mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22523 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			363 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inlining of a function into a call site, resolving
 | |
| // parameters and the return value as appropriate.
 | |
| //
 | |
| // FIXME: This pass should transform alloca instructions in the called function
 | |
| // into alloca/dealloca pairs!  Or perhaps it should refuse to inline them!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
 | |
| bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
 | |
| 
 | |
| // InlineFunction - This function inlines the called function into the basic
 | |
| // block of the caller.  This returns false if it is not possible to inline this
 | |
| // call.  The program is still in a well defined state if this occurs though.
 | |
| //
 | |
| // Note that this only does one level of inlining.  For example, if the
 | |
| // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | |
| // exists in the instruction stream.  Similiarly this will inline a recursive
 | |
| // function by one level.
 | |
| //
 | |
| bool llvm::InlineFunction(CallSite CS) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | |
|          "Instruction not in function!");
 | |
| 
 | |
|   const Function *CalledFunc = CS.getCalledFunction();
 | |
|   if (CalledFunc == 0 ||          // Can't inline external function or indirect
 | |
|       CalledFunc->isExternal() || // call, or call to a vararg function!
 | |
|       CalledFunc->getFunctionType()->isVarArg()) return false;
 | |
| 
 | |
| 
 | |
|   // If the call to the callee is a non-tail call, we must clear the 'tail'
 | |
|   // flags on any calls that we inline.
 | |
|   bool MustClearTailCallFlags =
 | |
|     isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
 | |
| 
 | |
|   BasicBlock *OrigBB = TheCall->getParent();
 | |
|   Function *Caller = OrigBB->getParent();
 | |
| 
 | |
|   // Get an iterator to the last basic block in the function, which will have
 | |
|   // the new function inlined after it.
 | |
|   //
 | |
|   Function::iterator LastBlock = &Caller->back();
 | |
| 
 | |
|   // Make sure to capture all of the return instructions from the cloned
 | |
|   // function.
 | |
|   std::vector<ReturnInst*> Returns;
 | |
|   { // Scope to destroy ValueMap after cloning.
 | |
|     // Calculate the vector of arguments to pass into the function cloner...
 | |
|     std::map<const Value*, Value*> ValueMap;
 | |
|     assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
 | |
|            std::distance(CS.arg_begin(), CS.arg_end()) &&
 | |
|            "No varargs calls can be inlined!");
 | |
| 
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | |
|            E = CalledFunc->arg_end(); I != E; ++I, ++AI)
 | |
|       ValueMap[I] = *AI;
 | |
| 
 | |
|     // Clone the entire body of the callee into the caller.
 | |
|     CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
 | |
|   }
 | |
| 
 | |
|   // Remember the first block that is newly cloned over.
 | |
|   Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
 | |
| 
 | |
|   // If there are any alloca instructions in the block that used to be the entry
 | |
|   // block for the callee, move them to the entry block of the caller.  First
 | |
|   // calculate which instruction they should be inserted before.  We insert the
 | |
|   // instructions at the end of the current alloca list.
 | |
|   //
 | |
|   if (isa<AllocaInst>(FirstNewBlock->begin())) {
 | |
|     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | |
|     for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | |
|            E = FirstNewBlock->end(); I != E; )
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
 | |
|         if (isa<Constant>(AI->getArraySize())) {
 | |
|           // Scan for the block of allocas that we can move over.
 | |
|           while (isa<AllocaInst>(I) &&
 | |
|                  isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
 | |
|             ++I;
 | |
| 
 | |
|           // Transfer all of the allocas over in a block.  Using splice means
 | |
|           // that they instructions aren't removed from the symbol table, then
 | |
|           // reinserted.
 | |
|           Caller->front().getInstList().splice(InsertPoint,
 | |
|                                                FirstNewBlock->getInstList(),
 | |
|                                                AI, I);
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // If we are inlining tail call instruction through an invoke or
 | |
|   if (MustClearTailCallFlags) {
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|          BB != E; ++BB)
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(I))
 | |
|           CI->setTailCall(false);
 | |
|   }
 | |
| 
 | |
|   // If we are inlining for an invoke instruction, we must make sure to rewrite
 | |
|   // any inlined 'unwind' instructions into branches to the invoke exception
 | |
|   // destination, and call instructions into invoke instructions.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|     BasicBlock *InvokeDest = II->getUnwindDest();
 | |
|     std::vector<Value*> InvokeDestPHIValues;
 | |
| 
 | |
|     // If there are PHI nodes in the exceptional destination block, we need to
 | |
|     // keep track of which values came into them from this invoke, then remove
 | |
|     // the entry for this block.
 | |
|     for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
|       // Save the value to use for this edge...
 | |
|       InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
 | |
|     }
 | |
| 
 | |
|     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
 | |
|          BB != E; ++BB) {
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
 | |
|         // We only need to check for function calls: inlined invoke instructions
 | |
|         // require no special handling...
 | |
|         if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|           // Convert this function call into an invoke instruction... if it's
 | |
|           // not an intrinsic function call (which are known to not unwind).
 | |
|           if (CI->getCalledFunction() &&
 | |
|               CI->getCalledFunction()->getIntrinsicID()) {
 | |
|             ++I;
 | |
|           } else {
 | |
|             // First, split the basic block...
 | |
|             BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | |
| 
 | |
|             // Next, create the new invoke instruction, inserting it at the end
 | |
|             // of the old basic block.
 | |
|             InvokeInst *II =
 | |
|               new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
 | |
|                             std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
 | |
|                              CI->getName(), BB->getTerminator());
 | |
|             II->setCallingConv(CI->getCallingConv());
 | |
| 
 | |
|             // Make sure that anything using the call now uses the invoke!
 | |
|             CI->replaceAllUsesWith(II);
 | |
| 
 | |
|             // Delete the unconditional branch inserted by splitBasicBlock
 | |
|             BB->getInstList().pop_back();
 | |
|             Split->getInstList().pop_front();  // Delete the original call
 | |
| 
 | |
|             // Update any PHI nodes in the exceptional block to indicate that
 | |
|             // there is now a new entry in them.
 | |
|             unsigned i = 0;
 | |
|             for (BasicBlock::iterator I = InvokeDest->begin();
 | |
|                  isa<PHINode>(I); ++I, ++i) {
 | |
|               PHINode *PN = cast<PHINode>(I);
 | |
|               PN->addIncoming(InvokeDestPHIValues[i], BB);
 | |
|             }
 | |
| 
 | |
|             // This basic block is now complete, start scanning the next one.
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           ++I;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
 | |
|         // An UnwindInst requires special handling when it gets inlined into an
 | |
|         // invoke site.  Once this happens, we know that the unwind would cause
 | |
|         // a control transfer to the invoke exception destination, so we can
 | |
|         // transform it into a direct branch to the exception destination.
 | |
|         new BranchInst(InvokeDest, UI);
 | |
| 
 | |
|         // Delete the unwind instruction!
 | |
|         UI->getParent()->getInstList().pop_back();
 | |
| 
 | |
|         // Update any PHI nodes in the exceptional block to indicate that
 | |
|         // there is now a new entry in them.
 | |
|         unsigned i = 0;
 | |
|         for (BasicBlock::iterator I = InvokeDest->begin();
 | |
|              isa<PHINode>(I); ++I, ++i) {
 | |
|           PHINode *PN = cast<PHINode>(I);
 | |
|           PN->addIncoming(InvokeDestPHIValues[i], BB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that everything is happy, we have one final detail.  The PHI nodes in
 | |
|     // the exception destination block still have entries due to the original
 | |
|     // invoke instruction.  Eliminate these entries (which might even delete the
 | |
|     // PHI node) now.
 | |
|     InvokeDest->removePredecessor(II->getParent());
 | |
|   }
 | |
| 
 | |
|   // If we cloned in _exactly one_ basic block, and if that block ends in a
 | |
|   // return instruction, we splice the body of the inlined callee directly into
 | |
|   // the calling basic block.
 | |
|   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | |
|     // Move all of the instructions right before the call.
 | |
|     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | |
|                                  FirstNewBlock->begin(), FirstNewBlock->end());
 | |
|     // Remove the cloned basic block.
 | |
|     Caller->getBasicBlockList().pop_back();
 | |
| 
 | |
|     // If the call site was an invoke instruction, add a branch to the normal
 | |
|     // destination.
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | |
|       new BranchInst(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // If the return instruction returned a value, replace uses of the call with
 | |
|     // uses of the returned value.
 | |
|     if (!TheCall->use_empty())
 | |
|       TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | |
| 
 | |
|     // Since we are now done with the Call/Invoke, we can delete it.
 | |
|     TheCall->getParent()->getInstList().erase(TheCall);
 | |
| 
 | |
|     // Since we are now done with the return instruction, delete it also.
 | |
|     Returns[0]->getParent()->getInstList().erase(Returns[0]);
 | |
| 
 | |
|     // We are now done with the inlining.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have the normal case, of more than one block to inline or
 | |
|   // multiple return sites.
 | |
| 
 | |
|   // We want to clone the entire callee function into the hole between the
 | |
|   // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | |
|   // this is an invoke instruction or a call instruction.
 | |
|   BasicBlock *AfterCallBB;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
| 
 | |
|     // Add an unconditional branch to make this look like the CallInst case...
 | |
|     BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
 | |
| 
 | |
|     // Split the basic block.  This guarantees that no PHI nodes will have to be
 | |
|     // updated due to new incoming edges, and make the invoke case more
 | |
|     // symmetric to the call case.
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(NewBr,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
| 
 | |
|   } else {  // It's a call
 | |
|     // If this is a call instruction, we need to split the basic block that
 | |
|     // the call lives in.
 | |
|     //
 | |
|     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | |
|                                           CalledFunc->getName()+".exit");
 | |
|   }
 | |
| 
 | |
|   // Change the branch that used to go to AfterCallBB to branch to the first
 | |
|   // basic block of the inlined function.
 | |
|   //
 | |
|   TerminatorInst *Br = OrigBB->getTerminator();
 | |
|   assert(Br && Br->getOpcode() == Instruction::Br &&
 | |
|          "splitBasicBlock broken!");
 | |
|   Br->setOperand(0, FirstNewBlock);
 | |
| 
 | |
| 
 | |
|   // Now that the function is correct, make it a little bit nicer.  In
 | |
|   // particular, move the basic blocks inserted from the end of the function
 | |
|   // into the space made by splitting the source basic block.
 | |
|   //
 | |
|   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | |
|                                      FirstNewBlock, Caller->end());
 | |
| 
 | |
|   // Handle all of the return instructions that we just cloned in, and eliminate
 | |
|   // any users of the original call/invoke instruction.
 | |
|   if (Returns.size() > 1) {
 | |
|     // The PHI node should go at the front of the new basic block to merge all
 | |
|     // possible incoming values.
 | |
|     //
 | |
|     PHINode *PHI = 0;
 | |
|     if (!TheCall->use_empty()) {
 | |
|       PHI = new PHINode(CalledFunc->getReturnType(),
 | |
|                         TheCall->getName(), AfterCallBB->begin());
 | |
| 
 | |
|       // Anything that used the result of the function call should now use the
 | |
|       // PHI node as their operand.
 | |
|       //
 | |
|       TheCall->replaceAllUsesWith(PHI);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the return instructions, turning them into unconditional
 | |
|     // branches to the merge point now, and adding entries to the PHI node as
 | |
|     // appropriate.
 | |
|     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | |
|       ReturnInst *RI = Returns[i];
 | |
| 
 | |
|       if (PHI) {
 | |
|         assert(RI->getReturnValue() && "Ret should have value!");
 | |
|         assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | |
|                "Ret value not consistent in function!");
 | |
|         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | |
|       }
 | |
| 
 | |
|       // Add a branch to the merge point where the PHI node lives if it exists.
 | |
|       new BranchInst(AfterCallBB, RI);
 | |
| 
 | |
|       // Delete the return instruction now
 | |
|       RI->getParent()->getInstList().erase(RI);
 | |
|     }
 | |
| 
 | |
|   } else if (!Returns.empty()) {
 | |
|     // Otherwise, if there is exactly one return value, just replace anything
 | |
|     // using the return value of the call with the computed value.
 | |
|     if (!TheCall->use_empty())
 | |
|       TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | |
| 
 | |
|     // Splice the code from the return block into the block that it will return
 | |
|     // to, which contains the code that was after the call.
 | |
|     BasicBlock *ReturnBB = Returns[0]->getParent();
 | |
|     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | |
|                                       ReturnBB->getInstList());
 | |
| 
 | |
|     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | |
|     ReturnBB->replaceAllUsesWith(AfterCallBB);
 | |
| 
 | |
|     // Delete the return instruction now and empty ReturnBB now.
 | |
|     Returns[0]->eraseFromParent();
 | |
|     ReturnBB->eraseFromParent();
 | |
|   } else if (!TheCall->use_empty()) {
 | |
|     // No returns, but something is using the return value of the call.  Just
 | |
|     // nuke the result.
 | |
|     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | |
|   }
 | |
| 
 | |
|   // Since we are now done with the Call/Invoke, we can delete it.
 | |
|   TheCall->eraseFromParent();
 | |
| 
 | |
|   // We should always be able to fold the entry block of the function into the
 | |
|   // single predecessor of the block...
 | |
|   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | |
|   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | |
| 
 | |
|   // Splice the code entry block into calling block, right before the
 | |
|   // unconditional branch.
 | |
|   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | |
|   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | |
| 
 | |
|   // Remove the unconditional branch.
 | |
|   OrigBB->getInstList().erase(Br);
 | |
| 
 | |
|   // Now we can remove the CalleeEntry block, which is now empty.
 | |
|   Caller->getBasicBlockList().erase(CalleeEntry);
 | |
|   return true;
 | |
| }
 |