseDelta);
 | |
|   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
 | |
|   return X == PtrSCEVB;
 | |
| }
 | |
| 
 | |
| // Reorder commutative operations in alternate shuffle if the resulting vectors
 | |
| // are consecutive loads. This would allow us to vectorize the tree.
 | |
| // If we have something like-
 | |
| // load a[0] - load b[0]
 | |
| // load b[1] + load a[1]
 | |
| // load a[2] - load b[2]
 | |
| // load a[3] + load b[3]
 | |
| // Reordering the second load b[1]  load a[1] would allow us to vectorize this
 | |
| // code.
 | |
| void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
 | |
|                                         SmallVectorImpl<Value *> &Left,
 | |
|                                         SmallVectorImpl<Value *> &Right) {
 | |
|   const DataLayout &DL = F->getParent()->getDataLayout();
 | |
| 
 | |
|   // Push left and right operands of binary operation into Left and Right
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|     Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
 | |
|     Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   // Reorder if we have a commutative operation and consecutive access
 | |
|   // are on either side of the alternate instructions.
 | |
|   for (unsigned j = 0; j < VL.size() - 1; ++j) {
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | |
|         Instruction *VL1 = cast<Instruction>(VL[j]);
 | |
|         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | |
|         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
 | |
|           std::swap(Left[j], Right[j]);
 | |
|           continue;
 | |
|         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|         // else unchanged
 | |
|       }
 | |
|     }
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | |
|         Instruction *VL1 = cast<Instruction>(VL[j]);
 | |
|         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | |
|         if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
 | |
|           std::swap(Left[j], Right[j]);
 | |
|           continue;
 | |
|         } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|         // else unchanged
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
 | |
|                                              SmallVectorImpl<Value *> &Left,
 | |
|                                              SmallVectorImpl<Value *> &Right) {
 | |
| 
 | |
|   SmallVector<Value *, 16> OrigLeft, OrigRight;
 | |
| 
 | |
|   bool AllSameOpcodeLeft = true;
 | |
|   bool AllSameOpcodeRight = true;
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     Instruction *I = cast<Instruction>(VL[i]);
 | |
|     Value *VLeft = I->getOperand(0);
 | |
|     Value *VRight = I->getOperand(1);
 | |
| 
 | |
|     OrigLeft.push_back(VLeft);
 | |
|     OrigRight.push_back(VRight);
 | |
| 
 | |
|     Instruction *ILeft = dyn_cast<Instruction>(VLeft);
 | |
|     Instruction *IRight = dyn_cast<Instruction>(VRight);
 | |
| 
 | |
|     // Check whether all operands on one side have the same opcode. In this case
 | |
|     // we want to preserve the original order and not make things worse by
 | |
|     // reordering.
 | |
|     if (i && AllSameOpcodeLeft && ILeft) {
 | |
|       if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) {
 | |
|         if (PLeft->getOpcode() != ILeft->getOpcode())
 | |
|           AllSameOpcodeLeft = false;
 | |
|       } else
 | |
|         AllSameOpcodeLeft = false;
 | |
|     }
 | |
|     if (i && AllSameOpcodeRight && IRight) {
 | |
|       if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) {
 | |
|         if (PRight->getOpcode() != IRight->getOpcode())
 | |
|           AllSameOpcodeRight = false;
 | |
|       } else
 | |
|         AllSameOpcodeRight = false;
 | |
|     }
 | |
| 
 | |
|     // Sort two opcodes. In the code below we try to preserve the ability to use
 | |
|     // broadcast of values instead of individual inserts.
 | |
|     // vl1 = load
 | |
|     // vl2 = phi
 | |
|     // vr1 = load
 | |
|     // vr2 = vr2
 | |
|     //    = vl1 x vr1
 | |
|     //    = vl2 x vr2
 | |
|     // If we just sorted according to opcode we would leave the first line in
 | |
|     // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
 | |
|     //    = vl1 x vr1
 | |
|     //    = vr2 x vl2
 | |
|     // Because vr2 and vr1 are from the same load we loose the opportunity of a
 | |
|     // broadcast for the packed right side in the backend: we have [vr1, vl2]
 | |
|     // instead of [vr1, vr2=vr1].
 | |
|     if (ILeft && IRight) {
 | |
|       if (!i && ILeft->getOpcode() > IRight->getOpcode()) {
 | |
|         Left.push_back(IRight);
 | |
|         Right.push_back(ILeft);
 | |
|       } else if (i && ILeft->getOpcode() > IRight->getOpcode() &&
 | |
|                  Right[i - 1] != IRight) {
 | |
|         // Try not to destroy a broad cast for no apparent benefit.
 | |
|         Left.push_back(IRight);
 | |
|         Right.push_back(ILeft);
 | |
|       } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
 | |
|                  Right[i - 1] == ILeft) {
 | |
|         // Try preserve broadcasts.
 | |
|         Left.push_back(IRight);
 | |
|         Right.push_back(ILeft);
 | |
|       } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
 | |
|                  Left[i - 1] == IRight) {
 | |
|         // Try preserve broadcasts.
 | |
|         Left.push_back(IRight);
 | |
|         Right.push_back(ILeft);
 | |
|       } else {
 | |
|         Left.push_back(ILeft);
 | |
|         Right.push_back(IRight);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     // One opcode, put the instruction on the right.
 | |
|     if (ILeft) {
 | |
|       Left.push_back(VRight);
 | |
|       Right.push_back(ILeft);
 | |
|       continue;
 | |
|     }
 | |
|     Left.push_back(VLeft);
 | |
|     Right.push_back(VRight);
 | |
|   }
 | |
| 
 | |
|   bool LeftBroadcast = isSplat(Left);
 | |
|   bool RightBroadcast = isSplat(Right);
 | |
| 
 | |
|   // If operands end up being broadcast return this operand order.
 | |
|   if (LeftBroadcast || RightBroadcast)
 | |
|     return;
 | |
| 
 | |
|   // Don't reorder if the operands where good to begin.
 | |
|   if (AllSameOpcodeRight || AllSameOpcodeLeft) {
 | |
|     Left = OrigLeft;
 | |
|     Right = OrigRight;
 | |
|   }
 | |
| 
 | |
|   const DataLayout &DL = F->getParent()->getDataLayout();
 | |
| 
 | |
|   // Finally check if we can get longer vectorizable chain by reordering
 | |
|   // without breaking the good operand order detected above.
 | |
|   // E.g. If we have something like-
 | |
|   // load a[0]  load b[0]
 | |
|   // load b[1]  load a[1]
 | |
|   // load a[2]  load b[2]
 | |
|   // load a[3]  load b[3]
 | |
|   // Reordering the second load b[1]  load a[1] would allow us to vectorize
 | |
|   // this code and we still retain AllSameOpcode property.
 | |
|   // FIXME: This load reordering might break AllSameOpcode in some rare cases
 | |
|   // such as-
 | |
|   // add a[0],c[0]  load b[0]
 | |
|   // add a[1],c[2]  load b[1]
 | |
|   // b[2]           load b[2]
 | |
|   // add a[3],c[3]  load b[3]
 | |
|   for (unsigned j = 0; j < VL.size() - 1; ++j) {
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | |
|         if (isConsecutiveAccess(L, L1, DL)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | |
|         if (isConsecutiveAccess(L, L1, DL)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // else unchanged
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
 | |
|   Instruction *VL0 = cast<Instruction>(VL[0]);
 | |
|   BasicBlock::iterator NextInst = VL0;
 | |
|   ++NextInst;
 | |
|   Builder.SetInsertPoint(VL0->getParent(), NextInst);
 | |
|   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | |
|   Value *Vec = UndefValue::get(Ty);
 | |
|   // Generate the 'InsertElement' instruction.
 | |
|   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | |
|     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | |
|     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
 | |
|       GatherSeq.insert(Insrt);
 | |
|       CSEBlocks.insert(Insrt->getParent());
 | |
| 
 | |
|       // Add to our 'need-to-extract' list.
 | |
|       if (ScalarToTreeEntry.count(VL[i])) {
 | |
|         int Idx = ScalarToTreeEntry[VL[i]];
 | |
|         TreeEntry *E = &VectorizableTree[Idx];
 | |
|         // Find which lane we need to extract.
 | |
|         int FoundLane = -1;
 | |
|         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
 | |
|           // Is this the lane of the scalar that we are looking for ?
 | |
|           if (E->Scalars[Lane] == VL[i]) {
 | |
|             FoundLane = Lane;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         assert(FoundLane >= 0 && "Could not find the correct lane");
 | |
|         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
 | |
|   SmallDenseMap<Value*, int>::const_iterator Entry
 | |
|     = ScalarToTreeEntry.find(VL[0]);
 | |
|   if (Entry != ScalarToTreeEntry.end()) {
 | |
|     int Idx = Entry->second;
 | |
|     const TreeEntry *En = &VectorizableTree[Idx];
 | |
|     if (En->isSame(VL) && En->VectorizedValue)
 | |
|       return En->VectorizedValue;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | |
|   if (ScalarToTreeEntry.count(VL[0])) {
 | |
|     int Idx = ScalarToTreeEntry[VL[0]];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     if (E->isSame(VL))
 | |
|       return vectorizeTree(E);
 | |
|   }
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   return Gather(VL, VecTy);
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | |
|   IRBuilder<>::InsertPointGuard Guard(Builder);
 | |
| 
 | |
|   if (E->VectorizedValue) {
 | |
|     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | |
|     return E->VectorizedValue;
 | |
|   }
 | |
| 
 | |
|   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
 | |
|   Type *ScalarTy = VL0->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
 | |
| 
 | |
|   if (E->NeedToGather) {
 | |
|     setInsertPointAfterBundle(E->Scalars);
 | |
|     return Gather(E->Scalars, VecTy);
 | |
|   }
 | |
| 
 | |
|   const DataLayout &DL = F->getParent()->getDataLayout();
 | |
|   unsigned Opcode = getSameOpcode(E->Scalars);
 | |
| 
 | |
|   switch (Opcode) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
|       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
 | |
|       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | |
|       E->VectorizedValue = NewPhi;
 | |
| 
 | |
|       // PHINodes may have multiple entries from the same block. We want to
 | |
|       // visit every block once.
 | |
|       SmallSet<BasicBlock*, 4> VisitedBBs;
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         BasicBlock *IBB = PH->getIncomingBlock(i);
 | |
| 
 | |
|         if (!VisitedBBs.insert(IBB).second) {
 | |
|           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *V : E->Scalars)
 | |
|           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
 | |
| 
 | |
|         Builder.SetInsertPoint(IBB->getTerminator());
 | |
|         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|         Value *Vec = vectorizeTree(Operands);
 | |
|         NewPhi->addIncoming(Vec, IBB);
 | |
|       }
 | |
| 
 | |
|       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | |
|              "Invalid number of incoming values");
 | |
|       return NewPhi;
 | |
|     }
 | |
| 
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (CanReuseExtract(E->Scalars)) {
 | |
|         Value *V = VL0->getOperand(0);
 | |
|         E->VectorizedValue = V;
 | |
|         return V;
 | |
|       }
 | |
|       return Gather(E->Scalars, VecTy);
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       ValueList INVL;
 | |
|       for (Value *V : E->Scalars)
 | |
|         INVL.push_back(cast<Instruction>(V)->getOperand(0));
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *InVec = vectorizeTree(INVL);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       CastInst *CI = dyn_cast<CastInst>(VL0);
 | |
|       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp: {
 | |
|       ValueList LHSV, RHSV;
 | |
|       for (Value *V : E->Scalars) {
 | |
|         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *L = vectorizeTree(LHSV);
 | |
|       Value *R = vectorizeTree(RHSV);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | |
|       Value *V;
 | |
|       if (Opcode == Instruction::FCmp)
 | |
|         V = Builder.CreateFCmp(P0, L, R);
 | |
|       else
 | |
|         V = Builder.CreateICmp(P0, L, R);
 | |
| 
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       ValueList TrueVec, FalseVec, CondVec;
 | |
|       for (Value *V : E->Scalars) {
 | |
|         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
 | |
|         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
 | |
|       }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *Cond = vectorizeTree(CondVec);
 | |
|       Value *True = vectorizeTree(TrueVec);
 | |
|       Value *False = vectorizeTree(FalseVec);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       Value *V = Builder.CreateSelect(Cond, True, False);
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       ValueList LHSVL, RHSVL;
 | |
|       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
 | |
|         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
 | |
|       else
 | |
|         for (Value *V : E->Scalars) {
 | |
|           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
 | |
|         }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *LHS = vectorizeTree(LHSVL);
 | |
|       Value *RHS = vectorizeTree(RHSVL);
 | |
| 
 | |
|       if (LHS == RHS && isa<Instruction>(LHS)) {
 | |
|         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
 | |
|       }
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
 | |
|       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
 | |
|       E->VectorizedValue = V;
 | |
|       propagateIRFlags(E->VectorizedValue, E->Scalars);
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         return propagateMetadata(I, E->Scalars);
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Loads are inserted at the head of the tree because we don't want to
 | |
|       // sink them all the way down past store instructions.
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       LoadInst *LI = cast<LoadInst>(VL0);
 | |
|       Type *ScalarLoadTy = LI->getType();
 | |
|       unsigned AS = LI->getPointerAddressSpace();
 | |
| 
 | |
|       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
 | |
|                                             VecTy->getPointerTo(AS));
 | |
| 
 | |
|       // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | |
|       // ExternalUses list to make sure that an extract will be generated in the
 | |
|       // future.
 | |
|       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
 | |
|         ExternalUses.push_back(
 | |
|             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
 | |
| 
 | |
|       unsigned Alignment = LI->getAlignment();
 | |
|       LI = Builder.CreateLoad(VecPtr);
 | |
|       if (!Alignment) {
 | |
|         Alignment = DL.getABITypeAlignment(ScalarLoadTy);
 | |
|       }
 | |
|       LI->setAlignment(Alignment);
 | |
|       E->VectorizedValue = LI;
 | |
|       ++NumVectorInstructions;
 | |
|       return propagateMetadata(LI, E->Scalars);
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       StoreInst *SI = cast<StoreInst>(VL0);
 | |
|       unsigned Alignment = SI->getAlignment();
 | |
|       unsigned AS = SI->getPointerAddressSpace();
 | |
| 
 | |
|       ValueList ValueOp;
 | |
|       for (Value *V : E->Scalars)
 | |
|         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *VecValue = vectorizeTree(ValueOp);
 | |
|       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
 | |
|                                             VecTy->getPointerTo(AS));
 | |
|       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
 | |
| 
 | |
|       // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | |
|       // ExternalUses list to make sure that an extract will be generated in the
 | |
|       // future.
 | |
|       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
 | |
|         ExternalUses.push_back(
 | |
|             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
 | |
| 
 | |
|       if (!Alignment) {
 | |
|         Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
 | |
|       }
 | |
|       S->setAlignment(Alignment);
 | |
|       E->VectorizedValue = S;
 | |
|       ++NumVectorInstructions;
 | |
|       return propagateMetadata(S, E->Scalars);
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       ValueList Op0VL;
 | |
|       for (Value *V : E->Scalars)
 | |
|         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
 | |
| 
 | |
|       Value *Op0 = vectorizeTree(Op0VL);
 | |
| 
 | |
|       std::vector<Value *> OpVecs;
 | |
|       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
 | |
|            ++j) {
 | |
|         ValueList OpVL;
 | |
|         for (Value *V : E->Scalars)
 | |
|           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
 | |
| 
 | |
|         Value *OpVec = vectorizeTree(OpVL);
 | |
|         OpVecs.push_back(OpVec);
 | |
|       }
 | |
| 
 | |
|       Value *V = Builder.CreateGEP(
 | |
|           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         return propagateMetadata(I, E->Scalars);
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       CallInst *CI = cast<CallInst>(VL0);
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
|       Function *FI;
 | |
|       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
 | |
|       Value *ScalarArg = nullptr;
 | |
|       if (CI && (FI = CI->getCalledFunction())) {
 | |
|         IID = FI->getIntrinsicID();
 | |
|       }
 | |
|       std::vector<Value *> OpVecs;
 | |
|       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
 | |
|         ValueList OpVL;
 | |
|         // ctlz,cttz and powi are special intrinsics whose second argument is
 | |
|         // a scalar. This argument should not be vectorized.
 | |
|         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
 | |
|           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
 | |
|           ScalarArg = CEI->getArgOperand(j);
 | |
|           OpVecs.push_back(CEI->getArgOperand(j));
 | |
|           continue;
 | |
|         }
 | |
|         for (Value *V : E->Scalars) {
 | |
|           CallInst *CEI = cast<CallInst>(V);
 | |
|           OpVL.push_back(CEI->getArgOperand(j));
 | |
|         }
 | |
| 
 | |
|         Value *OpVec = vectorizeTree(OpVL);
 | |
|         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
 | |
|         OpVecs.push_back(OpVec);
 | |
|       }
 | |
| 
 | |
|       Module *M = F->getParent();
 | |
|       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
 | |
|       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
 | |
|       Value *V = Builder.CreateCall(CF, OpVecs);
 | |
| 
 | |
|       // The scalar argument uses an in-tree scalar so we add the new vectorized
 | |
|       // call to ExternalUses list to make sure that an extract will be
 | |
|       // generated in the future.
 | |
|       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
 | |
|         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
 | |
| 
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       ValueList LHSVL, RHSVL;
 | |
|       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
 | |
|       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
 | |
|       setInsertPointAfterBundle(E->Scalars);
 | |
| 
 | |
|       Value *LHS = vectorizeTree(LHSVL);
 | |
|       Value *RHS = vectorizeTree(RHSVL);
 | |
| 
 | |
|       if (Value *V = alreadyVectorized(E->Scalars))
 | |
|         return V;
 | |
| 
 | |
|       // Create a vector of LHS op1 RHS
 | |
|       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
 | |
|       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
 | |
| 
 | |
|       // Create a vector of LHS op2 RHS
 | |
|       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
 | |
|       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
 | |
|       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
 | |
| 
 | |
|       // Create shuffle to take alternate operations from the vector.
 | |
|       // Also, gather up odd and even scalar ops to propagate IR flags to
 | |
|       // each vector operation.
 | |
|       ValueList OddScalars, EvenScalars;
 | |
|       unsigned e = E->Scalars.size();
 | |
|       SmallVector<Constant *, 8> Mask(e);
 | |
|       for (unsigned i = 0; i < e; ++i) {
 | |
|         if (i & 1) {
 | |
|           Mask[i] = Builder.getInt32(e + i);
 | |
|           OddScalars.push_back(E->Scalars[i]);
 | |
|         } else {
 | |
|           Mask[i] = Builder.getInt32(i);
 | |
|           EvenScalars.push_back(E->Scalars[i]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Value *ShuffleMask = ConstantVector::get(Mask);
 | |
|       propagateIRFlags(V0, EvenScalars);
 | |
|       propagateIRFlags(V1, OddScalars);
 | |
| 
 | |
|       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         return propagateMetadata(I, E->Scalars);
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     default:
 | |
|     llvm_unreachable("unknown inst");
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree() {
 | |
|   
 | |
|   // All blocks must be scheduled before any instructions are inserted.
 | |
|   for (auto &BSIter : BlocksSchedules) {
 | |
|     scheduleBlock(BSIter.second.get());
 | |
|   }
 | |
| 
 | |
|   Builder.SetInsertPoint(F->getEntryBlock().begin());
 | |
|   vectorizeTree(&VectorizableTree[0]);
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
 | |
| 
 | |
|   // Extract all of the elements with the external uses.
 | |
|   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
 | |
|        it != e; ++it) {
 | |
|     Value *Scalar = it->Scalar;
 | |
|     llvm::User *User = it->User;
 | |
| 
 | |
|     // Skip users that we already RAUW. This happens when one instruction
 | |
|     // has multiple uses of the same value.
 | |
|     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
 | |
|         Scalar->user_end())
 | |
|       continue;
 | |
|     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
 | |
| 
 | |
|     int Idx = ScalarToTreeEntry[Scalar];
 | |
|     TreeEntry *E = &VectorizableTree[Idx];
 | |
|     assert(!E->NeedToGather && "Extracting from a gather list");
 | |
| 
 | |
|     Value *Vec = E->VectorizedValue;
 | |
|     assert(Vec && "Can't find vectorizable value");
 | |
| 
 | |
|     Value *Lane = Builder.getInt32(it->Lane);
 | |
|     // Generate extracts for out-of-tree users.
 | |
|     // Find the insertion point for the extractelement lane.
 | |
|     if (isa<Instruction>(Vec)){
 | |
|       if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | |
|         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | |
|           if (PH->getIncomingValue(i) == Scalar) {
 | |
|             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | |
|             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|             CSEBlocks.insert(PH->getIncomingBlock(i));
 | |
|             PH->setOperand(i, Ex);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         Builder.SetInsertPoint(cast<Instruction>(User));
 | |
|         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|         CSEBlocks.insert(cast<Instruction>(User)->getParent());
 | |
|         User->replaceUsesOfWith(Scalar, Ex);
 | |
|      }
 | |
|     } else {
 | |
|       Builder.SetInsertPoint(F->getEntryBlock().begin());
 | |
|       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|       CSEBlocks.insert(&F->getEntryBlock());
 | |
|       User->replaceUsesOfWith(Scalar, Ex);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | |
|   }
 | |
| 
 | |
|   // For each vectorized value:
 | |
|   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
 | |
|     TreeEntry *Entry = &VectorizableTree[EIdx];
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
|       // No need to handle users of gathered values.
 | |
|       if (Entry->NeedToGather)
 | |
|         continue;
 | |
| 
 | |
|       assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | |
| 
 | |
|       Type *Ty = Scalar->getType();
 | |
|       if (!Ty->isVoidTy()) {
 | |
| #ifndef NDEBUG
 | |
|         for (User *U : Scalar->users()) {
 | |
|           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
 | |
| 
 | |
|           assert((ScalarToTreeEntry.count(U) ||
 | |
|                   // It is legal to replace users in the ignorelist by undef.
 | |
|                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
 | |
|                    UserIgnoreList.end())) &&
 | |
|                  "Replacing out-of-tree value with undef");
 | |
|         }
 | |
| #endif
 | |
|         Value *Undef = UndefValue::get(Ty);
 | |
|         Scalar->replaceAllUsesWith(Undef);
 | |
|       }
 | |
|       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | |
|       eraseInstruction(cast<Instruction>(Scalar));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Builder.ClearInsertionPoint();
 | |
| 
 | |
|   return VectorizableTree[0].VectorizedValue;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::optimizeGatherSequence() {
 | |
|   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | |
|         << " gather sequences instructions.\n");
 | |
|   // LICM InsertElementInst sequences.
 | |
|   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
 | |
|        e = GatherSeq.end(); it != e; ++it) {
 | |
|     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
 | |
| 
 | |
|     if (!Insert)
 | |
|       continue;
 | |
| 
 | |
|     // Check if this block is inside a loop.
 | |
|     Loop *L = LI->getLoopFor(Insert->getParent());
 | |
|     if (!L)
 | |
|       continue;
 | |
| 
 | |
|     // Check if it has a preheader.
 | |
|     BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|     if (!PreHeader)
 | |
|       continue;
 | |
| 
 | |
|     // If the vector or the element that we insert into it are
 | |
|     // instructions that are defined in this basic block then we can't
 | |
|     // hoist this instruction.
 | |
|     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
 | |
|     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
 | |
|     if (CurrVec && L->contains(CurrVec))
 | |
|       continue;
 | |
|     if (NewElem && L->contains(NewElem))
 | |
|       continue;
 | |
| 
 | |
|     // We can hoist this instruction. Move it to the pre-header.
 | |
|     Insert->moveBefore(PreHeader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Make a list of all reachable blocks in our CSE queue.
 | |
|   SmallVector<const DomTreeNode *, 8> CSEWorkList;
 | |
|   CSEWorkList.reserve(CSEBlocks.size());
 | |
|   for (BasicBlock *BB : CSEBlocks)
 | |
|     if (DomTreeNode *N = DT->getNode(BB)) {
 | |
|       assert(DT->isReachableFromEntry(N));
 | |
|       CSEWorkList.push_back(N);
 | |
|     }
 | |
| 
 | |
|   // Sort blocks by domination. This ensures we visit a block after all blocks
 | |
|   // dominating it are visited.
 | |
|   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
 | |
|                    [this](const DomTreeNode *A, const DomTreeNode *B) {
 | |
|     return DT->properlyDominates(A, B);
 | |
|   });
 | |
| 
 | |
|   // Perform O(N^2) search over the gather sequences and merge identical
 | |
|   // instructions. TODO: We can further optimize this scan if we split the
 | |
|   // instructions into different buckets based on the insert lane.
 | |
|   SmallVector<Instruction *, 16> Visited;
 | |
|   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
 | |
|     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
 | |
|            "Worklist not sorted properly!");
 | |
|     BasicBlock *BB = (*I)->getBlock();
 | |
|     // For all instructions in blocks containing gather sequences:
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
 | |
|       Instruction *In = it++;
 | |
|       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
 | |
|         continue;
 | |
| 
 | |
|       // Check if we can replace this instruction with any of the
 | |
|       // visited instructions.
 | |
|       for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
 | |
|                                                     ve = Visited.end();
 | |
|            v != ve; ++v) {
 | |
|         if (In->isIdenticalTo(*v) &&
 | |
|             DT->dominates((*v)->getParent(), In->getParent())) {
 | |
|           In->replaceAllUsesWith(*v);
 | |
|           eraseInstruction(In);
 | |
|           In = nullptr;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (In) {
 | |
|         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
 | |
|         Visited.push_back(In);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   CSEBlocks.clear();
 | |
|   GatherSeq.clear();
 | |
| }
 | |
| 
 | |
| // Groups the instructions to a bundle (which is then a single scheduling entity)
 | |
| // and schedules instructions until the bundle gets ready.
 | |
| bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
 | |
|                                                  BoUpSLP *SLP) {
 | |
|   if (isa<PHINode>(VL[0]))
 | |
|     return true;
 | |
| 
 | |
|   // Initialize the instruction bundle.
 | |
|   Instruction *OldScheduleEnd = ScheduleEnd;
 | |
|   ScheduleData *PrevInBundle = nullptr;
 | |
|   ScheduleData *Bundle = nullptr;
 | |
|   bool ReSchedule = false;
 | |
|   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
 | |
|   for (Value *V : VL) {
 | |
|     extendSchedulingRegion(V);
 | |
|     ScheduleData *BundleMember = getScheduleData(V);
 | |
|     assert(BundleMember &&
 | |
|            "no ScheduleData for bundle member (maybe not in same basic block)");
 | |
|     if (BundleMember->IsScheduled) {
 | |
|       // A bundle member was scheduled as single instruction before and now
 | |
|       // needs to be scheduled as part of the bundle. We just get rid of the
 | |
|       // existing schedule.
 | |
|       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
 | |
|                    << " was already scheduled\n");
 | |
|       ReSchedule = true;
 | |
|     }
 | |
|     assert(BundleMember->isSchedulingEntity() &&
 | |
|            "bundle member already part of other bundle");
 | |
|     if (PrevInBundle) {
 | |
|       PrevInBundle->NextInBundle = BundleMember;
 | |
|     } else {
 | |
|       Bundle = BundleMember;
 | |
|     }
 | |
|     BundleMember->UnscheduledDepsInBundle = 0;
 | |
|     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
 | |
| 
 | |
|     // Group the instructions to a bundle.
 | |
|     BundleMember->FirstInBundle = Bundle;
 | |
|     PrevInBundle = BundleMember;
 | |
|   }
 | |
|   if (ScheduleEnd != OldScheduleEnd) {
 | |
|     // The scheduling region got new instructions at the lower end (or it is a
 | |
|     // new region for the first bundle). This makes it necessary to
 | |
|     // recalculate all dependencies.
 | |
|     // It is seldom that this needs to be done a second time after adding the
 | |
|     // initial bundle to the region.
 | |
|     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|       ScheduleData *SD = getScheduleData(I);
 | |
|       SD->clearDependencies();
 | |
|     }
 | |
|     ReSchedule = true;
 | |
|   }
 | |
|   if (ReSchedule) {
 | |
|     resetSchedule();
 | |
|     initialFillReadyList(ReadyInsts);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
 | |
|                << BB->getName() << "\n");
 | |
| 
 | |
|   calculateDependencies(Bundle, true, SLP);
 | |
| 
 | |
|   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
 | |
|   // means that there are no cyclic dependencies and we can schedule it.
 | |
|   // Note that's important that we don't "schedule" the bundle yet (see
 | |
|   // cancelScheduling).
 | |
|   while (!Bundle->isReady() && !ReadyInsts.empty()) {
 | |
| 
 | |
|     ScheduleData *pickedSD = ReadyInsts.back();
 | |
|     ReadyInsts.pop_back();
 | |
| 
 | |
|     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
 | |
|       schedule(pickedSD, ReadyInsts);
 | |
|     }
 | |
|   }
 | |
|   return Bundle->isReady();
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
 | |
|   if (isa<PHINode>(VL[0]))
 | |
|     return;
 | |
| 
 | |
|   ScheduleData *Bundle = getScheduleData(VL[0]);
 | |
|   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
 | |
|   assert(!Bundle->IsScheduled &&
 | |
|          "Can't cancel bundle which is already scheduled");
 | |
|   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
 | |
|          "tried to unbundle something which is not a bundle");
 | |
| 
 | |
|   // Un-bundle: make single instructions out of the bundle.
 | |
|   ScheduleData *BundleMember = Bundle;
 | |
|   while (BundleMember) {
 | |
|     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
 | |
|     BundleMember->FirstInBundle = BundleMember;
 | |
|     ScheduleData *Next = BundleMember->NextInBundle;
 | |
|     BundleMember->NextInBundle = nullptr;
 | |
|     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
 | |
|     if (BundleMember->UnscheduledDepsInBundle == 0) {
 | |
|       ReadyInsts.insert(BundleMember);
 | |
|     }
 | |
|     BundleMember = Next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
 | |
|   if (getScheduleData(V))
 | |
|     return;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   assert(I && "bundle member must be an instruction");
 | |
|   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
 | |
|   if (!ScheduleStart) {
 | |
|     // It's the first instruction in the new region.
 | |
|     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
 | |
|     ScheduleStart = I;
 | |
|     ScheduleEnd = I->getNextNode();
 | |
|     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | |
|     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
 | |
|     return;
 | |
|   }
 | |
|   // Search up and down at the same time, because we don't know if the new
 | |
|   // instruction is above or below the existing scheduling region.
 | |
|   BasicBlock::reverse_iterator UpIter(ScheduleStart);
 | |
|   BasicBlock::reverse_iterator UpperEnd = BB->rend();
 | |
|   BasicBlock::iterator DownIter(ScheduleEnd);
 | |
|   BasicBlock::iterator LowerEnd = BB->end();
 | |
|   for (;;) {
 | |
|     if (UpIter != UpperEnd) {
 | |
|       if (&*UpIter == I) {
 | |
|         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
 | |
|         ScheduleStart = I;
 | |
|         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
 | |
|         return;
 | |
|       }
 | |
|       UpIter++;
 | |
|     }
 | |
|     if (DownIter != LowerEnd) {
 | |
|       if (&*DownIter == I) {
 | |
|         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
 | |
|                          nullptr);
 | |
|         ScheduleEnd = I->getNextNode();
 | |
|         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
 | |
|         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
 | |
|         return;
 | |
|       }
 | |
|       DownIter++;
 | |
|     }
 | |
|     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
 | |
|            "instruction not found in block");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
 | |
|                                                 Instruction *ToI,
 | |
|                                                 ScheduleData *PrevLoadStore,
 | |
|                                                 ScheduleData *NextLoadStore) {
 | |
|   ScheduleData *CurrentLoadStore = PrevLoadStore;
 | |
|   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
 | |
|     ScheduleData *SD = ScheduleDataMap[I];
 | |
|     if (!SD) {
 | |
|       // Allocate a new ScheduleData for the instruction.
 | |
|       if (ChunkPos >= ChunkSize) {
 | |
|         ScheduleDataChunks.push_back(
 | |
|             llvm::make_unique<ScheduleData[]>(ChunkSize));
 | |
|         ChunkPos = 0;
 | |
|       }
 | |
|       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
 | |
|       ScheduleDataMap[I] = SD;
 | |
|       SD->Inst = I;
 | |
|     }
 | |
|     assert(!isInSchedulingRegion(SD) &&
 | |
|            "new ScheduleData already in scheduling region");
 | |
|     SD->init(SchedulingRegionID);
 | |
| 
 | |
|     if (I->mayReadOrWriteMemory()) {
 | |
|       // Update the linked list of memory accessing instructions.
 | |
|       if (CurrentLoadStore) {
 | |
|         CurrentLoadStore->NextLoadStore = SD;
 | |
|       } else {
 | |
|         FirstLoadStoreInRegion = SD;
 | |
|       }
 | |
|       CurrentLoadStore = SD;
 | |
|     }
 | |
|   }
 | |
|   if (NextLoadStore) {
 | |
|     if (CurrentLoadStore)
 | |
|       CurrentLoadStore->NextLoadStore = NextLoadStore;
 | |
|   } else {
 | |
|     LastLoadStoreInRegion = CurrentLoadStore;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
 | |
|                                                      bool InsertInReadyList,
 | |
|                                                      BoUpSLP *SLP) {
 | |
|   assert(SD->isSchedulingEntity());
 | |
| 
 | |
|   SmallVector<ScheduleData *, 10> WorkList;
 | |
|   WorkList.push_back(SD);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     ScheduleData *SD = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     ScheduleData *BundleMember = SD;
 | |
|     while (BundleMember) {
 | |
|       assert(isInSchedulingRegion(BundleMember));
 | |
|       if (!BundleMember->hasValidDependencies()) {
 | |
| 
 | |
|         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
 | |
|         BundleMember->Dependencies = 0;
 | |
|         BundleMember->resetUnscheduledDeps();
 | |
| 
 | |
|         // Handle def-use chain dependencies.
 | |
|         for (User *U : BundleMember->Inst->users()) {
 | |
|           if (isa<Instruction>(U)) {
 | |
|             ScheduleData *UseSD = getScheduleData(U);
 | |
|             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | |
|               BundleMember->Dependencies++;
 | |
|               ScheduleData *DestBundle = UseSD->FirstInBundle;
 | |
|               if (!DestBundle->IsScheduled) {
 | |
|                 BundleMember->incrementUnscheduledDeps(1);
 | |
|               }
 | |
|               if (!DestBundle->hasValidDependencies()) {
 | |
|                 WorkList.push_back(DestBundle);
 | |
|               }
 | |
|             }
 | |
|           } else {
 | |
|             // I'm not sure if this can ever happen. But we need to be safe.
 | |
|             // This lets the instruction/bundle never be scheduled and eventally
 | |
|             // disable vectorization.
 | |
|             BundleMember->Dependencies++;
 | |
|             BundleMember->incrementUnscheduledDeps(1);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Handle the memory dependencies.
 | |
|         ScheduleData *DepDest = BundleMember->NextLoadStore;
 | |
|         if (DepDest) {
 | |
|           Instruction *SrcInst = BundleMember->Inst;
 | |
|           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
 | |
|           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
 | |
|           unsigned numAliased = 0;
 | |
|           unsigned DistToSrc = 1;
 | |
| 
 | |
|           while (DepDest) {
 | |
|             assert(isInSchedulingRegion(DepDest));
 | |
| 
 | |
|             // We have two limits to reduce the complexity:
 | |
|             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
 | |
|             //    SLP->isAliased (which is the expensive part in this loop).
 | |
|             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
 | |
|             //    the whole loop (even if the loop is fast, it's quadratic).
 | |
|             //    It's important for the loop break condition (see below) to
 | |
|             //    check this limit even between two read-only instructions.
 | |
|             if (DistToSrc >= MaxMemDepDistance ||
 | |
|                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
 | |
|                      (numAliased >= AliasedCheckLimit ||
 | |
|                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
 | |
| 
 | |
|               // We increment the counter only if the locations are aliased
 | |
|               // (instead of counting all alias checks). This gives a better
 | |
|               // balance between reduced runtime and accurate dependencies.
 | |
|               numAliased++;
 | |
| 
 | |
|               DepDest->MemoryDependencies.push_back(BundleMember);
 | |
|               BundleMember->Dependencies++;
 | |
|               ScheduleData *DestBundle = DepDest->FirstInBundle;
 | |
|               if (!DestBundle->IsScheduled) {
 | |
|                 BundleMember->incrementUnscheduledDeps(1);
 | |
|               }
 | |
|               if (!DestBundle->hasValidDependencies()) {
 | |
|                 WorkList.push_back(DestBundle);
 | |
|               }
 | |
|             }
 | |
|             DepDest = DepDest->NextLoadStore;
 | |
| 
 | |
|             // Example, explaining the loop break condition: Let's assume our
 | |
|             // starting instruction is i0 and MaxMemDepDistance = 3.
 | |
|             //
 | |
|             //                      +--------v--v--v
 | |
|             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
 | |
|             //             +--------^--^--^
 | |
|             //
 | |
|             // MaxMemDepDistance let us stop alias-checking at i3 and we add
 | |
|             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
 | |
|             // Previously we already added dependencies from i3 to i6,i7,i8
 | |
|             // (because of MaxMemDepDistance). As we added a dependency from
 | |
|             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
 | |
|             // and we can abort this loop at i6.
 | |
|             if (DistToSrc >= 2 * MaxMemDepDistance)
 | |
|                 break;
 | |
|             DistToSrc++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       BundleMember = BundleMember->NextInBundle;
 | |
|     }
 | |
|     if (InsertInReadyList && SD->isReady()) {
 | |
|       ReadyInsts.push_back(SD);
 | |
|       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::resetSchedule() {
 | |
|   assert(ScheduleStart &&
 | |
|          "tried to reset schedule on block which has not been scheduled");
 | |
|   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|     ScheduleData *SD = getScheduleData(I);
 | |
|     assert(isInSchedulingRegion(SD));
 | |
|     SD->IsScheduled = false;
 | |
|     SD->resetUnscheduledDeps();
 | |
|   }
 | |
|   ReadyInsts.clear();
 | |
| }
 | |
| 
 | |
| void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
 | |
|   
 | |
|   if (!BS->ScheduleStart)
 | |
|     return;
 | |
|   
 | |
|   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 | |
| 
 | |
|   BS->resetSchedule();
 | |
| 
 | |
|   // For the real scheduling we use a more sophisticated ready-list: it is
 | |
|   // sorted by the original instruction location. This lets the final schedule
 | |
|   // be as  close as possible to the original instruction order.
 | |
|   struct ScheduleDataCompare {
 | |
|     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
 | |
|       return SD2->SchedulingPriority < SD1->SchedulingPriority;
 | |
|     }
 | |
|   };
 | |
|   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
 | |
| 
 | |
|   // Ensure that all depencency data is updated and fill the ready-list with
 | |
|   // initial instructions.
 | |
|   int Idx = 0;
 | |
|   int NumToSchedule = 0;
 | |
|   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
 | |
|        I = I->getNextNode()) {
 | |
|     ScheduleData *SD = BS->getScheduleData(I);
 | |
|     assert(
 | |
|         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
 | |
|         "scheduler and vectorizer have different opinion on what is a bundle");
 | |
|     SD->FirstInBundle->SchedulingPriority = Idx++;
 | |
|     if (SD->isSchedulingEntity()) {
 | |
|       BS->calculateDependencies(SD, false, this);
 | |
|       NumToSchedule++;
 | |
|     }
 | |
|   }
 | |
|   BS->initialFillReadyList(ReadyInsts);
 | |
| 
 | |
|   Instruction *LastScheduledInst = BS->ScheduleEnd;
 | |
| 
 | |
|   // Do the "real" scheduling.
 | |
|   while (!ReadyInsts.empty()) {
 | |
|     ScheduleData *picked = *ReadyInsts.begin();
 | |
|     ReadyInsts.erase(ReadyInsts.begin());
 | |
| 
 | |
|     // Move the scheduled instruction(s) to their dedicated places, if not
 | |
|     // there yet.
 | |
|     ScheduleData *BundleMember = picked;
 | |
|     while (BundleMember) {
 | |
|       Instruction *pickedInst = BundleMember->Inst;
 | |
|       if (LastScheduledInst->getNextNode() != pickedInst) {
 | |
|         BS->BB->getInstList().remove(pickedInst);
 | |
|         BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
 | |
|       }
 | |
|       LastScheduledInst = pickedInst;
 | |
|       BundleMember = BundleMember->NextInBundle;
 | |
|     }
 | |
| 
 | |
|     BS->schedule(picked, ReadyInsts);
 | |
|     NumToSchedule--;
 | |
|   }
 | |
|   assert(NumToSchedule == 0 && "could not schedule all instructions");
 | |
| 
 | |
|   // Avoid duplicate scheduling of the block.
 | |
|   BS->ScheduleStart = nullptr;
 | |
| }
 | |
| 
 | |
| /// The SLPVectorizer Pass.
 | |
| struct SLPVectorizer : public FunctionPass {
 | |
|   typedef SmallVector<StoreInst *, 8> StoreList;
 | |
|   typedef MapVector<Value *, StoreList> StoreListMap;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit SLPVectorizer() : FunctionPass(ID) {
 | |
|     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   TargetTransformInfo *TTI;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   AssumptionCache *AC;
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipOptnoneFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | |
|     TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | |
|     AA = &getAnalysis<AliasAnalysis>();
 | |
|     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
| 
 | |
|     StoreRefs.clear();
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // If the target claims to have no vector registers don't attempt
 | |
|     // vectorization.
 | |
|     if (!TTI->getNumberOfRegisters(true))
 | |
|       return false;
 | |
| 
 | |
|     // Use the vector register size specified by the target unless overridden
 | |
|     // by a command-line option.
 | |
|     // TODO: It would be better to limit the vectorization factor based on
 | |
|     //       data type rather than just register size. For example, x86 AVX has
 | |
|     //       256-bit registers, but it does not support integer operations
 | |
|     //       at that width (that requires AVX2).
 | |
|     if (MaxVectorRegSizeOption.getNumOccurrences())
 | |
|       MaxVecRegSize = MaxVectorRegSizeOption;
 | |
|     else
 | |
|       MaxVecRegSize = TTI->getRegisterBitWidth(true);
 | |
| 
 | |
|     // Don't vectorize when the attribute NoImplicitFloat is used.
 | |
|     if (F.hasFnAttribute(Attribute::NoImplicitFloat))
 | |
|       return false;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | |
| 
 | |
|     // Use the bottom up slp vectorizer to construct chains that start with
 | |
|     // store instructions.
 | |
|     BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
 | |
| 
 | |
|     // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
 | |
|     // delete instructions.
 | |
| 
 | |
|     // Scan the blocks in the function in post order.
 | |
|     for (auto BB : post_order(&F.getEntryBlock())) {
 | |
|       // Vectorize trees that end at stores.
 | |
|       if (unsigned count = collectStores(BB, R)) {
 | |
|         (void)count;
 | |
|         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
 | |
|         Changed |= vectorizeStoreChains(R);
 | |
|       }
 | |
| 
 | |
|       // Vectorize trees that end at reductions.
 | |
|       Changed |= vectorizeChainsInBlock(BB, R);
 | |
|     }
 | |
| 
 | |
|     if (Changed) {
 | |
|       R.optimizeGatherSequence();
 | |
|       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | |
|       DEBUG(verifyFunction(F));
 | |
|     }
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<AliasAnalysis>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// \brief Collect memory references and sort them according to their base
 | |
|   /// object. We sort the stores to their base objects to reduce the cost of the
 | |
|   /// quadratic search on the stores. TODO: We can further reduce this cost
 | |
|   /// if we flush the chain creation every time we run into a memory barrier.
 | |
|   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
 | |
|   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Try to vectorize a list of operands.
 | |
|   /// \@param BuildVector A list of users to ignore for the purpose of
 | |
|   ///                     scheduling and that don't need extracting.
 | |
|   /// \returns true if a value was vectorized.
 | |
|   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | |
|                           ArrayRef<Value *> BuildVector = None,
 | |
|                           bool allowReorder = false);
 | |
| 
 | |
|   /// \brief Try to vectorize a chain that may start at the operands of \V;
 | |
|   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Vectorize the stores that were collected in StoreRefs.
 | |
|   bool vectorizeStoreChains(BoUpSLP &R);
 | |
| 
 | |
|   /// \brief Scan the basic block and look for patterns that are likely to start
 | |
|   /// a vectorization chain.
 | |
|   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
 | |
| 
 | |
|   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
 | |
|                            BoUpSLP &R, unsigned VecRegSize);
 | |
| 
 | |
|   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
 | |
|                        BoUpSLP &R);
 | |
| private:
 | |
|   StoreListMap StoreRefs;
 | |
|   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
 | |
| };
 | |
| 
 | |
| /// \brief Check that the Values in the slice in VL array are still existent in
 | |
| /// the WeakVH array.
 | |
| /// Vectorization of part of the VL array may cause later values in the VL array
 | |
| /// to become invalid. We track when this has happened in the WeakVH array.
 | |
| static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
 | |
|                                unsigned SliceBegin, unsigned SliceSize) {
 | |
|   VL = VL.slice(SliceBegin, SliceSize);
 | |
|   VH = VH.slice(SliceBegin, SliceSize);
 | |
|   return !std::equal(VL.begin(), VL.end(), VH.begin());
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
 | |
|                                         int CostThreshold, BoUpSLP &R,
 | |
|                                         unsigned VecRegSize) {
 | |
|   unsigned ChainLen = Chain.size();
 | |
|   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | |
|         << "\n");
 | |
|   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
 | |
|   auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
 | |
|   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
 | |
|   unsigned VF = VecRegSize / Sz;
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Keep track of values that were deleted by vectorizing in the loop below.
 | |
|   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Look for profitable vectorizable trees at all offsets, starting at zero.
 | |
|   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
 | |
|     if (i + VF > e)
 | |
|       break;
 | |
| 
 | |
|     // Check that a previous iteration of this loop did not delete the Value.
 | |
|     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | |
|           << "\n");
 | |
|     ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | |
| 
 | |
|     R.buildTree(Operands);
 | |
| 
 | |
|     int Cost = R.getTreeCost();
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
 | |
|     if (Cost < CostThreshold) {
 | |
|       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | |
|       R.vectorizeTree();
 | |
| 
 | |
|       // Move to the next bundle.
 | |
|       i += VF - 1;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | |
|                                     int costThreshold, BoUpSLP &R) {
 | |
|   SetVector<StoreInst *> Heads, Tails;
 | |
|   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
 | |
| 
 | |
|   // We may run into multiple chains that merge into a single chain. We mark the
 | |
|   // stores that we vectorized so that we don't visit the same store twice.
 | |
|   BoUpSLP::ValueSet VectorizedStores;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Do a quadratic search on all of the given stores and find
 | |
|   // all of the pairs of stores that follow each other.
 | |
|   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
 | |
|     for (unsigned j = 0; j < e; ++j) {
 | |
|       if (i == j)
 | |
|         continue;
 | |
|       const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
 | |
|       if (R.isConsecutiveAccess(Stores[i], Stores[j], DL)) {
 | |
|         Tails.insert(Stores[j]);
 | |
|         Heads.insert(Stores[i]);
 | |
|         ConsecutiveChain[Stores[i]] = Stores[j];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For stores that start but don't end a link in the chain:
 | |
|   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
 | |
|        it != e; ++it) {
 | |
|     if (Tails.count(*it))
 | |
|       continue;
 | |
| 
 | |
|     // We found a store instr that starts a chain. Now follow the chain and try
 | |
|     // to vectorize it.
 | |
|     BoUpSLP::ValueList Operands;
 | |
|     StoreInst *I = *it;
 | |
|     // Collect the chain into a list.
 | |
|     while (Tails.count(I) || Heads.count(I)) {
 | |
|       if (VectorizedStores.count(I))
 | |
|         break;
 | |
|       Operands.push_back(I);
 | |
|       // Move to the next value in the chain.
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     // FIXME: Is division-by-2 the correct step? Should we assert that the
 | |
|     // register size is a power-of-2?
 | |
|     for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
 | |
|       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
 | |
|         // Mark the vectorized stores so that we don't vectorize them again.
 | |
|         VectorizedStores.insert(Operands.begin(), Operands.end());
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
 | |
|   unsigned count = 0;
 | |
|   StoreRefs.clear();
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   for (Instruction &I : *BB) {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(&I);
 | |
|     if (!SI)
 | |
|       continue;
 | |
| 
 | |
|     // Don't touch volatile stores.
 | |
|     if (!SI->isSimple())
 | |
|       continue;
 | |
| 
 | |
|     // Check that the pointer points to scalars.
 | |
|     Type *Ty = SI->getValueOperand()->getType();
 | |
|     if (!isValidElementType(Ty))
 | |
|       continue;
 | |
| 
 | |
|     // Find the base pointer.
 | |
|     Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
 | |
| 
 | |
|     // Save the store locations.
 | |
|     StoreRefs[Ptr].push_back(SI);
 | |
|     count++;
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | |
|   if (!A || !B)
 | |
|     return false;
 | |
|   Value *VL[] = { A, B };
 | |
|   return tryToVectorizeList(VL, R, None, true);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | |
|                                        ArrayRef<Value *> BuildVector,
 | |
|                                        bool allowReorder) {
 | |
|   if (VL.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
 | |
| 
 | |
|   // Check that all of the parts are scalar instructions of the same type.
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opcode0 = I0->getOpcode();
 | |
|   const DataLayout &DL = I0->getModule()->getDataLayout();
 | |
| 
 | |
|   Type *Ty0 = I0->getType();
 | |
|   unsigned Sz = DL.getTypeSizeInBits(Ty0);
 | |
|   // FIXME: Register size should be a parameter to this function, so we can
 | |
|   // try different vectorization factors.
 | |
|   unsigned VF = MinVecRegSize / Sz;
 | |
| 
 | |
|   for (Value *V : VL) {
 | |
|     Type *Ty = V->getType();
 | |
|     if (!isValidElementType(Ty))
 | |
|       return false;
 | |
|     Instruction *Inst = dyn_cast<Instruction>(V);
 | |
|     if (!Inst || Inst->getOpcode() != Opcode0)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Keep track of values that were deleted by vectorizing in the loop below.
 | |
|   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
 | |
| 
 | |
|   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|     unsigned OpsWidth = 0;
 | |
| 
 | |
|     if (i + VF > e)
 | |
|       OpsWidth = e - i;
 | |
|     else
 | |
|       OpsWidth = VF;
 | |
| 
 | |
|     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
 | |
|       break;
 | |
| 
 | |
|     // Check that a previous iteration of this loop did not delete the Value.
 | |
|     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
 | |
|                  << "\n");
 | |
|     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
 | |
| 
 | |
|     ArrayRef<Value *> BuildVectorSlice;
 | |
|     if (!BuildVector.empty())
 | |
|       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
 | |
| 
 | |
|     R.buildTree(Ops, BuildVectorSlice);
 | |
|     // TODO: check if we can allow reordering also for other cases than
 | |
|     // tryToVectorizePair()
 | |
|     if (allowReorder && R.shouldReorder()) {
 | |
|       assert(Ops.size() == 2);
 | |
|       assert(BuildVectorSlice.empty());
 | |
|       Value *ReorderedOps[] = { Ops[1], Ops[0] };
 | |
|       R.buildTree(ReorderedOps, None);
 | |
|     }
 | |
|     int Cost = R.getTreeCost();
 | |
| 
 | |
|     if (Cost < -SLPCostThreshold) {
 | |
|       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
 | |
|       Value *VectorizedRoot = R.vectorizeTree();
 | |
| 
 | |
|       // Reconstruct the build vector by extracting the vectorized root. This
 | |
|       // way we handle the case where some elements of the vector are undefined.
 | |
|       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
 | |
|       if (!BuildVectorSlice.empty()) {
 | |
|         // The insert point is the last build vector instruction. The vectorized
 | |
|         // root will precede it. This guarantees that we get an instruction. The
 | |
|         // vectorized tree could have been constant folded.
 | |
|         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
 | |
|         unsigned VecIdx = 0;
 | |
|         for (auto &V : BuildVectorSlice) {
 | |
|           IRBuilder<true, NoFolder> Builder(
 | |
|               ++BasicBlock::iterator(InsertAfter));
 | |
|           InsertElementInst *IE = cast<InsertElementInst>(V);
 | |
|           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
 | |
|               VectorizedRoot, Builder.getInt32(VecIdx++)));
 | |
|           IE->setOperand(1, Extract);
 | |
|           IE->removeFromParent();
 | |
|           IE->insertAfter(Extract);
 | |
|           InsertAfter = IE;
 | |
|         }
 | |
|       }
 | |
|       // Move to the next bundle.
 | |
|       i += VF - 1;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
 | |
|   if (!V)
 | |
|     return false;
 | |
| 
 | |
|   // Try to vectorize V.
 | |
|   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
 | |
|     return true;
 | |
| 
 | |
|   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
 | |
|   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
 | |
|   // Try to skip B.
 | |
|   if (B && B->hasOneUse()) {
 | |
|     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | |
|     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | |
|     if (tryToVectorizePair(A, B0, R)) {
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A, B1, R)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to skip A.
 | |
|   if (A && A->hasOneUse()) {
 | |
|     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | |
|     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | |
|     if (tryToVectorizePair(A0, B, R)) {
 | |
|       return true;
 | |
|     }
 | |
|     if (tryToVectorizePair(A1, B, R)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// \brief Generate a shuffle mask to be used in a reduction tree.
 | |
| ///
 | |
| /// \param VecLen The length of the vector to be reduced.
 | |
| /// \param NumEltsToRdx The number of elements that should be reduced in the
 | |
| ///        vector.
 | |
| /// \param IsPairwise Whether the reduction is a pairwise or splitting
 | |
| ///        reduction. A pairwise reduction will generate a mask of 
 | |
| ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
 | |
| ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
 | |
| /// \param IsLeft True will generate a mask of even elements, odd otherwise.
 | |
| static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
 | |
|                                    bool IsPairwise, bool IsLeft,
 | |
|                                    IRBuilder<> &Builder) {
 | |
|   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
 | |
| 
 | |
|   SmallVector<Constant *, 32> ShuffleMask(
 | |
|       VecLen, UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|   if (IsPairwise)
 | |
|     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
 | |
|     for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | |
|       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
 | |
|   else
 | |
|     // Move the upper half of the vector to the lower half.
 | |
|     for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | |
|       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
 | |
| 
 | |
|   return ConstantVector::get(ShuffleMask);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Model horizontal reductions.
 | |
| ///
 | |
| /// A horizontal reduction is a tree of reduction operations (currently add and
 | |
| /// fadd) that has operations that can be put into a vector as its leaf.
 | |
| /// For example, this tree:
 | |
| ///
 | |
| /// mul mul mul mul
 | |
| ///  \  /    \  /
 | |
| ///   +       +
 | |
| ///    \     /
 | |
| ///       +
 | |
| /// This tree has "mul" as its reduced values and "+" as its reduction
 | |
| /// operations. A reduction might be feeding into a store or a binary operation
 | |
| /// feeding a phi.
 | |
| ///    ...
 | |
| ///    \  /
 | |
| ///     +
 | |
| ///     |
 | |
| ///  phi +=
 | |
| ///
 | |
| ///  Or:
 | |
| ///    ...
 | |
| ///    \  /
 | |
| ///     +
 | |
| ///     |
 | |
| ///   *p =
 | |
| ///
 | |
| class HorizontalReduction {
 | |
|   SmallVector<Value *, 16> ReductionOps;
 | |
|   SmallVector<Value *, 32> ReducedVals;
 | |
| 
 | |
|   BinaryOperator *ReductionRoot;
 | |
|   PHINode *ReductionPHI;
 | |
| 
 | |
|   /// The opcode of the reduction.
 | |
|   unsigned ReductionOpcode;
 | |
|   /// The opcode of the values we perform a reduction on.
 | |
|   unsigned ReducedValueOpcode;
 | |
|   /// The width of one full horizontal reduction operation.
 | |
|   unsigned ReduxWidth;
 | |
|   /// Should we model this reduction as a pairwise reduction tree or a tree that
 | |
|   /// splits the vector in halves and adds those halves.
 | |
|   bool IsPairwiseReduction;
 | |
| 
 | |
| public:
 | |
|   HorizontalReduction()
 | |
|     : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
 | |
|     ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
 | |
| 
 | |
|   /// \brief Try to find a reduction tree.
 | |
|   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
 | |
|     assert((!Phi ||
 | |
|             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
 | |
|            "Thi phi needs to use the binary operator");
 | |
| 
 | |
|     // We could have a initial reductions that is not an add.
 | |
|     //  r *= v1 + v2 + v3 + v4
 | |
|     // In such a case start looking for a tree rooted in the first '+'.
 | |
|     if (Phi) {
 | |
|       if (B->getOperand(0) == Phi) {
 | |
|         Phi = nullptr;
 | |
|         B = dyn_cast<BinaryOperator>(B->getOperand(1));
 | |
|       } else if (B->getOperand(1) == Phi) {
 | |
|         Phi = nullptr;
 | |
|         B = dyn_cast<BinaryOperator>(B->getOperand(0));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!B)
 | |
|       return false;
 | |
| 
 | |
|     Type *Ty = B->getType();
 | |
|     if (!isValidElementType(Ty))
 | |
|       return false;
 | |
| 
 | |
|     const DataLayout &DL = B->getModule()->getDataLayout();
 | |
|     ReductionOpcode = B->getOpcode();
 | |
|     ReducedValueOpcode = 0;
 | |
|     // FIXME: Register size should be a parameter to this function, so we can
 | |
|     // try different vectorization factors.
 | |
|     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
 | |
|     ReductionRoot = B;
 | |
|     ReductionPHI = Phi;
 | |
| 
 | |
|     if (ReduxWidth < 4)
 | |
|       return false;
 | |
| 
 | |
|     // We currently only support adds.
 | |
|     if (ReductionOpcode != Instruction::Add &&
 | |
|         ReductionOpcode != Instruction::FAdd)
 | |
|       return false;
 | |
| 
 | |
|     // Post order traverse the reduction tree starting at B. We only handle true
 | |
|     // trees containing only binary operators.
 | |
|     SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
 | |
|     Stack.push_back(std::make_pair(B, 0));
 | |
|     while (!Stack.empty()) {
 | |
|       BinaryOperator *TreeN = Stack.back().first;
 | |
|       unsigned EdgeToVist = Stack.back().second++;
 | |
|       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
 | |
| 
 | |
|       // Only handle trees in the current basic block.
 | |
|       if (TreeN->getParent() != B->getParent())
 | |
|         return false;
 | |
| 
 | |
|       // Each tree node needs to have one user except for the ultimate
 | |
|       // reduction.
 | |
|       if (!TreeN->hasOneUse() && TreeN != B)
 | |
|         return false;
 | |
| 
 | |
|       // Postorder vist.
 | |
|       if (EdgeToVist == 2 || IsReducedValue) {
 | |
|         if (IsReducedValue) {
 | |
|           // Make sure that the opcodes of the operations that we are going to
 | |
|           // reduce match.
 | |
|           if (!ReducedValueOpcode)
 | |
|             ReducedValueOpcode = TreeN->getOpcode();
 | |
|           else if (ReducedValueOpcode != TreeN->getOpcode())
 | |
|             return false;
 | |
|           ReducedVals.push_back(TreeN);
 | |
|         } else {
 | |
|           // We need to be able to reassociate the adds.
 | |
|           if (!TreeN->isAssociative())
 | |
|             return false;
 | |
|           ReductionOps.push_back(TreeN);
 | |
|         }
 | |
|         // Retract.
 | |
|         Stack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Visit left or right.
 | |
|       Value *NextV = TreeN->getOperand(EdgeToVist);
 | |
|       BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
 | |
|       if (Next)
 | |
|         Stack.push_back(std::make_pair(Next, 0));
 | |
|       else if (NextV != Phi)
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Attempt to vectorize the tree found by
 | |
|   /// matchAssociativeReduction.
 | |
|   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
 | |
|     if (ReducedVals.empty())
 | |
|       return false;
 | |
| 
 | |
|     unsigned NumReducedVals = ReducedVals.size();
 | |
|     if (NumReducedVals < ReduxWidth)
 | |
|       return false;
 | |
| 
 | |
|     Value *VectorizedTree = nullptr;
 | |
|     IRBuilder<> Builder(ReductionRoot);
 | |
|     FastMathFlags Unsafe;
 | |
|     Unsafe.setUnsafeAlgebra();
 | |
|     Builder.SetFastMathFlags(Unsafe);
 | |
|     unsigned i = 0;
 | |
| 
 | |
|     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
 | |
|       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
 | |
| 
 | |
|       // Estimate cost.
 | |
|       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
 | |
|       if (Cost >= -SLPCostThreshold)
 | |
|         break;
 | |
| 
 | |
|       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
 | |
|                    << ". (HorRdx)\n");
 | |
| 
 | |
|       // Vectorize a tree.
 | |
|       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
 | |
|       Value *VectorizedRoot = V.vectorizeTree();
 | |
| 
 | |
|       // Emit a reduction.
 | |
|       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
 | |
|       if (VectorizedTree) {
 | |
|         Builder.SetCurrentDebugLocation(Loc);
 | |
|         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | |
|                                      ReducedSubTree, "bin.rdx");
 | |
|       } else
 | |
|         VectorizedTree = ReducedSubTree;
 | |
|     }
 | |
| 
 | |
|     if (VectorizedTree) {
 | |
|       // Finish the reduction.
 | |
|       for (; i < NumReducedVals; ++i) {
 | |
|         Builder.SetCurrentDebugLocation(
 | |
|           cast<Instruction>(ReducedVals[i])->getDebugLoc());
 | |
|         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
 | |
|                                      ReducedVals[i]);
 | |
|       }
 | |
|       // Update users.
 | |
|       if (ReductionPHI) {
 | |
|         assert(ReductionRoot && "Need a reduction operation");
 | |
|         ReductionRoot->setOperand(0, VectorizedTree);
 | |
|         ReductionRoot->setOperand(1, ReductionPHI);
 | |
|       } else
 | |
|         ReductionRoot->replaceAllUsesWith(VectorizedTree);
 | |
|     }
 | |
|     return VectorizedTree != nullptr;
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   /// \brief Calcuate the cost of a reduction.
 | |
|   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
 | |
|     Type *ScalarTy = FirstReducedVal->getType();
 | |
|     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
 | |
| 
 | |
|     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
 | |
|     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
 | |
| 
 | |
|     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
 | |
|     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
 | |
| 
 | |
|     int ScalarReduxCost =
 | |
|         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
 | |
|                  << " for reduction that starts with " << *FirstReducedVal
 | |
|                  << " (It is a "
 | |
|                  << (IsPairwiseReduction ? "pairwise" : "splitting")
 | |
|                  << " reduction)\n");
 | |
| 
 | |
|     return VecReduxCost - ScalarReduxCost;
 | |
|   }
 | |
| 
 | |
|   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
 | |
|                             Value *R, const Twine &Name = "") {
 | |
|     if (Opcode == Instruction::FAdd)
 | |
|       return Builder.CreateFAdd(L, R, Name);
 | |
|     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
 | |
|   }
 | |
| 
 | |
|   /// \brief Emit a horizontal reduction of the vectorized value.
 | |
|   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
 | |
|     assert(VectorizedValue && "Need to have a vectorized tree node");
 | |
|     assert(isPowerOf2_32(ReduxWidth) &&
 | |
|            "We only handle power-of-two reductions for now");
 | |
| 
 | |
|     Value *TmpVec = VectorizedValue;
 | |
|     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
 | |
|       if (IsPairwiseReduction) {
 | |
|         Value *LeftMask =
 | |
|           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
 | |
|         Value *RightMask =
 | |
|           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
 | |
| 
 | |
|         Value *LeftShuf = Builder.CreateShuffleVector(
 | |
|           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
 | |
|         Value *RightShuf = Builder.CreateShuffleVector(
 | |
|           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
 | |
|           "rdx.shuf.r");
 | |
|         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
 | |
|                              "bin.rdx");
 | |
|       } else {
 | |
|         Value *UpperHalf =
 | |
|           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
 | |
|         Value *Shuf = Builder.CreateShuffleVector(
 | |
|           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
 | |
|         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The result is in the first element of the vector.
 | |
|     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Recognize construction of vectors like
 | |
| ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
 | |
| ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
 | |
| ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
 | |
| ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
 | |
| ///
 | |
| /// Returns true if it matches
 | |
| ///
 | |
| static bool findBuildVector(InsertElementInst *FirstInsertElem,
 | |
|                             SmallVectorImpl<Value *> &BuildVector,
 | |
|                             SmallVectorImpl<Value *> &BuildVectorOpds) {
 | |
|   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
 | |
|     return false;
 | |
| 
 | |
|   InsertElementInst *IE = FirstInsertElem;
 | |
|   while (true) {
 | |
|     BuildVector.push_back(IE);
 | |
|     BuildVectorOpds.push_back(IE->getOperand(1));
 | |
| 
 | |
|     if (IE->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
 | |
|     if (!NextUse)
 | |
|       return true;
 | |
| 
 | |
|     // If this isn't the final use, make sure the next insertelement is the only
 | |
|     // use. It's OK if the final constructed vector is used multiple times
 | |
|     if (!IE->hasOneUse())
 | |
|       return false;
 | |
| 
 | |
|     IE = NextUse;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool PhiTypeSorterFunc(Value *V, Value *V2) {
 | |
|   return V->getType() < V2->getType();
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   SmallVector<Value *, 4> Incoming;
 | |
|   SmallSet<Value *, 16> VisitedInstrs;
 | |
| 
 | |
|   bool HaveVectorizedPhiNodes = true;
 | |
|   while (HaveVectorizedPhiNodes) {
 | |
|     HaveVectorizedPhiNodes = false;
 | |
| 
 | |
|     // Collect the incoming values from the PHIs.
 | |
|     Incoming.clear();
 | |
|     for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
 | |
|          ++instr) {
 | |
|       PHINode *P = dyn_cast<PHINode>(instr);
 | |
|       if (!P)
 | |
|         break;
 | |
| 
 | |
|       if (!VisitedInstrs.count(P))
 | |
|         Incoming.push_back(P);
 | |
|     }
 | |
| 
 | |
|     // Sort by type.
 | |
|     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
 | |
| 
 | |
|     // Try to vectorize elements base on their type.
 | |
|     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
 | |
|                                            E = Incoming.end();
 | |
|          IncIt != E;) {
 | |
| 
 | |
|       // Look for the next elements with the same type.
 | |
|       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
 | |
|       while (SameTypeIt != E &&
 | |
|              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
 | |
|         VisitedInstrs.insert(*SameTypeIt);
 | |
|         ++SameTypeIt;
 | |
|       }
 | |
| 
 | |
|       // Try to vectorize them.
 | |
|       unsigned NumElts = (SameTypeIt - IncIt);
 | |
|       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
 | |
|       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
 | |
|         // Success start over because instructions might have been changed.
 | |
|         HaveVectorizedPhiNodes = true;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Start over at the next instruction of a different type (or the end).
 | |
|       IncIt = SameTypeIt;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VisitedInstrs.clear();
 | |
| 
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
 | |
|     // We may go through BB multiple times so skip the one we have checked.
 | |
|     if (!VisitedInstrs.insert(it).second)
 | |
|       continue;
 | |
| 
 | |
|     if (isa<DbgInfoIntrinsic>(it))
 | |
|       continue;
 | |
| 
 | |
|     // Try to vectorize reductions that use PHINodes.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(it)) {
 | |
|       // Check that the PHI is a reduction PHI.
 | |
|       if (P->getNumIncomingValues() != 2)
 | |
|         return Changed;
 | |
|       Value *Rdx =
 | |
|           (P->getIncomingBlock(0) == BB
 | |
|                ? (P->getIncomingValue(0))
 | |
|                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
 | |
|                                                : nullptr));
 | |
|       // Check if this is a Binary Operator.
 | |
|       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
 | |
|       if (!BI)
 | |
|         continue;
 | |
| 
 | |
|       // Try to match and vectorize a horizontal reduction.
 | |
|       HorizontalReduction HorRdx;
 | |
|       if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) &&
 | |
|           HorRdx.tryToReduce(R, TTI)) {
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|      Value *Inst = BI->getOperand(0);
 | |
|       if (Inst == P)
 | |
|         Inst = BI->getOperand(1);
 | |
| 
 | |
|       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
 | |
|         // We would like to start over since some instructions are deleted
 | |
|         // and the iterator may become invalid value.
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try to vectorize horizontal reductions feeding into a store.
 | |
|     if (ShouldStartVectorizeHorAtStore)
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(it))
 | |
|         if (BinaryOperator *BinOp =
 | |
|                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
 | |
|           HorizontalReduction HorRdx;
 | |
|           if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) &&
 | |
|                 HorRdx.tryToReduce(R, TTI)) ||
 | |
|                tryToVectorize(BinOp, R))) {
 | |
|             Changed = true;
 | |
|             it = BB->begin();
 | |
|             e = BB->end();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     // Try to vectorize horizontal reductions feeding into a return.
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
 | |
|       if (RI->getNumOperands() != 0)
 | |
|         if (BinaryOperator *BinOp =
 | |
|                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
 | |
|           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
 | |
|           if (tryToVectorizePair(BinOp->getOperand(0),
 | |
|                                  BinOp->getOperand(1), R)) {
 | |
|             Changed = true;
 | |
|             it = BB->begin();
 | |
|             e = BB->end();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|     // Try to vectorize trees that start at compare instructions.
 | |
|     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
 | |
|       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
 | |
|         Changed = true;
 | |
|         // We would like to start over since some instructions are deleted
 | |
|         // and the iterator may become invalid value.
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       for (int i = 0; i < 2; ++i) {
 | |
|         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
 | |
|           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
 | |
|             Changed = true;
 | |
|             // We would like to start over since some instructions are deleted
 | |
|             // and the iterator may become invalid value.
 | |
|             it = BB->begin();
 | |
|             e = BB->end();
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try to vectorize trees that start at insertelement instructions.
 | |
|     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
 | |
|       SmallVector<Value *, 16> BuildVector;
 | |
|       SmallVector<Value *, 16> BuildVectorOpds;
 | |
|       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
 | |
|         continue;
 | |
| 
 | |
|       // Vectorize starting with the build vector operands ignoring the
 | |
|       // BuildVector instructions for the purpose of scheduling and user
 | |
|       // extraction.
 | |
|       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   // Attempt to sort and vectorize each of the store-groups.
 | |
|   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
 | |
|        it != e; ++it) {
 | |
|     if (it->second.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | |
|           << it->second.size() << ".\n");
 | |
| 
 | |
|     // Process the stores in chunks of 16.
 | |
|     // TODO: The limit of 16 inhibits greater vectorization factors.
 | |
|     //       For example, AVX2 supports v32i8. Increasing this limit, however,
 | |
|     //       may cause a significant compile-time increase.
 | |
|     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
 | |
|       unsigned Len = std::min<unsigned>(CE - CI, 16);
 | |
|       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
 | |
|                                  -SLPCostThreshold, R);
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SLPVectorizer::ID = 0;
 | |
| static const char lv_name[] = "SLP Vectorizer";
 | |
| INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
| Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
 | |
| }
 |