mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	perform initialization without static constructors AND without explicit initialization by the client. For the moment, passes are required to initialize both their (potential) dependencies and any passes they preserve. I hope to be able to relax the latter requirement in the future. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements simple dominator construction algorithms for finding
 | 
						|
// forward dominators.  Postdominators are available in libanalysis, but are not
 | 
						|
// included in libvmcore, because it's not needed.  Forward dominators are
 | 
						|
// needed to support the Verifier pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/DominatorInternals.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Always verify dominfo if expensive checking is enabled.
 | 
						|
#ifdef XDEBUG
 | 
						|
static bool VerifyDomInfo = true;
 | 
						|
#else
 | 
						|
static bool VerifyDomInfo = false;
 | 
						|
#endif
 | 
						|
static cl::opt<bool,true>
 | 
						|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
 | 
						|
               cl::desc("Verify dominator info (time consuming)"));
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominatorTree Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Provide public access to DominatorTree information.  Implementation details
 | 
						|
// can be found in DominatorCalculation.h.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
 | 
						|
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
 | 
						|
 | 
						|
char DominatorTree::ID = 0;
 | 
						|
INITIALIZE_PASS(DominatorTree, "domtree",
 | 
						|
                "Dominator Tree Construction", true, true)
 | 
						|
 | 
						|
bool DominatorTree::runOnFunction(Function &F) {
 | 
						|
  DT->recalculate(F);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::verifyAnalysis() const {
 | 
						|
  if (!VerifyDomInfo) return;
 | 
						|
 | 
						|
  Function &F = *getRoot()->getParent();
 | 
						|
 | 
						|
  DominatorTree OtherDT;
 | 
						|
  OtherDT.getBase().recalculate(F);
 | 
						|
  assert(!compare(OtherDT) && "Invalid DominatorTree info!");
 | 
						|
}
 | 
						|
 | 
						|
void DominatorTree::print(raw_ostream &OS, const Module *) const {
 | 
						|
  DT->print(OS);
 | 
						|
}
 | 
						|
 | 
						|
// dominates - Return true if A dominates a use in B. This performs the
 | 
						|
// special checks necessary if A and B are in the same basic block.
 | 
						|
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
 | 
						|
  const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | 
						|
  
 | 
						|
  // If A is an invoke instruction, its value is only available in this normal
 | 
						|
  // successor block.
 | 
						|
  if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
 | 
						|
    BBA = II->getNormalDest();
 | 
						|
  
 | 
						|
  if (BBA != BBB) return dominates(BBA, BBB);
 | 
						|
  
 | 
						|
  // It is not possible to determine dominance between two PHI nodes 
 | 
						|
  // based on their ordering.
 | 
						|
  if (isa<PHINode>(A) && isa<PHINode>(B)) 
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Loop through the basic block until we find A or B.
 | 
						|
  BasicBlock::const_iterator I = BBA->begin();
 | 
						|
  for (; &*I != A && &*I != B; ++I)
 | 
						|
    /*empty*/;
 | 
						|
  
 | 
						|
  return &*I == A;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  DominanceFrontier Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
char DominanceFrontier::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
 | 
						|
                "Dominance Frontier Construction", true, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | 
						|
INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
 | 
						|
                "Dominance Frontier Construction", true, true)
 | 
						|
 | 
						|
void DominanceFrontier::verifyAnalysis() const {
 | 
						|
  if (!VerifyDomInfo) return;
 | 
						|
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
 | 
						|
  DominanceFrontier OtherDF;
 | 
						|
  const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
 | 
						|
  OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
 | 
						|
  assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
 | 
						|
}
 | 
						|
 | 
						|
// NewBB is split and now it has one successor. Update dominance frontier to
 | 
						|
// reflect this change.
 | 
						|
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
 | 
						|
  assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
 | 
						|
         "NewBB should have a single successor!");
 | 
						|
  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
 | 
						|
 | 
						|
  // NewBBSucc inherits original NewBB frontier.
 | 
						|
  DominanceFrontier::iterator NewBBI = find(NewBB);
 | 
						|
  if (NewBBI != end())
 | 
						|
    addBasicBlock(NewBBSucc, NewBBI->second);
 | 
						|
 | 
						|
  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
 | 
						|
  // DF(NewBBSucc) without the stuff that the new block does not dominate
 | 
						|
  // a predecessor of.
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
  DomTreeNode *NewBBNode = DT.getNode(NewBB);
 | 
						|
  DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
 | 
						|
  if (DT.dominates(NewBBNode, NewBBSuccNode)) {
 | 
						|
    DominanceFrontier::iterator DFI = find(NewBBSucc);
 | 
						|
    if (DFI != end()) {
 | 
						|
      DominanceFrontier::DomSetType Set = DFI->second;
 | 
						|
      // Filter out stuff in Set that we do not dominate a predecessor of.
 | 
						|
      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | 
						|
             E = Set.end(); SetI != E;) {
 | 
						|
        bool DominatesPred = false;
 | 
						|
        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
 | 
						|
             PI != E; ++PI)
 | 
						|
          if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
 | 
						|
            DominatesPred = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        if (!DominatesPred)
 | 
						|
          Set.erase(SetI++);
 | 
						|
        else
 | 
						|
          ++SetI;
 | 
						|
      }
 | 
						|
 | 
						|
      if (NewBBI != end()) {
 | 
						|
        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
 | 
						|
               E = Set.end(); SetI != E; ++SetI) {
 | 
						|
          BasicBlock *SB = *SetI;
 | 
						|
          addToFrontier(NewBBI, SB);
 | 
						|
        }
 | 
						|
      } else 
 | 
						|
        addBasicBlock(NewBB, Set);
 | 
						|
    }
 | 
						|
    
 | 
						|
  } else {
 | 
						|
    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
 | 
						|
    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
 | 
						|
    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
 | 
						|
    DominanceFrontier::DomSetType NewDFSet;
 | 
						|
    NewDFSet.insert(NewBBSucc);
 | 
						|
    addBasicBlock(NewBB, NewDFSet);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now update dominance frontiers which either used to contain NewBBSucc
 | 
						|
  // or which now need to include NewBB.
 | 
						|
 | 
						|
  // Collect the set of blocks which dominate a predecessor of NewBB or
 | 
						|
  // NewSuccBB and which don't dominate both. This is an initial
 | 
						|
  // approximation of the blocks whose dominance frontiers will need updates.
 | 
						|
  SmallVector<DomTreeNode *, 16> AllPredDoms;
 | 
						|
 | 
						|
  // Compute the block which dominates both NewBBSucc and NewBB. This is
 | 
						|
  // the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
 | 
						|
  // The code below which climbs dominator trees will stop at this point,
 | 
						|
  // because from this point up, dominance frontiers are unaffected.
 | 
						|
  DomTreeNode *DominatesBoth = 0;
 | 
						|
  if (NewBBSuccNode) {
 | 
						|
    DominatesBoth = NewBBSuccNode->getIDom();
 | 
						|
    if (DominatesBoth == NewBBNode)
 | 
						|
      DominatesBoth = NewBBNode->getIDom();
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect the set of all blocks which dominate a predecessor of NewBB.
 | 
						|
  SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
 | 
						|
  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
 | 
						|
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
 | 
						|
      if (DTN == DominatesBoth)
 | 
						|
        break;
 | 
						|
      if (!NewBBPredDoms.insert(DTN))
 | 
						|
        break;
 | 
						|
      AllPredDoms.push_back(DTN);
 | 
						|
    }
 | 
						|
 | 
						|
  // Collect the set of all blocks which dominate a predecessor of NewSuccBB.
 | 
						|
  SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
 | 
						|
  for (pred_iterator PI = pred_begin(NewBBSucc),
 | 
						|
       E = pred_end(NewBBSucc); PI != E; ++PI)
 | 
						|
    for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
 | 
						|
      if (DTN == DominatesBoth)
 | 
						|
        break;
 | 
						|
      if (!NewBBSuccPredDoms.insert(DTN))
 | 
						|
        break;
 | 
						|
      if (!NewBBPredDoms.count(DTN))
 | 
						|
        AllPredDoms.push_back(DTN);
 | 
						|
    }
 | 
						|
 | 
						|
  // Visit all relevant dominance frontiers and make any needed updates.
 | 
						|
  for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
 | 
						|
       E = AllPredDoms.end(); I != E; ++I) {
 | 
						|
    DomTreeNode *DTN = *I;
 | 
						|
    iterator DFI = find((*I)->getBlock());
 | 
						|
 | 
						|
    // Only consider nodes that have NewBBSucc in their dominator frontier.
 | 
						|
    if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
 | 
						|
 | 
						|
    // If the block dominates a predecessor of NewBB but does not properly
 | 
						|
    // dominate NewBB itself, add NewBB to its dominance frontier.
 | 
						|
    if (NewBBPredDoms.count(DTN) &&
 | 
						|
        !DT.properlyDominates(DTN, NewBBNode))
 | 
						|
      addToFrontier(DFI, NewBB);
 | 
						|
 | 
						|
    // If the block does not dominate a predecessor of NewBBSucc or
 | 
						|
    // properly dominates NewBBSucc itself, remove NewBBSucc from its
 | 
						|
    // dominance frontier.
 | 
						|
    if (!NewBBSuccPredDoms.count(DTN) ||
 | 
						|
        DT.properlyDominates(DTN, NewBBSuccNode))
 | 
						|
      removeFromFrontier(DFI, NewBBSucc);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class DFCalculateWorkObject {
 | 
						|
  public:
 | 
						|
    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
 | 
						|
                          const DomTreeNode *N,
 | 
						|
                          const DomTreeNode *PN)
 | 
						|
    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
 | 
						|
    BasicBlock *currentBB;
 | 
						|
    BasicBlock *parentBB;
 | 
						|
    const DomTreeNode *Node;
 | 
						|
    const DomTreeNode *parentNode;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
const DominanceFrontier::DomSetType &
 | 
						|
DominanceFrontier::calculate(const DominatorTree &DT,
 | 
						|
                             const DomTreeNode *Node) {
 | 
						|
  BasicBlock *BB = Node->getBlock();
 | 
						|
  DomSetType *Result = NULL;
 | 
						|
 | 
						|
  std::vector<DFCalculateWorkObject> workList;
 | 
						|
  SmallPtrSet<BasicBlock *, 32> visited;
 | 
						|
 | 
						|
  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
 | 
						|
  do {
 | 
						|
    DFCalculateWorkObject *currentW = &workList.back();
 | 
						|
    assert (currentW && "Missing work object.");
 | 
						|
 | 
						|
    BasicBlock *currentBB = currentW->currentBB;
 | 
						|
    BasicBlock *parentBB = currentW->parentBB;
 | 
						|
    const DomTreeNode *currentNode = currentW->Node;
 | 
						|
    const DomTreeNode *parentNode = currentW->parentNode;
 | 
						|
    assert (currentBB && "Invalid work object. Missing current Basic Block");
 | 
						|
    assert (currentNode && "Invalid work object. Missing current Node");
 | 
						|
    DomSetType &S = Frontiers[currentBB];
 | 
						|
 | 
						|
    // Visit each block only once.
 | 
						|
    if (visited.count(currentBB) == 0) {
 | 
						|
      visited.insert(currentBB);
 | 
						|
 | 
						|
      // Loop over CFG successors to calculate DFlocal[currentNode]
 | 
						|
      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
 | 
						|
           SI != SE; ++SI) {
 | 
						|
        // Does Node immediately dominate this successor?
 | 
						|
        if (DT[*SI]->getIDom() != currentNode)
 | 
						|
          S.insert(*SI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, S is DFlocal.  Now we union in DFup's of our children...
 | 
						|
    // Loop through and visit the nodes that Node immediately dominates (Node's
 | 
						|
    // children in the IDomTree)
 | 
						|
    bool visitChild = false;
 | 
						|
    for (DomTreeNode::const_iterator NI = currentNode->begin(), 
 | 
						|
           NE = currentNode->end(); NI != NE; ++NI) {
 | 
						|
      DomTreeNode *IDominee = *NI;
 | 
						|
      BasicBlock *childBB = IDominee->getBlock();
 | 
						|
      if (visited.count(childBB) == 0) {
 | 
						|
        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
 | 
						|
                                                 IDominee, currentNode));
 | 
						|
        visitChild = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If all children are visited or there is any child then pop this block
 | 
						|
    // from the workList.
 | 
						|
    if (!visitChild) {
 | 
						|
 | 
						|
      if (!parentBB) {
 | 
						|
        Result = &S;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
 | 
						|
      DomSetType &parentSet = Frontiers[parentBB];
 | 
						|
      for (; CDFI != CDFE; ++CDFI) {
 | 
						|
        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
 | 
						|
          parentSet.insert(*CDFI);
 | 
						|
      }
 | 
						|
      workList.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
  } while (!workList.empty());
 | 
						|
 | 
						|
  return *Result;
 | 
						|
}
 | 
						|
 | 
						|
void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    OS << "  DomFrontier for BB ";
 | 
						|
    if (I->first)
 | 
						|
      WriteAsOperand(OS, I->first, false);
 | 
						|
    else
 | 
						|
      OS << " <<exit node>>";
 | 
						|
    OS << " is:\t";
 | 
						|
    
 | 
						|
    const std::set<BasicBlock*> &BBs = I->second;
 | 
						|
    
 | 
						|
    for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      OS << ' ';
 | 
						|
      if (*I)
 | 
						|
        WriteAsOperand(OS, *I, false);
 | 
						|
      else
 | 
						|
        OS << "<<exit node>>";
 | 
						|
    }
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DominanceFrontierBase::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
}
 | 
						|
 |