mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28897 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2441 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2441 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements the bison parser for LLVM assembly languages files.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
%{
 | 
						|
#include "ParserInternals.h"
 | 
						|
#include "llvm/CallingConv.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Assembly/AutoUpgrade.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
#include <list>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
 | 
						|
int yylex();                       // declaration" of xxx warnings.
 | 
						|
int yyparse();
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  std::string CurFilename;
 | 
						|
}
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static Module *ParserResult;
 | 
						|
 | 
						|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | 
						|
// relating to upreferences in the input stream.
 | 
						|
//
 | 
						|
//#define DEBUG_UPREFS 1
 | 
						|
#ifdef DEBUG_UPREFS
 | 
						|
#define UR_OUT(X) std::cerr << X
 | 
						|
#else
 | 
						|
#define UR_OUT(X)
 | 
						|
#endif
 | 
						|
 | 
						|
#define YYERROR_VERBOSE 1
 | 
						|
 | 
						|
static bool ObsoleteVarArgs;
 | 
						|
static bool NewVarArgs;
 | 
						|
static BasicBlock *CurBB;
 | 
						|
static GlobalVariable *CurGV;
 | 
						|
 | 
						|
 | 
						|
// This contains info used when building the body of a function.  It is
 | 
						|
// destroyed when the function is completed.
 | 
						|
//
 | 
						|
typedef std::vector<Value *> ValueList;           // Numbered defs
 | 
						|
static void 
 | 
						|
ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
 | 
						|
                   std::map<const Type *,ValueList> *FutureLateResolvers = 0);
 | 
						|
 | 
						|
static struct PerModuleInfo {
 | 
						|
  Module *CurrentModule;
 | 
						|
  std::map<const Type *, ValueList> Values; // Module level numbered definitions
 | 
						|
  std::map<const Type *,ValueList> LateResolveValues;
 | 
						|
  std::vector<PATypeHolder>    Types;
 | 
						|
  std::map<ValID, PATypeHolder> LateResolveTypes;
 | 
						|
 | 
						|
  /// PlaceHolderInfo - When temporary placeholder objects are created, remember
 | 
						|
  /// how they were referenced and on which line of the input they came from so
 | 
						|
  /// that we can resolve them later and print error messages as appropriate.
 | 
						|
  std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
 | 
						|
 | 
						|
  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | 
						|
  // references to global values.  Global values may be referenced before they
 | 
						|
  // are defined, and if so, the temporary object that they represent is held
 | 
						|
  // here.  This is used for forward references of GlobalValues.
 | 
						|
  //
 | 
						|
  typedef std::map<std::pair<const PointerType *,
 | 
						|
                             ValID>, GlobalValue*> GlobalRefsType;
 | 
						|
  GlobalRefsType GlobalRefs;
 | 
						|
 | 
						|
  void ModuleDone() {
 | 
						|
    // If we could not resolve some functions at function compilation time
 | 
						|
    // (calls to functions before they are defined), resolve them now...  Types
 | 
						|
    // are resolved when the constant pool has been completely parsed.
 | 
						|
    //
 | 
						|
    ResolveDefinitions(LateResolveValues);
 | 
						|
 | 
						|
    // Check to make sure that all global value forward references have been
 | 
						|
    // resolved!
 | 
						|
    //
 | 
						|
    if (!GlobalRefs.empty()) {
 | 
						|
      std::string UndefinedReferences = "Unresolved global references exist:\n";
 | 
						|
 | 
						|
      for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | 
						|
                               I->first.second.getName() + "\n";
 | 
						|
      }
 | 
						|
      ThrowException(UndefinedReferences);
 | 
						|
    }
 | 
						|
 | 
						|
    // Look for intrinsic functions and CallInst that need to be upgraded
 | 
						|
    for (Module::iterator FI = CurrentModule->begin(),
 | 
						|
         FE = CurrentModule->end(); FI != FE; )
 | 
						|
      UpgradeCallsToIntrinsic(FI++);
 | 
						|
 | 
						|
    Values.clear();         // Clear out function local definitions
 | 
						|
    Types.clear();
 | 
						|
    CurrentModule = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // GetForwardRefForGlobal - Check to see if there is a forward reference
 | 
						|
  // for this global.  If so, remove it from the GlobalRefs map and return it.
 | 
						|
  // If not, just return null.
 | 
						|
  GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
 | 
						|
    // Check to see if there is a forward reference to this global variable...
 | 
						|
    // if there is, eliminate it and patch the reference to use the new def'n.
 | 
						|
    GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
 | 
						|
    GlobalValue *Ret = 0;
 | 
						|
    if (I != GlobalRefs.end()) {
 | 
						|
      Ret = I->second;
 | 
						|
      GlobalRefs.erase(I);
 | 
						|
    }
 | 
						|
    return Ret;
 | 
						|
  }
 | 
						|
} CurModule;
 | 
						|
 | 
						|
static struct PerFunctionInfo {
 | 
						|
  Function *CurrentFunction;     // Pointer to current function being created
 | 
						|
 | 
						|
  std::map<const Type*, ValueList> Values;   // Keep track of #'d definitions
 | 
						|
  std::map<const Type*, ValueList> LateResolveValues;
 | 
						|
  bool isDeclare;                // Is this function a forward declararation?
 | 
						|
 | 
						|
  /// BBForwardRefs - When we see forward references to basic blocks, keep
 | 
						|
  /// track of them here.
 | 
						|
  std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
 | 
						|
  std::vector<BasicBlock*> NumberedBlocks;
 | 
						|
  unsigned NextBBNum;
 | 
						|
 | 
						|
  inline PerFunctionInfo() {
 | 
						|
    CurrentFunction = 0;
 | 
						|
    isDeclare = false;
 | 
						|
  }
 | 
						|
 | 
						|
  inline void FunctionStart(Function *M) {
 | 
						|
    CurrentFunction = M;
 | 
						|
    NextBBNum = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void FunctionDone() {
 | 
						|
    NumberedBlocks.clear();
 | 
						|
 | 
						|
    // Any forward referenced blocks left?
 | 
						|
    if (!BBForwardRefs.empty())
 | 
						|
      ThrowException("Undefined reference to label " +
 | 
						|
                     BBForwardRefs.begin()->first->getName());
 | 
						|
 | 
						|
    // Resolve all forward references now.
 | 
						|
    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | 
						|
 | 
						|
    Values.clear();         // Clear out function local definitions
 | 
						|
    CurrentFunction = 0;
 | 
						|
    isDeclare = false;
 | 
						|
  }
 | 
						|
} CurFun;  // Info for the current function...
 | 
						|
 | 
						|
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//               Code to handle definitions of all the types
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static int InsertValue(Value *V,
 | 
						|
                  std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
 | 
						|
  if (V->hasName()) return -1;           // Is this a numbered definition?
 | 
						|
 | 
						|
  // Yes, insert the value into the value table...
 | 
						|
  ValueList &List = ValueTab[V->getType()];
 | 
						|
  List.push_back(V);
 | 
						|
  return List.size()-1;
 | 
						|
}
 | 
						|
 | 
						|
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
 | 
						|
  switch (D.Type) {
 | 
						|
  case ValID::NumberVal:               // Is it a numbered definition?
 | 
						|
    // Module constants occupy the lowest numbered slots...
 | 
						|
    if ((unsigned)D.Num < CurModule.Types.size())
 | 
						|
      return CurModule.Types[(unsigned)D.Num];
 | 
						|
    break;
 | 
						|
  case ValID::NameVal:                 // Is it a named definition?
 | 
						|
    if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
 | 
						|
      D.destroy();  // Free old strdup'd memory...
 | 
						|
      return N;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    ThrowException("Internal parser error: Invalid symbol type reference!");
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, we referenced either a symbol that we don't know about
 | 
						|
  // or an id number that hasn't been read yet.  We may be referencing something
 | 
						|
  // forward, so just create an entry to be resolved later and get to it...
 | 
						|
  //
 | 
						|
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | 
						|
 | 
						|
 | 
						|
  if (inFunctionScope()) {
 | 
						|
    if (D.Type == ValID::NameVal)
 | 
						|
      ThrowException("Reference to an undefined type: '" + D.getName() + "'");
 | 
						|
    else
 | 
						|
      ThrowException("Reference to an undefined type: #" + itostr(D.Num));
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
 | 
						|
  if (I != CurModule.LateResolveTypes.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  Type *Typ = OpaqueType::get();
 | 
						|
  CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
 | 
						|
  return Typ;
 | 
						|
 }
 | 
						|
 | 
						|
static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
 | 
						|
  SymbolTable &SymTab =
 | 
						|
    inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
 | 
						|
                        CurModule.CurrentModule->getSymbolTable();
 | 
						|
  return SymTab.lookup(Ty, Name);
 | 
						|
}
 | 
						|
 | 
						|
// getValNonImprovising - Look up the value specified by the provided type and
 | 
						|
// the provided ValID.  If the value exists and has already been defined, return
 | 
						|
// it.  Otherwise return null.
 | 
						|
//
 | 
						|
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
 | 
						|
  if (isa<FunctionType>(Ty))
 | 
						|
    ThrowException("Functions are not values and "
 | 
						|
                   "must be referenced as pointers");
 | 
						|
 | 
						|
  switch (D.Type) {
 | 
						|
  case ValID::NumberVal: {                 // Is it a numbered definition?
 | 
						|
    unsigned Num = (unsigned)D.Num;
 | 
						|
 | 
						|
    // Module constants occupy the lowest numbered slots...
 | 
						|
    std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
 | 
						|
    if (VI != CurModule.Values.end()) {
 | 
						|
      if (Num < VI->second.size())
 | 
						|
        return VI->second[Num];
 | 
						|
      Num -= VI->second.size();
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure that our type is within bounds
 | 
						|
    VI = CurFun.Values.find(Ty);
 | 
						|
    if (VI == CurFun.Values.end()) return 0;
 | 
						|
 | 
						|
    // Check that the number is within bounds...
 | 
						|
    if (VI->second.size() <= Num) return 0;
 | 
						|
 | 
						|
    return VI->second[Num];
 | 
						|
  }
 | 
						|
 | 
						|
  case ValID::NameVal: {                // Is it a named definition?
 | 
						|
    Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
 | 
						|
    if (N == 0) return 0;
 | 
						|
 | 
						|
    D.destroy();  // Free old strdup'd memory...
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to make sure that "Ty" is an integral type, and that our
 | 
						|
  // value will fit into the specified type...
 | 
						|
  case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | 
						|
    if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
 | 
						|
      ThrowException("Signed integral constant '" +
 | 
						|
                     itostr(D.ConstPool64) + "' is invalid for type '" +
 | 
						|
                     Ty->getDescription() + "'!");
 | 
						|
    return ConstantSInt::get(Ty, D.ConstPool64);
 | 
						|
 | 
						|
  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | 
						|
    if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
 | 
						|
      if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
 | 
						|
        ThrowException("Integral constant '" + utostr(D.UConstPool64) +
 | 
						|
                       "' is invalid or out of range!");
 | 
						|
      } else {     // This is really a signed reference.  Transmogrify.
 | 
						|
        return ConstantSInt::get(Ty, D.ConstPool64);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return ConstantUInt::get(Ty, D.UConstPool64);
 | 
						|
    }
 | 
						|
 | 
						|
  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | 
						|
    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
 | 
						|
      ThrowException("FP constant invalid for type!!");
 | 
						|
    return ConstantFP::get(Ty, D.ConstPoolFP);
 | 
						|
 | 
						|
  case ValID::ConstNullVal:      // Is it a null value?
 | 
						|
    if (!isa<PointerType>(Ty))
 | 
						|
      ThrowException("Cannot create a a non pointer null!");
 | 
						|
    return ConstantPointerNull::get(cast<PointerType>(Ty));
 | 
						|
 | 
						|
  case ValID::ConstUndefVal:      // Is it an undef value?
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
 | 
						|
  case ValID::ConstZeroVal:      // Is it a zero value?
 | 
						|
    return Constant::getNullValue(Ty);
 | 
						|
    
 | 
						|
  case ValID::ConstantVal:       // Fully resolved constant?
 | 
						|
    if (D.ConstantValue->getType() != Ty)
 | 
						|
      ThrowException("Constant expression type different from required type!");
 | 
						|
    return D.ConstantValue;
 | 
						|
 | 
						|
  case ValID::InlineAsmVal: {    // Inline asm expression
 | 
						|
    const PointerType *PTy = dyn_cast<PointerType>(Ty);
 | 
						|
    const FunctionType *FTy =
 | 
						|
      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
 | 
						|
    if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
 | 
						|
      ThrowException("Invalid type for asm constraint string!");
 | 
						|
    InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
 | 
						|
                                   D.IAD->HasSideEffects);
 | 
						|
    D.destroy();   // Free InlineAsmDescriptor.
 | 
						|
    return IA;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    assert(0 && "Unhandled case!");
 | 
						|
    return 0;
 | 
						|
  }   // End of switch
 | 
						|
 | 
						|
  assert(0 && "Unhandled case!");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// getVal - This function is identical to getValNonImprovising, except that if a
 | 
						|
// value is not already defined, it "improvises" by creating a placeholder var
 | 
						|
// that looks and acts just like the requested variable.  When the value is
 | 
						|
// defined later, all uses of the placeholder variable are replaced with the
 | 
						|
// real thing.
 | 
						|
//
 | 
						|
static Value *getVal(const Type *Ty, const ValID &ID) {
 | 
						|
  if (Ty == Type::LabelTy)
 | 
						|
    ThrowException("Cannot use a basic block here");
 | 
						|
 | 
						|
  // See if the value has already been defined.
 | 
						|
  Value *V = getValNonImprovising(Ty, ID);
 | 
						|
  if (V) return V;
 | 
						|
 | 
						|
  if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
 | 
						|
    ThrowException("Invalid use of a composite type!");
 | 
						|
 | 
						|
  // If we reached here, we referenced either a symbol that we don't know about
 | 
						|
  // or an id number that hasn't been read yet.  We may be referencing something
 | 
						|
  // forward, so just create an entry to be resolved later and get to it...
 | 
						|
  //
 | 
						|
  V = new Argument(Ty);
 | 
						|
 | 
						|
  // Remember where this forward reference came from.  FIXME, shouldn't we try
 | 
						|
  // to recycle these things??
 | 
						|
  CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
 | 
						|
                                                               llvmAsmlineno)));
 | 
						|
 | 
						|
  if (inFunctionScope())
 | 
						|
    InsertValue(V, CurFun.LateResolveValues);
 | 
						|
  else
 | 
						|
    InsertValue(V, CurModule.LateResolveValues);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// getBBVal - This is used for two purposes:
 | 
						|
///  * If isDefinition is true, a new basic block with the specified ID is being
 | 
						|
///    defined.
 | 
						|
///  * If isDefinition is true, this is a reference to a basic block, which may
 | 
						|
///    or may not be a forward reference.
 | 
						|
///
 | 
						|
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
 | 
						|
  assert(inFunctionScope() && "Can't get basic block at global scope!");
 | 
						|
 | 
						|
  std::string Name;
 | 
						|
  BasicBlock *BB = 0;
 | 
						|
  switch (ID.Type) {
 | 
						|
  default: ThrowException("Illegal label reference " + ID.getName());
 | 
						|
  case ValID::NumberVal:                // Is it a numbered definition?
 | 
						|
    if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
 | 
						|
      CurFun.NumberedBlocks.resize(ID.Num+1);
 | 
						|
    BB = CurFun.NumberedBlocks[ID.Num];
 | 
						|
    break;
 | 
						|
  case ValID::NameVal:                  // Is it a named definition?
 | 
						|
    Name = ID.Name;
 | 
						|
    if (Value *N = CurFun.CurrentFunction->
 | 
						|
                   getSymbolTable().lookup(Type::LabelTy, Name))
 | 
						|
      BB = cast<BasicBlock>(N);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // See if the block has already been defined.
 | 
						|
  if (BB) {
 | 
						|
    // If this is the definition of the block, make sure the existing value was
 | 
						|
    // just a forward reference.  If it was a forward reference, there will be
 | 
						|
    // an entry for it in the PlaceHolderInfo map.
 | 
						|
    if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
 | 
						|
      // The existing value was a definition, not a forward reference.
 | 
						|
      ThrowException("Redefinition of label " + ID.getName());
 | 
						|
 | 
						|
    ID.destroy();                       // Free strdup'd memory.
 | 
						|
    return BB;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise this block has not been seen before.
 | 
						|
  BB = new BasicBlock("", CurFun.CurrentFunction);
 | 
						|
  if (ID.Type == ValID::NameVal) {
 | 
						|
    BB->setName(ID.Name);
 | 
						|
  } else {
 | 
						|
    CurFun.NumberedBlocks[ID.Num] = BB;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is not a definition, keep track of it so we can use it as a forward
 | 
						|
  // reference.
 | 
						|
  if (!isDefinition) {
 | 
						|
    // Remember where this forward reference came from.
 | 
						|
    CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
 | 
						|
  } else {
 | 
						|
    // The forward declaration could have been inserted anywhere in the
 | 
						|
    // function: insert it into the correct place now.
 | 
						|
    CurFun.CurrentFunction->getBasicBlockList().remove(BB);
 | 
						|
    CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
 | 
						|
  }
 | 
						|
  ID.destroy();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//              Code to handle forward references in instructions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This code handles the late binding needed with statements that reference
 | 
						|
// values not defined yet... for example, a forward branch, or the PHI node for
 | 
						|
// a loop body.
 | 
						|
//
 | 
						|
// This keeps a table (CurFun.LateResolveValues) of all such forward references
 | 
						|
// and back patchs after we are done.
 | 
						|
//
 | 
						|
 | 
						|
// ResolveDefinitions - If we could not resolve some defs at parsing
 | 
						|
// time (forward branches, phi functions for loops, etc...) resolve the
 | 
						|
// defs now...
 | 
						|
//
 | 
						|
static void 
 | 
						|
ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
 | 
						|
                   std::map<const Type*,ValueList> *FutureLateResolvers) {
 | 
						|
  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | 
						|
  for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
 | 
						|
         E = LateResolvers.end(); LRI != E; ++LRI) {
 | 
						|
    ValueList &List = LRI->second;
 | 
						|
    while (!List.empty()) {
 | 
						|
      Value *V = List.back();
 | 
						|
      List.pop_back();
 | 
						|
 | 
						|
      std::map<Value*, std::pair<ValID, int> >::iterator PHI =
 | 
						|
        CurModule.PlaceHolderInfo.find(V);
 | 
						|
      assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
 | 
						|
 | 
						|
      ValID &DID = PHI->second.first;
 | 
						|
 | 
						|
      Value *TheRealValue = getValNonImprovising(LRI->first, DID);
 | 
						|
      if (TheRealValue) {
 | 
						|
        V->replaceAllUsesWith(TheRealValue);
 | 
						|
        delete V;
 | 
						|
        CurModule.PlaceHolderInfo.erase(PHI);
 | 
						|
      } else if (FutureLateResolvers) {
 | 
						|
        // Functions have their unresolved items forwarded to the module late
 | 
						|
        // resolver table
 | 
						|
        InsertValue(V, *FutureLateResolvers);
 | 
						|
      } else {
 | 
						|
        if (DID.Type == ValID::NameVal)
 | 
						|
          ThrowException("Reference to an invalid definition: '" +DID.getName()+
 | 
						|
                         "' of type '" + V->getType()->getDescription() + "'",
 | 
						|
                         PHI->second.second);
 | 
						|
        else
 | 
						|
          ThrowException("Reference to an invalid definition: #" +
 | 
						|
                         itostr(DID.Num) + " of type '" +
 | 
						|
                         V->getType()->getDescription() + "'",
 | 
						|
                         PHI->second.second);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LateResolvers.clear();
 | 
						|
}
 | 
						|
 | 
						|
// ResolveTypeTo - A brand new type was just declared.  This means that (if
 | 
						|
// name is not null) things referencing Name can be resolved.  Otherwise, things
 | 
						|
// refering to the number can be resolved.  Do this now.
 | 
						|
//
 | 
						|
static void ResolveTypeTo(char *Name, const Type *ToTy) {
 | 
						|
  ValID D;
 | 
						|
  if (Name) D = ValID::create(Name);
 | 
						|
  else      D = ValID::create((int)CurModule.Types.size());
 | 
						|
 | 
						|
  std::map<ValID, PATypeHolder>::iterator I =
 | 
						|
    CurModule.LateResolveTypes.find(D);
 | 
						|
  if (I != CurModule.LateResolveTypes.end()) {
 | 
						|
    ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
 | 
						|
    CurModule.LateResolveTypes.erase(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// setValueName - Set the specified value to the name given.  The name may be
 | 
						|
// null potentially, in which case this is a noop.  The string passed in is
 | 
						|
// assumed to be a malloc'd string buffer, and is free'd by this function.
 | 
						|
//
 | 
						|
static void setValueName(Value *V, char *NameStr) {
 | 
						|
  if (NameStr) {
 | 
						|
    std::string Name(NameStr);      // Copy string
 | 
						|
    free(NameStr);                  // Free old string
 | 
						|
 | 
						|
    if (V->getType() == Type::VoidTy)
 | 
						|
      ThrowException("Can't assign name '" + Name+"' to value with void type!");
 | 
						|
 | 
						|
    assert(inFunctionScope() && "Must be in function scope!");
 | 
						|
    SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
 | 
						|
    if (ST.lookup(V->getType(), Name))
 | 
						|
      ThrowException("Redefinition of value named '" + Name + "' in the '" +
 | 
						|
                     V->getType()->getDescription() + "' type plane!");
 | 
						|
 | 
						|
    // Set the name.
 | 
						|
    V->setName(Name);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
 | 
						|
/// this is a declaration, otherwise it is a definition.
 | 
						|
static GlobalVariable *
 | 
						|
ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
 | 
						|
                    bool isConstantGlobal, const Type *Ty,
 | 
						|
                    Constant *Initializer) {
 | 
						|
  if (isa<FunctionType>(Ty))
 | 
						|
    ThrowException("Cannot declare global vars of function type!");
 | 
						|
 | 
						|
  const PointerType *PTy = PointerType::get(Ty);
 | 
						|
 | 
						|
  std::string Name;
 | 
						|
  if (NameStr) {
 | 
						|
    Name = NameStr;      // Copy string
 | 
						|
    free(NameStr);       // Free old string
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this global value was forward referenced.  If so, recycle the
 | 
						|
  // object.
 | 
						|
  ValID ID;
 | 
						|
  if (!Name.empty()) {
 | 
						|
    ID = ValID::create((char*)Name.c_str());
 | 
						|
  } else {
 | 
						|
    ID = ValID::create((int)CurModule.Values[PTy].size());
 | 
						|
  }
 | 
						|
 | 
						|
  if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
 | 
						|
    // Move the global to the end of the list, from whereever it was
 | 
						|
    // previously inserted.
 | 
						|
    GlobalVariable *GV = cast<GlobalVariable>(FWGV);
 | 
						|
    CurModule.CurrentModule->getGlobalList().remove(GV);
 | 
						|
    CurModule.CurrentModule->getGlobalList().push_back(GV);
 | 
						|
    GV->setInitializer(Initializer);
 | 
						|
    GV->setLinkage(Linkage);
 | 
						|
    GV->setConstant(isConstantGlobal);
 | 
						|
    InsertValue(GV, CurModule.Values);
 | 
						|
    return GV;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this global has a name, check to see if there is already a definition
 | 
						|
  // of this global in the module.  If so, merge as appropriate.  Note that
 | 
						|
  // this is really just a hack around problems in the CFE.  :(
 | 
						|
  if (!Name.empty()) {
 | 
						|
    // We are a simple redefinition of a value, check to see if it is defined
 | 
						|
    // the same as the old one.
 | 
						|
    if (GlobalVariable *EGV =
 | 
						|
                CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
 | 
						|
      // We are allowed to redefine a global variable in two circumstances:
 | 
						|
      // 1. If at least one of the globals is uninitialized or
 | 
						|
      // 2. If both initializers have the same value.
 | 
						|
      //
 | 
						|
      if (!EGV->hasInitializer() || !Initializer ||
 | 
						|
          EGV->getInitializer() == Initializer) {
 | 
						|
 | 
						|
        // Make sure the existing global version gets the initializer!  Make
 | 
						|
        // sure that it also gets marked const if the new version is.
 | 
						|
        if (Initializer && !EGV->hasInitializer())
 | 
						|
          EGV->setInitializer(Initializer);
 | 
						|
        if (isConstantGlobal)
 | 
						|
          EGV->setConstant(true);
 | 
						|
        EGV->setLinkage(Linkage);
 | 
						|
        return EGV;
 | 
						|
      }
 | 
						|
 | 
						|
      ThrowException("Redefinition of global variable named '" + Name +
 | 
						|
                     "' in the '" + Ty->getDescription() + "' type plane!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise there is no existing GV to use, create one now.
 | 
						|
  GlobalVariable *GV =
 | 
						|
    new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
 | 
						|
                       CurModule.CurrentModule);
 | 
						|
  InsertValue(GV, CurModule.Values);
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
// setTypeName - Set the specified type to the name given.  The name may be
 | 
						|
// null potentially, in which case this is a noop.  The string passed in is
 | 
						|
// assumed to be a malloc'd string buffer, and is freed by this function.
 | 
						|
//
 | 
						|
// This function returns true if the type has already been defined, but is
 | 
						|
// allowed to be redefined in the specified context.  If the name is a new name
 | 
						|
// for the type plane, it is inserted and false is returned.
 | 
						|
static bool setTypeName(const Type *T, char *NameStr) {
 | 
						|
  assert(!inFunctionScope() && "Can't give types function-local names!");
 | 
						|
  if (NameStr == 0) return false;
 | 
						|
 
 | 
						|
  std::string Name(NameStr);      // Copy string
 | 
						|
  free(NameStr);                  // Free old string
 | 
						|
 | 
						|
  // We don't allow assigning names to void type
 | 
						|
  if (T == Type::VoidTy)
 | 
						|
    ThrowException("Can't assign name '" + Name + "' to the void type!");
 | 
						|
 | 
						|
  // Set the type name, checking for conflicts as we do so.
 | 
						|
  bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
 | 
						|
 | 
						|
  if (AlreadyExists) {   // Inserting a name that is already defined???
 | 
						|
    const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
 | 
						|
    assert(Existing && "Conflict but no matching type?");
 | 
						|
 | 
						|
    // There is only one case where this is allowed: when we are refining an
 | 
						|
    // opaque type.  In this case, Existing will be an opaque type.
 | 
						|
    if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
 | 
						|
      // We ARE replacing an opaque type!
 | 
						|
      const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, this is an attempt to redefine a type. That's okay if
 | 
						|
    // the redefinition is identical to the original. This will be so if
 | 
						|
    // Existing and T point to the same Type object. In this one case we
 | 
						|
    // allow the equivalent redefinition.
 | 
						|
    if (Existing == T) return true;  // Yes, it's equal.
 | 
						|
 | 
						|
    // Any other kind of (non-equivalent) redefinition is an error.
 | 
						|
    ThrowException("Redefinition of type named '" + Name + "' in the '" +
 | 
						|
                   T->getDescription() + "' type plane!");
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Code for handling upreferences in type names...
 | 
						|
//
 | 
						|
 | 
						|
// TypeContains - Returns true if Ty directly contains E in it.
 | 
						|
//
 | 
						|
static bool TypeContains(const Type *Ty, const Type *E) {
 | 
						|
  return std::find(Ty->subtype_begin(), Ty->subtype_end(),
 | 
						|
                   E) != Ty->subtype_end();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct UpRefRecord {
 | 
						|
    // NestingLevel - The number of nesting levels that need to be popped before
 | 
						|
    // this type is resolved.
 | 
						|
    unsigned NestingLevel;
 | 
						|
 | 
						|
    // LastContainedTy - This is the type at the current binding level for the
 | 
						|
    // type.  Every time we reduce the nesting level, this gets updated.
 | 
						|
    const Type *LastContainedTy;
 | 
						|
 | 
						|
    // UpRefTy - This is the actual opaque type that the upreference is
 | 
						|
    // represented with.
 | 
						|
    OpaqueType *UpRefTy;
 | 
						|
 | 
						|
    UpRefRecord(unsigned NL, OpaqueType *URTy)
 | 
						|
      : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
// UpRefs - A list of the outstanding upreferences that need to be resolved.
 | 
						|
static std::vector<UpRefRecord> UpRefs;
 | 
						|
 | 
						|
/// HandleUpRefs - Every time we finish a new layer of types, this function is
 | 
						|
/// called.  It loops through the UpRefs vector, which is a list of the
 | 
						|
/// currently active types.  For each type, if the up reference is contained in
 | 
						|
/// the newly completed type, we decrement the level count.  When the level
 | 
						|
/// count reaches zero, the upreferenced type is the type that is passed in:
 | 
						|
/// thus we can complete the cycle.
 | 
						|
///
 | 
						|
static PATypeHolder HandleUpRefs(const Type *ty) {
 | 
						|
  if (!ty->isAbstract()) return ty;
 | 
						|
  PATypeHolder Ty(ty);
 | 
						|
  UR_OUT("Type '" << Ty->getDescription() <<
 | 
						|
         "' newly formed.  Resolving upreferences.\n" <<
 | 
						|
         UpRefs.size() << " upreferences active!\n");
 | 
						|
 | 
						|
  // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
 | 
						|
  // to zero), we resolve them all together before we resolve them to Ty.  At
 | 
						|
  // the end of the loop, if there is anything to resolve to Ty, it will be in
 | 
						|
  // this variable.
 | 
						|
  OpaqueType *TypeToResolve = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != UpRefs.size(); ++i) {
 | 
						|
    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
 | 
						|
           << UpRefs[i].second->getDescription() << ") = "
 | 
						|
           << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
 | 
						|
    if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
 | 
						|
      // Decrement level of upreference
 | 
						|
      unsigned Level = --UpRefs[i].NestingLevel;
 | 
						|
      UpRefs[i].LastContainedTy = Ty;
 | 
						|
      UR_OUT("  Uplevel Ref Level = " << Level << "\n");
 | 
						|
      if (Level == 0) {                     // Upreference should be resolved!
 | 
						|
        if (!TypeToResolve) {
 | 
						|
          TypeToResolve = UpRefs[i].UpRefTy;
 | 
						|
        } else {
 | 
						|
          UR_OUT("  * Resolving upreference for "
 | 
						|
                 << UpRefs[i].second->getDescription() << "\n";
 | 
						|
                 std::string OldName = UpRefs[i].UpRefTy->getDescription());
 | 
						|
          UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
 | 
						|
          UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | 
						|
                 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
 | 
						|
        }
 | 
						|
        UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | 
						|
        --i;                                // Do not skip the next element...
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TypeToResolve) {
 | 
						|
    UR_OUT("  * Resolving upreference for "
 | 
						|
           << UpRefs[i].second->getDescription() << "\n";
 | 
						|
           std::string OldName = TypeToResolve->getDescription());
 | 
						|
    TypeToResolve->refineAbstractTypeTo(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// common code from the two 'RunVMAsmParser' functions
 | 
						|
 static Module * RunParser(Module * M) {
 | 
						|
 | 
						|
  llvmAsmlineno = 1;      // Reset the current line number...
 | 
						|
  ObsoleteVarArgs = false;
 | 
						|
  NewVarArgs = false;
 | 
						|
 | 
						|
  CurModule.CurrentModule = M;
 | 
						|
  yyparse();       // Parse the file, potentially throwing exception
 | 
						|
 | 
						|
  Module *Result = ParserResult;
 | 
						|
  ParserResult = 0;
 | 
						|
 | 
						|
  //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
 | 
						|
  {
 | 
						|
    Function* F;
 | 
						|
    if ((F = Result->getNamedFunction("llvm.va_start"))
 | 
						|
        && F->getFunctionType()->getNumParams() == 0)
 | 
						|
      ObsoleteVarArgs = true;
 | 
						|
    if((F = Result->getNamedFunction("llvm.va_copy"))
 | 
						|
       && F->getFunctionType()->getNumParams() == 1)
 | 
						|
      ObsoleteVarArgs = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ObsoleteVarArgs && NewVarArgs)
 | 
						|
    ThrowException("This file is corrupt: it uses both new and old style varargs");
 | 
						|
 | 
						|
  if(ObsoleteVarArgs) {
 | 
						|
    if(Function* F = Result->getNamedFunction("llvm.va_start")) {
 | 
						|
      if (F->arg_size() != 0)
 | 
						|
        ThrowException("Obsolete va_start takes 0 argument!");
 | 
						|
      
 | 
						|
      //foo = va_start()
 | 
						|
      // ->
 | 
						|
      //bar = alloca typeof(foo)
 | 
						|
      //va_start(bar)
 | 
						|
      //foo = load bar
 | 
						|
 | 
						|
      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | 
						|
      const Type* ArgTy = F->getFunctionType()->getReturnType();
 | 
						|
      const Type* ArgTyPtr = PointerType::get(ArgTy);
 | 
						|
      Function* NF = Result->getOrInsertFunction("llvm.va_start", 
 | 
						|
                                                 RetTy, ArgTyPtr, (Type *)0);
 | 
						|
 | 
						|
      while (!F->use_empty()) {
 | 
						|
        CallInst* CI = cast<CallInst>(F->use_back());
 | 
						|
        AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
 | 
						|
        new CallInst(NF, bar, "", CI);
 | 
						|
        Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
 | 
						|
        CI->replaceAllUsesWith(foo);
 | 
						|
        CI->getParent()->getInstList().erase(CI);
 | 
						|
      }
 | 
						|
      Result->getFunctionList().erase(F);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if(Function* F = Result->getNamedFunction("llvm.va_end")) {
 | 
						|
      if(F->arg_size() != 1)
 | 
						|
        ThrowException("Obsolete va_end takes 1 argument!");
 | 
						|
 | 
						|
      //vaend foo
 | 
						|
      // ->
 | 
						|
      //bar = alloca 1 of typeof(foo)
 | 
						|
      //vaend bar
 | 
						|
      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | 
						|
      const Type* ArgTy = F->getFunctionType()->getParamType(0);
 | 
						|
      const Type* ArgTyPtr = PointerType::get(ArgTy);
 | 
						|
      Function* NF = Result->getOrInsertFunction("llvm.va_end", 
 | 
						|
                                                 RetTy, ArgTyPtr, (Type *)0);
 | 
						|
 | 
						|
      while (!F->use_empty()) {
 | 
						|
        CallInst* CI = cast<CallInst>(F->use_back());
 | 
						|
        AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
 | 
						|
        new StoreInst(CI->getOperand(1), bar, CI);
 | 
						|
        new CallInst(NF, bar, "", CI);
 | 
						|
        CI->getParent()->getInstList().erase(CI);
 | 
						|
      }
 | 
						|
      Result->getFunctionList().erase(F);
 | 
						|
    }
 | 
						|
 | 
						|
    if(Function* F = Result->getNamedFunction("llvm.va_copy")) {
 | 
						|
      if(F->arg_size() != 1)
 | 
						|
        ThrowException("Obsolete va_copy takes 1 argument!");
 | 
						|
      //foo = vacopy(bar)
 | 
						|
      // ->
 | 
						|
      //a = alloca 1 of typeof(foo)
 | 
						|
      //b = alloca 1 of typeof(foo)
 | 
						|
      //store bar -> b
 | 
						|
      //vacopy(a, b)
 | 
						|
      //foo = load a
 | 
						|
      
 | 
						|
      const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
 | 
						|
      const Type* ArgTy = F->getFunctionType()->getReturnType();
 | 
						|
      const Type* ArgTyPtr = PointerType::get(ArgTy);
 | 
						|
      Function* NF = Result->getOrInsertFunction("llvm.va_copy", 
 | 
						|
                                                 RetTy, ArgTyPtr, ArgTyPtr,
 | 
						|
                                                 (Type *)0);
 | 
						|
 | 
						|
      while (!F->use_empty()) {
 | 
						|
        CallInst* CI = cast<CallInst>(F->use_back());
 | 
						|
        AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
 | 
						|
        AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
 | 
						|
        new StoreInst(CI->getOperand(1), b, CI);
 | 
						|
        new CallInst(NF, a, b, "", CI);
 | 
						|
        Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
 | 
						|
        CI->replaceAllUsesWith(foo);
 | 
						|
        CI->getParent()->getInstList().erase(CI);
 | 
						|
      }
 | 
						|
      Result->getFunctionList().erase(F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
 | 
						|
 }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            RunVMAsmParser - Define an interface to this parser
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
 | 
						|
  set_scan_file(F);
 | 
						|
 | 
						|
  CurFilename = Filename;
 | 
						|
  return RunParser(new Module(CurFilename));
 | 
						|
}
 | 
						|
 | 
						|
Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
 | 
						|
  set_scan_string(AsmString);
 | 
						|
 | 
						|
  CurFilename = "from_memory";
 | 
						|
  if (M == NULL) {
 | 
						|
    return RunParser(new Module (CurFilename));
 | 
						|
  } else {
 | 
						|
    return RunParser(M);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
%}
 | 
						|
 | 
						|
%union {
 | 
						|
  llvm::Module                           *ModuleVal;
 | 
						|
  llvm::Function                         *FunctionVal;
 | 
						|
  std::pair<llvm::PATypeHolder*, char*>  *ArgVal;
 | 
						|
  llvm::BasicBlock                       *BasicBlockVal;
 | 
						|
  llvm::TerminatorInst                   *TermInstVal;
 | 
						|
  llvm::Instruction                      *InstVal;
 | 
						|
  llvm::Constant                         *ConstVal;
 | 
						|
 | 
						|
  const llvm::Type                       *PrimType;
 | 
						|
  llvm::PATypeHolder                     *TypeVal;
 | 
						|
  llvm::Value                            *ValueVal;
 | 
						|
 | 
						|
  std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
 | 
						|
  std::vector<llvm::Value*>              *ValueList;
 | 
						|
  std::list<llvm::PATypeHolder>          *TypeList;
 | 
						|
  // Represent the RHS of PHI node
 | 
						|
  std::list<std::pair<llvm::Value*,
 | 
						|
                      llvm::BasicBlock*> > *PHIList;
 | 
						|
  std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
 | 
						|
  std::vector<llvm::Constant*>           *ConstVector;
 | 
						|
 | 
						|
  llvm::GlobalValue::LinkageTypes         Linkage;
 | 
						|
  int64_t                           SInt64Val;
 | 
						|
  uint64_t                          UInt64Val;
 | 
						|
  int                               SIntVal;
 | 
						|
  unsigned                          UIntVal;
 | 
						|
  double                            FPVal;
 | 
						|
  bool                              BoolVal;
 | 
						|
 | 
						|
  char                             *StrVal;   // This memory is strdup'd!
 | 
						|
  llvm::ValID                             ValIDVal; // strdup'd memory maybe!
 | 
						|
 | 
						|
  llvm::Instruction::BinaryOps            BinaryOpVal;
 | 
						|
  llvm::Instruction::TermOps              TermOpVal;
 | 
						|
  llvm::Instruction::MemoryOps            MemOpVal;
 | 
						|
  llvm::Instruction::OtherOps             OtherOpVal;
 | 
						|
  llvm::Module::Endianness                Endianness;
 | 
						|
}
 | 
						|
 | 
						|
%type <ModuleVal>     Module FunctionList
 | 
						|
%type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | 
						|
%type <BasicBlockVal> BasicBlock InstructionList
 | 
						|
%type <TermInstVal>   BBTerminatorInst
 | 
						|
%type <InstVal>       Inst InstVal MemoryInst
 | 
						|
%type <ConstVal>      ConstVal ConstExpr
 | 
						|
%type <ConstVector>   ConstVector
 | 
						|
%type <ArgList>       ArgList ArgListH
 | 
						|
%type <ArgVal>        ArgVal
 | 
						|
%type <PHIList>       PHIList
 | 
						|
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | 
						|
%type <ValueList>     IndexList                   // For GEP derived indices
 | 
						|
%type <TypeList>      TypeListI ArgTypeListI
 | 
						|
%type <JumpTable>     JumpTable
 | 
						|
%type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
 | 
						|
%type <BoolVal>       OptVolatile                 // 'volatile' or not
 | 
						|
%type <BoolVal>       OptTailCall                 // TAIL CALL or plain CALL.
 | 
						|
%type <BoolVal>       OptSideEffect               // 'sideeffect' or not.
 | 
						|
%type <Linkage>       OptLinkage
 | 
						|
%type <Endianness>    BigOrLittle
 | 
						|
 | 
						|
// ValueRef - Unresolved reference to a definition or BB
 | 
						|
%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | 
						|
%type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | 
						|
// Tokens and types for handling constant integer values
 | 
						|
//
 | 
						|
// ESINT64VAL - A negative number within long long range
 | 
						|
%token <SInt64Val> ESINT64VAL
 | 
						|
 | 
						|
// EUINT64VAL - A positive number within uns. long long range
 | 
						|
%token <UInt64Val> EUINT64VAL
 | 
						|
%type  <SInt64Val> EINT64VAL
 | 
						|
 | 
						|
%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | 
						|
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | 
						|
%type   <SIntVal>   INTVAL
 | 
						|
%token  <FPVal>     FPVAL     // Float or Double constant
 | 
						|
 | 
						|
// Built in types...
 | 
						|
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | 
						|
%type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
 | 
						|
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | 
						|
%token <PrimType> FLOAT DOUBLE TYPE LABEL
 | 
						|
 | 
						|
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
 | 
						|
%type  <StrVal> Name OptName OptAssign
 | 
						|
%type  <UIntVal> OptAlign OptCAlign
 | 
						|
%type <StrVal> OptSection SectionString
 | 
						|
 | 
						|
%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
 | 
						|
%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
 | 
						|
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK  APPENDING
 | 
						|
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
 | 
						|
%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
 | 
						|
%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
 | 
						|
%type <UIntVal> OptCallingConv
 | 
						|
 | 
						|
// Basic Block Terminating Operators
 | 
						|
%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
 | 
						|
 | 
						|
// Binary Operators
 | 
						|
%type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
 | 
						|
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
 | 
						|
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators
 | 
						|
 | 
						|
// Memory Instructions
 | 
						|
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | 
						|
 | 
						|
// Other Operators
 | 
						|
%type  <OtherOpVal> ShiftOps
 | 
						|
%token <OtherOpVal> PHI_TOK CAST SELECT SHL SHR VAARG
 | 
						|
%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
 | 
						|
%token VAARG_old VANEXT_old //OBSOLETE
 | 
						|
 | 
						|
 | 
						|
%start Module
 | 
						|
%%
 | 
						|
 | 
						|
// Handle constant integer size restriction and conversion...
 | 
						|
//
 | 
						|
INTVAL : SINTVAL;
 | 
						|
INTVAL : UINTVAL {
 | 
						|
  if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | 
						|
    ThrowException("Value too large for type!");
 | 
						|
  $$ = (int32_t)$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
 | 
						|
EINT64VAL : EUINT64VAL {
 | 
						|
  if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | 
						|
    ThrowException("Value too large for type!");
 | 
						|
  $$ = (int64_t)$1;
 | 
						|
};
 | 
						|
 | 
						|
// Operations that are notably excluded from this list include:
 | 
						|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | 
						|
//
 | 
						|
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
 | 
						|
LogicalOps   : AND | OR | XOR;
 | 
						|
SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
 | 
						|
 | 
						|
ShiftOps  : SHL | SHR;
 | 
						|
 | 
						|
// These are some types that allow classification if we only want a particular 
 | 
						|
// thing... for example, only a signed, unsigned, or integral type.
 | 
						|
SIntType :  LONG |  INT |  SHORT | SBYTE;
 | 
						|
UIntType : ULONG | UINT | USHORT | UBYTE;
 | 
						|
IntType  : SIntType | UIntType;
 | 
						|
FPType   : FLOAT | DOUBLE;
 | 
						|
 | 
						|
// OptAssign - Value producing statements have an optional assignment component
 | 
						|
OptAssign : Name '=' {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | /*empty*/ {
 | 
						|
    $$ = 0;
 | 
						|
  };
 | 
						|
 | 
						|
OptLinkage : INTERNAL  { $$ = GlobalValue::InternalLinkage; } |
 | 
						|
             LINKONCE  { $$ = GlobalValue::LinkOnceLinkage; } |
 | 
						|
             WEAK      { $$ = GlobalValue::WeakLinkage; } |
 | 
						|
             APPENDING { $$ = GlobalValue::AppendingLinkage; } |
 | 
						|
             /*empty*/ { $$ = GlobalValue::ExternalLinkage; };
 | 
						|
 | 
						|
OptCallingConv : /*empty*/      { $$ = CallingConv::C; } |
 | 
						|
                 CCC_TOK        { $$ = CallingConv::C; } |
 | 
						|
                 CSRETCC_TOK    { $$ = CallingConv::CSRet; } |
 | 
						|
                 FASTCC_TOK     { $$ = CallingConv::Fast; } |
 | 
						|
                 COLDCC_TOK     { $$ = CallingConv::Cold; } |
 | 
						|
                 CC_TOK EUINT64VAL {
 | 
						|
                   if ((unsigned)$2 != $2)
 | 
						|
                     ThrowException("Calling conv too large!");
 | 
						|
                   $$ = $2;
 | 
						|
                 };
 | 
						|
 | 
						|
// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
 | 
						|
// a comma before it.
 | 
						|
OptAlign : /*empty*/        { $$ = 0; } |
 | 
						|
           ALIGN EUINT64VAL {
 | 
						|
  $$ = $2;
 | 
						|
  if ($$ != 0 && !isPowerOf2_32($$))
 | 
						|
    ThrowException("Alignment must be a power of two!");
 | 
						|
};
 | 
						|
OptCAlign : /*empty*/            { $$ = 0; } |
 | 
						|
            ',' ALIGN EUINT64VAL {
 | 
						|
  $$ = $3;
 | 
						|
  if ($$ != 0 && !isPowerOf2_32($$))
 | 
						|
    ThrowException("Alignment must be a power of two!");
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
SectionString : SECTION STRINGCONSTANT {
 | 
						|
  for (unsigned i = 0, e = strlen($2); i != e; ++i)
 | 
						|
    if ($2[i] == '"' || $2[i] == '\\')
 | 
						|
      ThrowException("Invalid character in section name!");
 | 
						|
  $$ = $2;
 | 
						|
};
 | 
						|
 | 
						|
OptSection : /*empty*/ { $$ = 0; } |
 | 
						|
             SectionString { $$ = $1; };
 | 
						|
 | 
						|
// GlobalVarAttributes - Used to pass the attributes string on a global.  CurGV
 | 
						|
// is set to be the global we are processing.
 | 
						|
//
 | 
						|
GlobalVarAttributes : /* empty */ {} |
 | 
						|
                     ',' GlobalVarAttribute GlobalVarAttributes {};
 | 
						|
GlobalVarAttribute : SectionString {
 | 
						|
    CurGV->setSection($1);
 | 
						|
    free($1);
 | 
						|
  } 
 | 
						|
  | ALIGN EUINT64VAL {
 | 
						|
    if ($2 != 0 && !isPowerOf2_32($2))
 | 
						|
      ThrowException("Alignment must be a power of two!");
 | 
						|
    CurGV->setAlignment($2);
 | 
						|
  };
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Types includes all predefined types... except void, because it can only be
 | 
						|
// used in specific contexts (function returning void for example).  To have
 | 
						|
// access to it, a user must explicitly use TypesV.
 | 
						|
//
 | 
						|
 | 
						|
// TypesV includes all of 'Types', but it also includes the void type.
 | 
						|
TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
 | 
						|
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
 | 
						|
 | 
						|
Types     : UpRTypes {
 | 
						|
    if (!UpRefs.empty())
 | 
						|
      ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// Derived types are added later...
 | 
						|
//
 | 
						|
PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
 | 
						|
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
 | 
						|
UpRTypes : OPAQUE {
 | 
						|
    $$ = new PATypeHolder(OpaqueType::get());
 | 
						|
  }
 | 
						|
  | PrimType {
 | 
						|
    $$ = new PATypeHolder($1);
 | 
						|
  };
 | 
						|
UpRTypes : SymbolicValueRef {            // Named types are also simple types...
 | 
						|
  $$ = new PATypeHolder(getTypeVal($1));
 | 
						|
};
 | 
						|
 | 
						|
// Include derived types in the Types production.
 | 
						|
//
 | 
						|
UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
 | 
						|
    if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
 | 
						|
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | 
						|
    UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
 | 
						|
    $$ = new PATypeHolder(OT);
 | 
						|
    UR_OUT("New Upreference!\n");
 | 
						|
  }
 | 
						|
  | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | 
						|
    std::vector<const Type*> Params;
 | 
						|
    for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
 | 
						|
           E = $3->end(); I != E; ++I)
 | 
						|
      Params.push_back(*I);
 | 
						|
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | 
						|
    if (isVarArg) Params.pop_back();
 | 
						|
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
 | 
						|
    delete $3;      // Delete the argument list
 | 
						|
    delete $1;      // Delete the return type handle
 | 
						|
  }
 | 
						|
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | '<' EUINT64VAL 'x' UpRTypes '>' {          // Packed array type?
 | 
						|
     const llvm::Type* ElemTy = $4->get();
 | 
						|
     if ((unsigned)$2 != $2)
 | 
						|
        ThrowException("Unsigned result not equal to signed result");
 | 
						|
     if (!ElemTy->isPrimitiveType())
 | 
						|
        ThrowException("Elemental type of a PackedType must be primitive");
 | 
						|
     if (!isPowerOf2_32($2))
 | 
						|
       ThrowException("Vector length should be a power of 2!");
 | 
						|
     $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
 | 
						|
     delete $4;
 | 
						|
  }
 | 
						|
  | '{' TypeListI '}' {                        // Structure type?
 | 
						|
    std::vector<const Type*> Elements;
 | 
						|
    for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
 | 
						|
           E = $2->end(); I != E; ++I)
 | 
						|
      Elements.push_back(*I);
 | 
						|
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | '{' '}' {                                  // Empty structure type?
 | 
						|
    $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
 | 
						|
  }
 | 
						|
  | UpRTypes '*' {                             // Pointer type?
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
// TypeList - Used for struct declarations and as a basis for function type 
 | 
						|
// declaration type lists
 | 
						|
//
 | 
						|
TypeListI : UpRTypes {
 | 
						|
    $$ = new std::list<PATypeHolder>();
 | 
						|
    $$->push_back(*$1); delete $1;
 | 
						|
  }
 | 
						|
  | TypeListI ',' UpRTypes {
 | 
						|
    ($$=$1)->push_back(*$3); delete $3;
 | 
						|
  };
 | 
						|
 | 
						|
// ArgTypeList - List of types for a function type declaration...
 | 
						|
ArgTypeListI : TypeListI
 | 
						|
  | TypeListI ',' DOTDOTDOT {
 | 
						|
    ($$=$1)->push_back(Type::VoidTy);
 | 
						|
  }
 | 
						|
  | DOTDOTDOT {
 | 
						|
    ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
 | 
						|
  }
 | 
						|
  | /*empty*/ {
 | 
						|
    $$ = new std::list<PATypeHolder>();
 | 
						|
  };
 | 
						|
 | 
						|
// ConstVal - The various declarations that go into the constant pool.  This
 | 
						|
// production is used ONLY to represent constants that show up AFTER a 'const',
 | 
						|
// 'constant' or 'global' token at global scope.  Constants that can be inlined
 | 
						|
// into other expressions (such as integers and constexprs) are handled by the
 | 
						|
// ResolvedVal, ValueRef and ConstValueRef productions.
 | 
						|
//
 | 
						|
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
 | 
						|
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
    const Type *ETy = ATy->getElementType();
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
 | 
						|
    // Verify that we have the correct size...
 | 
						|
    if (NumElements != -1 && NumElements != (int)$3->size())
 | 
						|
      ThrowException("Type mismatch: constant sized array initialized with " +
 | 
						|
                     utostr($3->size()) +  " arguments, but has size of " + 
 | 
						|
                     itostr(NumElements) + "!");
 | 
						|
 | 
						|
    // Verify all elements are correct type!
 | 
						|
    for (unsigned i = 0; i < $3->size(); i++) {
 | 
						|
      if (ETy != (*$3)[i]->getType())
 | 
						|
        ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | 
						|
                       ETy->getDescription() +"' as required!\nIt is of type '"+
 | 
						|
                       (*$3)[i]->getType()->getDescription() + "'.");
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = ConstantArray::get(ATy, *$3);
 | 
						|
    delete $1; delete $3;
 | 
						|
  }
 | 
						|
  | Types '[' ']' {
 | 
						|
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
    if (NumElements != -1 && NumElements != 0) 
 | 
						|
      ThrowException("Type mismatch: constant sized array initialized with 0"
 | 
						|
                     " arguments, but has size of " + itostr(NumElements) +"!");
 | 
						|
    $$ = ConstantArray::get(ATy, std::vector<Constant*>());
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types 'c' STRINGCONSTANT {
 | 
						|
    const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
    const Type *ETy = ATy->getElementType();
 | 
						|
    char *EndStr = UnEscapeLexed($3, true);
 | 
						|
    if (NumElements != -1 && NumElements != (EndStr-$3))
 | 
						|
      ThrowException("Can't build string constant of size " + 
 | 
						|
                     itostr((int)(EndStr-$3)) +
 | 
						|
                     " when array has size " + itostr(NumElements) + "!");
 | 
						|
    std::vector<Constant*> Vals;
 | 
						|
    if (ETy == Type::SByteTy) {
 | 
						|
      for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C)
 | 
						|
        Vals.push_back(ConstantSInt::get(ETy, *C));
 | 
						|
    } else if (ETy == Type::UByteTy) {
 | 
						|
      for (unsigned char *C = (unsigned char *)$3; 
 | 
						|
           C != (unsigned char*)EndStr; ++C)
 | 
						|
        Vals.push_back(ConstantUInt::get(ETy, *C));
 | 
						|
    } else {
 | 
						|
      free($3);
 | 
						|
      ThrowException("Cannot build string arrays of non byte sized elements!");
 | 
						|
    }
 | 
						|
    free($3);
 | 
						|
    $$ = ConstantArray::get(ATy, Vals);
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types '<' ConstVector '>' { // Nonempty unsized arr
 | 
						|
    const PackedType *PTy = dyn_cast<PackedType>($1->get());
 | 
						|
    if (PTy == 0)
 | 
						|
      ThrowException("Cannot make packed constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
    const Type *ETy = PTy->getElementType();
 | 
						|
    int NumElements = PTy->getNumElements();
 | 
						|
 | 
						|
    // Verify that we have the correct size...
 | 
						|
    if (NumElements != -1 && NumElements != (int)$3->size())
 | 
						|
      ThrowException("Type mismatch: constant sized packed initialized with " +
 | 
						|
                     utostr($3->size()) +  " arguments, but has size of " + 
 | 
						|
                     itostr(NumElements) + "!");
 | 
						|
 | 
						|
    // Verify all elements are correct type!
 | 
						|
    for (unsigned i = 0; i < $3->size(); i++) {
 | 
						|
      if (ETy != (*$3)[i]->getType())
 | 
						|
        ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | 
						|
           ETy->getDescription() +"' as required!\nIt is of type '"+
 | 
						|
           (*$3)[i]->getType()->getDescription() + "'.");
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = ConstantPacked::get(PTy, *$3);
 | 
						|
    delete $1; delete $3;
 | 
						|
  }
 | 
						|
  | Types '{' ConstVector '}' {
 | 
						|
    const StructType *STy = dyn_cast<StructType>($1->get());
 | 
						|
    if (STy == 0)
 | 
						|
      ThrowException("Cannot make struct constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    if ($3->size() != STy->getNumContainedTypes())
 | 
						|
      ThrowException("Illegal number of initializers for structure type!");
 | 
						|
 | 
						|
    // Check to ensure that constants are compatible with the type initializer!
 | 
						|
    for (unsigned i = 0, e = $3->size(); i != e; ++i)
 | 
						|
      if ((*$3)[i]->getType() != STy->getElementType(i))
 | 
						|
        ThrowException("Expected type '" +
 | 
						|
                       STy->getElementType(i)->getDescription() +
 | 
						|
                       "' for element #" + utostr(i) +
 | 
						|
                       " of structure initializer!");
 | 
						|
 | 
						|
    $$ = ConstantStruct::get(STy, *$3);
 | 
						|
    delete $1; delete $3;
 | 
						|
  }
 | 
						|
  | Types '{' '}' {
 | 
						|
    const StructType *STy = dyn_cast<StructType>($1->get());
 | 
						|
    if (STy == 0)
 | 
						|
      ThrowException("Cannot make struct constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    if (STy->getNumContainedTypes() != 0)
 | 
						|
      ThrowException("Illegal number of initializers for structure type!");
 | 
						|
 | 
						|
    $$ = ConstantStruct::get(STy, std::vector<Constant*>());
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types NULL_TOK {
 | 
						|
    const PointerType *PTy = dyn_cast<PointerType>($1->get());
 | 
						|
    if (PTy == 0)
 | 
						|
      ThrowException("Cannot make null pointer constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    $$ = ConstantPointerNull::get(PTy);
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types UNDEF {
 | 
						|
    $$ = UndefValue::get($1->get());
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types SymbolicValueRef {
 | 
						|
    const PointerType *Ty = dyn_cast<PointerType>($1->get());
 | 
						|
    if (Ty == 0)
 | 
						|
      ThrowException("Global const reference must be a pointer type!");
 | 
						|
 | 
						|
    // ConstExprs can exist in the body of a function, thus creating
 | 
						|
    // GlobalValues whenever they refer to a variable.  Because we are in
 | 
						|
    // the context of a function, getValNonImprovising will search the functions
 | 
						|
    // symbol table instead of the module symbol table for the global symbol,
 | 
						|
    // which throws things all off.  To get around this, we just tell
 | 
						|
    // getValNonImprovising that we are at global scope here.
 | 
						|
    //
 | 
						|
    Function *SavedCurFn = CurFun.CurrentFunction;
 | 
						|
    CurFun.CurrentFunction = 0;
 | 
						|
 | 
						|
    Value *V = getValNonImprovising(Ty, $2);
 | 
						|
 | 
						|
    CurFun.CurrentFunction = SavedCurFn;
 | 
						|
 | 
						|
    // If this is an initializer for a constant pointer, which is referencing a
 | 
						|
    // (currently) undefined variable, create a stub now that shall be replaced
 | 
						|
    // in the future with the right type of variable.
 | 
						|
    //
 | 
						|
    if (V == 0) {
 | 
						|
      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
 | 
						|
      const PointerType *PT = cast<PointerType>(Ty);
 | 
						|
 | 
						|
      // First check to see if the forward references value is already created!
 | 
						|
      PerModuleInfo::GlobalRefsType::iterator I =
 | 
						|
        CurModule.GlobalRefs.find(std::make_pair(PT, $2));
 | 
						|
    
 | 
						|
      if (I != CurModule.GlobalRefs.end()) {
 | 
						|
        V = I->second;             // Placeholder already exists, use it...
 | 
						|
        $2.destroy();
 | 
						|
      } else {
 | 
						|
        std::string Name;
 | 
						|
        if ($2.Type == ValID::NameVal) Name = $2.Name;
 | 
						|
 | 
						|
        // Create the forward referenced global.
 | 
						|
        GlobalValue *GV;
 | 
						|
        if (const FunctionType *FTy = 
 | 
						|
                 dyn_cast<FunctionType>(PT->getElementType())) {
 | 
						|
          GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
 | 
						|
                            CurModule.CurrentModule);
 | 
						|
        } else {
 | 
						|
          GV = new GlobalVariable(PT->getElementType(), false,
 | 
						|
                                  GlobalValue::ExternalLinkage, 0,
 | 
						|
                                  Name, CurModule.CurrentModule);
 | 
						|
        }
 | 
						|
 | 
						|
        // Keep track of the fact that we have a forward ref to recycle it
 | 
						|
        CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
 | 
						|
        V = GV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = cast<GlobalValue>(V);
 | 
						|
    delete $1;            // Free the type handle
 | 
						|
  }
 | 
						|
  | Types ConstExpr {
 | 
						|
    if ($1->get() != $2->getType())
 | 
						|
      ThrowException("Mismatched types for constant expression!");
 | 
						|
    $$ = $2;
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types ZEROINITIALIZER {
 | 
						|
    const Type *Ty = $1->get();
 | 
						|
    if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
 | 
						|
      ThrowException("Cannot create a null initialized value of this type!");
 | 
						|
    $$ = Constant::getNullValue(Ty);
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
ConstVal : SIntType EINT64VAL {      // integral constants
 | 
						|
    if (!ConstantSInt::isValueValidForType($1, $2))
 | 
						|
      ThrowException("Constant value doesn't fit in type!");
 | 
						|
    $$ = ConstantSInt::get($1, $2);
 | 
						|
  }
 | 
						|
  | UIntType EUINT64VAL {            // integral constants
 | 
						|
    if (!ConstantUInt::isValueValidForType($1, $2))
 | 
						|
      ThrowException("Constant value doesn't fit in type!");
 | 
						|
    $$ = ConstantUInt::get($1, $2);
 | 
						|
  }
 | 
						|
  | BOOL TRUETOK {                      // Boolean constants
 | 
						|
    $$ = ConstantBool::True;
 | 
						|
  }
 | 
						|
  | BOOL FALSETOK {                     // Boolean constants
 | 
						|
    $$ = ConstantBool::False;
 | 
						|
  }
 | 
						|
  | FPType FPVAL {                   // Float & Double constants
 | 
						|
    if (!ConstantFP::isValueValidForType($1, $2))
 | 
						|
      ThrowException("Floating point constant invalid for type!!");
 | 
						|
    $$ = ConstantFP::get($1, $2);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
ConstExpr: CAST '(' ConstVal TO Types ')' {
 | 
						|
    if (!$3->getType()->isFirstClassType())
 | 
						|
      ThrowException("cast constant expression from a non-primitive type: '" +
 | 
						|
                     $3->getType()->getDescription() + "'!");
 | 
						|
    if (!$5->get()->isFirstClassType())
 | 
						|
      ThrowException("cast constant expression to a non-primitive type: '" +
 | 
						|
                     $5->get()->getDescription() + "'!");
 | 
						|
    $$ = ConstantExpr::getCast($3, $5->get());
 | 
						|
    delete $5;
 | 
						|
  }
 | 
						|
  | GETELEMENTPTR '(' ConstVal IndexList ')' {
 | 
						|
    if (!isa<PointerType>($3->getType()))
 | 
						|
      ThrowException("GetElementPtr requires a pointer operand!");
 | 
						|
 | 
						|
    // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct
 | 
						|
    // indices to uint struct indices for compatibility.
 | 
						|
    generic_gep_type_iterator<std::vector<Value*>::iterator>
 | 
						|
      GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
 | 
						|
      GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
 | 
						|
    for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
 | 
						|
      if (isa<StructType>(*GTI))        // Only change struct indices
 | 
						|
        if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
 | 
						|
          if (CUI->getType() == Type::UByteTy)
 | 
						|
            (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
 | 
						|
 | 
						|
    const Type *IdxTy =
 | 
						|
      GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
 | 
						|
    if (!IdxTy)
 | 
						|
      ThrowException("Index list invalid for constant getelementptr!");
 | 
						|
 | 
						|
    std::vector<Constant*> IdxVec;
 | 
						|
    for (unsigned i = 0, e = $4->size(); i != e; ++i)
 | 
						|
      if (Constant *C = dyn_cast<Constant>((*$4)[i]))
 | 
						|
        IdxVec.push_back(C);
 | 
						|
      else
 | 
						|
        ThrowException("Indices to constant getelementptr must be constants!");
 | 
						|
 | 
						|
    delete $4;
 | 
						|
 | 
						|
    $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
 | 
						|
  }
 | 
						|
  | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($3->getType() != Type::BoolTy)
 | 
						|
      ThrowException("Select condition must be of boolean type!");
 | 
						|
    if ($5->getType() != $7->getType())
 | 
						|
      ThrowException("Select operand types must match!");
 | 
						|
    $$ = ConstantExpr::getSelect($3, $5, $7);
 | 
						|
  }
 | 
						|
  | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($3->getType() != $5->getType())
 | 
						|
      ThrowException("Binary operator types must match!");
 | 
						|
    // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
 | 
						|
    // To retain backward compatibility with these early compilers, we emit a
 | 
						|
    // cast to the appropriate integer type automatically if we are in the
 | 
						|
    // broken case.  See PR424 for more information.
 | 
						|
    if (!isa<PointerType>($3->getType())) {
 | 
						|
      $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
    } else {
 | 
						|
      const Type *IntPtrTy = 0;
 | 
						|
      switch (CurModule.CurrentModule->getPointerSize()) {
 | 
						|
      case Module::Pointer32: IntPtrTy = Type::IntTy; break;
 | 
						|
      case Module::Pointer64: IntPtrTy = Type::LongTy; break;
 | 
						|
      default: ThrowException("invalid pointer binary constant expr!");
 | 
						|
      }
 | 
						|
      $$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
 | 
						|
                             ConstantExpr::getCast($5, IntPtrTy));
 | 
						|
      $$ = ConstantExpr::getCast($$, $3->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
  | LogicalOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($3->getType() != $5->getType())
 | 
						|
      ThrowException("Logical operator types must match!");
 | 
						|
    if (!$3->getType()->isIntegral()) {
 | 
						|
      if (!isa<PackedType>($3->getType()) || 
 | 
						|
          !cast<PackedType>($3->getType())->getElementType()->isIntegral())
 | 
						|
        ThrowException("Logical operator requires integral operands!");
 | 
						|
    }
 | 
						|
    $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
  }
 | 
						|
  | SetCondOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($3->getType() != $5->getType())
 | 
						|
      ThrowException("setcc operand types must match!");
 | 
						|
    $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
  }
 | 
						|
  | ShiftOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($5->getType() != Type::UByteTy)
 | 
						|
      ThrowException("Shift count for shift constant must be unsigned byte!");
 | 
						|
    if (!$3->getType()->isInteger())
 | 
						|
      ThrowException("Shift constant expression requires integer operand!");
 | 
						|
    $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
  }
 | 
						|
  | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if (!ExtractElementInst::isValidOperands($3, $5))
 | 
						|
      ThrowException("Invalid extractelement operands!");
 | 
						|
    $$ = ConstantExpr::getExtractElement($3, $5);
 | 
						|
  }
 | 
						|
  | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | 
						|
    if (!InsertElementInst::isValidOperands($3, $5, $7))
 | 
						|
      ThrowException("Invalid insertelement operands!");
 | 
						|
    $$ = ConstantExpr::getInsertElement($3, $5, $7);
 | 
						|
  }
 | 
						|
  | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | 
						|
    if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
 | 
						|
      ThrowException("Invalid shufflevector operands!");
 | 
						|
    $$ = ConstantExpr::getShuffleVector($3, $5, $7);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// ConstVector - A list of comma separated constants.
 | 
						|
ConstVector : ConstVector ',' ConstVal {
 | 
						|
    ($$ = $1)->push_back($3);
 | 
						|
  }
 | 
						|
  | ConstVal {
 | 
						|
    $$ = new std::vector<Constant*>();
 | 
						|
    $$->push_back($1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | 
						|
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Rules to match Modules
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Module rule: Capture the result of parsing the whole file into a result
 | 
						|
// variable...
 | 
						|
//
 | 
						|
Module : FunctionList {
 | 
						|
  $$ = ParserResult = $1;
 | 
						|
  CurModule.ModuleDone();
 | 
						|
};
 | 
						|
 | 
						|
// FunctionList - A list of functions, preceeded by a constant pool.
 | 
						|
//
 | 
						|
FunctionList : FunctionList Function {
 | 
						|
    $$ = $1;
 | 
						|
    CurFun.FunctionDone();
 | 
						|
  } 
 | 
						|
  | FunctionList FunctionProto {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | FunctionList MODULE ASM_TOK AsmBlock {
 | 
						|
    $$ = $1;
 | 
						|
  }  
 | 
						|
  | FunctionList IMPLEMENTATION {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | ConstPool {
 | 
						|
    $$ = CurModule.CurrentModule;
 | 
						|
    // Emit an error if there are any unresolved types left.
 | 
						|
    if (!CurModule.LateResolveTypes.empty()) {
 | 
						|
      const ValID &DID = CurModule.LateResolveTypes.begin()->first;
 | 
						|
      if (DID.Type == ValID::NameVal)
 | 
						|
        ThrowException("Reference to an undefined type: '"+DID.getName() + "'");
 | 
						|
      else
 | 
						|
        ThrowException("Reference to an undefined type: #" + itostr(DID.Num));
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
// ConstPool - Constants with optional names assigned to them.
 | 
						|
ConstPool : ConstPool OptAssign TYPE TypesV {
 | 
						|
    // Eagerly resolve types.  This is not an optimization, this is a
 | 
						|
    // requirement that is due to the fact that we could have this:
 | 
						|
    //
 | 
						|
    // %list = type { %list * }
 | 
						|
    // %list = type { %list * }    ; repeated type decl
 | 
						|
    //
 | 
						|
    // If types are not resolved eagerly, then the two types will not be
 | 
						|
    // determined to be the same type!
 | 
						|
    //
 | 
						|
    ResolveTypeTo($2, *$4);
 | 
						|
 | 
						|
    if (!setTypeName(*$4, $2) && !$2) {
 | 
						|
      // If this is a named type that is not a redefinition, add it to the slot
 | 
						|
      // table.
 | 
						|
      CurModule.Types.push_back(*$4);
 | 
						|
    }
 | 
						|
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | 
						|
  }
 | 
						|
  | ConstPool MODULE ASM_TOK AsmBlock {  // Asm blocks can be in the const pool
 | 
						|
  }
 | 
						|
  | ConstPool OptAssign OptLinkage GlobalType ConstVal {
 | 
						|
    if ($5 == 0) ThrowException("Global value initializer is not a constant!");
 | 
						|
    CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
 | 
						|
                                                       } GlobalVarAttributes {
 | 
						|
    CurGV = 0;
 | 
						|
  }
 | 
						|
  | ConstPool OptAssign EXTERNAL GlobalType Types {
 | 
						|
    CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage,
 | 
						|
                                             $4, *$5, 0);
 | 
						|
    delete $5;
 | 
						|
                                                   } GlobalVarAttributes {
 | 
						|
    CurGV = 0;
 | 
						|
  }
 | 
						|
  | ConstPool TARGET TargetDefinition { 
 | 
						|
  }
 | 
						|
  | ConstPool DEPLIBS '=' LibrariesDefinition {
 | 
						|
  }
 | 
						|
  | /* empty: end of list */ { 
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
AsmBlock : STRINGCONSTANT {
 | 
						|
  const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
 | 
						|
  char *EndStr = UnEscapeLexed($1, true);
 | 
						|
  std::string NewAsm($1, EndStr);
 | 
						|
  free($1);
 | 
						|
 | 
						|
  if (AsmSoFar.empty())
 | 
						|
    CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
 | 
						|
  else
 | 
						|
    CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
 | 
						|
};
 | 
						|
 | 
						|
BigOrLittle : BIG    { $$ = Module::BigEndian; };
 | 
						|
BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
 | 
						|
 | 
						|
TargetDefinition : ENDIAN '=' BigOrLittle {
 | 
						|
    CurModule.CurrentModule->setEndianness($3);
 | 
						|
  }
 | 
						|
  | POINTERSIZE '=' EUINT64VAL {
 | 
						|
    if ($3 == 32)
 | 
						|
      CurModule.CurrentModule->setPointerSize(Module::Pointer32);
 | 
						|
    else if ($3 == 64)
 | 
						|
      CurModule.CurrentModule->setPointerSize(Module::Pointer64);
 | 
						|
    else
 | 
						|
      ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
 | 
						|
  }
 | 
						|
  | TRIPLE '=' STRINGCONSTANT {
 | 
						|
    CurModule.CurrentModule->setTargetTriple($3);
 | 
						|
    free($3);
 | 
						|
  };
 | 
						|
 | 
						|
LibrariesDefinition : '[' LibList ']';
 | 
						|
 | 
						|
LibList : LibList ',' STRINGCONSTANT {
 | 
						|
          CurModule.CurrentModule->addLibrary($3);
 | 
						|
          free($3);
 | 
						|
        }
 | 
						|
        | STRINGCONSTANT {
 | 
						|
          CurModule.CurrentModule->addLibrary($1);
 | 
						|
          free($1);
 | 
						|
        }
 | 
						|
        | /* empty: end of list */ {
 | 
						|
        }
 | 
						|
        ;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       Rules to match Function Headers
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
Name : VAR_ID | STRINGCONSTANT;
 | 
						|
OptName : Name | /*empty*/ { $$ = 0; };
 | 
						|
 | 
						|
ArgVal : Types OptName {
 | 
						|
  if (*$1 == Type::VoidTy)
 | 
						|
    ThrowException("void typed arguments are invalid!");
 | 
						|
  $$ = new std::pair<PATypeHolder*, char*>($1, $2);
 | 
						|
};
 | 
						|
 | 
						|
ArgListH : ArgListH ',' ArgVal {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back(*$3);
 | 
						|
    delete $3;
 | 
						|
  }
 | 
						|
  | ArgVal {
 | 
						|
    $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | 
						|
    $$->push_back(*$1);
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
ArgList : ArgListH {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | ArgListH ',' DOTDOTDOT {
 | 
						|
    $$ = $1;
 | 
						|
    $$->push_back(std::pair<PATypeHolder*,
 | 
						|
                            char*>(new PATypeHolder(Type::VoidTy), 0));
 | 
						|
  }
 | 
						|
  | DOTDOTDOT {
 | 
						|
    $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | 
						|
    $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
 | 
						|
  }
 | 
						|
  | /* empty */ {
 | 
						|
    $$ = 0;
 | 
						|
  };
 | 
						|
 | 
						|
FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' 
 | 
						|
                  OptSection OptAlign {
 | 
						|
  UnEscapeLexed($3);
 | 
						|
  std::string FunctionName($3);
 | 
						|
  free($3);  // Free strdup'd memory!
 | 
						|
  
 | 
						|
  if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
 | 
						|
    ThrowException("LLVM functions cannot return aggregate types!");
 | 
						|
 | 
						|
  std::vector<const Type*> ParamTypeList;
 | 
						|
  if ($5) {   // If there are arguments...
 | 
						|
    for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
 | 
						|
         I != $5->end(); ++I)
 | 
						|
      ParamTypeList.push_back(I->first->get());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
 | 
						|
  if (isVarArg) ParamTypeList.pop_back();
 | 
						|
 | 
						|
  const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
 | 
						|
  const PointerType *PFT = PointerType::get(FT);
 | 
						|
  delete $2;
 | 
						|
 | 
						|
  ValID ID;
 | 
						|
  if (!FunctionName.empty()) {
 | 
						|
    ID = ValID::create((char*)FunctionName.c_str());
 | 
						|
  } else {
 | 
						|
    ID = ValID::create((int)CurModule.Values[PFT].size());
 | 
						|
  }
 | 
						|
 | 
						|
  Function *Fn = 0;
 | 
						|
  // See if this function was forward referenced.  If so, recycle the object.
 | 
						|
  if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
 | 
						|
    // Move the function to the end of the list, from whereever it was 
 | 
						|
    // previously inserted.
 | 
						|
    Fn = cast<Function>(FWRef);
 | 
						|
    CurModule.CurrentModule->getFunctionList().remove(Fn);
 | 
						|
    CurModule.CurrentModule->getFunctionList().push_back(Fn);
 | 
						|
  } else if (!FunctionName.empty() &&     // Merge with an earlier prototype?
 | 
						|
             (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
 | 
						|
    // If this is the case, either we need to be a forward decl, or it needs 
 | 
						|
    // to be.
 | 
						|
    if (!CurFun.isDeclare && !Fn->isExternal())
 | 
						|
      ThrowException("Redefinition of function '" + FunctionName + "'!");
 | 
						|
    
 | 
						|
    // Make sure to strip off any argument names so we can't get conflicts.
 | 
						|
    if (Fn->isExternal())
 | 
						|
      for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
 | 
						|
           AI != AE; ++AI)
 | 
						|
        AI->setName("");
 | 
						|
 | 
						|
  } else  {  // Not already defined?
 | 
						|
    Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
 | 
						|
                      CurModule.CurrentModule);
 | 
						|
    InsertValue(Fn, CurModule.Values);
 | 
						|
  }
 | 
						|
 | 
						|
  CurFun.FunctionStart(Fn);
 | 
						|
  Fn->setCallingConv($1);
 | 
						|
  Fn->setAlignment($8);
 | 
						|
  if ($7) {
 | 
						|
    Fn->setSection($7);
 | 
						|
    free($7);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add all of the arguments we parsed to the function...
 | 
						|
  if ($5) {                     // Is null if empty...
 | 
						|
    if (isVarArg) {  // Nuke the last entry
 | 
						|
      assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
 | 
						|
             "Not a varargs marker!");
 | 
						|
      delete $5->back().first;
 | 
						|
      $5->pop_back();  // Delete the last entry
 | 
						|
    }
 | 
						|
    Function::arg_iterator ArgIt = Fn->arg_begin();
 | 
						|
    for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
 | 
						|
         I != $5->end(); ++I, ++ArgIt) {
 | 
						|
      delete I->first;                          // Delete the typeholder...
 | 
						|
 | 
						|
      setValueName(ArgIt, I->second);           // Insert arg into symtab...
 | 
						|
      InsertValue(ArgIt);
 | 
						|
    }
 | 
						|
 | 
						|
    delete $5;                     // We're now done with the argument list
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
 | 
						|
 | 
						|
FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
 | 
						|
  $$ = CurFun.CurrentFunction;
 | 
						|
 | 
						|
  // Make sure that we keep track of the linkage type even if there was a
 | 
						|
  // previous "declare".
 | 
						|
  $$->setLinkage($1);
 | 
						|
};
 | 
						|
 | 
						|
END : ENDTOK | '}';                    // Allow end of '}' to end a function
 | 
						|
 | 
						|
Function : BasicBlockList END {
 | 
						|
  $$ = $1;
 | 
						|
};
 | 
						|
 | 
						|
FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
 | 
						|
  $$ = CurFun.CurrentFunction;
 | 
						|
  CurFun.FunctionDone();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Rules to match Basic Blocks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
OptSideEffect : /* empty */ {
 | 
						|
    $$ = false;
 | 
						|
  }
 | 
						|
  | SIDEEFFECT {
 | 
						|
    $$ = true;
 | 
						|
  };
 | 
						|
 | 
						|
ConstValueRef : ESINT64VAL {    // A reference to a direct constant
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | EUINT64VAL {
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | FPVAL {                     // Perhaps it's an FP constant?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | TRUETOK {
 | 
						|
    $$ = ValID::create(ConstantBool::True);
 | 
						|
  } 
 | 
						|
  | FALSETOK {
 | 
						|
    $$ = ValID::create(ConstantBool::False);
 | 
						|
  }
 | 
						|
  | NULL_TOK {
 | 
						|
    $$ = ValID::createNull();
 | 
						|
  }
 | 
						|
  | UNDEF {
 | 
						|
    $$ = ValID::createUndef();
 | 
						|
  }
 | 
						|
  | ZEROINITIALIZER {     // A vector zero constant.
 | 
						|
    $$ = ValID::createZeroInit();
 | 
						|
  }
 | 
						|
  | '<' ConstVector '>' { // Nonempty unsized packed vector
 | 
						|
    const Type *ETy = (*$2)[0]->getType();
 | 
						|
    int NumElements = $2->size(); 
 | 
						|
    
 | 
						|
    PackedType* pt = PackedType::get(ETy, NumElements);
 | 
						|
    PATypeHolder* PTy = new PATypeHolder(
 | 
						|
                                         HandleUpRefs(
 | 
						|
                                            PackedType::get(
 | 
						|
                                                ETy, 
 | 
						|
                                                NumElements)
 | 
						|
                                            )
 | 
						|
                                         );
 | 
						|
    
 | 
						|
    // Verify all elements are correct type!
 | 
						|
    for (unsigned i = 0; i < $2->size(); i++) {
 | 
						|
      if (ETy != (*$2)[i]->getType())
 | 
						|
        ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | 
						|
                     ETy->getDescription() +"' as required!\nIt is of type '" +
 | 
						|
                     (*$2)[i]->getType()->getDescription() + "'.");
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = ValID::create(ConstantPacked::get(pt, *$2));
 | 
						|
    delete PTy; delete $2;
 | 
						|
  }
 | 
						|
  | ConstExpr {
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
 | 
						|
    char *End = UnEscapeLexed($3, true);
 | 
						|
    std::string AsmStr = std::string($3, End);
 | 
						|
    End = UnEscapeLexed($5, true);
 | 
						|
    std::string Constraints = std::string($5, End);
 | 
						|
    $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
 | 
						|
    free($3);
 | 
						|
    free($5);
 | 
						|
  };
 | 
						|
 | 
						|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
 | 
						|
// another value.
 | 
						|
//
 | 
						|
SymbolicValueRef : INTVAL {  // Is it an integer reference...?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | Name {                   // Is it a named reference...?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  };
 | 
						|
 | 
						|
// ValueRef - A reference to a definition... either constant or symbolic
 | 
						|
ValueRef : SymbolicValueRef | ConstValueRef;
 | 
						|
 | 
						|
 | 
						|
// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | 
						|
// type immediately preceeds the value reference, and allows complex constant
 | 
						|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | 
						|
ResolvedVal : Types ValueRef {
 | 
						|
    $$ = getVal(*$1, $2); delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
BasicBlockList : BasicBlockList BasicBlock {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// Basic blocks are terminated by branching instructions: 
 | 
						|
// br, br/cc, switch, ret
 | 
						|
//
 | 
						|
BasicBlock : InstructionList OptAssign BBTerminatorInst  {
 | 
						|
    setValueName($3, $2);
 | 
						|
    InsertValue($3);
 | 
						|
 | 
						|
    $1->getInstList().push_back($3);
 | 
						|
    InsertValue($1);
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
InstructionList : InstructionList Inst {
 | 
						|
    $1->getInstList().push_back($2);
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | /* empty */ {
 | 
						|
    $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
 | 
						|
 | 
						|
    // Make sure to move the basic block to the correct location in the
 | 
						|
    // function, instead of leaving it inserted wherever it was first
 | 
						|
    // referenced.
 | 
						|
    Function::BasicBlockListType &BBL = 
 | 
						|
      CurFun.CurrentFunction->getBasicBlockList();
 | 
						|
    BBL.splice(BBL.end(), BBL, $$);
 | 
						|
  }
 | 
						|
  | LABELSTR {
 | 
						|
    $$ = CurBB = getBBVal(ValID::create($1), true);
 | 
						|
 | 
						|
    // Make sure to move the basic block to the correct location in the
 | 
						|
    // function, instead of leaving it inserted wherever it was first
 | 
						|
    // referenced.
 | 
						|
    Function::BasicBlockListType &BBL = 
 | 
						|
      CurFun.CurrentFunction->getBasicBlockList();
 | 
						|
    BBL.splice(BBL.end(), BBL, $$);
 | 
						|
  };
 | 
						|
 | 
						|
BBTerminatorInst : RET ResolvedVal {              // Return with a result...
 | 
						|
    $$ = new ReturnInst($2);
 | 
						|
  }
 | 
						|
  | RET VOID {                                       // Return with no result...
 | 
						|
    $$ = new ReturnInst();
 | 
						|
  }
 | 
						|
  | BR LABEL ValueRef {                         // Unconditional Branch...
 | 
						|
    $$ = new BranchInst(getBBVal($3));
 | 
						|
  }                                                  // Conditional Branch...
 | 
						|
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | 
						|
    $$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
 | 
						|
  }
 | 
						|
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | 
						|
    SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size());
 | 
						|
    $$ = S;
 | 
						|
 | 
						|
    std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | 
						|
      E = $8->end();
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
 | 
						|
          S->addCase(CI, I->second);
 | 
						|
      else
 | 
						|
        ThrowException("Switch case is constant, but not a simple integer!");
 | 
						|
    }
 | 
						|
    delete $8;
 | 
						|
  }
 | 
						|
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
 | 
						|
    SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0);
 | 
						|
    $$ = S;
 | 
						|
  }
 | 
						|
  | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
 | 
						|
    TO LABEL ValueRef UNWIND LABEL ValueRef {
 | 
						|
    const PointerType *PFTy;
 | 
						|
    const FunctionType *Ty;
 | 
						|
 | 
						|
    if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
 | 
						|
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | 
						|
      // Pull out the types of all of the arguments...
 | 
						|
      std::vector<const Type*> ParamTypes;
 | 
						|
      if ($6) {
 | 
						|
        for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
 | 
						|
             I != E; ++I)
 | 
						|
          ParamTypes.push_back((*I)->getType());
 | 
						|
      }
 | 
						|
 | 
						|
      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | 
						|
      if (isVarArg) ParamTypes.pop_back();
 | 
						|
 | 
						|
      Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
 | 
						|
      PFTy = PointerType::get(Ty);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *V = getVal(PFTy, $4);   // Get the function we're calling...
 | 
						|
 | 
						|
    BasicBlock *Normal = getBBVal($10);
 | 
						|
    BasicBlock *Except = getBBVal($13);
 | 
						|
 | 
						|
    // Create the call node...
 | 
						|
    if (!$6) {                                   // Has no arguments?
 | 
						|
      $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
 | 
						|
    } else {                                     // Has arguments?
 | 
						|
      // Loop through FunctionType's arguments and ensure they are specified
 | 
						|
      // correctly!
 | 
						|
      //
 | 
						|
      FunctionType::param_iterator I = Ty->param_begin();
 | 
						|
      FunctionType::param_iterator E = Ty->param_end();
 | 
						|
      std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | 
						|
 | 
						|
      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | 
						|
        if ((*ArgI)->getType() != *I)
 | 
						|
          ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | 
						|
                         (*I)->getDescription() + "'!");
 | 
						|
 | 
						|
      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | 
						|
        ThrowException("Invalid number of parameters detected!");
 | 
						|
 | 
						|
      $$ = new InvokeInst(V, Normal, Except, *$6);
 | 
						|
    }
 | 
						|
    cast<InvokeInst>($$)->setCallingConv($2);
 | 
						|
  
 | 
						|
    delete $3;
 | 
						|
    delete $6;
 | 
						|
  }
 | 
						|
  | UNWIND {
 | 
						|
    $$ = new UnwindInst();
 | 
						|
  }
 | 
						|
  | UNREACHABLE {
 | 
						|
    $$ = new UnreachableInst();
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
 | 
						|
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | 
						|
    $$ = $1;
 | 
						|
    Constant *V = cast<Constant>(getValNonImprovising($2, $3));
 | 
						|
    if (V == 0)
 | 
						|
      ThrowException("May only switch on a constant pool value!");
 | 
						|
 | 
						|
    $$->push_back(std::make_pair(V, getBBVal($6)));
 | 
						|
  }
 | 
						|
  | IntType ConstValueRef ',' LABEL ValueRef {
 | 
						|
    $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
 | 
						|
    Constant *V = cast<Constant>(getValNonImprovising($1, $2));
 | 
						|
 | 
						|
    if (V == 0)
 | 
						|
      ThrowException("May only switch on a constant pool value!");
 | 
						|
 | 
						|
    $$->push_back(std::make_pair(V, getBBVal($5)));
 | 
						|
  };
 | 
						|
 | 
						|
Inst : OptAssign InstVal {
 | 
						|
  // Is this definition named?? if so, assign the name...
 | 
						|
  setValueName($2, $1);
 | 
						|
  InsertValue($2);
 | 
						|
  $$ = $2;
 | 
						|
};
 | 
						|
 | 
						|
PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | 
						|
    $$ = new std::list<std::pair<Value*, BasicBlock*> >();
 | 
						|
    $$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
 | 
						|
                                 getBBVal($6)));
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | 
						|
    $$ = new std::vector<Value*>();
 | 
						|
    $$->push_back($1);
 | 
						|
  }
 | 
						|
  | ValueRefList ',' ResolvedVal {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back($3);
 | 
						|
  };
 | 
						|
 | 
						|
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | 
						|
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
 | 
						|
 | 
						|
OptTailCall : TAIL CALL {
 | 
						|
    $$ = true;
 | 
						|
  }
 | 
						|
  | CALL {
 | 
						|
    $$ = false;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
 | 
						|
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
 | 
						|
    if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && 
 | 
						|
        !isa<PackedType>((*$2).get()))
 | 
						|
      ThrowException(
 | 
						|
        "Arithmetic operator requires integer, FP, or packed operands!");
 | 
						|
    if (isa<PackedType>((*$2).get()) && $1 == Instruction::Rem)
 | 
						|
      ThrowException("Rem not supported on packed types!");
 | 
						|
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | LogicalOps Types ValueRef ',' ValueRef {
 | 
						|
    if (!(*$2)->isIntegral()) {
 | 
						|
      if (!isa<PackedType>($2->get()) ||
 | 
						|
          !cast<PackedType>($2->get())->getElementType()->isIntegral())
 | 
						|
        ThrowException("Logical operator requires integral operands!");
 | 
						|
    }
 | 
						|
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | SetCondOps Types ValueRef ',' ValueRef {
 | 
						|
    if(isa<PackedType>((*$2).get())) {
 | 
						|
      ThrowException(
 | 
						|
        "PackedTypes currently not supported in setcc instructions!");
 | 
						|
    }
 | 
						|
    $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | NOT ResolvedVal {
 | 
						|
    std::cerr << "WARNING: Use of eliminated 'not' instruction:"
 | 
						|
              << " Replacing with 'xor'.\n";
 | 
						|
 | 
						|
    Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
 | 
						|
    if (Ones == 0)
 | 
						|
      ThrowException("Expected integral type for not instruction!");
 | 
						|
 | 
						|
    $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("Could not create a xor instruction!");
 | 
						|
  }
 | 
						|
  | ShiftOps ResolvedVal ',' ResolvedVal {
 | 
						|
    if ($4->getType() != Type::UByteTy)
 | 
						|
      ThrowException("Shift amount must be ubyte!");
 | 
						|
    if (!$2->getType()->isInteger())
 | 
						|
      ThrowException("Shift constant expression requires integer operand!");
 | 
						|
    $$ = new ShiftInst($1, $2, $4);
 | 
						|
  }
 | 
						|
  | CAST ResolvedVal TO Types {
 | 
						|
    if (!$4->get()->isFirstClassType())
 | 
						|
      ThrowException("cast instruction to a non-primitive type: '" +
 | 
						|
                     $4->get()->getDescription() + "'!");
 | 
						|
    $$ = new CastInst($2, *$4);
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | 
						|
    if ($2->getType() != Type::BoolTy)
 | 
						|
      ThrowException("select condition must be boolean!");
 | 
						|
    if ($4->getType() != $6->getType())
 | 
						|
      ThrowException("select value types should match!");
 | 
						|
    $$ = new SelectInst($2, $4, $6);
 | 
						|
  }
 | 
						|
  | VAARG ResolvedVal ',' Types {
 | 
						|
    NewVarArgs = true;
 | 
						|
    $$ = new VAArgInst($2, *$4);
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | VAARG_old ResolvedVal ',' Types {
 | 
						|
    ObsoleteVarArgs = true;
 | 
						|
    const Type* ArgTy = $2->getType();
 | 
						|
    Function* NF = CurModule.CurrentModule->
 | 
						|
      getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
 | 
						|
 | 
						|
    //b = vaarg a, t -> 
 | 
						|
    //foo = alloca 1 of t
 | 
						|
    //bar = vacopy a 
 | 
						|
    //store bar -> foo
 | 
						|
    //b = vaarg foo, t
 | 
						|
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
 | 
						|
    CurBB->getInstList().push_back(foo);
 | 
						|
    CallInst* bar = new CallInst(NF, $2);
 | 
						|
    CurBB->getInstList().push_back(bar);
 | 
						|
    CurBB->getInstList().push_back(new StoreInst(bar, foo));
 | 
						|
    $$ = new VAArgInst(foo, *$4);
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | VANEXT_old ResolvedVal ',' Types {
 | 
						|
    ObsoleteVarArgs = true;
 | 
						|
    const Type* ArgTy = $2->getType();
 | 
						|
    Function* NF = CurModule.CurrentModule->
 | 
						|
      getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
 | 
						|
 | 
						|
    //b = vanext a, t ->
 | 
						|
    //foo = alloca 1 of t
 | 
						|
    //bar = vacopy a
 | 
						|
    //store bar -> foo
 | 
						|
    //tmp = vaarg foo, t
 | 
						|
    //b = load foo
 | 
						|
    AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
 | 
						|
    CurBB->getInstList().push_back(foo);
 | 
						|
    CallInst* bar = new CallInst(NF, $2);
 | 
						|
    CurBB->getInstList().push_back(bar);
 | 
						|
    CurBB->getInstList().push_back(new StoreInst(bar, foo));
 | 
						|
    Instruction* tmp = new VAArgInst(foo, *$4);
 | 
						|
    CurBB->getInstList().push_back(tmp);
 | 
						|
    $$ = new LoadInst(foo);
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
 | 
						|
    if (!ExtractElementInst::isValidOperands($2, $4))
 | 
						|
      ThrowException("Invalid extractelement operands!");
 | 
						|
    $$ = new ExtractElementInst($2, $4);
 | 
						|
  }
 | 
						|
  | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | 
						|
    if (!InsertElementInst::isValidOperands($2, $4, $6))
 | 
						|
      ThrowException("Invalid insertelement operands!");
 | 
						|
    $$ = new InsertElementInst($2, $4, $6);
 | 
						|
  }
 | 
						|
  | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | 
						|
    if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
 | 
						|
      ThrowException("Invalid shufflevector operands!");
 | 
						|
    $$ = new ShuffleVectorInst($2, $4, $6);
 | 
						|
  }
 | 
						|
  | PHI_TOK PHIList {
 | 
						|
    const Type *Ty = $2->front().first->getType();
 | 
						|
    if (!Ty->isFirstClassType())
 | 
						|
      ThrowException("PHI node operands must be of first class type!");
 | 
						|
    $$ = new PHINode(Ty);
 | 
						|
    ((PHINode*)$$)->reserveOperandSpace($2->size());
 | 
						|
    while ($2->begin() != $2->end()) {
 | 
						|
      if ($2->front().first->getType() != Ty) 
 | 
						|
        ThrowException("All elements of a PHI node must be of the same type!");
 | 
						|
      cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
 | 
						|
      $2->pop_front();
 | 
						|
    }
 | 
						|
    delete $2;  // Free the list...
 | 
						|
  }
 | 
						|
  | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')'  {
 | 
						|
    const PointerType *PFTy;
 | 
						|
    const FunctionType *Ty;
 | 
						|
 | 
						|
    if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
 | 
						|
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | 
						|
      // Pull out the types of all of the arguments...
 | 
						|
      std::vector<const Type*> ParamTypes;
 | 
						|
      if ($6) {
 | 
						|
        for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
 | 
						|
             I != E; ++I)
 | 
						|
          ParamTypes.push_back((*I)->getType());
 | 
						|
      }
 | 
						|
 | 
						|
      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | 
						|
      if (isVarArg) ParamTypes.pop_back();
 | 
						|
 | 
						|
      if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy)
 | 
						|
        ThrowException("LLVM functions cannot return aggregate types!");
 | 
						|
 | 
						|
      Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
 | 
						|
      PFTy = PointerType::get(Ty);
 | 
						|
    }
 | 
						|
 | 
						|
    Value *V = getVal(PFTy, $4);   // Get the function we're calling...
 | 
						|
 | 
						|
    // Create the call node...
 | 
						|
    if (!$6) {                                   // Has no arguments?
 | 
						|
      // Make sure no arguments is a good thing!
 | 
						|
      if (Ty->getNumParams() != 0)
 | 
						|
        ThrowException("No arguments passed to a function that "
 | 
						|
                       "expects arguments!");
 | 
						|
 | 
						|
      $$ = new CallInst(V, std::vector<Value*>());
 | 
						|
    } else {                                     // Has arguments?
 | 
						|
      // Loop through FunctionType's arguments and ensure they are specified
 | 
						|
      // correctly!
 | 
						|
      //
 | 
						|
      FunctionType::param_iterator I = Ty->param_begin();
 | 
						|
      FunctionType::param_iterator E = Ty->param_end();
 | 
						|
      std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
 | 
						|
 | 
						|
      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | 
						|
        if ((*ArgI)->getType() != *I)
 | 
						|
          ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | 
						|
                         (*I)->getDescription() + "'!");
 | 
						|
 | 
						|
      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | 
						|
        ThrowException("Invalid number of parameters detected!");
 | 
						|
 | 
						|
      $$ = new CallInst(V, *$6);
 | 
						|
    }
 | 
						|
    cast<CallInst>($$)->setTailCall($1);
 | 
						|
    cast<CallInst>($$)->setCallingConv($2);
 | 
						|
    delete $3;
 | 
						|
    delete $6;
 | 
						|
  }
 | 
						|
  | MemoryInst {
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// IndexList - List of indices for GEP based instructions...
 | 
						|
IndexList : ',' ValueRefList { 
 | 
						|
    $$ = $2; 
 | 
						|
  } | /* empty */ { 
 | 
						|
    $$ = new std::vector<Value*>(); 
 | 
						|
  };
 | 
						|
 | 
						|
OptVolatile : VOLATILE {
 | 
						|
    $$ = true;
 | 
						|
  }
 | 
						|
  | /* empty */ {
 | 
						|
    $$ = false;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
 | 
						|
MemoryInst : MALLOC Types OptCAlign {
 | 
						|
    $$ = new MallocInst(*$2, 0, $3);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | MALLOC Types ',' UINT ValueRef OptCAlign {
 | 
						|
    $$ = new MallocInst(*$2, getVal($4, $5), $6);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | ALLOCA Types OptCAlign {
 | 
						|
    $$ = new AllocaInst(*$2, 0, $3);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | ALLOCA Types ',' UINT ValueRef OptCAlign {
 | 
						|
    $$ = new AllocaInst(*$2, getVal($4, $5), $6);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | FREE ResolvedVal {
 | 
						|
    if (!isa<PointerType>($2->getType()))
 | 
						|
      ThrowException("Trying to free nonpointer type " + 
 | 
						|
                     $2->getType()->getDescription() + "!");
 | 
						|
    $$ = new FreeInst($2);
 | 
						|
  }
 | 
						|
 | 
						|
  | OptVolatile LOAD Types ValueRef {
 | 
						|
    if (!isa<PointerType>($3->get()))
 | 
						|
      ThrowException("Can't load from nonpointer type: " +
 | 
						|
                     (*$3)->getDescription());
 | 
						|
    if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
 | 
						|
      ThrowException("Can't load from pointer of non-first-class type: " +
 | 
						|
                     (*$3)->getDescription());
 | 
						|
    $$ = new LoadInst(getVal(*$3, $4), "", $1);
 | 
						|
    delete $3;
 | 
						|
  }
 | 
						|
  | OptVolatile STORE ResolvedVal ',' Types ValueRef {
 | 
						|
    const PointerType *PT = dyn_cast<PointerType>($5->get());
 | 
						|
    if (!PT)
 | 
						|
      ThrowException("Can't store to a nonpointer type: " +
 | 
						|
                     (*$5)->getDescription());
 | 
						|
    const Type *ElTy = PT->getElementType();
 | 
						|
    if (ElTy != $3->getType())
 | 
						|
      ThrowException("Can't store '" + $3->getType()->getDescription() +
 | 
						|
                     "' into space of type '" + ElTy->getDescription() + "'!");
 | 
						|
 | 
						|
    $$ = new StoreInst($3, getVal(*$5, $6), $1);
 | 
						|
    delete $5;
 | 
						|
  }
 | 
						|
  | GETELEMENTPTR Types ValueRef IndexList {
 | 
						|
    if (!isa<PointerType>($2->get()))
 | 
						|
      ThrowException("getelementptr insn requires pointer operand!");
 | 
						|
 | 
						|
    // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct
 | 
						|
    // indices to uint struct indices for compatibility.
 | 
						|
    generic_gep_type_iterator<std::vector<Value*>::iterator>
 | 
						|
      GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
 | 
						|
      GTE = gep_type_end($2->get(), $4->begin(), $4->end());
 | 
						|
    for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
 | 
						|
      if (isa<StructType>(*GTI))        // Only change struct indices
 | 
						|
        if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
 | 
						|
          if (CUI->getType() == Type::UByteTy)
 | 
						|
            (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
 | 
						|
 | 
						|
    if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
 | 
						|
      ThrowException("Invalid getelementptr indices for type '" +
 | 
						|
                     (*$2)->getDescription()+ "'!");
 | 
						|
    $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
 | 
						|
    delete $2; delete $4;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
%%
 | 
						|
int yyerror(const char *ErrorMsg) {
 | 
						|
  std::string where 
 | 
						|
    = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
 | 
						|
                  + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
 | 
						|
  std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
 | 
						|
  if (yychar == YYEMPTY || yychar == 0)
 | 
						|
    errMsg += "end-of-file.";
 | 
						|
  else
 | 
						|
    errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
 | 
						|
  ThrowException(errMsg);
 | 
						|
  return 0;
 | 
						|
}
 |