mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	notably, they should support vectors and aggregates. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61462 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2715 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2715 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Constant* classes...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "ConstantFold.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Constant Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Constant::destroyConstantImpl() {
 | |
|   // When a Constant is destroyed, there may be lingering
 | |
|   // references to the constant by other constants in the constant pool.  These
 | |
|   // constants are implicitly dependent on the module that is being deleted,
 | |
|   // but they don't know that.  Because we only find out when the CPV is
 | |
|   // deleted, we must now notify all of our users (that should only be
 | |
|   // Constants) that they are, in fact, invalid now and should be deleted.
 | |
|   //
 | |
|   while (!use_empty()) {
 | |
|     Value *V = use_back();
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|     if (!isa<Constant>(V))
 | |
|       DOUT << "While deleting: " << *this
 | |
|            << "\n\nUse still stuck around after Def is destroyed: "
 | |
|            << *V << "\n\n";
 | |
| #endif
 | |
|     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | |
|     Constant *CV = cast<Constant>(V);
 | |
|     CV->destroyConstant();
 | |
| 
 | |
|     // The constant should remove itself from our use list...
 | |
|     assert((use_empty() || use_back() != V) && "Constant not removed!");
 | |
|   }
 | |
| 
 | |
|   // Value has no outstanding references it is safe to delete it now...
 | |
|   delete this;
 | |
| }
 | |
| 
 | |
| /// canTrap - Return true if evaluation of this constant could trap.  This is
 | |
| /// true for things like constant expressions that could divide by zero.
 | |
| bool Constant::canTrap() const {
 | |
|   assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
 | |
|   // The only thing that could possibly trap are constant exprs.
 | |
|   const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
 | |
|   if (!CE) return false;
 | |
|   
 | |
|   // ConstantExpr traps if any operands can trap. 
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (getOperand(i)->canTrap()) 
 | |
|       return true;
 | |
| 
 | |
|   // Otherwise, only specific operations can trap.
 | |
|   switch (CE->getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|     // Div and rem can trap if the RHS is not known to be non-zero.
 | |
|     if (!isa<ConstantInt>(getOperand(1)) || getOperand(1)->isNullValue())
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ContaintsRelocations - Return true if the constant value contains
 | |
| /// relocations which cannot be resolved at compile time.
 | |
| bool Constant::ContainsRelocations() const {
 | |
|   if (isa<GlobalValue>(this))
 | |
|     return true;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (getOperand(i)->ContainsRelocations())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Static constructor to create a '0' constant of arbitrary type...
 | |
| Constant *Constant::getNullValue(const Type *Ty) {
 | |
|   static uint64_t zero[2] = {0, 0};
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     return ConstantInt::get(Ty, 0);
 | |
|   case Type::FloatTyID:
 | |
|     return ConstantFP::get(APFloat(APInt(32, 0)));
 | |
|   case Type::DoubleTyID:
 | |
|     return ConstantFP::get(APFloat(APInt(64, 0)));
 | |
|   case Type::X86_FP80TyID:
 | |
|     return ConstantFP::get(APFloat(APInt(80, 2, zero)));
 | |
|   case Type::FP128TyID:
 | |
|     return ConstantFP::get(APFloat(APInt(128, 2, zero), true));
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return ConstantFP::get(APFloat(APInt(128, 2, zero)));
 | |
|   case Type::PointerTyID:
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::VectorTyID:
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   default:
 | |
|     // Function, Label, or Opaque type?
 | |
|     assert(!"Cannot create a null constant of that type!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *Constant::getAllOnesValue(const Type *Ty) {
 | |
|   if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
 | |
|     return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
 | |
|   return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
 | |
| }
 | |
| 
 | |
| // Static constructor to create an integral constant with all bits set
 | |
| ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
 | |
|   if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
 | |
|     return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// @returns the value for a vector integer constant of the given type that
 | |
| /// has all its bits set to true.
 | |
| /// @brief Get the all ones value
 | |
| ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
 | |
|   std::vector<Constant*> Elts;
 | |
|   Elts.resize(Ty->getNumElements(),
 | |
|               ConstantInt::getAllOnesValue(Ty->getElementType()));
 | |
|   assert(Elts[0] && "Not a vector integer type!");
 | |
|   return cast<ConstantVector>(ConstantVector::get(Elts));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getVectorElements - This method, which is only valid on constant of vector
 | |
| /// type, returns the elements of the vector in the specified smallvector.
 | |
| /// This handles breaking down a vector undef into undef elements, etc.  For
 | |
| /// constant exprs and other cases we can't handle, we return an empty vector.
 | |
| void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
 | |
|   assert(isa<VectorType>(getType()) && "Not a vector constant!");
 | |
|   
 | |
|   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
 | |
|     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
 | |
|       Elts.push_back(CV->getOperand(i));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const VectorType *VT = cast<VectorType>(getType());
 | |
|   if (isa<ConstantAggregateZero>(this)) {
 | |
|     Elts.assign(VT->getNumElements(), 
 | |
|                 Constant::getNullValue(VT->getElementType()));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<UndefValue>(this)) {
 | |
|     Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Unknown type, must be constant expr etc.
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantInt
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
 | |
|   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
 | |
|   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::TheTrueVal = 0;
 | |
| ConstantInt *ConstantInt::TheFalseVal = 0;
 | |
| 
 | |
| namespace llvm {
 | |
|   void CleanupTrueFalse(void *) {
 | |
|     ConstantInt::ResetTrueFalse();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
 | |
| 
 | |
| ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
 | |
|   assert(TheTrueVal == 0 && TheFalseVal == 0);
 | |
|   TheTrueVal  = get(Type::Int1Ty, 1);
 | |
|   TheFalseVal = get(Type::Int1Ty, 0);
 | |
|   
 | |
|   // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
 | |
|   TrueFalseCleanup.Register();
 | |
|   
 | |
|   return WhichOne ? TheTrueVal : TheFalseVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   struct DenseMapAPIntKeyInfo {
 | |
|     struct KeyTy {
 | |
|       APInt val;
 | |
|       const Type* type;
 | |
|       KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
 | |
|       KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
 | |
|       bool operator==(const KeyTy& that) const {
 | |
|         return type == that.type && this->val == that.val;
 | |
|       }
 | |
|       bool operator!=(const KeyTy& that) const {
 | |
|         return !this->operator==(that);
 | |
|       }
 | |
|     };
 | |
|     static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
 | |
|     static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
 | |
|     static unsigned getHashValue(const KeyTy &Key) {
 | |
|       return DenseMapInfo<void*>::getHashValue(Key.type) ^ 
 | |
|         Key.val.getHashValue();
 | |
|     }
 | |
|     static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
 | |
|       return LHS == RHS;
 | |
|     }
 | |
|     static bool isPod() { return false; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, 
 | |
|                  DenseMapAPIntKeyInfo> IntMapTy;
 | |
| static ManagedStatic<IntMapTy> IntConstants;
 | |
| 
 | |
| ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
 | |
|   const IntegerType *ITy = cast<IntegerType>(Ty);
 | |
|   return get(APInt(ITy->getBitWidth(), V, isSigned));
 | |
| }
 | |
| 
 | |
| // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
 | |
| // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
 | |
| // operator== and operator!= to ensure that the DenseMap doesn't attempt to
 | |
| // compare APInt's of different widths, which would violate an APInt class
 | |
| // invariant which generates an assertion.
 | |
| ConstantInt *ConstantInt::get(const APInt& V) {
 | |
|   // Get the corresponding integer type for the bit width of the value.
 | |
|   const IntegerType *ITy = IntegerType::get(V.getBitWidth());
 | |
|   // get an existing value or the insertion position
 | |
|   DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
 | |
|   ConstantInt *&Slot = (*IntConstants)[Key]; 
 | |
|   // if it exists, return it.
 | |
|   if (Slot)
 | |
|     return Slot;
 | |
|   // otherwise create a new one, insert it, and return it.
 | |
|   return Slot = new ConstantInt(ITy, V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                ConstantFP
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
 | |
|   if (Ty == Type::FloatTy)
 | |
|     return &APFloat::IEEEsingle;
 | |
|   if (Ty == Type::DoubleTy)
 | |
|     return &APFloat::IEEEdouble;
 | |
|   if (Ty == Type::X86_FP80Ty)
 | |
|     return &APFloat::x87DoubleExtended;
 | |
|   else if (Ty == Type::FP128Ty)
 | |
|     return &APFloat::IEEEquad;
 | |
|   
 | |
|   assert(Ty == Type::PPC_FP128Ty && "Unknown FP format");
 | |
|   return &APFloat::PPCDoubleDouble;
 | |
| }
 | |
| 
 | |
| ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
 | |
|   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
 | |
|   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
 | |
|          "FP type Mismatch");
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isNullValue() const {
 | |
|   return Val.isZero() && !Val.isNegative();
 | |
| }
 | |
| 
 | |
| ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) {
 | |
|   APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
 | |
|   apf.changeSign();
 | |
|   return ConstantFP::get(apf);
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isExactlyValue(const APFloat& V) const {
 | |
|   return Val.bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct DenseMapAPFloatKeyInfo {
 | |
|     struct KeyTy {
 | |
|       APFloat val;
 | |
|       KeyTy(const APFloat& V) : val(V){}
 | |
|       KeyTy(const KeyTy& that) : val(that.val) {}
 | |
|       bool operator==(const KeyTy& that) const {
 | |
|         return this->val.bitwiseIsEqual(that.val);
 | |
|       }
 | |
|       bool operator!=(const KeyTy& that) const {
 | |
|         return !this->operator==(that);
 | |
|       }
 | |
|     };
 | |
|     static inline KeyTy getEmptyKey() { 
 | |
|       return KeyTy(APFloat(APFloat::Bogus,1));
 | |
|     }
 | |
|     static inline KeyTy getTombstoneKey() { 
 | |
|       return KeyTy(APFloat(APFloat::Bogus,2)); 
 | |
|     }
 | |
|     static unsigned getHashValue(const KeyTy &Key) {
 | |
|       return Key.val.getHashValue();
 | |
|     }
 | |
|     static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
 | |
|       return LHS == RHS;
 | |
|     }
 | |
|     static bool isPod() { return false; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //---- ConstantFP::get() implementation...
 | |
| //
 | |
| typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, 
 | |
|                  DenseMapAPFloatKeyInfo> FPMapTy;
 | |
| 
 | |
| static ManagedStatic<FPMapTy> FPConstants;
 | |
| 
 | |
| ConstantFP *ConstantFP::get(const APFloat &V) {
 | |
|   DenseMapAPFloatKeyInfo::KeyTy Key(V);
 | |
|   ConstantFP *&Slot = (*FPConstants)[Key];
 | |
|   if (Slot) return Slot;
 | |
|   
 | |
|   const Type *Ty;
 | |
|   if (&V.getSemantics() == &APFloat::IEEEsingle)
 | |
|     Ty = Type::FloatTy;
 | |
|   else if (&V.getSemantics() == &APFloat::IEEEdouble)
 | |
|     Ty = Type::DoubleTy;
 | |
|   else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
 | |
|     Ty = Type::X86_FP80Ty;
 | |
|   else if (&V.getSemantics() == &APFloat::IEEEquad)
 | |
|     Ty = Type::FP128Ty;
 | |
|   else {
 | |
|     assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format");
 | |
|     Ty = Type::PPC_FP128Ty;
 | |
|   }
 | |
|   
 | |
|   return Slot = new ConstantFP(Ty, V);
 | |
| }
 | |
| 
 | |
| /// get() - This returns a constant fp for the specified value in the
 | |
| /// specified type.  This should only be used for simple constant values like
 | |
| /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
 | |
| ConstantFP *ConstantFP::get(const Type *Ty, double V) {
 | |
|   APFloat FV(V);
 | |
|   bool ignored;
 | |
|   FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven, &ignored);
 | |
|   return get(FV);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantXXX Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| ConstantArray::ConstantArray(const ArrayType *T,
 | |
|                              const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantArrayVal,
 | |
|              OperandTraits<ConstantArray>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant array");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert((C->getType() == T->getElementType() ||
 | |
|             (T->isAbstract() &&
 | |
|              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | |
|            "Initializer for array element doesn't match array element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantStruct::ConstantStruct(const StructType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantStructVal,
 | |
|              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant structure");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert((C->getType() == T->getElementType(I-V.begin()) ||
 | |
|             ((T->getElementType(I-V.begin())->isAbstract() ||
 | |
|               C->getType()->isAbstract()) &&
 | |
|              T->getElementType(I-V.begin())->getTypeID() == 
 | |
|                    C->getType()->getTypeID())) &&
 | |
|            "Initializer for struct element doesn't match struct element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantVector::ConstantVector(const VectorType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantVectorVal,
 | |
|              OperandTraits<ConstantVector>::op_end(this) - V.size(),
 | |
|              V.size()) {
 | |
|   Use *OL = OperandList;
 | |
|     for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|          I != E; ++I, ++OL) {
 | |
|       Constant *C = *I;
 | |
|       assert((C->getType() == T->getElementType() ||
 | |
|             (T->isAbstract() &&
 | |
|              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | |
|            "Initializer for vector element doesn't match vector element type!");
 | |
|     *OL = C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace llvm {
 | |
| // We declare several classes private to this file, so use an anonymous
 | |
| // namespace
 | |
| namespace {
 | |
| 
 | |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement unary constant exprs.
 | |
| class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | |
|     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
 | |
|     Op<0>() = C;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement binary constant exprs.
 | |
| class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement select constant exprs.
 | |
| class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractelement constant exprs.
 | |
| class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
 | |
|                    Instruction::ExtractElement, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertelement constant exprs.
 | |
| class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | |
|                    &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ShuffleVectorConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// shufflevector constant exprs.
 | |
| class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|   : ConstantExpr(C1->getType(), Instruction::ShuffleVector, 
 | |
|                  &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractvalue constant exprs.
 | |
| class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   ExtractValueConstantExpr(Constant *Agg,
 | |
|                            const SmallVector<unsigned, 4> &IdxList,
 | |
|                            const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify which value to extract.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertvalue constant exprs.
 | |
| class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   InsertValueConstantExpr(Constant *Agg, Constant *Val,
 | |
|                           const SmallVector<unsigned, 4> &IdxList,
 | |
|                           const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|     Op<1>() = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify the position for the insertion.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| 
 | |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | |
| /// used behind the scenes to implement getelementpr constant exprs.
 | |
| class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr {
 | |
|   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                             const Type *DestTy);
 | |
| public:
 | |
|   static GetElementPtrConstantExpr *Create(Constant *C,
 | |
|                                            const std::vector<Constant*>&IdxList,
 | |
|                                            const Type *DestTy) {
 | |
|     return new(IdxList.size() + 1)
 | |
|       GetElementPtrConstantExpr(C, IdxList, DestTy);
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used
 | |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is
 | |
| // needed in order to store the predicate value for these instructions.
 | |
| struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   unsigned short predicate;
 | |
|   CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
 | |
|                       unsigned short pred,  Constant* LHS, Constant* RHS)
 | |
|     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
 | |
|     Op<0>() = LHS;
 | |
|     Op<1>() = RHS;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
 | |
| };
 | |
| 
 | |
| GetElementPtrConstantExpr::GetElementPtrConstantExpr
 | |
|   (Constant *C,
 | |
|    const std::vector<Constant*> &IdxList,
 | |
|    const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::GetElementPtr,
 | |
|                    OperandTraits<GetElementPtrConstantExpr>::op_end(this)
 | |
|                    - (IdxList.size()+1),
 | |
|                    IdxList.size()+1) {
 | |
|   OperandList[0] = C;
 | |
|   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | |
|     OperandList[i+1] = IdxList[i];
 | |
| }
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
 | |
| 
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
 | |
| 
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| 
 | |
| // Utility function for determining if a ConstantExpr is a CastOp or not. This
 | |
| // can't be inline because we don't want to #include Instruction.h into
 | |
| // Constant.h
 | |
| bool ConstantExpr::isCast() const {
 | |
|   return Instruction::isCast(getOpcode());
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::isCompare() const {
 | |
|   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp ||
 | |
|          getOpcode() == Instruction::VICmp || getOpcode() == Instruction::VFCmp;
 | |
| }
 | |
| 
 | |
| bool ConstantExpr::hasIndices() const {
 | |
|   return getOpcode() == Instruction::ExtractValue ||
 | |
|          getOpcode() == Instruction::InsertValue;
 | |
| }
 | |
| 
 | |
| const SmallVector<unsigned, 4> &ConstantExpr::getIndices() const {
 | |
|   if (const ExtractValueConstantExpr *EVCE =
 | |
|         dyn_cast<ExtractValueConstantExpr>(this))
 | |
|     return EVCE->Indices;
 | |
| 
 | |
|   return cast<InsertValueConstantExpr>(this)->Indices;
 | |
| }
 | |
| 
 | |
| /// ConstantExpr::get* - Return some common constants without having to
 | |
| /// specify the full Instruction::OPCODE identifier.
 | |
| ///
 | |
| Constant *ConstantExpr::getNeg(Constant *C) {
 | |
|   return get(Instruction::Sub,
 | |
|              ConstantExpr::getZeroValueForNegationExpr(C->getType()),
 | |
|              C);
 | |
| }
 | |
| Constant *ConstantExpr::getNot(Constant *C) {
 | |
|   assert((isa<IntegerType>(C->getType()) ||
 | |
|             cast<VectorType>(C->getType())->getElementType()->isInteger()) &&
 | |
|           "Cannot NOT a nonintegral value!");
 | |
|   return get(Instruction::Xor, C,
 | |
|              Constant::getAllOnesValue(C->getType()));
 | |
| }
 | |
| Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Add, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Sub, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Mul, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::UDiv, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SDiv, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FDiv, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::URem, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SRem, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::FRem, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::And, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Or, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Xor, C1, C2);
 | |
| }
 | |
| unsigned ConstantExpr::getPredicate() const {
 | |
|   assert(getOpcode() == Instruction::FCmp || 
 | |
|          getOpcode() == Instruction::ICmp ||
 | |
|          getOpcode() == Instruction::VFCmp ||
 | |
|          getOpcode() == Instruction::VICmp);
 | |
|   return ((const CompareConstantExpr*)this)->predicate;
 | |
| }
 | |
| Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Shl, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::LShr, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::AShr, C1, C2);
 | |
| }
 | |
| 
 | |
| /// getWithOperandReplaced - Return a constant expression identical to this
 | |
| /// one, but with the specified operand set to the specified value.
 | |
| Constant *
 | |
| ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
 | |
|   assert(OpNo < getNumOperands() && "Operand num is out of range!");
 | |
|   assert(Op->getType() == getOperand(OpNo)->getType() &&
 | |
|          "Replacing operand with value of different type!");
 | |
|   if (getOperand(OpNo) == Op)
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
|   
 | |
|   Constant *Op0, *Op1, *Op2;
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|     return ConstantExpr::getCast(getOpcode(), Op, getType());
 | |
|   case Instruction::Select:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getSelect(Op0, Op1, Op2);
 | |
|   case Instruction::InsertElement:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getInsertElement(Op0, Op1, Op2);
 | |
|   case Instruction::ExtractElement:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     return ConstantExpr::getExtractElement(Op0, Op1);
 | |
|   case Instruction::ShuffleVector:
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     Op2 = (OpNo == 2) ? Op : getOperand(2);
 | |
|     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Constant*, 8> Ops;
 | |
|     Ops.resize(getNumOperands()-1);
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
 | |
|       Ops[i-1] = getOperand(i);
 | |
|     if (OpNo == 0)
 | |
|       return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
 | |
|     Ops[OpNo-1] = Op;
 | |
|     return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
 | |
|   }
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     Op0 = (OpNo == 0) ? Op : getOperand(0);
 | |
|     Op1 = (OpNo == 1) ? Op : getOperand(1);
 | |
|     return ConstantExpr::get(getOpcode(), Op0, Op1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getWithOperands - This returns the current constant expression with the
 | |
| /// operands replaced with the specified values.  The specified operands must
 | |
| /// match count and type with the existing ones.
 | |
| Constant *ConstantExpr::
 | |
| getWithOperands(Constant* const *Ops, unsigned NumOps) const {
 | |
|   assert(NumOps == getNumOperands() && "Operand count mismatch!");
 | |
|   bool AnyChange = false;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     assert(Ops[i]->getType() == getOperand(i)->getType() &&
 | |
|            "Operand type mismatch!");
 | |
|     AnyChange |= Ops[i] != getOperand(i);
 | |
|   }
 | |
|   if (!AnyChange)  // No operands changed, return self.
 | |
|     return const_cast<ConstantExpr*>(this);
 | |
| 
 | |
|   switch (getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::BitCast:
 | |
|     return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
 | |
|   case Instruction::Select:
 | |
|     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::InsertElement:
 | |
|     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::GetElementPtr:
 | |
|     return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], NumOps-1);
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::VICmp:
 | |
|   case Instruction::VFCmp:
 | |
|     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
 | |
|   default:
 | |
|     assert(getNumOperands() == 2 && "Must be binary operator?");
 | |
|     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      isValueValidForType implementations
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | |
|   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | |
|   if (Ty == Type::Int1Ty)
 | |
|     return Val == 0 || Val == 1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   uint64_t Max = (1ll << NumBits) - 1;
 | |
|   return Val <= Max;
 | |
| }
 | |
| 
 | |
| bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | |
|   unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
 | |
|   if (Ty == Type::Int1Ty)
 | |
|     return Val == 0 || Val == 1 || Val == -1;
 | |
|   if (NumBits >= 64)
 | |
|     return true; // always true, has to fit in largest type
 | |
|   int64_t Min = -(1ll << (NumBits-1));
 | |
|   int64_t Max = (1ll << (NumBits-1)) - 1;
 | |
|   return (Val >= Min && Val <= Max);
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   bool losesInfo;
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as floating point!
 | |
| 
 | |
|   // FIXME rounding mode needs to be more flexible
 | |
|   case Type::FloatTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
 | |
|         &Val2.getSemantics() == &APFloat::IEEEdouble)
 | |
|       return true;
 | |
|     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|     return !losesInfo;
 | |
|   }
 | |
|   case Type::X86_FP80TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
 | |
|   case Type::FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::IEEEquad;
 | |
|   case Type::PPC_FP128TyID:
 | |
|     return &Val2.getSemantics() == &APFloat::IEEEsingle || 
 | |
|            &Val2.getSemantics() == &APFloat::IEEEdouble ||
 | |
|            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Factory Function Implementation
 | |
| 
 | |
| 
 | |
| // The number of operands for each ConstantCreator::create method is
 | |
| // determined by the ConstantTraits template.
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ValueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| namespace llvm {
 | |
|   template<class ValType>
 | |
|   struct ConstantTraits;
 | |
| 
 | |
|   template<typename T, typename Alloc>
 | |
|   struct VISIBILITY_HIDDEN ConstantTraits< std::vector<T, Alloc> > {
 | |
|     static unsigned uses(const std::vector<T, Alloc>& v) {
 | |
|       return v.size();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class ConstantClass, class TypeClass, class ValType>
 | |
|   struct VISIBILITY_HIDDEN ConstantCreator {
 | |
|     static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | |
|       return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class ConstantClass, class TypeClass>
 | |
|   struct VISIBILITY_HIDDEN ConvertConstantType {
 | |
|     static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | |
|       assert(0 && "This type cannot be converted!\n");
 | |
|       abort();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class ValType, class TypeClass, class ConstantClass,
 | |
|            bool HasLargeKey = false  /*true for arrays and structs*/ >
 | |
|   class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser {
 | |
|   public:
 | |
|     typedef std::pair<const Type*, ValType> MapKey;
 | |
|     typedef std::map<MapKey, Constant *> MapTy;
 | |
|     typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
 | |
|     typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
 | |
|   private:
 | |
|     /// Map - This is the main map from the element descriptor to the Constants.
 | |
|     /// This is the primary way we avoid creating two of the same shape
 | |
|     /// constant.
 | |
|     MapTy Map;
 | |
|     
 | |
|     /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | |
|     /// from the constants to their element in Map.  This is important for
 | |
|     /// removal of constants from the array, which would otherwise have to scan
 | |
|     /// through the map with very large keys.
 | |
|     InverseMapTy InverseMap;
 | |
| 
 | |
|     /// AbstractTypeMap - Map for abstract type constants.
 | |
|     ///
 | |
|     AbstractTypeMapTy AbstractTypeMap;
 | |
| 
 | |
|   public:
 | |
|     typename MapTy::iterator map_end() { return Map.end(); }
 | |
|     
 | |
|     /// InsertOrGetItem - Return an iterator for the specified element.
 | |
|     /// If the element exists in the map, the returned iterator points to the
 | |
|     /// entry and Exists=true.  If not, the iterator points to the newly
 | |
|     /// inserted entry and returns Exists=false.  Newly inserted entries have
 | |
|     /// I->second == 0, and should be filled in.
 | |
|     typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
 | |
|                                    &InsertVal,
 | |
|                                    bool &Exists) {
 | |
|       std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
 | |
|       Exists = !IP.second;
 | |
|       return IP.first;
 | |
|     }
 | |
|     
 | |
| private:
 | |
|     typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
 | |
|       if (HasLargeKey) {
 | |
|         typename InverseMapTy::iterator IMI = InverseMap.find(CP);
 | |
|         assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | |
|                IMI->second->second == CP &&
 | |
|                "InverseMap corrupt!");
 | |
|         return IMI->second;
 | |
|       }
 | |
|       
 | |
|       typename MapTy::iterator I =
 | |
|         Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
 | |
|                         getValType(CP)));
 | |
|       if (I == Map.end() || I->second != CP) {
 | |
|         // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|         // performance problem, someone should look at this.
 | |
|         for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | |
|           /* empty */;
 | |
|       }
 | |
|       return I;
 | |
|     }
 | |
| public:
 | |
|     
 | |
|     /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|     /// necessary.
 | |
|     ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | |
|       MapKey Lookup(Ty, V);
 | |
|       typename MapTy::iterator I = Map.find(Lookup);
 | |
|       // Is it in the map?      
 | |
|       if (I != Map.end())
 | |
|         return static_cast<ConstantClass *>(I->second);  
 | |
| 
 | |
|       // If no preexisting value, create one now...
 | |
|       ConstantClass *Result =
 | |
|         ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
|       assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|       I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|       if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|         InverseMap.insert(std::make_pair(Result, I));
 | |
|       
 | |
|       // If the type of the constant is abstract, make sure that an entry exists
 | |
|       // for it in the AbstractTypeMap.
 | |
|       if (Ty->isAbstract()) {
 | |
|         typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty);
 | |
| 
 | |
|         if (TI == AbstractTypeMap.end()) {
 | |
|           // Add ourselves to the ATU list of the type.
 | |
|           cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | |
| 
 | |
|           AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | |
|         }
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     void remove(ConstantClass *CP) {
 | |
|       typename MapTy::iterator I = FindExistingElement(CP);
 | |
|       assert(I != Map.end() && "Constant not found in constant table!");
 | |
|       assert(I->second == CP && "Didn't find correct element?");
 | |
| 
 | |
|       if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|         InverseMap.erase(CP);
 | |
|       
 | |
|       // Now that we found the entry, make sure this isn't the entry that
 | |
|       // the AbstractTypeMap points to.
 | |
|       const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
 | |
|       if (Ty->isAbstract()) {
 | |
|         assert(AbstractTypeMap.count(Ty) &&
 | |
|                "Abstract type not in AbstractTypeMap?");
 | |
|         typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
 | |
|         if (ATMEntryIt == I) {
 | |
|           // Yes, we are removing the representative entry for this type.
 | |
|           // See if there are any other entries of the same type.
 | |
|           typename MapTy::iterator TmpIt = ATMEntryIt;
 | |
| 
 | |
|           // First check the entry before this one...
 | |
|           if (TmpIt != Map.begin()) {
 | |
|             --TmpIt;
 | |
|             if (TmpIt->first.first != Ty) // Not the same type, move back...
 | |
|               ++TmpIt;
 | |
|           }
 | |
| 
 | |
|           // If we didn't find the same type, try to move forward...
 | |
|           if (TmpIt == ATMEntryIt) {
 | |
|             ++TmpIt;
 | |
|             if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | |
|               --TmpIt;   // No entry afterwards with the same type
 | |
|           }
 | |
| 
 | |
|           // If there is another entry in the map of the same abstract type,
 | |
|           // update the AbstractTypeMap entry now.
 | |
|           if (TmpIt != ATMEntryIt) {
 | |
|             ATMEntryIt = TmpIt;
 | |
|           } else {
 | |
|             // Otherwise, we are removing the last instance of this type
 | |
|             // from the table.  Remove from the ATM, and from user list.
 | |
|             cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | |
|             AbstractTypeMap.erase(Ty);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Map.erase(I);
 | |
|     }
 | |
| 
 | |
|     
 | |
|     /// MoveConstantToNewSlot - If we are about to change C to be the element
 | |
|     /// specified by I, update our internal data structures to reflect this
 | |
|     /// fact.
 | |
|     void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
 | |
|       // First, remove the old location of the specified constant in the map.
 | |
|       typename MapTy::iterator OldI = FindExistingElement(C);
 | |
|       assert(OldI != Map.end() && "Constant not found in constant table!");
 | |
|       assert(OldI->second == C && "Didn't find correct element?");
 | |
|       
 | |
|       // If this constant is the representative element for its abstract type,
 | |
|       // update the AbstractTypeMap so that the representative element is I.
 | |
|       if (C->getType()->isAbstract()) {
 | |
|         typename AbstractTypeMapTy::iterator ATI =
 | |
|             AbstractTypeMap.find(C->getType());
 | |
|         assert(ATI != AbstractTypeMap.end() &&
 | |
|                "Abstract type not in AbstractTypeMap?");
 | |
|         if (ATI->second == OldI)
 | |
|           ATI->second = I;
 | |
|       }
 | |
|       
 | |
|       // Remove the old entry from the map.
 | |
|       Map.erase(OldI);
 | |
|       
 | |
|       // Update the inverse map so that we know that this constant is now
 | |
|       // located at descriptor I.
 | |
|       if (HasLargeKey) {
 | |
|         assert(I->second == C && "Bad inversemap entry!");
 | |
|         InverseMap[C] = I;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|       typename AbstractTypeMapTy::iterator I =
 | |
|         AbstractTypeMap.find(cast<Type>(OldTy));
 | |
| 
 | |
|       assert(I != AbstractTypeMap.end() &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
| 
 | |
|       // Convert a constant at a time until the last one is gone.  The last one
 | |
|       // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | |
|       // eliminated eventually.
 | |
|       do {
 | |
|         ConvertConstantType<ConstantClass,
 | |
|                             TypeClass>::convert(
 | |
|                                 static_cast<ConstantClass *>(I->second->second),
 | |
|                                                 cast<TypeClass>(NewTy));
 | |
| 
 | |
|         I = AbstractTypeMap.find(cast<Type>(OldTy));
 | |
|       } while (I != AbstractTypeMap.end());
 | |
|     }
 | |
| 
 | |
|     // If the type became concrete without being refined to any other existing
 | |
|     // type, we just remove ourselves from the ATU list.
 | |
|     void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|       AbsTy->removeAbstractTypeUser(this);
 | |
|     }
 | |
| 
 | |
|     void dump() const {
 | |
|       DOUT << "Constant.cpp: ValueMap\n";
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //---- ConstantAggregateZero::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   // ConstantAggregateZero does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | |
|     static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | |
|       return new ConstantAggregateZero(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantAggregateZero, Type> {
 | |
|     static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantAggregateZero::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ManagedStatic<ValueMap<char, Type, 
 | |
|                               ConstantAggregateZero> > AggZeroConstants;
 | |
| 
 | |
| static char getValType(ConstantAggregateZero *CPZ) { return 0; }
 | |
| 
 | |
| ConstantAggregateZero *ConstantAggregateZero::get(const Type *Ty) {
 | |
|   assert((isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) &&
 | |
|          "Cannot create an aggregate zero of non-aggregate type!");
 | |
|   return AggZeroConstants->getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantAggregateZero::destroyConstant() {
 | |
|   AggZeroConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantArray::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantArray, ArrayType> {
 | |
|     static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantArray::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantArray *CA) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CA->getNumOperands());
 | |
|   for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(cast<Constant>(CA->getOperand(i)));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| typedef ValueMap<std::vector<Constant*>, ArrayType, 
 | |
|                  ConstantArray, true /*largekey*/> ArrayConstantsTy;
 | |
| static ManagedStatic<ArrayConstantsTy> ArrayConstants;
 | |
| 
 | |
| Constant *ConstantArray::get(const ArrayType *Ty,
 | |
|                              const std::vector<Constant*> &V) {
 | |
|   // If this is an all-zero array, return a ConstantAggregateZero object
 | |
|   if (!V.empty()) {
 | |
|     Constant *C = V[0];
 | |
|     if (!C->isNullValue())
 | |
|       return ArrayConstants->getOrCreate(Ty, V);
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C)
 | |
|         return ArrayConstants->getOrCreate(Ty, V);
 | |
|   }
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantArray::destroyConstant() {
 | |
|   ArrayConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// ConstantArray::get(const string&) - Return an array that is initialized to
 | |
| /// contain the specified string.  If length is zero then a null terminator is 
 | |
| /// added to the specified string so that it may be used in a natural way. 
 | |
| /// Otherwise, the length parameter specifies how much of the string to use 
 | |
| /// and it won't be null terminated.
 | |
| ///
 | |
| Constant *ConstantArray::get(const std::string &Str, bool AddNull) {
 | |
|   std::vector<Constant*> ElementVals;
 | |
|   for (unsigned i = 0; i < Str.length(); ++i)
 | |
|     ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i]));
 | |
| 
 | |
|   // Add a null terminator to the string...
 | |
|   if (AddNull) {
 | |
|     ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0));
 | |
|   }
 | |
| 
 | |
|   ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size());
 | |
|   return ConstantArray::get(ATy, ElementVals);
 | |
| }
 | |
| 
 | |
| /// isString - This method returns true if the array is an array of i8, and 
 | |
| /// if the elements of the array are all ConstantInt's.
 | |
| bool ConstantArray::isString() const {
 | |
|   // Check the element type for i8...
 | |
|   if (getType()->getElementType() != Type::Int8Ty)
 | |
|     return false;
 | |
|   // Check the elements to make sure they are all integers, not constant
 | |
|   // expressions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isCString - This method returns true if the array is a string (see
 | |
| /// isString) and it ends in a null byte \0 and does not contains any other
 | |
| /// null bytes except its terminator.
 | |
| bool ConstantArray::isCString() const {
 | |
|   // Check the element type for i8...
 | |
|   if (getType()->getElementType() != Type::Int8Ty)
 | |
|     return false;
 | |
|   Constant *Zero = Constant::getNullValue(getOperand(0)->getType());
 | |
|   // Last element must be a null.
 | |
|   if (getOperand(getNumOperands()-1) != Zero)
 | |
|     return false;
 | |
|   // Other elements must be non-null integers.
 | |
|   for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|     if (getOperand(i) == Zero)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // getAsString - If the sub-element type of this array is i8
 | |
| // then this method converts the array to an std::string and returns it.
 | |
| // Otherwise, it asserts out.
 | |
| //
 | |
| std::string ConstantArray::getAsString() const {
 | |
|   assert(isString() && "Not a string!");
 | |
|   std::string Result;
 | |
|   Result.reserve(getNumOperands());
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result.push_back((char)cast<ConstantInt>(getOperand(i))->getZExtValue());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantStruct::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantStruct, StructType> {
 | |
|     static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantStruct::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
| 
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| typedef ValueMap<std::vector<Constant*>, StructType,
 | |
|                  ConstantStruct, true /*largekey*/> StructConstantsTy;
 | |
| static ManagedStatic<StructConstantsTy> StructConstants;
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantStruct *CS) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CS->getNumOperands());
 | |
|   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(cast<Constant>(CS->getOperand(i)));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| Constant *ConstantStruct::get(const StructType *Ty,
 | |
|                               const std::vector<Constant*> &V) {
 | |
|   // Create a ConstantAggregateZero value if all elements are zeros...
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     if (!V[i]->isNullValue())
 | |
|       return StructConstants->getOrCreate(Ty, V);
 | |
| 
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantStruct::get(const std::vector<Constant*> &V, bool packed) {
 | |
|   std::vector<const Type*> StructEls;
 | |
|   StructEls.reserve(V.size());
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     StructEls.push_back(V[i]->getType());
 | |
|   return get(StructType::get(StructEls, packed), V);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantStruct::destroyConstant() {
 | |
|   StructConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantVector::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantVector, VectorType> {
 | |
|     static void convert(ConstantVector *OldC, const VectorType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantVector::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantVector *CP) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CP->getNumOperands());
 | |
|   for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(CP->getOperand(i));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
 | |
|                               ConstantVector> > VectorConstants;
 | |
| 
 | |
| Constant *ConstantVector::get(const VectorType *Ty,
 | |
|                               const std::vector<Constant*> &V) {
 | |
|   assert(!V.empty() && "Vectors can't be empty");
 | |
|   // If this is an all-undef or alll-zero vector, return a
 | |
|   // ConstantAggregateZero or UndefValue.
 | |
|   Constant *C = V[0];
 | |
|   bool isZero = C->isNullValue();
 | |
|   bool isUndef = isa<UndefValue>(C);
 | |
| 
 | |
|   if (isZero || isUndef) {
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C) {
 | |
|         isZero = isUndef = false;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   if (isZero)
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   if (isUndef)
 | |
|     return UndefValue::get(Ty);
 | |
|   return VectorConstants->getOrCreate(Ty, V);
 | |
| }
 | |
| 
 | |
| Constant *ConstantVector::get(const std::vector<Constant*> &V) {
 | |
|   assert(!V.empty() && "Cannot infer type if V is empty");
 | |
|   return get(VectorType::get(V.front()->getType(),V.size()), V);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantVector::destroyConstant() {
 | |
|   VectorConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| /// This function will return true iff every element in this vector constant
 | |
| /// is set to all ones.
 | |
| /// @returns true iff this constant's emements are all set to all ones.
 | |
| /// @brief Determine if the value is all ones.
 | |
| bool ConstantVector::isAllOnesValue() const {
 | |
|   // Check out first element.
 | |
|   const Constant *Elt = getOperand(0);
 | |
|   const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | |
|   if (!CI || !CI->isAllOnesValue()) return false;
 | |
|   // Then make sure all remaining elements point to the same value.
 | |
|   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
 | |
|     if (getOperand(I) != Elt) return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getSplatValue - If this is a splat constant, where all of the
 | |
| /// elements have the same value, return that value. Otherwise return null.
 | |
| Constant *ConstantVector::getSplatValue() {
 | |
|   // Check out first element.
 | |
|   Constant *Elt = getOperand(0);
 | |
|   // Then make sure all remaining elements point to the same value.
 | |
|   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
 | |
|     if (getOperand(I) != Elt) return 0;
 | |
|   return Elt;
 | |
| }
 | |
| 
 | |
| //---- ConstantPointerNull::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   // ConstantPointerNull does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | |
|     static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | |
|       return new ConstantPointerNull(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | |
|     static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantPointerNull::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ManagedStatic<ValueMap<char, PointerType, 
 | |
|                               ConstantPointerNull> > NullPtrConstants;
 | |
| 
 | |
| static char getValType(ConstantPointerNull *) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | |
|   return NullPtrConstants->getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerNull::destroyConstant() {
 | |
|   NullPtrConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- UndefValue::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   // UndefValue does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<UndefValue, Type, ValType> {
 | |
|     static UndefValue *create(const Type *Ty, const ValType &V) {
 | |
|       return new UndefValue(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<UndefValue, Type> {
 | |
|     static void convert(UndefValue *OldC, const Type *NewTy) {
 | |
|       // Make everyone now use a constant of the new type.
 | |
|       Constant *New = UndefValue::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ManagedStatic<ValueMap<char, Type, UndefValue> > UndefValueConstants;
 | |
| 
 | |
| static char getValType(UndefValue *) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| UndefValue *UndefValue::get(const Type *Ty) {
 | |
|   return UndefValueConstants->getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void UndefValue::destroyConstant() {
 | |
|   UndefValueConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantExpr::get() implementations...
 | |
| //
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct ExprMapKeyType {
 | |
|   typedef SmallVector<unsigned, 4> IndexList;
 | |
| 
 | |
|   ExprMapKeyType(unsigned opc,
 | |
|       const std::vector<Constant*> &ops,
 | |
|       unsigned short pred = 0,
 | |
|       const IndexList &inds = IndexList())
 | |
|         : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
 | |
|   uint16_t opcode;
 | |
|   uint16_t predicate;
 | |
|   std::vector<Constant*> operands;
 | |
|   IndexList indices;
 | |
|   bool operator==(const ExprMapKeyType& that) const {
 | |
|     return this->opcode == that.opcode &&
 | |
|            this->predicate == that.predicate &&
 | |
|            this->operands == that.operands &&
 | |
|            this->indices == that.indices;
 | |
|   }
 | |
|   bool operator<(const ExprMapKeyType & that) const {
 | |
|     return this->opcode < that.opcode ||
 | |
|       (this->opcode == that.opcode && this->predicate < that.predicate) ||
 | |
|       (this->opcode == that.opcode && this->predicate == that.predicate &&
 | |
|        this->operands < that.operands) ||
 | |
|       (this->opcode == that.opcode && this->predicate == that.predicate &&
 | |
|        this->operands == that.operands && this->indices < that.indices);
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ExprMapKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|     static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
 | |
|         unsigned short pred = 0) {
 | |
|       if (Instruction::isCast(V.opcode))
 | |
|         return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
 | |
|       if ((V.opcode >= Instruction::BinaryOpsBegin &&
 | |
|            V.opcode < Instruction::BinaryOpsEnd))
 | |
|         return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
 | |
|       if (V.opcode == Instruction::Select)
 | |
|         return new SelectConstantExpr(V.operands[0], V.operands[1], 
 | |
|                                       V.operands[2]);
 | |
|       if (V.opcode == Instruction::ExtractElement)
 | |
|         return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
 | |
|       if (V.opcode == Instruction::InsertElement)
 | |
|         return new InsertElementConstantExpr(V.operands[0], V.operands[1],
 | |
|                                              V.operands[2]);
 | |
|       if (V.opcode == Instruction::ShuffleVector)
 | |
|         return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
 | |
|                                              V.operands[2]);
 | |
|       if (V.opcode == Instruction::InsertValue)
 | |
|         return new InsertValueConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.indices, Ty);
 | |
|       if (V.opcode == Instruction::ExtractValue)
 | |
|         return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
 | |
|       if (V.opcode == Instruction::GetElementPtr) {
 | |
|         std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
 | |
|         return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
 | |
|       }
 | |
| 
 | |
|       // The compare instructions are weird. We have to encode the predicate
 | |
|       // value and it is combined with the instruction opcode by multiplying
 | |
|       // the opcode by one hundred. We must decode this to get the predicate.
 | |
|       if (V.opcode == Instruction::ICmp)
 | |
|         return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, 
 | |
|                                        V.operands[0], V.operands[1]);
 | |
|       if (V.opcode == Instruction::FCmp) 
 | |
|         return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, 
 | |
|                                        V.operands[0], V.operands[1]);
 | |
|       if (V.opcode == Instruction::VICmp)
 | |
|         return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate, 
 | |
|                                        V.operands[0], V.operands[1]);
 | |
|       if (V.opcode == Instruction::VFCmp) 
 | |
|         return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate, 
 | |
|                                        V.operands[0], V.operands[1]);
 | |
|       assert(0 && "Invalid ConstantExpr!");
 | |
|       return 0;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantExpr, Type> {
 | |
|     static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | |
|       Constant *New;
 | |
|       switch (OldC->getOpcode()) {
 | |
|       case Instruction::Trunc:
 | |
|       case Instruction::ZExt:
 | |
|       case Instruction::SExt:
 | |
|       case Instruction::FPTrunc:
 | |
|       case Instruction::FPExt:
 | |
|       case Instruction::UIToFP:
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::FPToUI:
 | |
|       case Instruction::FPToSI:
 | |
|       case Instruction::PtrToInt:
 | |
|       case Instruction::IntToPtr:
 | |
|       case Instruction::BitCast:
 | |
|         New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), 
 | |
|                                     NewTy);
 | |
|         break;
 | |
|       case Instruction::Select:
 | |
|         New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
 | |
|                                         OldC->getOperand(1),
 | |
|                                         OldC->getOperand(2));
 | |
|         break;
 | |
|       default:
 | |
|         assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | |
|                OldC->getOpcode() <  Instruction::BinaryOpsEnd);
 | |
|         New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | |
|                                   OldC->getOperand(1));
 | |
|         break;
 | |
|       case Instruction::GetElementPtr:
 | |
|         // Make everyone now use a constant of the new type...
 | |
|         std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
 | |
|         New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
 | |
|                                                &Idx[0], Idx.size());
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| } // end namespace llvm
 | |
| 
 | |
| 
 | |
| static ExprMapKeyType getValType(ConstantExpr *CE) {
 | |
|   std::vector<Constant*> Operands;
 | |
|   Operands.reserve(CE->getNumOperands());
 | |
|   for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|     Operands.push_back(cast<Constant>(CE->getOperand(i)));
 | |
|   return ExprMapKeyType(CE->getOpcode(), Operands, 
 | |
|       CE->isCompare() ? CE->getPredicate() : 0,
 | |
|       CE->hasIndices() ?
 | |
|         CE->getIndices() : SmallVector<unsigned, 4>());
 | |
| }
 | |
| 
 | |
| static ManagedStatic<ValueMap<ExprMapKeyType, Type,
 | |
|                               ConstantExpr> > ExprConstants;
 | |
| 
 | |
| /// This is a utility function to handle folding of casts and lookup of the
 | |
| /// cast in the ExprConstants map. It is used by the various get* methods below.
 | |
| static inline Constant *getFoldedCast(
 | |
|   Instruction::CastOps opc, Constant *C, const Type *Ty) {
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
|   // Fold a few common cases
 | |
|   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
 | |
|     return FC;
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C);
 | |
|   ExprMapKeyType Key(opc, argVec);
 | |
|   return ExprConstants->getOrCreate(Ty, Key);
 | |
| }
 | |
|  
 | |
| Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
 | |
|   Instruction::CastOps opc = Instruction::CastOps(oc);
 | |
|   assert(Instruction::isCast(opc) && "opcode out of range");
 | |
|   assert(C && Ty && "Null arguments to getCast");
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
| 
 | |
|   switch (opc) {
 | |
|     default:
 | |
|       assert(0 && "Invalid cast opcode");
 | |
|       break;
 | |
|     case Instruction::Trunc:    return getTrunc(C, Ty);
 | |
|     case Instruction::ZExt:     return getZExt(C, Ty);
 | |
|     case Instruction::SExt:     return getSExt(C, Ty);
 | |
|     case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
 | |
|     case Instruction::FPExt:    return getFPExtend(C, Ty);
 | |
|     case Instruction::UIToFP:   return getUIToFP(C, Ty);
 | |
|     case Instruction::SIToFP:   return getSIToFP(C, Ty);
 | |
|     case Instruction::FPToUI:   return getFPToUI(C, Ty);
 | |
|     case Instruction::FPToSI:   return getFPToSI(C, Ty);
 | |
|     case Instruction::PtrToInt: return getPtrToInt(C, Ty);
 | |
|     case Instruction::IntToPtr: return getIntToPtr(C, Ty);
 | |
|     case Instruction::BitCast:  return getBitCast(C, Ty);
 | |
|   }
 | |
|   return 0;
 | |
| } 
 | |
| 
 | |
| Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return getCast(Instruction::BitCast, C, Ty);
 | |
|   return getCast(Instruction::ZExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return getCast(Instruction::BitCast, C, Ty);
 | |
|   return getCast(Instruction::SExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
 | |
|   if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
 | |
|     return getCast(Instruction::BitCast, C, Ty);
 | |
|   return getCast(Instruction::Trunc, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
 | |
|   assert(isa<PointerType>(S->getType()) && "Invalid cast");
 | |
|   assert((Ty->isInteger() || isa<PointerType>(Ty)) && "Invalid cast");
 | |
| 
 | |
|   if (Ty->isInteger())
 | |
|     return getCast(Instruction::PtrToInt, S, Ty);
 | |
|   return getCast(Instruction::BitCast, S, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, 
 | |
|                                        bool isSigned) {
 | |
|   assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && 
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
 | |
|   unsigned DstBits = Ty->getPrimitiveSizeInBits();
 | |
|   if (SrcBits == DstBits)
 | |
|     return C; // Avoid a useless cast
 | |
|   Instruction::CastOps opcode =
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
 | |
|   return getCast(opcode, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isInteger() && "Trunc operand must be integer");
 | |
|   assert(Ty->isInteger() && "Trunc produces only integral");
 | |
|   assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
 | |
|          "SrcTy must be larger than DestTy for Trunc!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::Trunc, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isInteger() && "SEXt operand must be integral");
 | |
|   assert(Ty->isInteger() && "SExt produces only integer");
 | |
|   assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for SExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::SExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isInteger() && "ZEXt operand must be integral");
 | |
|   assert(Ty->isInteger() && "ZExt produces only integer");
 | |
|   assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
 | |
|          "SrcTy must be smaller than DestTy for ZExt!");
 | |
| 
 | |
|   return getFoldedCast(Instruction::ZExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
 | |
|          C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
 | |
|          "This is an illegal floating point truncation!");
 | |
|   return getFoldedCast(Instruction::FPTrunc, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
 | |
|          C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
 | |
|          "This is an illegal floating point extension!");
 | |
|   return getFoldedCast(Instruction::FPExt, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | |
|          "This is an illegal uint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::UIToFP, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() &&
 | |
|          "This is an illegal sint to floating point cast!");
 | |
|   return getFoldedCast(Instruction::SIToFP, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | |
|          "This is an illegal floating point to uint cast!");
 | |
|   return getFoldedCast(Instruction::FPToUI, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
 | |
| #ifndef NDEBUG
 | |
|   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
 | |
|   bool toVec = Ty->getTypeID() == Type::VectorTyID;
 | |
| #endif
 | |
|   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
 | |
|   assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() &&
 | |
|          "This is an illegal floating point to sint cast!");
 | |
|   return getFoldedCast(Instruction::FPToSI, C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
 | |
|   assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
 | |
|   assert(DstTy->isInteger() && "PtrToInt destination must be integral");
 | |
|   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
 | |
|   assert(C->getType()->isInteger() && "IntToPtr source must be integral");
 | |
|   assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
 | |
|   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 | |
|   // BitCast implies a no-op cast of type only. No bits change.  However, you 
 | |
|   // can't cast pointers to anything but pointers.
 | |
| #ifndef NDEBUG
 | |
|   const Type *SrcTy = C->getType();
 | |
|   assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
 | |
|          "BitCast cannot cast pointer to non-pointer and vice versa");
 | |
| 
 | |
|   // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
 | |
|   // or nonptr->ptr). For all the other types, the cast is okay if source and 
 | |
|   // destination bit widths are identical.
 | |
|   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|   unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
 | |
| #endif
 | |
|   assert(SrcBitSize == DstBitSize && "BitCast requies types of same width");
 | |
|   return getFoldedCast(Instruction::BitCast, C, DstTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSizeOf(const Type *Ty) {
 | |
|   // sizeof is implemented as: (i64) gep (Ty*)null, 1
 | |
|   Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
 | |
|   Constant *GEP =
 | |
|     getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
 | |
|   return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | |
|                               Constant *C1, Constant *C2) {
 | |
|   // Check the operands for consistency first
 | |
|   assert(Opcode >= Instruction::BinaryOpsBegin &&
 | |
|          Opcode <  Instruction::BinaryOpsEnd   &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType() == C2->getType() &&
 | |
|          "Operand types in binary constant expression should match");
 | |
| 
 | |
|   if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty)
 | |
|     if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|       return FC;          // Fold a few common cases...
 | |
| 
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key(Opcode, argVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCompareTy(unsigned short predicate,
 | |
|                                      Constant *C1, Constant *C2) {
 | |
|   bool isVectorType = C1->getType()->getTypeID() == Type::VectorTyID;
 | |
|   switch (predicate) {
 | |
|     default: assert(0 && "Invalid CmpInst predicate");
 | |
|     case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
 | |
|     case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
 | |
|     case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
 | |
|     case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
 | |
|     case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
 | |
|     case CmpInst::FCMP_TRUE:
 | |
|       return isVectorType ? getVFCmp(predicate, C1, C2) 
 | |
|                           : getFCmp(predicate, C1, C2);
 | |
|     case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
 | |
|     case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
 | |
|     case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       return isVectorType ? getVICmp(predicate, C1, C2)
 | |
|                           : getICmp(predicate, C1, C2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
 | |
| #ifndef NDEBUG
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add: 
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
 | |
|             isa<VectorType>(C1->getType())) &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::UDiv: 
 | |
|   case Instruction::SDiv: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
 | |
|       cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
 | |
|       && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) 
 | |
|       && "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::URem: 
 | |
|   case Instruction::SRem: 
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isInteger() || (isa<VectorType>(C1->getType()) &&
 | |
|       cast<VectorType>(C1->getType())->getElementType()->isInteger())) &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isFloatingPoint() || (isa<VectorType>(C1->getType())
 | |
|       && cast<VectorType>(C1->getType())->getElementType()->isFloatingPoint())) 
 | |
|       && "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isInteger() || isa<VectorType>(C1->getType())) &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert(C1->getType()->isInteger() &&
 | |
|            "Tried to create a shift operation on a non-integer type!");
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return getTy(C1->getType(), Opcode, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getCompare(unsigned short pred, 
 | |
|                             Constant *C1, Constant *C2) {
 | |
|   assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|   return getCompareTy(pred, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | |
|                                     Constant *V1, Constant *V2) {
 | |
|   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
 | |
| 
 | |
|   if (ReqTy == V1->getType())
 | |
|     if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
 | |
|       return SC;        // Fold common cases
 | |
| 
 | |
|   std::vector<Constant*> argVec(3, C);
 | |
|   argVec[1] = V1;
 | |
|   argVec[2] = V2;
 | |
|   ExprMapKeyType Key(Instruction::Select, argVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | |
|                                            Value* const *Idxs,
 | |
|                                            unsigned NumIdx) {
 | |
|   assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs,
 | |
|                                            Idxs+NumIdx) ==
 | |
|          cast<PointerType>(ReqTy)->getElementType() &&
 | |
|          "GEP indices invalid!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   assert(isa<PointerType>(C->getType()) &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.reserve(NumIdx+1);
 | |
|   ArgVec.push_back(C);
 | |
|   for (unsigned i = 0; i != NumIdx; ++i)
 | |
|     ArgVec.push_back(cast<Constant>(Idxs[i]));
 | |
|   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
 | |
|                                          unsigned NumIdx) {
 | |
|   // Get the result type of the getelementptr!
 | |
|   const Type *Ty = 
 | |
|     GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   unsigned As = cast<PointerType>(C->getType())->getAddressSpace();
 | |
|   return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs,
 | |
|                                          unsigned NumIdx) {
 | |
|   return getGetElementPtr(C, (Value* const *)Idxs, NumIdx);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | |
|          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
 | |
|   return ExprConstants->getOrCreate(Type::Int1Ty, Key);
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
 | |
|   return ExprConstants->getOrCreate(Type::Int1Ty, Key);
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | |
|   assert(isa<VectorType>(LHS->getType()) && LHS->getType() == RHS->getType() &&
 | |
|          "Tried to create vicmp operation on non-vector type!");
 | |
|   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
 | |
|          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate");
 | |
| 
 | |
|   const VectorType *VTy = cast<VectorType>(LHS->getType());
 | |
|   const Type *EltTy = VTy->getElementType();
 | |
|   unsigned NumElts = VTy->getNumElements();
 | |
| 
 | |
|   // See if we can fold the element-wise comparison of the LHS and RHS.
 | |
|   SmallVector<Constant *, 16> LHSElts, RHSElts;
 | |
|   LHS->getVectorElements(LHSElts);
 | |
|   RHS->getVectorElements(RHSElts);
 | |
|                     
 | |
|   if (!LHSElts.empty() && !RHSElts.empty()) {
 | |
|     SmallVector<Constant *, 16> Elts;
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
 | |
|                                                     RHSElts[i]);
 | |
|       if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
 | |
|         if (FCI->getZExtValue())
 | |
|           Elts.push_back(ConstantInt::getAllOnesValue(EltTy));
 | |
|         else
 | |
|           Elts.push_back(ConstantInt::get(EltTy, 0ULL));
 | |
|       } else if (FC && isa<UndefValue>(FC)) {
 | |
|         Elts.push_back(UndefValue::get(EltTy));
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (Elts.size() == NumElts)
 | |
|       return ConstantVector::get(&Elts[0], Elts.size());
 | |
|   }
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred);
 | |
|   return ExprConstants->getOrCreate(LHS->getType(), Key);
 | |
| }
 | |
| 
 | |
| Constant *
 | |
| ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) {
 | |
|   assert(isa<VectorType>(LHS->getType()) &&
 | |
|          "Tried to create vfcmp operation on non-vector type!");
 | |
|   assert(LHS->getType() == RHS->getType());
 | |
|   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate");
 | |
| 
 | |
|   const VectorType *VTy = cast<VectorType>(LHS->getType());
 | |
|   unsigned NumElts = VTy->getNumElements();
 | |
|   const Type *EltTy = VTy->getElementType();
 | |
|   const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits());
 | |
|   const Type *ResultTy = VectorType::get(REltTy, NumElts);
 | |
| 
 | |
|   // See if we can fold the element-wise comparison of the LHS and RHS.
 | |
|   SmallVector<Constant *, 16> LHSElts, RHSElts;
 | |
|   LHS->getVectorElements(LHSElts);
 | |
|   RHS->getVectorElements(RHSElts);
 | |
|   
 | |
|   if (!LHSElts.empty() && !RHSElts.empty()) {
 | |
|     SmallVector<Constant *, 16> Elts;
 | |
|     for (unsigned i = 0; i != NumElts; ++i) {
 | |
|       Constant *FC = ConstantFoldCompareInstruction(pred, LHSElts[i],
 | |
|                                                     RHSElts[i]);
 | |
|       if (ConstantInt *FCI = dyn_cast_or_null<ConstantInt>(FC)) {
 | |
|         if (FCI->getZExtValue())
 | |
|           Elts.push_back(ConstantInt::getAllOnesValue(REltTy));
 | |
|         else
 | |
|           Elts.push_back(ConstantInt::get(REltTy, 0ULL));
 | |
|       } else if (FC && isa<UndefValue>(FC)) {
 | |
|         Elts.push_back(UndefValue::get(REltTy));
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (Elts.size() == NumElts)
 | |
|       return ConstantVector::get(&Elts[0], Elts.size());
 | |
|   }
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.push_back(LHS);
 | |
|   ArgVec.push_back(RHS);
 | |
|   // Get the key type with both the opcode and predicate
 | |
|   const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred);
 | |
|   return ExprConstants->getOrCreate(ResultTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                             Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
 | |
|   assert(isa<VectorType>(Val->getType()) &&
 | |
|          "Tried to create extractelement operation on non-vector type!");
 | |
|   assert(Idx->getType() == Type::Int32Ty &&
 | |
|          "Extractelement index must be i32 type!");
 | |
|   return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                              Val, Idx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                            Constant *Elt, Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Elt);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
 | |
|                                          Constant *Idx) {
 | |
|   assert(isa<VectorType>(Val->getType()) &&
 | |
|          "Tried to create insertelement operation on non-vector type!");
 | |
|   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
 | |
|          && "Insertelement types must match!");
 | |
|   assert(Idx->getType() == Type::Int32Ty &&
 | |
|          "Insertelement index must be i32 type!");
 | |
|   return getInsertElementTy(Val->getType(), Val, Elt, Idx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1,
 | |
|                                            Constant *V2, Constant *Mask) {
 | |
|   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, V1);
 | |
|   ArgVec.push_back(V2);
 | |
|   ArgVec.push_back(Mask);
 | |
|   const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
 | |
|   return ExprConstants->getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
 | |
|                                          Constant *Mask) {
 | |
|   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector constant expr operands!");
 | |
|   return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg,
 | |
|                                          Constant *Val,
 | |
|                                         const unsigned *Idxs, unsigned NumIdx) {
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | |
|                                           Idxs+NumIdx) == Val->getType() &&
 | |
|          "insertvalue indices invalid!");
 | |
|   assert(Agg->getType() == ReqTy &&
 | |
|          "insertvalue type invalid!");
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant InsertValue expression");
 | |
|   Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
 | |
|   assert(FC && "InsertValue constant expr couldn't be folded!");
 | |
|   return FC;
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
 | |
|                                      const unsigned *IdxList, unsigned NumIdx) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Tried to create insertelement operation on non-first-class type!");
 | |
| 
 | |
|   const Type *ReqTy = Agg->getType();
 | |
| #ifndef NDEBUG
 | |
|   const Type *ValTy =
 | |
|     ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | |
| #endif
 | |
|   assert(ValTy == Val->getType() && "insertvalue indices invalid!");
 | |
|   return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg,
 | |
|                                         const unsigned *Idxs, unsigned NumIdx) {
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
 | |
|                                           Idxs+NumIdx) == ReqTy &&
 | |
|          "extractvalue indices invalid!");
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Non-first-class type for constant extractvalue expression");
 | |
|   Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
 | |
|   assert(FC && "ExtractValue constant expr couldn't be folded!");
 | |
|   return FC;
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractValue(Constant *Agg,
 | |
|                                      const unsigned *IdxList, unsigned NumIdx) {
 | |
|   assert(Agg->getType()->isFirstClassType() &&
 | |
|          "Tried to create extractelement operation on non-first-class type!");
 | |
| 
 | |
|   const Type *ReqTy =
 | |
|     ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx);
 | |
|   assert(ReqTy && "extractvalue indices invalid!");
 | |
|   return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
 | |
|   if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
 | |
|     if (PTy->getElementType()->isFloatingPoint()) {
 | |
|       std::vector<Constant*> zeros(PTy->getNumElements(),
 | |
|                            ConstantFP::getNegativeZero(PTy->getElementType()));
 | |
|       return ConstantVector::get(PTy, zeros);
 | |
|     }
 | |
| 
 | |
|   if (Ty->isFloatingPoint()) 
 | |
|     return ConstantFP::getNegativeZero(Ty);
 | |
| 
 | |
|   return Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantExpr::destroyConstant() {
 | |
|   ExprConstants->remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| const char *ConstantExpr::getOpcodeName() const {
 | |
|   return Instruction::getOpcodeName(getOpcode());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                replaceUsesOfWithOnConstant implementations
 | |
| 
 | |
| /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
 | |
| /// 'From' to be uses of 'To'.  This must update the uniquing data structures
 | |
| /// etc.
 | |
| ///
 | |
| /// Note that we intentionally replace all uses of From with To here.  Consider
 | |
| /// a large array that uses 'From' 1000 times.  By handling this case all here,
 | |
| /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
 | |
| /// single invocation handles all 1000 uses.  Handling them one at a time would
 | |
| /// work, but would be really slow because it would have to unique each updated
 | |
| /// array instance.
 | |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                 Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   std::pair<ArrayConstantsTy::MapKey, Constant*> Lookup;
 | |
|   Lookup.first.first = getType();
 | |
|   Lookup.second = this;
 | |
| 
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array.
 | |
| 
 | |
|   // Fill values with the modified operands of the constant array.  Also, 
 | |
|   // compute whether this turns into an all-zeros array.
 | |
|   bool isAllZeros = false;
 | |
|   unsigned NumUpdated = 0;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       if (Val == From) {
 | |
|         Val = ToC;
 | |
|         ++NumUpdated;
 | |
|       }
 | |
|       Values.push_back(Val);
 | |
|     }
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       if (Val == From) {
 | |
|         Val = ToC;
 | |
|         ++NumUpdated;
 | |
|       }
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getType());
 | |
|   } else {
 | |
|     // Check to see if we have this array type already.
 | |
|     bool Exists;
 | |
|     ArrayConstantsTy::MapTy::iterator I =
 | |
|       ArrayConstants->InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant array, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       ArrayConstants->MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.  Optimize for the case when we have a single
 | |
|       // operand that we're changing, but handle bulk updates efficiently.
 | |
|       if (NumUpdated == 1) {
 | |
|         unsigned OperandToUpdate = U-OperandList;
 | |
|         assert(getOperand(OperandToUpdate) == From &&
 | |
|                "ReplaceAllUsesWith broken!");
 | |
|         setOperand(OperandToUpdate, ToC);
 | |
|       } else {
 | |
|         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|           if (getOperand(i) == From)
 | |
|             setOperand(i, ToC);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Otherwise, I do need to replace this with an existing value.
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   unsigned OperandToUpdate = U-OperandList;
 | |
|   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | |
| 
 | |
|   std::pair<StructConstantsTy::MapKey, Constant*> Lookup;
 | |
|   Lookup.first.first = getType();
 | |
|   Lookup.second = this;
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement struct.
 | |
|   
 | |
|   
 | |
|   // Fill values with the modified operands of the constant struct.  Also, 
 | |
|   // compute whether this turns into an all-zeros struct.
 | |
|   bool isAllZeros = false;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
 | |
|       Values.push_back(cast<Constant>(O->get()));
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   Values[OperandToUpdate] = ToC;
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getType());
 | |
|   } else {
 | |
|     // Check to see if we have this array type already.
 | |
|     bool Exists;
 | |
|     StructConstantsTy::MapTy::iterator I =
 | |
|       StructConstants->InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant struct, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       StructConstants->MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.
 | |
|       setOperand(OperandToUpdate, ToC);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   
 | |
|   std::vector<Constant*> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array...
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     Constant *Val = getOperand(i);
 | |
|     if (Val == From) Val = cast<Constant>(To);
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = ConstantVector::get(getType(), Values);
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | |
|                                                Use *U) {
 | |
|   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *To = cast<Constant>(ToV);
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (getOpcode() == Instruction::GetElementPtr) {
 | |
|     SmallVector<Constant*, 8> Indices;
 | |
|     Constant *Pointer = getOperand(0);
 | |
|     Indices.reserve(getNumOperands()-1);
 | |
|     if (Pointer == From) Pointer = To;
 | |
|     
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|       Constant *Val = getOperand(i);
 | |
|       if (Val == From) Val = To;
 | |
|       Indices.push_back(Val);
 | |
|     }
 | |
|     Replacement = ConstantExpr::getGetElementPtr(Pointer,
 | |
|                                                  &Indices[0], Indices.size());
 | |
|   } else if (getOpcode() == Instruction::ExtractValue) {
 | |
|     Constant *Agg = getOperand(0);
 | |
|     if (Agg == From) Agg = To;
 | |
|     
 | |
|     const SmallVector<unsigned, 4> &Indices = getIndices();
 | |
|     Replacement = ConstantExpr::getExtractValue(Agg,
 | |
|                                                 &Indices[0], Indices.size());
 | |
|   } else if (getOpcode() == Instruction::InsertValue) {
 | |
|     Constant *Agg = getOperand(0);
 | |
|     Constant *Val = getOperand(1);
 | |
|     if (Agg == From) Agg = To;
 | |
|     if (Val == From) Val = To;
 | |
|     
 | |
|     const SmallVector<unsigned, 4> &Indices = getIndices();
 | |
|     Replacement = ConstantExpr::getInsertValue(Agg, Val,
 | |
|                                                &Indices[0], Indices.size());
 | |
|   } else if (isCast()) {
 | |
|     assert(getOperand(0) == From && "Cast only has one use!");
 | |
|     Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
 | |
|   } else if (getOpcode() == Instruction::Select) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(2);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | |
|   } else if (getOpcode() == Instruction::ExtractElement) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::getExtractElement(C1, C2);
 | |
|   } else if (getOpcode() == Instruction::InsertElement) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
 | |
|   } else if (getOpcode() == Instruction::ShuffleVector) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(2);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
 | |
|   } else if (isCompare()) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (getOpcode() == Instruction::ICmp)
 | |
|       Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
 | |
|     else if (getOpcode() == Instruction::FCmp)
 | |
|       Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
 | |
|     else if (getOpcode() == Instruction::VICmp)
 | |
|       Replacement = ConstantExpr::getVICmp(getPredicate(), C1, C2);
 | |
|     else {
 | |
|       assert(getOpcode() == Instruction::VFCmp);
 | |
|       Replacement = ConstantExpr::getVFCmp(getPredicate(), C1, C2);
 | |
|     }
 | |
|   } else if (getNumOperands() == 2) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::get(getOpcode(), C1, C2);
 | |
|   } else {
 | |
|     assert(0 && "Unknown ConstantExpr type!");
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 |