mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	adding a temporary wrapper around the ostream to make it friendly to functions expecting an LLVM stream. This should be fixed in the future. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31990 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			862 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			862 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a useful analysis step to figure out what numbered slots
 | 
						|
// values in a program will land in (keeping track of per plane information).
 | 
						|
//
 | 
						|
// This is used when writing a file to disk, either in bytecode or assembly.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SlotCalculator.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/ConstantsScanner.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if 0
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#define SC_DEBUG(X) llvm_cerr << X
 | 
						|
#else
 | 
						|
#define SC_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Module *M ) {
 | 
						|
  ModuleContainsAllFunctionConstants = false;
 | 
						|
  ModuleTypeLevel = 0;
 | 
						|
  TheModule = M;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  SC_DEBUG("Inserting primitive types:\n");
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::TypeID)i));
 | 
						|
    insertType(Type::getPrimitiveType((Type::TypeID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (M == 0) return;   // Empty table...
 | 
						|
  processModule();
 | 
						|
}
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Function *M ) {
 | 
						|
  ModuleContainsAllFunctionConstants = false;
 | 
						|
  TheModule = M ? M->getParent() : 0;
 | 
						|
 | 
						|
  // Preload table... Make sure that all of the primitive types are in the table
 | 
						|
  // and that their Primitive ID is equal to their slot #
 | 
						|
  //
 | 
						|
  SC_DEBUG("Inserting primitive types:\n");
 | 
						|
  for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) {
 | 
						|
    assert(Type::getPrimitiveType((Type::TypeID)i));
 | 
						|
    insertType(Type::getPrimitiveType((Type::TypeID)i), true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheModule == 0) return;   // Empty table...
 | 
						|
 | 
						|
  processModule();              // Process module level stuff
 | 
						|
  incorporateFunction(M);       // Start out in incorporated state
 | 
						|
}
 | 
						|
 | 
						|
unsigned SlotCalculator::getGlobalSlot(const Value *V) const {
 | 
						|
  assert(!CompactionTable.empty() &&
 | 
						|
         "This method can only be used when compaction is enabled!");
 | 
						|
  std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(V);
 | 
						|
  assert(I != NodeMap.end() && "Didn't find global slot entry!");
 | 
						|
  return I->second;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SlotCalculator::getGlobalSlot(const Type* T) const {
 | 
						|
  std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
 | 
						|
  assert(I != TypeMap.end() && "Didn't find global slot entry!");
 | 
						|
  return I->second;
 | 
						|
}
 | 
						|
 | 
						|
SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) {
 | 
						|
  if (CompactionTable.empty()) {                // No compaction table active?
 | 
						|
    // fall out
 | 
						|
  } else if (!CompactionTable[Plane].empty()) { // Compaction table active.
 | 
						|
    assert(Plane < CompactionTable.size());
 | 
						|
    return CompactionTable[Plane];
 | 
						|
  } else {
 | 
						|
    // Final case: compaction table active, but this plane is not
 | 
						|
    // compactified.  If the type plane is compactified, unmap back to the
 | 
						|
    // global type plane corresponding to "Plane".
 | 
						|
    if (!CompactionTypes.empty()) {
 | 
						|
      const Type *Ty = CompactionTypes[Plane];
 | 
						|
      TypeMapType::iterator It = TypeMap.find(Ty);
 | 
						|
      assert(It != TypeMap.end() && "Type not in global constant map?");
 | 
						|
      Plane = It->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay we are just returning an entry out of the main Table.  Make sure the
 | 
						|
  // plane exists and return it.
 | 
						|
  if (Plane >= Table.size())
 | 
						|
    Table.resize(Plane+1);
 | 
						|
  return Table[Plane];
 | 
						|
}
 | 
						|
 | 
						|
// processModule - Process all of the module level function declarations and
 | 
						|
// types that are available.
 | 
						|
//
 | 
						|
void SlotCalculator::processModule() {
 | 
						|
  SC_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the global variables to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  // Scavenge the types out of the functions, then add the functions themselves
 | 
						|
  // to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  // Add all of the module level constants used as initializers
 | 
						|
  //
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I)
 | 
						|
    if (I->hasInitializer())
 | 
						|
      getOrCreateSlot(I->getInitializer());
 | 
						|
 | 
						|
  // Now that all global constants have been added, rearrange constant planes
 | 
						|
  // that contain constant strings so that the strings occur at the start of the
 | 
						|
  // plane, not somewhere in the middle.
 | 
						|
  //
 | 
						|
  for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
 | 
						|
    if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
 | 
						|
      if (AT->getElementType() == Type::SByteTy ||
 | 
						|
          AT->getElementType() == Type::UByteTy) {
 | 
						|
        TypePlane &Plane = Table[plane];
 | 
						|
        unsigned FirstNonStringID = 0;
 | 
						|
        for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | 
						|
          if (isa<ConstantAggregateZero>(Plane[i]) ||
 | 
						|
              (isa<ConstantArray>(Plane[i]) &&
 | 
						|
               cast<ConstantArray>(Plane[i])->isString())) {
 | 
						|
            // Check to see if we have to shuffle this string around.  If not,
 | 
						|
            // don't do anything.
 | 
						|
            if (i != FirstNonStringID) {
 | 
						|
              // Swap the plane entries....
 | 
						|
              std::swap(Plane[i], Plane[FirstNonStringID]);
 | 
						|
 | 
						|
              // Keep the NodeMap up to date.
 | 
						|
              NodeMap[Plane[i]] = i;
 | 
						|
              NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
 | 
						|
            }
 | 
						|
            ++FirstNonStringID;
 | 
						|
          }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan all of the functions for their constants, which allows us to emit
 | 
						|
  // more compact modules.  This is optional, and is just used to compactify
 | 
						|
  // the constants used by different functions together.
 | 
						|
  //
 | 
						|
  // This functionality tends to produce smaller bytecode files.  This should
 | 
						|
  // not be used in the future by clients that want to, for example, build and
 | 
						|
  // emit functions on the fly.  For now, however, it is unconditionally
 | 
						|
  // enabled.
 | 
						|
  ModuleContainsAllFunctionConstants = true;
 | 
						|
 | 
						|
  SC_DEBUG("Inserting function constants:\n");
 | 
						|
  for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
 | 
						|
       F != E; ++F) {
 | 
						|
    for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
 | 
						|
      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
 | 
						|
           OI != E; ++OI) {
 | 
						|
        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | 
						|
            isa<InlineAsm>(*OI))
 | 
						|
          getOrCreateSlot(*OI);
 | 
						|
      }
 | 
						|
      getOrCreateSlot(I->getType());
 | 
						|
    }
 | 
						|
    processSymbolTableConstants(&F->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert constants that are named at module level into the slot pool so that
 | 
						|
  // the module symbol table can refer to them...
 | 
						|
  SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
  processSymbolTable(&TheModule->getSymbolTable());
 | 
						|
 | 
						|
  // Now that we have collected together all of the information relevant to the
 | 
						|
  // module, compactify the type table if it is particularly big and outputting
 | 
						|
  // a bytecode file.  The basic problem we run into is that some programs have
 | 
						|
  // a large number of types, which causes the type field to overflow its size,
 | 
						|
  // which causes instructions to explode in size (particularly call
 | 
						|
  // instructions).  To avoid this behavior, we "sort" the type table so that
 | 
						|
  // all non-value types are pushed to the end of the type table, giving nice
 | 
						|
  // low numbers to the types that can be used by instructions, thus reducing
 | 
						|
  // the amount of explodage we suffer.
 | 
						|
  if (Types.size() >= 64) {
 | 
						|
    unsigned FirstNonValueTypeID = 0;
 | 
						|
    for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | 
						|
      if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
 | 
						|
        // Check to see if we have to shuffle this type around.  If not, don't
 | 
						|
        // do anything.
 | 
						|
        if (i != FirstNonValueTypeID) {
 | 
						|
          // Swap the type ID's.
 | 
						|
          std::swap(Types[i], Types[FirstNonValueTypeID]);
 | 
						|
 | 
						|
          // Keep the TypeMap up to date.
 | 
						|
          TypeMap[Types[i]] = i;
 | 
						|
          TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
 | 
						|
 | 
						|
          // When we move a type, make sure to move its value plane as needed.
 | 
						|
          if (Table.size() > FirstNonValueTypeID) {
 | 
						|
            if (Table.size() <= i) Table.resize(i+1);
 | 
						|
            std::swap(Table[i], Table[FirstNonValueTypeID]);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++FirstNonValueTypeID;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// processSymbolTable - Insert all of the values in the specified symbol table
 | 
						|
// into the values table...
 | 
						|
//
 | 
						|
void SlotCalculator::processSymbolTable(const SymbolTable *ST) {
 | 
						|
  // Do the types first.
 | 
						|
  for (SymbolTable::type_const_iterator TI = ST->type_begin(),
 | 
						|
       TE = ST->type_end(); TI != TE; ++TI )
 | 
						|
    getOrCreateSlot(TI->second);
 | 
						|
 | 
						|
  // Now do the values.
 | 
						|
  for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
 | 
						|
       PE = ST->plane_end(); PI != PE; ++PI)
 | 
						|
    for (SymbolTable::value_const_iterator VI = PI->second.begin(),
 | 
						|
           VE = PI->second.end(); VI != VE; ++VI)
 | 
						|
      getOrCreateSlot(VI->second);
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) {
 | 
						|
  // Do the types first
 | 
						|
  for (SymbolTable::type_const_iterator TI = ST->type_begin(),
 | 
						|
       TE = ST->type_end(); TI != TE; ++TI )
 | 
						|
    getOrCreateSlot(TI->second);
 | 
						|
 | 
						|
  // Now do the constant values in all planes
 | 
						|
  for (SymbolTable::plane_const_iterator PI = ST->plane_begin(),
 | 
						|
       PE = ST->plane_end(); PI != PE; ++PI)
 | 
						|
    for (SymbolTable::value_const_iterator VI = PI->second.begin(),
 | 
						|
           VE = PI->second.end(); VI != VE; ++VI)
 | 
						|
      if (isa<Constant>(VI->second) &&
 | 
						|
          !isa<GlobalValue>(VI->second))
 | 
						|
        getOrCreateSlot(VI->second);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SlotCalculator::incorporateFunction(const Function *F) {
 | 
						|
  assert((ModuleLevel.size() == 0 ||
 | 
						|
          ModuleTypeLevel == 0) && "Module already incorporated!");
 | 
						|
 | 
						|
  SC_DEBUG("begin processFunction!\n");
 | 
						|
 | 
						|
  // If we emitted all of the function constants, build a compaction table.
 | 
						|
  if (ModuleContainsAllFunctionConstants)
 | 
						|
    buildCompactionTable(F);
 | 
						|
 | 
						|
  // Update the ModuleLevel entries to be accurate.
 | 
						|
  ModuleLevel.resize(getNumPlanes());
 | 
						|
  for (unsigned i = 0, e = getNumPlanes(); i != e; ++i)
 | 
						|
    ModuleLevel[i] = getPlane(i).size();
 | 
						|
  ModuleTypeLevel = Types.size();
 | 
						|
 | 
						|
  // Iterate over function arguments, adding them to the value table...
 | 
						|
  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | 
						|
    getOrCreateSlot(I);
 | 
						|
 | 
						|
  if (!ModuleContainsAllFunctionConstants) {
 | 
						|
    // Iterate over all of the instructions in the function, looking for
 | 
						|
    // constant values that are referenced.  Add these to the value pools
 | 
						|
    // before any nonconstant values.  This will be turned into the constant
 | 
						|
    // pool for the bytecode writer.
 | 
						|
    //
 | 
						|
 | 
						|
    // Emit all of the constants that are being used by the instructions in
 | 
						|
    // the function...
 | 
						|
    for (constant_iterator CI = constant_begin(F), CE = constant_end(F);
 | 
						|
         CI != CE; ++CI)
 | 
						|
      getOrCreateSlot(*CI);
 | 
						|
 | 
						|
    // If there is a symbol table, it is possible that the user has names for
 | 
						|
    // constants that are not being used.  In this case, we will have problems
 | 
						|
    // if we don't emit the constants now, because otherwise we will get
 | 
						|
    // symbol table references to constants not in the output.  Scan for these
 | 
						|
    // constants now.
 | 
						|
    //
 | 
						|
    processSymbolTableConstants(&F->getSymbolTable());
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  // Add all of the instructions to the type planes...
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
    getOrCreateSlot(BB);
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | 
						|
      getOrCreateSlot(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are building a compaction table, prune out planes that do not benefit
 | 
						|
  // from being compactified.
 | 
						|
  if (!CompactionTable.empty())
 | 
						|
    pruneCompactionTable();
 | 
						|
 | 
						|
  SC_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::purgeFunction() {
 | 
						|
  assert((ModuleLevel.size() != 0 ||
 | 
						|
          ModuleTypeLevel != 0) && "Module not incorporated!");
 | 
						|
  unsigned NumModuleTypes = ModuleLevel.size();
 | 
						|
 | 
						|
  SC_DEBUG("begin purgeFunction!\n");
 | 
						|
 | 
						|
  // First, free the compaction map if used.
 | 
						|
  CompactionNodeMap.clear();
 | 
						|
  CompactionTypeMap.clear();
 | 
						|
 | 
						|
  // Next, remove values from existing type planes
 | 
						|
  for (unsigned i = 0; i != NumModuleTypes; ++i) {
 | 
						|
    // Size of plane before function came
 | 
						|
    unsigned ModuleLev = getModuleLevel(i);
 | 
						|
    assert(int(ModuleLev) >= 0 && "BAD!");
 | 
						|
 | 
						|
    TypePlane &Plane = getPlane(i);
 | 
						|
 | 
						|
    assert(ModuleLev <= Plane.size() && "module levels higher than elements?");
 | 
						|
    while (Plane.size() != ModuleLev) {
 | 
						|
      assert(!isa<GlobalValue>(Plane.back()) &&
 | 
						|
             "Functions cannot define globals!");
 | 
						|
      NodeMap.erase(Plane.back());       // Erase from nodemap
 | 
						|
      Plane.pop_back();                  // Shrink plane
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need this state anymore, free it up.
 | 
						|
  ModuleLevel.clear();
 | 
						|
  ModuleTypeLevel = 0;
 | 
						|
 | 
						|
  // Finally, remove any type planes defined by the function...
 | 
						|
  CompactionTypes.clear();
 | 
						|
  if (!CompactionTable.empty()) {
 | 
						|
    CompactionTable.clear();
 | 
						|
  } else {
 | 
						|
    while (Table.size() > NumModuleTypes) {
 | 
						|
      TypePlane &Plane = Table.back();
 | 
						|
      SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
 | 
						|
               << Plane.size() << "\n");
 | 
						|
      while (Plane.size()) {
 | 
						|
        assert(!isa<GlobalValue>(Plane.back()) &&
 | 
						|
               "Functions cannot define globals!");
 | 
						|
        NodeMap.erase(Plane.back());   // Erase from nodemap
 | 
						|
        Plane.pop_back();              // Shrink plane
 | 
						|
      }
 | 
						|
 | 
						|
      Table.pop_back();                // Nuke the plane, we don't like it.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
static inline bool hasNullValue(const Type *Ty) {
 | 
						|
  return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
 | 
						|
/// approximation of the compaction table.
 | 
						|
unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) {
 | 
						|
  std::map<const Value*, unsigned>::iterator I =
 | 
						|
    CompactionNodeMap.lower_bound(V);
 | 
						|
  if (I != CompactionNodeMap.end() && I->first == V)
 | 
						|
    return I->second;  // Already exists?
 | 
						|
 | 
						|
  // Make sure the type is in the table.
 | 
						|
  unsigned Ty;
 | 
						|
  if (!CompactionTypes.empty())
 | 
						|
    Ty = getOrCreateCompactionTableSlot(V->getType());
 | 
						|
  else    // If the type plane was decompactified, use the global plane ID
 | 
						|
    Ty = getSlot(V->getType());
 | 
						|
  if (CompactionTable.size() <= Ty)
 | 
						|
    CompactionTable.resize(Ty+1);
 | 
						|
 | 
						|
  TypePlane &TyPlane = CompactionTable[Ty];
 | 
						|
 | 
						|
  // Make sure to insert the null entry if the thing we are inserting is not a
 | 
						|
  // null constant.
 | 
						|
  if (TyPlane.empty() && hasNullValue(V->getType())) {
 | 
						|
    Value *ZeroInitializer = Constant::getNullValue(V->getType());
 | 
						|
    if (V != ZeroInitializer) {
 | 
						|
      TyPlane.push_back(ZeroInitializer);
 | 
						|
      CompactionNodeMap[ZeroInitializer] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned SlotNo = TyPlane.size();
 | 
						|
  TyPlane.push_back(V);
 | 
						|
  CompactionNodeMap.insert(std::make_pair(V, SlotNo));
 | 
						|
  return SlotNo;
 | 
						|
}
 | 
						|
 | 
						|
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
 | 
						|
/// approximation of the compaction table.
 | 
						|
unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Type *T) {
 | 
						|
  std::map<const Type*, unsigned>::iterator I =
 | 
						|
    CompactionTypeMap.lower_bound(T);
 | 
						|
  if (I != CompactionTypeMap.end() && I->first == T)
 | 
						|
    return I->second;  // Already exists?
 | 
						|
 | 
						|
  unsigned SlotNo = CompactionTypes.size();
 | 
						|
  SC_DEBUG("Inserting Compaction Type #" << SlotNo << ": " << T << "\n");
 | 
						|
  CompactionTypes.push_back(T);
 | 
						|
  CompactionTypeMap.insert(std::make_pair(T, SlotNo));
 | 
						|
  return SlotNo;
 | 
						|
}
 | 
						|
 | 
						|
/// buildCompactionTable - Since all of the function constants and types are
 | 
						|
/// stored in the module-level constant table, we don't need to emit a function
 | 
						|
/// constant table.  Also due to this, the indices for various constants and
 | 
						|
/// types might be very large in large programs.  In order to avoid blowing up
 | 
						|
/// the size of instructions in the bytecode encoding, we build a compaction
 | 
						|
/// table, which defines a mapping from function-local identifiers to global
 | 
						|
/// identifiers.
 | 
						|
void SlotCalculator::buildCompactionTable(const Function *F) {
 | 
						|
  assert(CompactionNodeMap.empty() && "Compaction table already built!");
 | 
						|
  assert(CompactionTypeMap.empty() && "Compaction types already built!");
 | 
						|
  // First step, insert the primitive types.
 | 
						|
  CompactionTable.resize(Type::LastPrimitiveTyID+1);
 | 
						|
  for (unsigned i = 0; i <= Type::LastPrimitiveTyID; ++i) {
 | 
						|
    const Type *PrimTy = Type::getPrimitiveType((Type::TypeID)i);
 | 
						|
    CompactionTypes.push_back(PrimTy);
 | 
						|
    CompactionTypeMap[PrimTy] = i;
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, include any types used by function arguments.
 | 
						|
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
       I != E; ++I)
 | 
						|
    getOrCreateCompactionTableSlot(I->getType());
 | 
						|
 | 
						|
  // Next, find all of the types and values that are referred to by the
 | 
						|
  // instructions in the function.
 | 
						|
  for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
 | 
						|
    getOrCreateCompactionTableSlot(I->getType());
 | 
						|
    for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
 | 
						|
      if (isa<Constant>(I->getOperand(op)) || isa<InlineAsm>(I->getOperand(op)))
 | 
						|
        getOrCreateCompactionTableSlot(I->getOperand(op));
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the types in the symbol table
 | 
						|
  const SymbolTable &ST = F->getSymbolTable();
 | 
						|
  for (SymbolTable::type_const_iterator TI = ST.type_begin(),
 | 
						|
       TE = ST.type_end(); TI != TE; ++TI)
 | 
						|
    getOrCreateCompactionTableSlot(TI->second);
 | 
						|
 | 
						|
  // Now do the constants and global values
 | 
						|
  for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
 | 
						|
       PE = ST.plane_end(); PI != PE; ++PI)
 | 
						|
    for (SymbolTable::value_const_iterator VI = PI->second.begin(),
 | 
						|
           VE = PI->second.end(); VI != VE; ++VI)
 | 
						|
      if (isa<Constant>(VI->second) && !isa<GlobalValue>(VI->second))
 | 
						|
        getOrCreateCompactionTableSlot(VI->second);
 | 
						|
 | 
						|
  // Now that we have all of the values in the table, and know what types are
 | 
						|
  // referenced, make sure that there is at least the zero initializer in any
 | 
						|
  // used type plane.  Since the type was used, we will be emitting instructions
 | 
						|
  // to the plane even if there are no constants in it.
 | 
						|
  CompactionTable.resize(CompactionTypes.size());
 | 
						|
  for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i)
 | 
						|
    if (CompactionTable[i].empty() && (i != Type::VoidTyID) &&
 | 
						|
        i != Type::LabelTyID) {
 | 
						|
      const Type *Ty = CompactionTypes[i];
 | 
						|
      SC_DEBUG("Getting Null Value #" << i << " for Type " << Ty << "\n");
 | 
						|
      assert(Ty->getTypeID() != Type::VoidTyID);
 | 
						|
      assert(Ty->getTypeID() != Type::LabelTyID);
 | 
						|
      getOrCreateCompactionTableSlot(Constant::getNullValue(Ty));
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, now at this point, we have a legal compaction table.  Since we want
 | 
						|
  // to emit the smallest possible binaries, do not compactify the type plane if
 | 
						|
  // it will not save us anything.  Because we have not yet incorporated the
 | 
						|
  // function body itself yet, we don't know whether or not it's a good idea to
 | 
						|
  // compactify other planes.  We will defer this decision until later.
 | 
						|
  TypeList &GlobalTypes = Types;
 | 
						|
 | 
						|
  // All of the values types will be scrunched to the start of the types plane
 | 
						|
  // of the global table.  Figure out just how many there are.
 | 
						|
  assert(!GlobalTypes.empty() && "No global types???");
 | 
						|
  unsigned NumFCTypes = GlobalTypes.size()-1;
 | 
						|
  while (!GlobalTypes[NumFCTypes]->isFirstClassType())
 | 
						|
    --NumFCTypes;
 | 
						|
 | 
						|
  // If there are fewer that 64 types, no instructions will be exploded due to
 | 
						|
  // the size of the type operands.  Thus there is no need to compactify types.
 | 
						|
  // Also, if the compaction table contains most of the entries in the global
 | 
						|
  // table, there really is no reason to compactify either.
 | 
						|
  if (NumFCTypes < 64) {
 | 
						|
    // Decompactifying types is tricky, because we have to move type planes all
 | 
						|
    // over the place.  At least we don't need to worry about updating the
 | 
						|
    // CompactionNodeMap for non-types though.
 | 
						|
    std::vector<TypePlane> TmpCompactionTable;
 | 
						|
    std::swap(CompactionTable, TmpCompactionTable);
 | 
						|
    TypeList TmpTypes;
 | 
						|
    std::swap(TmpTypes, CompactionTypes);
 | 
						|
 | 
						|
    // Move each plane back over to the uncompactified plane
 | 
						|
    while (!TmpTypes.empty()) {
 | 
						|
      const Type *Ty = TmpTypes.back();
 | 
						|
      TmpTypes.pop_back();
 | 
						|
      CompactionTypeMap.erase(Ty);  // Decompactify type!
 | 
						|
 | 
						|
      // Find the global slot number for this type.
 | 
						|
      int TySlot = getSlot(Ty);
 | 
						|
      assert(TySlot != -1 && "Type doesn't exist in global table?");
 | 
						|
 | 
						|
      // Now we know where to put the compaction table plane.
 | 
						|
      if (CompactionTable.size() <= unsigned(TySlot))
 | 
						|
        CompactionTable.resize(TySlot+1);
 | 
						|
      // Move the plane back into the compaction table.
 | 
						|
      std::swap(CompactionTable[TySlot], TmpCompactionTable[TmpTypes.size()]);
 | 
						|
 | 
						|
      // And remove the empty plane we just moved in.
 | 
						|
      TmpCompactionTable.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// pruneCompactionTable - Once the entire function being processed has been
 | 
						|
/// incorporated into the current compaction table, look over the compaction
 | 
						|
/// table and check to see if there are any values whose compaction will not
 | 
						|
/// save us any space in the bytecode file.  If compactifying these values
 | 
						|
/// serves no purpose, then we might as well not even emit the compactification
 | 
						|
/// information to the bytecode file, saving a bit more space.
 | 
						|
///
 | 
						|
/// Note that the type plane has already been compactified if possible.
 | 
						|
///
 | 
						|
void SlotCalculator::pruneCompactionTable() {
 | 
						|
  TypeList &TyPlane = CompactionTypes;
 | 
						|
  for (unsigned ctp = 0, e = CompactionTable.size(); ctp != e; ++ctp)
 | 
						|
    if (!CompactionTable[ctp].empty()) {
 | 
						|
      TypePlane &CPlane = CompactionTable[ctp];
 | 
						|
      unsigned GlobalSlot = ctp;
 | 
						|
      if (!TyPlane.empty())
 | 
						|
        GlobalSlot = getGlobalSlot(TyPlane[ctp]);
 | 
						|
 | 
						|
      if (GlobalSlot >= Table.size())
 | 
						|
        Table.resize(GlobalSlot+1);
 | 
						|
      TypePlane &GPlane = Table[GlobalSlot];
 | 
						|
 | 
						|
      unsigned ModLevel = getModuleLevel(ctp);
 | 
						|
      unsigned NumFunctionObjs = CPlane.size()-ModLevel;
 | 
						|
 | 
						|
      // If the maximum index required if all entries in this plane were merged
 | 
						|
      // into the global plane is less than 64, go ahead and eliminate the
 | 
						|
      // plane.
 | 
						|
      bool PrunePlane = GPlane.size() + NumFunctionObjs < 64;
 | 
						|
 | 
						|
      // If there are no function-local values defined, and the maximum
 | 
						|
      // referenced global entry is less than 64, we don't need to compactify.
 | 
						|
      if (!PrunePlane && NumFunctionObjs == 0) {
 | 
						|
        unsigned MaxIdx = 0;
 | 
						|
        for (unsigned i = 0; i != ModLevel; ++i) {
 | 
						|
          unsigned Idx = NodeMap[CPlane[i]];
 | 
						|
          if (Idx > MaxIdx) MaxIdx = Idx;
 | 
						|
        }
 | 
						|
        PrunePlane = MaxIdx < 64;
 | 
						|
      }
 | 
						|
 | 
						|
      // Ok, finally, if we decided to prune this plane out of the compaction
 | 
						|
      // table, do so now.
 | 
						|
      if (PrunePlane) {
 | 
						|
        TypePlane OldPlane;
 | 
						|
        std::swap(OldPlane, CPlane);
 | 
						|
 | 
						|
        // Loop over the function local objects, relocating them to the global
 | 
						|
        // table plane.
 | 
						|
        for (unsigned i = ModLevel, e = OldPlane.size(); i != e; ++i) {
 | 
						|
          const Value *V = OldPlane[i];
 | 
						|
          CompactionNodeMap.erase(V);
 | 
						|
          assert(NodeMap.count(V) == 0 && "Value already in table??");
 | 
						|
          getOrCreateSlot(V);
 | 
						|
        }
 | 
						|
 | 
						|
        // For compactified global values, just remove them from the compaction
 | 
						|
        // node map.
 | 
						|
        for (unsigned i = 0; i != ModLevel; ++i)
 | 
						|
          CompactionNodeMap.erase(OldPlane[i]);
 | 
						|
 | 
						|
        // Update the new modulelevel for this plane.
 | 
						|
        assert(ctp < ModuleLevel.size() && "Cannot set modulelevel!");
 | 
						|
        ModuleLevel[ctp] = GPlane.size()-NumFunctionObjs;
 | 
						|
        assert((int)ModuleLevel[ctp] >= 0 && "Bad computation!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the compaction table is actually empty. Because the
 | 
						|
/// compaction table always includes the primitive type planes, we
 | 
						|
/// can't just check getCompactionTable().size() because it will never
 | 
						|
/// be zero. Furthermore, the ModuleLevel factors into whether a given
 | 
						|
/// plane is empty or not. This function does the necessary computation
 | 
						|
/// to determine if its actually empty.
 | 
						|
bool SlotCalculator::CompactionTableIsEmpty() const {
 | 
						|
  // Check a degenerate case, just in case.
 | 
						|
  if (CompactionTable.size() == 0) return true;
 | 
						|
 | 
						|
  // Check each plane
 | 
						|
  for (unsigned i = 0, e = CompactionTable.size(); i < e; ++i) {
 | 
						|
    // If the plane is not empty
 | 
						|
    if (!CompactionTable[i].empty()) {
 | 
						|
      // If the module level is non-zero then at least the
 | 
						|
      // first element of the plane is valid and therefore not empty.
 | 
						|
      unsigned End = getModuleLevel(i);
 | 
						|
      if (End != 0)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // All the compaction table planes are empty so the table is
 | 
						|
  // considered empty too.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getSlot(const Value *V) const {
 | 
						|
  // If there is a CompactionTable active...
 | 
						|
  if (!CompactionNodeMap.empty()) {
 | 
						|
    std::map<const Value*, unsigned>::const_iterator I =
 | 
						|
      CompactionNodeMap.find(V);
 | 
						|
    if (I != CompactionNodeMap.end())
 | 
						|
      return (int)I->second;
 | 
						|
    // Otherwise, if it's not in the compaction table, it must be in a
 | 
						|
    // non-compactified plane.
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(V);
 | 
						|
  if (I != NodeMap.end())
 | 
						|
    return (int)I->second;
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getSlot(const Type*T) const {
 | 
						|
  // If there is a CompactionTable active...
 | 
						|
  if (!CompactionTypeMap.empty()) {
 | 
						|
    std::map<const Type*, unsigned>::const_iterator I =
 | 
						|
      CompactionTypeMap.find(T);
 | 
						|
    if (I != CompactionTypeMap.end())
 | 
						|
      return (int)I->second;
 | 
						|
    // Otherwise, if it's not in the compaction table, it must be in a
 | 
						|
    // non-compactified plane.
 | 
						|
  }
 | 
						|
 | 
						|
  std::map<const Type*, unsigned>::const_iterator I = TypeMap.find(T);
 | 
						|
  if (I != TypeMap.end())
 | 
						|
    return (int)I->second;
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getOrCreateSlot(const Value *V) {
 | 
						|
  if (V->getType() == Type::VoidTy) return -1;
 | 
						|
 | 
						|
  int SlotNo = getSlot(V);        // Check to see if it's already in!
 | 
						|
  if (SlotNo != -1) return SlotNo;
 | 
						|
 | 
						|
  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    assert(GV->getParent() != 0 && "Global not embedded into a module!");
 | 
						|
 | 
						|
  if (!isa<GlobalValue>(V))  // Initializers for globals are handled explicitly
 | 
						|
    if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
      assert(CompactionNodeMap.empty() &&
 | 
						|
             "All needed constants should be in the compaction map already!");
 | 
						|
 | 
						|
      // Do not index the characters that make up constant strings.  We emit
 | 
						|
      // constant strings as special entities that don't require their
 | 
						|
      // individual characters to be emitted.
 | 
						|
      if (!isa<ConstantArray>(C) || !cast<ConstantArray>(C)->isString()) {
 | 
						|
        // This makes sure that if a constant has uses (for example an array of
 | 
						|
        // const ints), that they are inserted also.
 | 
						|
        //
 | 
						|
        for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | 
						|
             I != E; ++I)
 | 
						|
          getOrCreateSlot(*I);
 | 
						|
      } else {
 | 
						|
        assert(ModuleLevel.empty() &&
 | 
						|
               "How can a constant string be directly accessed in a function?");
 | 
						|
        // Otherwise, if we are emitting a bytecode file and this IS a string,
 | 
						|
        // remember it.
 | 
						|
        if (!C->isNullValue())
 | 
						|
          ConstantStrings.push_back(cast<ConstantArray>(C));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return insertValue(V);
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::getOrCreateSlot(const Type* T) {
 | 
						|
  int SlotNo = getSlot(T);        // Check to see if it's already in!
 | 
						|
  if (SlotNo != -1) return SlotNo;
 | 
						|
  return insertType(T);
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::insertValue(const Value *D, bool dontIgnore) {
 | 
						|
  assert(D && "Can't insert a null value!");
 | 
						|
  assert(getSlot(D) == -1 && "Value is already in the table!");
 | 
						|
 | 
						|
  // If we are building a compaction map, and if this plane is being compacted,
 | 
						|
  // insert the value into the compaction map, not into the global map.
 | 
						|
  if (!CompactionNodeMap.empty()) {
 | 
						|
    if (D->getType() == Type::VoidTy) return -1;  // Do not insert void values
 | 
						|
    assert(!isa<Constant>(D) &&
 | 
						|
           "Types, constants, and globals should be in global table!");
 | 
						|
 | 
						|
    int Plane = getSlot(D->getType());
 | 
						|
    assert(Plane != -1 && CompactionTable.size() > (unsigned)Plane &&
 | 
						|
           "Didn't find value type!");
 | 
						|
    if (!CompactionTable[Plane].empty())
 | 
						|
      return getOrCreateCompactionTableSlot(D);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this node does not contribute to a plane, or if the node has a
 | 
						|
  // name and we don't want names, then ignore the silly node... Note that types
 | 
						|
  // do need slot numbers so that we can keep track of where other values land.
 | 
						|
  //
 | 
						|
  if (!dontIgnore)                               // Don't ignore nonignorables!
 | 
						|
    if (D->getType() == Type::VoidTy ) {         // Ignore void type nodes
 | 
						|
      SC_DEBUG("ignored value " << *D << "\n");
 | 
						|
      return -1;                  // We do need types unconditionally though
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, everything is happy, actually insert the silly value now...
 | 
						|
  return doInsertValue(D);
 | 
						|
}
 | 
						|
 | 
						|
int SlotCalculator::insertType(const Type *Ty, bool dontIgnore) {
 | 
						|
  assert(Ty && "Can't insert a null type!");
 | 
						|
  assert(getSlot(Ty) == -1 && "Type is already in the table!");
 | 
						|
 | 
						|
  // If we are building a compaction map, and if this plane is being compacted,
 | 
						|
  // insert the value into the compaction map, not into the global map.
 | 
						|
  if (!CompactionTypeMap.empty()) {
 | 
						|
    getOrCreateCompactionTableSlot(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the current type before any subtypes.  This is important because
 | 
						|
  // recursive types elements are inserted in a bottom up order.  Changing
 | 
						|
  // this here can break things.  For example:
 | 
						|
  //
 | 
						|
  //    global { \2 * } { { \2 }* null }
 | 
						|
  //
 | 
						|
  int ResultSlot = doInsertType(Ty);
 | 
						|
  SC_DEBUG("  Inserted type: " << Ty->getDescription() << " slot=" <<
 | 
						|
           ResultSlot << "\n");
 | 
						|
 | 
						|
  // Loop over any contained types in the definition... in post
 | 
						|
  // order.
 | 
						|
  for (po_iterator<const Type*> I = po_begin(Ty), E = po_end(Ty);
 | 
						|
       I != E; ++I) {
 | 
						|
    if (*I != Ty) {
 | 
						|
      const Type *SubTy = *I;
 | 
						|
      // If we haven't seen this sub type before, add it to our type table!
 | 
						|
      if (getSlot(SubTy) == -1) {
 | 
						|
        SC_DEBUG("  Inserting subtype: " << SubTy->getDescription() << "\n");
 | 
						|
        doInsertType(SubTy);
 | 
						|
        SC_DEBUG("  Inserted subtype: " << SubTy->getDescription() << "\n");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ResultSlot;
 | 
						|
}
 | 
						|
 | 
						|
// doInsertValue - This is a small helper function to be called only
 | 
						|
// be insertValue.
 | 
						|
//
 | 
						|
int SlotCalculator::doInsertValue(const Value *D) {
 | 
						|
  const Type *Typ = D->getType();
 | 
						|
  unsigned Ty;
 | 
						|
 | 
						|
  // Used for debugging DefSlot=-1 assertion...
 | 
						|
  //if (Typ == Type::TypeTy)
 | 
						|
  //  llvm_cerr << "Inserting type '"<<cast<Type>(D)->getDescription() <<"'!\n";
 | 
						|
 | 
						|
  if (Typ->isDerivedType()) {
 | 
						|
    int ValSlot;
 | 
						|
    if (CompactionTable.empty())
 | 
						|
      ValSlot = getSlot(Typ);
 | 
						|
    else
 | 
						|
      ValSlot = getGlobalSlot(Typ);
 | 
						|
    if (ValSlot == -1) {                // Have we already entered this type?
 | 
						|
      // Nope, this is the first we have seen the type, process it.
 | 
						|
      ValSlot = insertType(Typ, true);
 | 
						|
      assert(ValSlot != -1 && "ProcessType returned -1 for a type?");
 | 
						|
    }
 | 
						|
    Ty = (unsigned)ValSlot;
 | 
						|
  } else {
 | 
						|
    Ty = Typ->getTypeID();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Table.size() <= Ty)    // Make sure we have the type plane allocated...
 | 
						|
    Table.resize(Ty+1, TypePlane());
 | 
						|
 | 
						|
  // If this is the first value to get inserted into the type plane, make sure
 | 
						|
  // to insert the implicit null value...
 | 
						|
  if (Table[Ty].empty() && hasNullValue(Typ)) {
 | 
						|
    Value *ZeroInitializer = Constant::getNullValue(Typ);
 | 
						|
 | 
						|
    // If we are pushing zeroinit, it will be handled below.
 | 
						|
    if (D != ZeroInitializer) {
 | 
						|
      Table[Ty].push_back(ZeroInitializer);
 | 
						|
      NodeMap[ZeroInitializer] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  unsigned DestSlot = NodeMap[D] = Table[Ty].size();
 | 
						|
  Table[Ty].push_back(D);
 | 
						|
 | 
						|
  SC_DEBUG("  Inserting value [" << Ty << "] = " << D << " slot=" <<
 | 
						|
           DestSlot << " [");
 | 
						|
  // G = Global, C = Constant, T = Type, F = Function, o = other
 | 
						|
  SC_DEBUG((isa<GlobalVariable>(D) ? "G" : (isa<Constant>(D) ? "C" :
 | 
						|
           (isa<Function>(D) ? "F" : "o"))));
 | 
						|
  SC_DEBUG("]\n");
 | 
						|
  return (int)DestSlot;
 | 
						|
}
 | 
						|
 | 
						|
// doInsertType - This is a small helper function to be called only
 | 
						|
// be insertType.
 | 
						|
//
 | 
						|
int SlotCalculator::doInsertType(const Type *Ty) {
 | 
						|
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  unsigned DestSlot = TypeMap[Ty] = Types.size();
 | 
						|
  Types.push_back(Ty);
 | 
						|
 | 
						|
  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n" );
 | 
						|
  return (int)DestSlot;
 | 
						|
}
 | 
						|
 |