mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	uint64_t, plus fixes for places I missed before. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116875 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			913 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion, attempting to remove as much
 | |
| // code from the body of a loop as possible.  It does this by either hoisting
 | |
| // code into the preheader block, or by sinking code to the exit blocks if it is
 | |
| // safe.  This pass also promotes must-aliased memory locations in the loop to
 | |
| // live in registers, thus hoisting and sinking "invariant" loads and stores.
 | |
| //
 | |
| // This pass uses alias analysis for two purposes:
 | |
| //
 | |
| //  1. Moving loop invariant loads and calls out of loops.  If we can determine
 | |
| //     that a load or call inside of a loop never aliases anything stored to,
 | |
| //     we can hoist it or sink it like any other instruction.
 | |
| //  2. Scalar Promotion of Memory - If there is a store instruction inside of
 | |
| //     the loop, we try to move the store to happen AFTER the loop instead of
 | |
| //     inside of the loop.  This can only happen if a few conditions are true:
 | |
| //       A. The pointer stored through is loop invariant
 | |
| //       B. There are no stores or loads in the loop which _may_ alias the
 | |
| //          pointer.  There are no calls in the loop which mod/ref the pointer.
 | |
| //     If these conditions are true, we can promote the loads and stores in the
 | |
| //     loop of the pointer to use a temporary alloca'd variable.  We then use
 | |
| //     the SSAUpdater to construct the appropriate SSA form for the value.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "licm"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
 | |
| STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
 | |
| STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
 | |
| STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
 | |
| STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisablePromotion("disable-licm-promotion", cl::Hidden,
 | |
|                  cl::desc("Disable memory promotion in LICM pass"));
 | |
| 
 | |
| namespace {
 | |
|   struct LICM : public LoopPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     LICM() : LoopPass(ID) {
 | |
|       initializeLICMPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|     }
 | |
| 
 | |
|     bool doFinalization() {
 | |
|       assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     AliasAnalysis *AA;       // Current AliasAnalysis information
 | |
|     LoopInfo      *LI;       // Current LoopInfo
 | |
|     DominatorTree *DT;       // Dominator Tree for the current Loop.
 | |
| 
 | |
|     // State that is updated as we process loops.
 | |
|     bool Changed;            // Set to true when we change anything.
 | |
|     BasicBlock *Preheader;   // The preheader block of the current loop...
 | |
|     Loop *CurLoop;           // The current loop we are working on...
 | |
|     AliasSetTracker *CurAST; // AliasSet information for the current loop...
 | |
|     DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
 | |
| 
 | |
|     /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
 | |
|     void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
 | |
| 
 | |
|     /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
 | |
|     /// set.
 | |
|     void deleteAnalysisValue(Value *V, Loop *L);
 | |
| 
 | |
|     /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
|     /// dominated by the specified block, and that are in the current loop) in
 | |
|     /// reverse depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit uses before definitions, allowing us to sink a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void SinkRegion(DomTreeNode *N);
 | |
| 
 | |
|     /// HoistRegion - Walk the specified region of the CFG (defined by all
 | |
|     /// blocks dominated by the specified block, and that are in the current
 | |
|     /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit definitions before uses, allowing us to hoist a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void HoistRegion(DomTreeNode *N);
 | |
| 
 | |
|     /// inSubLoop - Little predicate that returns true if the specified basic
 | |
|     /// block is in a subloop of the current one, not the current one itself.
 | |
|     ///
 | |
|     bool inSubLoop(BasicBlock *BB) {
 | |
|       assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
 | |
|       for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
 | |
|         if ((*I)->contains(BB))
 | |
|           return true;  // A subloop actually contains this block!
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
 | |
|     /// specified exit block of the loop is dominated by the specified block
 | |
|     /// that is in the body of the loop.  We use these constraints to
 | |
|     /// dramatically limit the amount of the dominator tree that needs to be
 | |
|     /// searched.
 | |
|     bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
 | |
|                                            BasicBlock *BlockInLoop) const {
 | |
|       // If the block in the loop is the loop header, it must be dominated!
 | |
|       BasicBlock *LoopHeader = CurLoop->getHeader();
 | |
|       if (BlockInLoop == LoopHeader)
 | |
|         return true;
 | |
| 
 | |
|       DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
 | |
|       DomTreeNode *IDom            = DT->getNode(ExitBlock);
 | |
| 
 | |
|       // Because the exit block is not in the loop, we know we have to get _at
 | |
|       // least_ its immediate dominator.
 | |
|       IDom = IDom->getIDom();
 | |
|       
 | |
|       while (IDom && IDom != BlockInLoopNode) {
 | |
|         // If we have got to the header of the loop, then the instructions block
 | |
|         // did not dominate the exit node, so we can't hoist it.
 | |
|         if (IDom->getBlock() == LoopHeader)
 | |
|           return false;
 | |
| 
 | |
|         // Get next Immediate Dominator.
 | |
|         IDom = IDom->getIDom();
 | |
|       };
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// sink - When an instruction is found to only be used outside of the loop,
 | |
|     /// this function moves it to the exit blocks and patches up SSA form as
 | |
|     /// needed.
 | |
|     ///
 | |
|     void sink(Instruction &I);
 | |
| 
 | |
|     /// hoist - When an instruction is found to only use loop invariant operands
 | |
|     /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
|     ///
 | |
|     void hoist(Instruction &I);
 | |
| 
 | |
|     /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
 | |
|     /// is not a trapping instruction or if it is a trapping instruction and is
 | |
|     /// guaranteed to execute.
 | |
|     ///
 | |
|     bool isSafeToExecuteUnconditionally(Instruction &I);
 | |
| 
 | |
|     /// pointerInvalidatedByLoop - Return true if the body of this loop may
 | |
|     /// store into the memory location pointed to by V.
 | |
|     ///
 | |
|     bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
 | |
|                                   const MDNode *TBAAInfo) {
 | |
|       // Check to see if any of the basic blocks in CurLoop invalidate *V.
 | |
|       return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
 | |
|     }
 | |
| 
 | |
|     bool canSinkOrHoistInst(Instruction &I);
 | |
|     bool isNotUsedInLoop(Instruction &I);
 | |
| 
 | |
|     void PromoteAliasSet(AliasSet &AS);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LICM::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
 | |
| 
 | |
| Pass *llvm::createLICMPass() { return new LICM(); }
 | |
| 
 | |
| /// Hoist expressions out of the specified loop. Note, alias info for inner
 | |
| /// loop is not preserved so it is not a good idea to run LICM multiple 
 | |
| /// times on one loop.
 | |
| ///
 | |
| bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   Changed = false;
 | |
| 
 | |
|   // Get our Loop and Alias Analysis information...
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|   CurAST = new AliasSetTracker(*AA);
 | |
|   // Collect Alias info from subloops.
 | |
|   for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
 | |
|        LoopItr != LoopItrE; ++LoopItr) {
 | |
|     Loop *InnerL = *LoopItr;
 | |
|     AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
 | |
|     assert(InnerAST && "Where is my AST?");
 | |
| 
 | |
|     // What if InnerLoop was modified by other passes ?
 | |
|     CurAST->add(*InnerAST);
 | |
|     
 | |
|     // Once we've incorporated the inner loop's AST into ours, we don't need the
 | |
|     // subloop's anymore.
 | |
|     delete InnerAST;
 | |
|     LoopToAliasSetMap.erase(InnerL);
 | |
|   }
 | |
|   
 | |
|   CurLoop = L;
 | |
| 
 | |
|   // Get the preheader block to move instructions into...
 | |
|   Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Loop over the body of this loop, looking for calls, invokes, and stores.
 | |
|   // Because subloops have already been incorporated into AST, we skip blocks in
 | |
|   // subloops.
 | |
|   //
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
 | |
|       CurAST->add(*BB);                 // Incorporate the specified basic block
 | |
|   }
 | |
| 
 | |
|   // We want to visit all of the instructions in this loop... that are not parts
 | |
|   // of our subloops (they have already had their invariants hoisted out of
 | |
|   // their loop, into this loop, so there is no need to process the BODIES of
 | |
|   // the subloops).
 | |
|   //
 | |
|   // Traverse the body of the loop in depth first order on the dominator tree so
 | |
|   // that we are guaranteed to see definitions before we see uses.  This allows
 | |
|   // us to sink instructions in one pass, without iteration.  After sinking
 | |
|   // instructions, we perform another pass to hoist them out of the loop.
 | |
|   //
 | |
|   if (L->hasDedicatedExits())
 | |
|     SinkRegion(DT->getNode(L->getHeader()));
 | |
|   if (Preheader)
 | |
|     HoistRegion(DT->getNode(L->getHeader()));
 | |
| 
 | |
|   // Now that all loop invariants have been removed from the loop, promote any
 | |
|   // memory references to scalars that we can.
 | |
|   if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
 | |
|     // Loop over all of the alias sets in the tracker object.
 | |
|     for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|          I != E; ++I)
 | |
|       PromoteAliasSet(*I);
 | |
|   }
 | |
|   
 | |
|   // Clear out loops state information for the next iteration
 | |
|   CurLoop = 0;
 | |
|   Preheader = 0;
 | |
| 
 | |
|   // If this loop is nested inside of another one, save the alias information
 | |
|   // for when we process the outer loop.
 | |
|   if (L->getParentLoop())
 | |
|     LoopToAliasSetMap[L] = CurAST;
 | |
|   else
 | |
|     delete CurAST;
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in
 | |
| /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
 | |
| /// uses before definitions, allowing us to sink a loop body in one pass without
 | |
| /// iteration.
 | |
| ///
 | |
| void LICM::SinkRegion(DomTreeNode *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // We are processing blocks in reverse dfo, so process children first.
 | |
|   const std::vector<DomTreeNode*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     SinkRegion(Children[i]);
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (inSubLoop(BB)) return;
 | |
| 
 | |
|   for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
 | |
|     Instruction &I = *--II;
 | |
|     
 | |
|     // If the instruction is dead, we would try to sink it because it isn't used
 | |
|     // in the loop, instead, just delete it.
 | |
|     if (isInstructionTriviallyDead(&I)) {
 | |
|       DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
 | |
|       ++II;
 | |
|       CurAST->deleteValue(&I);
 | |
|       I.eraseFromParent();
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if we can sink this instruction to the exit blocks
 | |
|     // of the loop.  We can do this if the all users of the instruction are
 | |
|     // outside of the loop.  In this case, it doesn't even matter if the
 | |
|     // operands of the instruction are loop invariant.
 | |
|     //
 | |
|     if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
 | |
|       ++II;
 | |
|       sink(I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in depth
 | |
| /// first order w.r.t the DominatorTree.  This allows us to visit definitions
 | |
| /// before uses, allowing us to hoist a loop body in one pass without iteration.
 | |
| ///
 | |
| void LICM::HoistRegion(DomTreeNode *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (!inSubLoop(BB))
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
 | |
|       Instruction &I = *II++;
 | |
| 
 | |
|       // Try constant folding this instruction.  If all the operands are
 | |
|       // constants, it is technically hoistable, but it would be better to just
 | |
|       // fold it.
 | |
|       if (Constant *C = ConstantFoldInstruction(&I)) {
 | |
|         DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
 | |
|         CurAST->copyValue(&I, C);
 | |
|         CurAST->deleteValue(&I);
 | |
|         I.replaceAllUsesWith(C);
 | |
|         I.eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Try hoisting the instruction out to the preheader.  We can only do this
 | |
|       // if all of the operands of the instruction are loop invariant and if it
 | |
|       // is safe to hoist the instruction.
 | |
|       //
 | |
|       if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
 | |
|           isSafeToExecuteUnconditionally(I))
 | |
|         hoist(I);
 | |
|     }
 | |
| 
 | |
|   const std::vector<DomTreeNode*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     HoistRegion(Children[i]);
 | |
| }
 | |
| 
 | |
| /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
 | |
| /// instruction.
 | |
| ///
 | |
| bool LICM::canSinkOrHoistInst(Instruction &I) {
 | |
|   // Loads have extra constraints we have to verify before we can hoist them.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|     if (LI->isVolatile())
 | |
|       return false;        // Don't hoist volatile loads!
 | |
| 
 | |
|     // Loads from constant memory are always safe to move, even if they end up
 | |
|     // in the same alias set as something that ends up being modified.
 | |
|     if (AA->pointsToConstantMemory(LI->getOperand(0)))
 | |
|       return true;
 | |
|     
 | |
|     // Don't hoist loads which have may-aliased stores in loop.
 | |
|     uint64_t Size = 0;
 | |
|     if (LI->getType()->isSized())
 | |
|       Size = AA->getTypeStoreSize(LI->getType());
 | |
|     return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
 | |
|                                      LI->getMetadata(LLVMContext::MD_tbaa));
 | |
|   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Handle obvious cases efficiently.
 | |
|     AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
 | |
|     if (Behavior == AliasAnalysis::DoesNotAccessMemory)
 | |
|       return true;
 | |
|     else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
 | |
|       // If this call only reads from memory and there are no writes to memory
 | |
|       // in the loop, we can hoist or sink the call as appropriate.
 | |
|       bool FoundMod = false;
 | |
|       for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|            I != E; ++I) {
 | |
|         AliasSet &AS = *I;
 | |
|         if (!AS.isForwardingAliasSet() && AS.isMod()) {
 | |
|           FoundMod = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!FoundMod) return true;
 | |
|     }
 | |
| 
 | |
|     // FIXME: This should use mod/ref information to see if we can hoist or sink
 | |
|     // the call.
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise these instructions are hoistable/sinkable
 | |
|   return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
 | |
|          isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
 | |
|          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
 | |
|          isa<ShuffleVectorInst>(I);
 | |
| }
 | |
| 
 | |
| /// isNotUsedInLoop - Return true if the only users of this instruction are
 | |
| /// outside of the loop.  If this is true, we can sink the instruction to the
 | |
| /// exit blocks of the loop.
 | |
| ///
 | |
| bool LICM::isNotUsedInLoop(Instruction &I) {
 | |
|   for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       // PHI node uses occur in predecessor blocks!
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == &I)
 | |
|           if (CurLoop->contains(PN->getIncomingBlock(i)))
 | |
|             return false;
 | |
|     } else if (CurLoop->contains(User)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// sink - When an instruction is found to only be used outside of the loop,
 | |
| /// this function moves it to the exit blocks and patches up SSA form as needed.
 | |
| /// This method is guaranteed to remove the original instruction from its
 | |
| /// position, and may either delete it or move it to outside of the loop.
 | |
| ///
 | |
| void LICM::sink(Instruction &I) {
 | |
|   DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumSunk;
 | |
|   Changed = true;
 | |
| 
 | |
|   // The case where there is only a single exit node of this loop is common
 | |
|   // enough that we handle it as a special (more efficient) case.  It is more
 | |
|   // efficient to handle because there are no PHI nodes that need to be placed.
 | |
|   if (ExitBlocks.size() == 1) {
 | |
|     if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
 | |
|       // Instruction is not used, just delete it.
 | |
|       CurAST->deleteValue(&I);
 | |
|       // If I has users in unreachable blocks, eliminate.
 | |
|       // If I is not void type then replaceAllUsesWith undef.
 | |
|       // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|       if (!I.use_empty())
 | |
|         I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|       I.eraseFromParent();
 | |
|     } else {
 | |
|       // Move the instruction to the start of the exit block, after any PHI
 | |
|       // nodes in it.
 | |
|       I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
 | |
| 
 | |
|       // This instruction is no longer in the AST for the current loop, because
 | |
|       // we just sunk it out of the loop.  If we just sunk it into an outer
 | |
|       // loop, we will rediscover the operation when we process it.
 | |
|       CurAST->deleteValue(&I);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (ExitBlocks.empty()) {
 | |
|     // The instruction is actually dead if there ARE NO exit blocks.
 | |
|     CurAST->deleteValue(&I);
 | |
|     // If I has users in unreachable blocks, eliminate.
 | |
|     // If I is not void type then replaceAllUsesWith undef.
 | |
|     // This allows ValueHandlers and custom metadata to adjust itself.
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     I.eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
 | |
|   // hard work of inserting PHI nodes as necessary.
 | |
|   SmallVector<PHINode*, 8> NewPHIs;
 | |
|   SSAUpdater SSA(&NewPHIs);
 | |
|   
 | |
|   if (!I.use_empty())
 | |
|     SSA.Initialize(I.getType(), I.getName());
 | |
|   
 | |
|   // Insert a copy of the instruction in each exit block of the loop that is
 | |
|   // dominated by the instruction.  Each exit block is known to only be in the
 | |
|   // ExitBlocks list once.
 | |
|   BasicBlock *InstOrigBB = I.getParent();
 | |
|   unsigned NumInserted = 0;
 | |
|   
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = ExitBlocks[i];
 | |
|     
 | |
|     if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
 | |
|       continue;
 | |
|     
 | |
|     // Insert the code after the last PHI node.
 | |
|     BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
 | |
|     
 | |
|     // If this is the first exit block processed, just move the original
 | |
|     // instruction, otherwise clone the original instruction and insert
 | |
|     // the copy.
 | |
|     Instruction *New;
 | |
|     if (NumInserted++ == 0) {
 | |
|       I.moveBefore(InsertPt);
 | |
|       New = &I;
 | |
|     } else {
 | |
|       New = I.clone();
 | |
|       if (!I.getName().empty())
 | |
|         New->setName(I.getName()+".le");
 | |
|       ExitBlock->getInstList().insert(InsertPt, New);
 | |
|     }
 | |
|     
 | |
|     // Now that we have inserted the instruction, inform SSAUpdater.
 | |
|     if (!I.use_empty())
 | |
|       SSA.AddAvailableValue(ExitBlock, New);
 | |
|   }
 | |
|   
 | |
|   // If the instruction doesn't dominate any exit blocks, it must be dead.
 | |
|   if (NumInserted == 0) {
 | |
|     CurAST->deleteValue(&I);
 | |
|     if (!I.use_empty())
 | |
|       I.replaceAllUsesWith(UndefValue::get(I.getType()));
 | |
|     I.eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
 | |
|   for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
 | |
|     // Grab the use before incrementing the iterator.
 | |
|     Use &U = UI.getUse();
 | |
|     // Increment the iterator before removing the use from the list.
 | |
|     ++UI;
 | |
|     SSA.RewriteUseAfterInsertions(U);
 | |
|   }
 | |
|   
 | |
|   // Update CurAST for NewPHIs if I had pointer type.
 | |
|   if (I.getType()->isPointerTy())
 | |
|     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | |
|       CurAST->copyValue(&I, NewPHIs[i]);
 | |
|   
 | |
|   // Finally, remove the instruction from CurAST.  It is no longer in the loop.
 | |
|   CurAST->deleteValue(&I);
 | |
| }
 | |
| 
 | |
| /// hoist - When an instruction is found to only use loop invariant operands
 | |
| /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| void LICM::hoist(Instruction &I) {
 | |
|   DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
 | |
|         << I << "\n");
 | |
| 
 | |
|   // Move the new node to the Preheader, before its terminator.
 | |
|   I.moveBefore(Preheader->getTerminator());
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
 | |
| /// not a trapping instruction or if it is a trapping instruction and is
 | |
| /// guaranteed to execute.
 | |
| ///
 | |
| bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
 | |
|   // If it is not a trapping instruction, it is always safe to hoist.
 | |
|   if (Inst.isSafeToSpeculativelyExecute())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we have to check to make sure that the instruction dominates all
 | |
|   // of the exit blocks.  If it doesn't, then there is a path out of the loop
 | |
|   // which does not execute this instruction, so we can't hoist it.
 | |
| 
 | |
|   // If the instruction is in the header block for the loop (which is very
 | |
|   // common), it is always guaranteed to dominate the exit blocks.  Since this
 | |
|   // is a common case, and can save some work, check it now.
 | |
|   if (Inst.getParent() == CurLoop->getHeader())
 | |
|     return true;
 | |
| 
 | |
|   // Get the exit blocks for the current loop.
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // For each exit block, get the DT node and walk up the DT until the
 | |
|   // instruction's basic block is found or we exit the loop.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// PromoteAliasSet - Try to promote memory values to scalars by sinking
 | |
| /// stores out of the loop and moving loads to before the loop.  We do this by
 | |
| /// looping over the stores in the loop, looking for stores to Must pointers
 | |
| /// which are loop invariant.
 | |
| ///
 | |
| void LICM::PromoteAliasSet(AliasSet &AS) {
 | |
|   // We can promote this alias set if it has a store, if it is a "Must" alias
 | |
|   // set, if the pointer is loop invariant, and if we are not eliminating any
 | |
|   // volatile loads or stores.
 | |
|   if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
 | |
|       AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
 | |
|     return;
 | |
|   
 | |
|   assert(!AS.empty() &&
 | |
|          "Must alias set should have at least one pointer element in it!");
 | |
|   Value *SomePtr = AS.begin()->getValue();
 | |
| 
 | |
|   // It isn't safe to promote a load/store from the loop if the load/store is
 | |
|   // conditional.  For example, turning:
 | |
|   //
 | |
|   //    for () { if (c) *P += 1; }
 | |
|   //
 | |
|   // into:
 | |
|   //
 | |
|   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
 | |
|   //
 | |
|   // is not safe, because *P may only be valid to access if 'c' is true.
 | |
|   // 
 | |
|   // It is safe to promote P if all uses are direct load/stores and if at
 | |
|   // least one is guaranteed to be executed.
 | |
|   bool GuaranteedToExecute = false;
 | |
|   
 | |
|   SmallVector<Instruction*, 64> LoopUses;
 | |
|   SmallPtrSet<Value*, 4> PointerMustAliases;
 | |
| 
 | |
|   // Check that all of the pointers in the alias set have the same type.  We
 | |
|   // cannot (yet) promote a memory location that is loaded and stored in
 | |
|   // different sizes.
 | |
|   for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
 | |
|     Value *ASIV = ASI->getValue();
 | |
|     PointerMustAliases.insert(ASIV);
 | |
|     
 | |
|     // Check that all of the pointers in the alias set have the same type.  We
 | |
|     // cannot (yet) promote a memory location that is loaded and stored in
 | |
|     // different sizes.
 | |
|     if (SomePtr->getType() != ASIV->getType())
 | |
|       return;
 | |
|     
 | |
|     for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       // Ignore instructions that are outside the loop.
 | |
|       Instruction *Use = dyn_cast<Instruction>(*UI);
 | |
|       if (!Use || !CurLoop->contains(Use))
 | |
|         continue;
 | |
|       
 | |
|       // If there is an non-load/store instruction in the loop, we can't promote
 | |
|       // it.
 | |
|       if (isa<LoadInst>(Use))
 | |
|         assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
 | |
|       else if (isa<StoreInst>(Use)) {
 | |
|         assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
 | |
|         if (Use->getOperand(0) == ASIV) return;
 | |
|       } else
 | |
|         return; // Not a load or store.
 | |
|       
 | |
|       if (!GuaranteedToExecute)
 | |
|         GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
 | |
|       
 | |
|       LoopUses.push_back(Use);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there isn't a guaranteed-to-execute instruction, we can't promote.
 | |
|   if (!GuaranteedToExecute)
 | |
|     return;
 | |
|   
 | |
|   // Otherwise, this is safe to promote, lets do it!
 | |
|   DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');  
 | |
|   Changed = true;
 | |
|   ++NumPromoted;
 | |
| 
 | |
|   // We use the SSAUpdater interface to insert phi nodes as required.
 | |
|   SmallVector<PHINode*, 16> NewPHIs;
 | |
|   SSAUpdater SSA(&NewPHIs);
 | |
|   
 | |
|   // It wants to know some value of the same type as what we'll be inserting.
 | |
|   Value *SomeValue;
 | |
|   if (isa<LoadInst>(LoopUses[0]))
 | |
|     SomeValue = LoopUses[0];
 | |
|   else
 | |
|     SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
 | |
|   SSA.Initialize(SomeValue->getType(), SomeValue->getName());
 | |
| 
 | |
|   // First step: bucket up uses of the pointers by the block they occur in.
 | |
|   // This is important because we have to handle multiple defs/uses in a block
 | |
|   // ourselves: SSAUpdater is purely for cross-block references.
 | |
|   // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
 | |
|   DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
 | |
|   for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
 | |
|     Instruction *User = LoopUses[i];
 | |
|     UsesByBlock[User->getParent()].push_back(User);
 | |
|   }
 | |
|   
 | |
|   // Okay, now we can iterate over all the blocks in the loop with uses,
 | |
|   // processing them.  Keep track of which loads are loading a live-in value.
 | |
|   SmallVector<LoadInst*, 32> LiveInLoads;
 | |
|   DenseMap<Value*, Value*> ReplacedLoads;
 | |
|   
 | |
|   for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
 | |
|     Instruction *User = LoopUses[LoopUse];
 | |
|     std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
 | |
|     
 | |
|     // If this block has already been processed, ignore this repeat use.
 | |
|     if (BlockUses.empty()) continue;
 | |
|     
 | |
|     // Okay, this is the first use in the block.  If this block just has a
 | |
|     // single user in it, we can rewrite it trivially.
 | |
|     if (BlockUses.size() == 1) {
 | |
|       // If it is a store, it is a trivial def of the value in the block.
 | |
|       if (isa<StoreInst>(User)) {
 | |
|         SSA.AddAvailableValue(User->getParent(),
 | |
|                               cast<StoreInst>(User)->getOperand(0));
 | |
|       } else {
 | |
|         // Otherwise it is a load, queue it to rewrite as a live-in load.
 | |
|         LiveInLoads.push_back(cast<LoadInst>(User));
 | |
|       }
 | |
|       BlockUses.clear();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, check to see if this block is all loads.  If so, we can queue
 | |
|     // them all as live in loads.
 | |
|     bool HasStore = false;
 | |
|     for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
 | |
|       if (isa<StoreInst>(BlockUses[i])) {
 | |
|         HasStore = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!HasStore) {
 | |
|       for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
 | |
|         LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
 | |
|       BlockUses.clear();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have mixed loads and stores (or just a bunch of stores).
 | |
|     // Since SSAUpdater is purely for cross-block values, we need to determine
 | |
|     // the order of these instructions in the block.  If the first use in the
 | |
|     // block is a load, then it uses the live in value.  The last store defines
 | |
|     // the live out value.  We handle this by doing a linear scan of the block.
 | |
|     BasicBlock *BB = User->getParent();
 | |
|     Value *StoredValue = 0;
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
 | |
|       if (LoadInst *L = dyn_cast<LoadInst>(II)) {
 | |
|         // If this is a load from an unrelated pointer, ignore it.
 | |
|         if (!PointerMustAliases.count(L->getOperand(0))) continue;
 | |
| 
 | |
|         // If we haven't seen a store yet, this is a live in use, otherwise
 | |
|         // use the stored value.
 | |
|         if (StoredValue) {
 | |
|           L->replaceAllUsesWith(StoredValue);
 | |
|           ReplacedLoads[L] = StoredValue;
 | |
|         } else {
 | |
|           LiveInLoads.push_back(L);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       if (StoreInst *S = dyn_cast<StoreInst>(II)) {
 | |
|         // If this is a store to an unrelated pointer, ignore it.
 | |
|         if (!PointerMustAliases.count(S->getOperand(1))) continue;
 | |
| 
 | |
|         // Remember that this is the active value in the block.
 | |
|         StoredValue = S->getOperand(0);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // The last stored value that happened is the live-out for the block.
 | |
|     assert(StoredValue && "Already checked that there is a store in block");
 | |
|     SSA.AddAvailableValue(BB, StoredValue);
 | |
|     BlockUses.clear();
 | |
|   }
 | |
|   
 | |
|   // Now that all the intra-loop values are classified, set up the preheader.
 | |
|   // It gets a load of the pointer we're promoting, and it is the live-out value
 | |
|   // from the preheader.
 | |
|   LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
 | |
|                                          Preheader->getTerminator());
 | |
|   SSA.AddAvailableValue(Preheader, PreheaderLoad);
 | |
| 
 | |
|   // Now that the preheader is good to go, set up the exit blocks.  Each exit
 | |
|   // block gets a store of the live-out values that feed them.  Since we've
 | |
|   // already told the SSA updater about the defs in the loop and the preheader
 | |
|   // definition, it is all set and we can start using it.
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = ExitBlocks[i];
 | |
|     Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
 | |
|     Instruction *InsertPos = ExitBlock->getFirstNonPHI();
 | |
|     new StoreInst(LiveInValue, SomePtr, InsertPos);
 | |
|   }
 | |
| 
 | |
|   // Okay, now we rewrite all loads that use live-in values in the loop,
 | |
|   // inserting PHI nodes as necessary.
 | |
|   for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
 | |
|     LoadInst *ALoad = LiveInLoads[i];
 | |
|     Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
 | |
|     ALoad->replaceAllUsesWith(NewVal);
 | |
|     CurAST->copyValue(ALoad, NewVal);
 | |
|     ReplacedLoads[ALoad] = NewVal;
 | |
|   }
 | |
|   
 | |
|   // If the preheader load is itself a pointer, we need to tell alias analysis
 | |
|   // about the new pointer we created in the preheader block and about any PHI
 | |
|   // nodes that just got inserted.
 | |
|   if (PreheaderLoad->getType()->isPointerTy()) {
 | |
|     // Copy any value stored to or loaded from a must-alias of the pointer.
 | |
|     CurAST->copyValue(SomeValue, PreheaderLoad);
 | |
|     
 | |
|     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | |
|       CurAST->copyValue(SomeValue, NewPHIs[i]);
 | |
|   }
 | |
|   
 | |
|   // Now that everything is rewritten, delete the old instructions from the body
 | |
|   // of the loop.  They should all be dead now.
 | |
|   for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
 | |
|     Instruction *User = LoopUses[i];
 | |
|     
 | |
|     // If this is a load that still has uses, then the load must have been added
 | |
|     // as a live value in the SSAUpdate data structure for a block (e.g. because
 | |
|     // the loaded value was stored later).  In this case, we need to recursively
 | |
|     // propagate the updates until we get to the real value.
 | |
|     if (!User->use_empty()) {
 | |
|       Value *NewVal = ReplacedLoads[User];
 | |
|       assert(NewVal && "not a replaced load?");
 | |
|       
 | |
|       // Propagate down to the ultimate replacee.  The intermediately loads
 | |
|       // could theoretically already have been deleted, so we don't want to
 | |
|       // dereference the Value*'s.
 | |
|       DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
 | |
|       while (RLI != ReplacedLoads.end()) {
 | |
|         NewVal = RLI->second;
 | |
|         RLI = ReplacedLoads.find(NewVal);
 | |
|       }
 | |
|       
 | |
|       User->replaceAllUsesWith(NewVal);
 | |
|       CurAST->copyValue(User, NewVal);
 | |
|     }
 | |
|     
 | |
|     CurAST->deleteValue(User);
 | |
|     User->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   // fwew, we're done!
 | |
| }
 | |
| 
 | |
| 
 | |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
 | |
| void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
 | |
|   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
 | |
|   if (!AST)
 | |
|     return;
 | |
| 
 | |
|   AST->copyValue(From, To);
 | |
| }
 | |
| 
 | |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
 | |
| /// set.
 | |
| void LICM::deleteAnalysisValue(Value *V, Loop *L) {
 | |
|   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
 | |
|   if (!AST)
 | |
|     return;
 | |
| 
 | |
|   AST->deleteValue(V);
 | |
| }
 |