mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The long awaited CAST patch. This introduces 12 new instructions into LLVM to replace the cast instruction. Corresponding changes throughout LLVM are provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the exception of 175.vpr which fails only on a slight floating point output difference. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31931 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1673 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1673 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements folding of constants for LLVM.  This implements the
 | 
						|
// (internal) ConstantFolding.h interface, which is used by the
 | 
						|
// ConstantExpr::get* methods to automatically fold constants when possible.
 | 
						|
//
 | 
						|
// The current constant folding implementation is implemented in two pieces: the
 | 
						|
// template-based folder for simple primitive constants like ConstantInt, and
 | 
						|
// the special case hackery that we use to symbolically evaluate expressions
 | 
						|
// that use ConstantExprs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ConstantFolding.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <limits>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN ConstRules {
 | 
						|
    ConstRules() {}
 | 
						|
    virtual ~ConstRules() {}
 | 
						|
 | 
						|
    // Binary Operators...
 | 
						|
    virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *urem(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *srem(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *frem(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *udiv(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *sdiv(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *fdiv(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *lshr(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *ashr(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
    virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
 | 
						|
    virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
 | 
						|
 | 
						|
    // Casting operators.
 | 
						|
    virtual Constant *castToBool  (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToSByte (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToUByte (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToShort (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToUShort(const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToInt   (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToUInt  (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToLong  (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToULong (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToFloat (const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToDouble(const Constant *V) const = 0;
 | 
						|
    virtual Constant *castToPointer(const Constant *V,
 | 
						|
                                    const PointerType *Ty) const = 0;
 | 
						|
 | 
						|
    // ConstRules::get - Return an instance of ConstRules for the specified
 | 
						|
    // constant operands.
 | 
						|
    //
 | 
						|
    static ConstRules &get(const Constant *V1, const Constant *V2);
 | 
						|
  private:
 | 
						|
    ConstRules(const ConstRules &);             // Do not implement
 | 
						|
    ConstRules &operator=(const ConstRules &);  // Do not implement
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             TemplateRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// TemplateRules - Implement a subclass of ConstRules that provides all
 | 
						|
// operations as noops.  All other rules classes inherit from this class so
 | 
						|
// that if functionality is needed in the future, it can simply be added here
 | 
						|
// and to ConstRules without changing anything else...
 | 
						|
//
 | 
						|
// This class also provides subclasses with typesafe implementations of methods
 | 
						|
// so that don't have to do type casting.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
template<class ArgType, class SubClassName>
 | 
						|
class VISIBILITY_HIDDEN TemplateRules : public ConstRules {
 | 
						|
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Redirecting functions that cast to the appropriate types
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  virtual Constant *add(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *sub(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *mul(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *udiv(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::UDiv((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *sdiv(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::SDiv((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *fdiv(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::FDiv((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *urem(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::URem((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *srem(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::SRem((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *frem(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::FRem((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *shl(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *lshr(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::LShr((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *ashr(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::AShr((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
 | 
						|
  virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
  virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
 | 
						|
    return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
 | 
						|
  }
 | 
						|
 | 
						|
  // Casting operators.  ick
 | 
						|
  virtual Constant *castToBool(const Constant *V) const {
 | 
						|
    return SubClassName::CastToBool((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToSByte(const Constant *V) const {
 | 
						|
    return SubClassName::CastToSByte((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToUByte(const Constant *V) const {
 | 
						|
    return SubClassName::CastToUByte((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToShort(const Constant *V) const {
 | 
						|
    return SubClassName::CastToShort((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToUShort(const Constant *V) const {
 | 
						|
    return SubClassName::CastToUShort((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToInt(const Constant *V) const {
 | 
						|
    return SubClassName::CastToInt((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToUInt(const Constant *V) const {
 | 
						|
    return SubClassName::CastToUInt((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToLong(const Constant *V) const {
 | 
						|
    return SubClassName::CastToLong((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToULong(const Constant *V) const {
 | 
						|
    return SubClassName::CastToULong((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToFloat(const Constant *V) const {
 | 
						|
    return SubClassName::CastToFloat((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToDouble(const Constant *V) const {
 | 
						|
    return SubClassName::CastToDouble((const ArgType*)V);
 | 
						|
  }
 | 
						|
  virtual Constant *castToPointer(const Constant *V,
 | 
						|
                                  const PointerType *Ty) const {
 | 
						|
    return SubClassName::CastToPointer((const ArgType*)V, Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Default "noop" implementations
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
  static Constant *Add (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *Sub (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *Mul (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *SDiv(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *UDiv(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *FDiv(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *URem(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *SRem(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *FRem(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *And (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *Or  (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *Xor (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *Shl (const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *LShr(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *AShr(const ArgType *V1, const ArgType *V2) { return 0; }
 | 
						|
  static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Casting operators.  ick
 | 
						|
  static Constant *CastToBool  (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToSByte (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToUByte (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToShort (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToUShort(const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToInt   (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToUInt  (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToLong  (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToULong (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToFloat (const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToDouble(const Constant *V) { return 0; }
 | 
						|
  static Constant *CastToPointer(const Constant *,
 | 
						|
                                 const PointerType *) {return 0;}
 | 
						|
 | 
						|
public:
 | 
						|
  virtual ~TemplateRules() {}
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             EmptyRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// EmptyRules provides a concrete base class of ConstRules that does nothing
 | 
						|
//
 | 
						|
namespace {
 | 
						|
struct VISIBILITY_HIDDEN EmptyRules
 | 
						|
  : public TemplateRules<Constant, EmptyRules> {
 | 
						|
  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | 
						|
    if (V1 == V2) return ConstantBool::getTrue();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                              BoolRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// BoolRules provides a concrete base class of ConstRules for the 'bool' type.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
struct VISIBILITY_HIDDEN BoolRules
 | 
						|
  : public TemplateRules<ConstantBool, BoolRules> {
 | 
						|
 | 
						|
  static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) {
 | 
						|
    return ConstantBool::get(V1->getValue() < V2->getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | 
						|
    return ConstantBool::get(V1 == V2);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
 | 
						|
    return ConstantBool::get(V1->getValue() & V2->getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
 | 
						|
    return ConstantBool::get(V1->getValue() | V2->getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
 | 
						|
    return ConstantBool::get(V1->getValue() ^ V2->getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  // Casting operators.  ick
 | 
						|
#define DEF_CAST(TYPE, CLASS, CTYPE) \
 | 
						|
  static Constant *CastTo##TYPE  (const ConstantBool *V) {    \
 | 
						|
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
 | 
						|
  }
 | 
						|
 | 
						|
  DEF_CAST(Bool  , ConstantBool, bool)
 | 
						|
  DEF_CAST(SByte , ConstantInt, signed char)
 | 
						|
  DEF_CAST(UByte , ConstantInt, unsigned char)
 | 
						|
  DEF_CAST(Short , ConstantInt, signed short)
 | 
						|
  DEF_CAST(UShort, ConstantInt, unsigned short)
 | 
						|
  DEF_CAST(Int   , ConstantInt, signed int)
 | 
						|
  DEF_CAST(UInt  , ConstantInt, unsigned int)
 | 
						|
  DEF_CAST(Long  , ConstantInt, int64_t)
 | 
						|
  DEF_CAST(ULong , ConstantInt, uint64_t)
 | 
						|
  DEF_CAST(Float , ConstantFP  , float)
 | 
						|
  DEF_CAST(Double, ConstantFP  , double)
 | 
						|
#undef DEF_CAST
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            NullPointerRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// NullPointerRules provides a concrete base class of ConstRules for null
 | 
						|
// pointers.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
struct VISIBILITY_HIDDEN NullPointerRules
 | 
						|
  : public TemplateRules<ConstantPointerNull, NullPointerRules> {
 | 
						|
  static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | 
						|
    return ConstantBool::getTrue();  // Null pointers are always equal
 | 
						|
  }
 | 
						|
  static Constant *CastToBool(const Constant *V) {
 | 
						|
    return ConstantBool::getFalse();
 | 
						|
  }
 | 
						|
  static Constant *CastToSByte (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::SByteTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToUByte (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::UByteTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToShort (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::ShortTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToUShort(const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::UShortTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToInt   (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::IntTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToUInt  (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::UIntTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToLong  (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::LongTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToULong (const Constant *V) {
 | 
						|
    return ConstantInt::get(Type::ULongTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToFloat (const Constant *V) {
 | 
						|
    return ConstantFP::get(Type::FloatTy, 0);
 | 
						|
  }
 | 
						|
  static Constant *CastToDouble(const Constant *V) {
 | 
						|
    return ConstantFP::get(Type::DoubleTy, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *CastToPointer(const ConstantPointerNull *V,
 | 
						|
                                 const PointerType *PTy) {
 | 
						|
    return ConstantPointerNull::get(PTy);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          ConstantPackedRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// DoVectorOp - Given two packed constants and a function pointer, apply the
 | 
						|
/// function pointer to each element pair, producing a new ConstantPacked
 | 
						|
/// constant.
 | 
						|
static Constant *EvalVectorOp(const ConstantPacked *V1, 
 | 
						|
                              const ConstantPacked *V2,
 | 
						|
                              Constant *(*FP)(Constant*, Constant*)) {
 | 
						|
  std::vector<Constant*> Res;
 | 
						|
  for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
 | 
						|
    Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
 | 
						|
                     const_cast<Constant*>(V2->getOperand(i))));
 | 
						|
  return ConstantPacked::get(Res);
 | 
						|
}
 | 
						|
 | 
						|
/// PackedTypeRules provides a concrete base class of ConstRules for
 | 
						|
/// ConstantPacked operands.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
struct VISIBILITY_HIDDEN ConstantPackedRules
 | 
						|
  : public TemplateRules<ConstantPacked, ConstantPackedRules> {
 | 
						|
  
 | 
						|
  static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
 | 
						|
  }
 | 
						|
  static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getSub);
 | 
						|
  }
 | 
						|
  static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getMul);
 | 
						|
  }
 | 
						|
  static Constant *UDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getUDiv);
 | 
						|
  }
 | 
						|
  static Constant *SDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getSDiv);
 | 
						|
  }
 | 
						|
  static Constant *FDiv(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getFDiv);
 | 
						|
  }
 | 
						|
  static Constant *URem(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getURem);
 | 
						|
  }
 | 
						|
  static Constant *SRem(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getSRem);
 | 
						|
  }
 | 
						|
  static Constant *FRem(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getFRem);
 | 
						|
  }
 | 
						|
  static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
 | 
						|
  }
 | 
						|
  static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getOr);
 | 
						|
  }
 | 
						|
  static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    return EvalVectorOp(V1, V2, ConstantExpr::getXor);
 | 
						|
  }
 | 
						|
  static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
 | 
						|
    for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
 | 
						|
      Constant *C = 
 | 
						|
        ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
 | 
						|
                               const_cast<Constant*>(V2->getOperand(i)));
 | 
						|
      if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
 | 
						|
        return CB;
 | 
						|
    }
 | 
						|
    // Otherwise, could not decide from any element pairs.
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          GeneralPackedRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// GeneralPackedRules provides a concrete base class of ConstRules for
 | 
						|
/// PackedType operands, where both operands are not ConstantPacked.  The usual
 | 
						|
/// cause for this is that one operand is a ConstantAggregateZero.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
struct VISIBILITY_HIDDEN GeneralPackedRules
 | 
						|
  : public TemplateRules<Constant, GeneralPackedRules> {
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           DirectIntRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// DirectIntRules provides implementations of functions that are valid on
 | 
						|
// integer types, but not all types in general.
 | 
						|
//
 | 
						|
namespace {
 | 
						|
template <class BuiltinType, Type **Ty>
 | 
						|
struct VISIBILITY_HIDDEN DirectIntRules
 | 
						|
  : public TemplateRules<ConstantInt, DirectIntRules<BuiltinType, Ty> > {
 | 
						|
 | 
						|
  static Constant *Add(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getZExtValue() + 
 | 
						|
                    (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Sub(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getZExtValue() - 
 | 
						|
                    (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Mul(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getZExtValue() * 
 | 
						|
                    (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *LessThan(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    bool R = (BuiltinType)V1->getZExtValue() < (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantBool::get(R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *EqualTo(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    bool R = (BuiltinType)V1->getZExtValue() == (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantBool::get(R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *CastToPointer(const ConstantInt *V,
 | 
						|
                                 const PointerType *PTy) {
 | 
						|
    if (V->isNullValue())    // Is it a FP or Integral null value?
 | 
						|
      return ConstantPointerNull::get(PTy);
 | 
						|
    return 0;  // Can't const prop other types of pointers
 | 
						|
  }
 | 
						|
 | 
						|
  // Casting operators.  ick
 | 
						|
#define DEF_CAST(TYPE, CLASS, CTYPE) \
 | 
						|
  static Constant *CastTo##TYPE  (const ConstantInt *V) {    \
 | 
						|
    return CLASS::get(Type::TYPE##Ty, (CTYPE)((BuiltinType)V->getZExtValue()));\
 | 
						|
  }
 | 
						|
 | 
						|
  DEF_CAST(Bool  , ConstantBool, bool)
 | 
						|
  DEF_CAST(SByte , ConstantInt, signed char)
 | 
						|
  DEF_CAST(UByte , ConstantInt, unsigned char)
 | 
						|
  DEF_CAST(Short , ConstantInt, signed short)
 | 
						|
  DEF_CAST(UShort, ConstantInt, unsigned short)
 | 
						|
  DEF_CAST(Int   , ConstantInt, signed int)
 | 
						|
  DEF_CAST(UInt  , ConstantInt, unsigned int)
 | 
						|
  DEF_CAST(Long  , ConstantInt, int64_t)
 | 
						|
  DEF_CAST(ULong , ConstantInt, uint64_t)
 | 
						|
  DEF_CAST(Float , ConstantFP , float)
 | 
						|
  DEF_CAST(Double, ConstantFP , double)
 | 
						|
#undef DEF_CAST
 | 
						|
 | 
						|
  static Constant *UDiv(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    if (V2->isNullValue())                   // X / 0
 | 
						|
      return 0;
 | 
						|
    BuiltinType R = (BuiltinType)(V1->getZExtValue() / V2->getZExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *SDiv(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    if (V2->isNullValue())                   // X / 0
 | 
						|
      return 0;
 | 
						|
    if (V2->isAllOnesValue() &&              // MIN_INT / -1
 | 
						|
        (BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
 | 
						|
      return 0;
 | 
						|
    BuiltinType R = (BuiltinType)(V1->getSExtValue() / V2->getSExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *URem(const ConstantInt *V1,
 | 
						|
                        const ConstantInt *V2) {
 | 
						|
    if (V2->isNullValue()) return 0;         // X / 0
 | 
						|
    BuiltinType R = (BuiltinType)(V1->getZExtValue() % V2->getZExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *SRem(const ConstantInt *V1,
 | 
						|
                        const ConstantInt *V2) {
 | 
						|
    if (V2->isNullValue()) return 0;         // X % 0
 | 
						|
    if (V2->isAllOnesValue() &&              // MIN_INT % -1
 | 
						|
        (BuiltinType)V1->getSExtValue() == -(BuiltinType)V1->getSExtValue())
 | 
						|
      return 0;
 | 
						|
    BuiltinType R = (BuiltinType)(V1->getSExtValue() % V2->getSExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *And(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = 
 | 
						|
      (BuiltinType)V1->getZExtValue() & (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
  static Constant *Or(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = 
 | 
						|
      (BuiltinType)V1->getZExtValue() | (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
  static Constant *Xor(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = 
 | 
						|
      (BuiltinType)V1->getZExtValue() ^ (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Shl(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = 
 | 
						|
      (BuiltinType)V1->getZExtValue() << (BuiltinType)V2->getZExtValue();
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *LShr(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = BuiltinType(V1->getZExtValue() >> V2->getZExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *AShr(const ConstantInt *V1, const ConstantInt *V2) {
 | 
						|
    BuiltinType R = BuiltinType(V1->getSExtValue() >> V2->getZExtValue());
 | 
						|
    return ConstantInt::get(*Ty, R);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           DirectFPRules Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// DirectFPRules provides implementations of functions that are valid on
 | 
						|
/// floating point types, but not all types in general.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
template <class BuiltinType, Type **Ty>
 | 
						|
struct VISIBILITY_HIDDEN DirectFPRules
 | 
						|
  : public TemplateRules<ConstantFP, DirectFPRules<BuiltinType, Ty> > {
 | 
						|
 | 
						|
  static Constant *Add(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getValue() + 
 | 
						|
                    (BuiltinType)V2->getValue();
 | 
						|
    return ConstantFP::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Sub(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
 | 
						|
    return ConstantFP::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *Mul(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
 | 
						|
    return ConstantFP::get(*Ty, R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *LessThan(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
 | 
						|
    return ConstantBool::get(R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *EqualTo(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
 | 
						|
    return ConstantBool::get(R);
 | 
						|
  }
 | 
						|
 | 
						|
  static Constant *CastToPointer(const ConstantFP *V,
 | 
						|
                                 const PointerType *PTy) {
 | 
						|
    if (V->isNullValue())    // Is it a FP or Integral null value?
 | 
						|
      return ConstantPointerNull::get(PTy);
 | 
						|
    return 0;  // Can't const prop other types of pointers
 | 
						|
  }
 | 
						|
 | 
						|
  // Casting operators.  ick
 | 
						|
#define DEF_CAST(TYPE, CLASS, CTYPE) \
 | 
						|
  static Constant *CastTo##TYPE  (const ConstantFP *V) {    \
 | 
						|
    return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
 | 
						|
  }
 | 
						|
 | 
						|
  DEF_CAST(Bool  , ConstantBool, bool)
 | 
						|
  DEF_CAST(SByte , ConstantInt, signed char)
 | 
						|
  DEF_CAST(UByte , ConstantInt, unsigned char)
 | 
						|
  DEF_CAST(Short , ConstantInt, signed short)
 | 
						|
  DEF_CAST(UShort, ConstantInt, unsigned short)
 | 
						|
  DEF_CAST(Int   , ConstantInt, signed int)
 | 
						|
  DEF_CAST(UInt  , ConstantInt, unsigned int)
 | 
						|
  DEF_CAST(Long  , ConstantInt, int64_t)
 | 
						|
  DEF_CAST(ULong , ConstantInt, uint64_t)
 | 
						|
  DEF_CAST(Float , ConstantFP , float)
 | 
						|
  DEF_CAST(Double, ConstantFP , double)
 | 
						|
#undef DEF_CAST
 | 
						|
 | 
						|
  static Constant *FRem(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    if (V2->isNullValue()) return 0;
 | 
						|
    BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
 | 
						|
                                   (BuiltinType)V2->getValue());
 | 
						|
    return ConstantFP::get(*Ty, Result);
 | 
						|
  }
 | 
						|
  static Constant *FDiv(const ConstantFP *V1, const ConstantFP *V2) {
 | 
						|
    BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
 | 
						|
    if (V2->isExactlyValue(0.0)) return ConstantFP::get(*Ty, inf);
 | 
						|
    if (V2->isExactlyValue(-0.0)) return ConstantFP::get(*Ty, -inf);
 | 
						|
    BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
 | 
						|
    return ConstantFP::get(*Ty, R);
 | 
						|
  }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
static ManagedStatic<EmptyRules>       EmptyR;
 | 
						|
static ManagedStatic<BoolRules>        BoolR;
 | 
						|
static ManagedStatic<NullPointerRules> NullPointerR;
 | 
						|
static ManagedStatic<ConstantPackedRules> ConstantPackedR;
 | 
						|
static ManagedStatic<GeneralPackedRules> GeneralPackedR;
 | 
						|
static ManagedStatic<DirectIntRules<signed char   , &Type::SByteTy> > SByteR;
 | 
						|
static ManagedStatic<DirectIntRules<unsigned char , &Type::UByteTy> > UByteR;
 | 
						|
static ManagedStatic<DirectIntRules<signed short  , &Type::ShortTy> > ShortR;
 | 
						|
static ManagedStatic<DirectIntRules<unsigned short, &Type::UShortTy> > UShortR;
 | 
						|
static ManagedStatic<DirectIntRules<signed int    , &Type::IntTy> >   IntR;
 | 
						|
static ManagedStatic<DirectIntRules<unsigned int  , &Type::UIntTy> >  UIntR;
 | 
						|
static ManagedStatic<DirectIntRules<int64_t       , &Type::LongTy> >  LongR;
 | 
						|
static ManagedStatic<DirectIntRules<uint64_t      , &Type::ULongTy> > ULongR;
 | 
						|
static ManagedStatic<DirectFPRules <float         , &Type::FloatTy> > FloatR;
 | 
						|
static ManagedStatic<DirectFPRules <double        , &Type::DoubleTy> > DoubleR;
 | 
						|
 | 
						|
/// ConstRules::get - This method returns the constant rules implementation that
 | 
						|
/// implements the semantics of the two specified constants.
 | 
						|
ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
 | 
						|
  if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
 | 
						|
      isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
 | 
						|
      isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | 
						|
    return *EmptyR;
 | 
						|
 | 
						|
  switch (V1->getType()->getTypeID()) {
 | 
						|
  default: assert(0 && "Unknown value type for constant folding!");
 | 
						|
  case Type::BoolTyID:    return *BoolR;
 | 
						|
  case Type::PointerTyID: return *NullPointerR;
 | 
						|
  case Type::SByteTyID:   return *SByteR;
 | 
						|
  case Type::UByteTyID:   return *UByteR;
 | 
						|
  case Type::ShortTyID:   return *ShortR;
 | 
						|
  case Type::UShortTyID:  return *UShortR;
 | 
						|
  case Type::IntTyID:     return *IntR;
 | 
						|
  case Type::UIntTyID:    return *UIntR;
 | 
						|
  case Type::LongTyID:    return *LongR;
 | 
						|
  case Type::ULongTyID:   return *ULongR;
 | 
						|
  case Type::FloatTyID:   return *FloatR;
 | 
						|
  case Type::DoubleTyID:  return *DoubleR;
 | 
						|
  case Type::PackedTyID:
 | 
						|
    if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
 | 
						|
      return *ConstantPackedR;
 | 
						|
    return *GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                ConstantFold*Instruction Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// CastConstantPacked - Convert the specified ConstantPacked node to the
 | 
						|
/// specified packed type.  At this point, we know that the elements of the
 | 
						|
/// input packed constant are all simple integer or FP values.
 | 
						|
static Constant *CastConstantPacked(ConstantPacked *CP,
 | 
						|
                                    const PackedType *DstTy) {
 | 
						|
  unsigned SrcNumElts = CP->getType()->getNumElements();
 | 
						|
  unsigned DstNumElts = DstTy->getNumElements();
 | 
						|
  const Type *SrcEltTy = CP->getType()->getElementType();
 | 
						|
  const Type *DstEltTy = DstTy->getElementType();
 | 
						|
  
 | 
						|
  // If both vectors have the same number of elements (thus, the elements
 | 
						|
  // are the same size), perform the conversion now.
 | 
						|
  if (SrcNumElts == DstNumElts) {
 | 
						|
    std::vector<Constant*> Result;
 | 
						|
    
 | 
						|
    // If the src and dest elements are both integers, or both floats, we can 
 | 
						|
    // just BitCast each element because the elements are the same size.
 | 
						|
    if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
 | 
						|
        (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
 | 
						|
      for (unsigned i = 0; i != SrcNumElts; ++i)
 | 
						|
        Result.push_back(
 | 
						|
          ConstantExpr::getCast(Instruction::BitCast, CP->getOperand(1), 
 | 
						|
                                DstEltTy));
 | 
						|
      return ConstantPacked::get(Result);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is an int-to-fp cast ..
 | 
						|
    if (SrcEltTy->isIntegral()) {
 | 
						|
      // Ensure that it is int-to-fp cast
 | 
						|
      assert(DstEltTy->isFloatingPoint());
 | 
						|
      if (DstEltTy->getTypeID() == Type::DoubleTyID) {
 | 
						|
        for (unsigned i = 0; i != SrcNumElts; ++i) {
 | 
						|
          double V =
 | 
						|
            BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
 | 
						|
          Result.push_back(ConstantFP::get(Type::DoubleTy, V));
 | 
						|
        }
 | 
						|
        return ConstantPacked::get(Result);
 | 
						|
      }
 | 
						|
      assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
 | 
						|
      for (unsigned i = 0; i != SrcNumElts; ++i) {
 | 
						|
        float V =
 | 
						|
        BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
 | 
						|
        Result.push_back(ConstantFP::get(Type::FloatTy, V));
 | 
						|
      }
 | 
						|
      return ConstantPacked::get(Result);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, this is an fp-to-int cast.
 | 
						|
    assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
 | 
						|
    
 | 
						|
    if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
 | 
						|
      for (unsigned i = 0; i != SrcNumElts; ++i) {
 | 
						|
        uint64_t V =
 | 
						|
          DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
 | 
						|
        Constant *C = ConstantInt::get(Type::ULongTy, V);
 | 
						|
        Result.push_back(ConstantExpr::getCast(C, DstEltTy));
 | 
						|
      }
 | 
						|
      return ConstantPacked::get(Result);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(SrcEltTy->getTypeID() == Type::FloatTyID);
 | 
						|
    for (unsigned i = 0; i != SrcNumElts; ++i) {
 | 
						|
      uint32_t V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
 | 
						|
      Constant *C = ConstantInt::get(Type::UIntTy, V);
 | 
						|
      Result.push_back(ConstantExpr::getCast(C, DstEltTy));
 | 
						|
    }
 | 
						|
    return ConstantPacked::get(Result);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, this is a cast that changes element count and size.  Handle
 | 
						|
  // casts which shrink the elements here.
 | 
						|
  
 | 
						|
  // FIXME: We need to know endianness to do this!
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// This function determines which opcode to use to fold two constant cast 
 | 
						|
/// expressions together. It uses CastInst::isEliminableCastPair to determine
 | 
						|
/// the opcode. Consequently its just a wrapper around that function.
 | 
						|
/// @Determine if it is valid to fold a cast of a cast
 | 
						|
static unsigned
 | 
						|
foldConstantCastPair(
 | 
						|
  unsigned opc,          ///< opcode of the second cast constant expression
 | 
						|
  const ConstantExpr*Op, ///< the first cast constant expression
 | 
						|
  const Type *DstTy      ///< desintation type of the first cast
 | 
						|
) {
 | 
						|
  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
 | 
						|
  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
 | 
						|
  assert(CastInst::isCast(opc) && "Invalid cast opcode");
 | 
						|
  
 | 
						|
  // The the types and opcodes for the two Cast constant expressions
 | 
						|
  const Type *SrcTy = Op->getOperand(0)->getType();
 | 
						|
  const Type *MidTy = Op->getType();
 | 
						|
  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
 | 
						|
  Instruction::CastOps secondOp = Instruction::CastOps(opc);
 | 
						|
 | 
						|
  // Let CastInst::isEliminableCastPair do the heavy lifting.
 | 
						|
  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
 | 
						|
                                        Type::ULongTy);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
 | 
						|
                                            const Type *DestTy) {
 | 
						|
  const Type *SrcTy = V->getType();
 | 
						|
 | 
						|
  // Handle some simple cases
 | 
						|
  if (SrcTy == DestTy) 
 | 
						|
    return (Constant*)V; // no-op cast
 | 
						|
 | 
						|
  if (isa<UndefValue>(V))
 | 
						|
    return UndefValue::get(DestTy);
 | 
						|
 | 
						|
  // If the cast operand is a constant expression, there's a few things we can
 | 
						|
  // do to try to simplify it.
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | 
						|
    if (CE->isCast()) {
 | 
						|
      // Try hard to fold cast of cast because they are almost always
 | 
						|
      // eliminable.
 | 
						|
      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
 | 
						|
        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
 | 
						|
    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
      // If all of the indexes in the GEP are null values, there is no pointer
 | 
						|
      // adjustment going on.  We might as well cast the source pointer.
 | 
						|
      bool isAllNull = true;
 | 
						|
      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | 
						|
        if (!CE->getOperand(i)->isNullValue()) {
 | 
						|
          isAllNull = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (isAllNull)
 | 
						|
        return ConstantExpr::getCast(CE->getOperand(0), DestTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We actually have to do a cast now, but first, we might need to fix up
 | 
						|
  // the value of the operand.
 | 
						|
  switch (opc) {
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
    break; // floating point input & output, no fixup needed
 | 
						|
  case Instruction::FPToUI: {
 | 
						|
    ConstRules &Rules = ConstRules::get(V, V);
 | 
						|
    V = Rules.castToULong(V); // make sure we get an unsigned value first 
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::FPToSI: {
 | 
						|
    ConstRules &Rules = ConstRules::get(V, V);
 | 
						|
    V = Rules.castToLong(V); // make sure we get a signed value first 
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::IntToPtr: //always treated as unsigned
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::ZExt:
 | 
						|
    // A ZExt always produces an unsigned value so we need to cast the value
 | 
						|
    // now before we try to cast it to the destination type
 | 
						|
    if (isa<ConstantInt>(V))
 | 
						|
      V = ConstantInt::get(SrcTy->getUnsignedVersion(), 
 | 
						|
                           cast<ConstantIntegral>(V)->getZExtValue());
 | 
						|
    break;
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::SExt:
 | 
						|
    // A SExt always produces a signed value so we need to cast the value
 | 
						|
    // now before we try to cast it to the destiniation type.
 | 
						|
    if (isa<ConstantInt>(V))
 | 
						|
      V = ConstantInt::get(SrcTy->getSignedVersion(), 
 | 
						|
                           cast<ConstantIntegral>(V)->getSExtValue());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    // Cast of a global address to boolean is always true.
 | 
						|
    if (isa<GlobalValue>(V)) {
 | 
						|
      if (DestTy == Type::BoolTy)
 | 
						|
        // FIXME: When we support 'external weak' references, we have to 
 | 
						|
        // prevent this transformation from happening.  This code will need 
 | 
						|
        // to be updated to ignore external weak symbols when we support it.
 | 
						|
        return ConstantBool::getTrue();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    // Check to see if we are casting a pointer to an aggregate to a pointer to
 | 
						|
    // the first element.  If so, return the appropriate GEP instruction.
 | 
						|
    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
 | 
						|
      if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
 | 
						|
        std::vector<Value*> IdxList;
 | 
						|
        IdxList.push_back(Constant::getNullValue(Type::IntTy));
 | 
						|
        const Type *ElTy = PTy->getElementType();
 | 
						|
        while (ElTy != DPTy->getElementType()) {
 | 
						|
          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
 | 
						|
            if (STy->getNumElements() == 0) break;
 | 
						|
            ElTy = STy->getElementType(0);
 | 
						|
            IdxList.push_back(Constant::getNullValue(Type::UIntTy));
 | 
						|
          } else if (const SequentialType *STy = 
 | 
						|
                     dyn_cast<SequentialType>(ElTy)) {
 | 
						|
            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
 | 
						|
            ElTy = STy->getElementType();
 | 
						|
            IdxList.push_back(IdxList[0]);
 | 
						|
          } else {
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (ElTy == DPTy->getElementType())
 | 
						|
          return ConstantExpr::getGetElementPtr(
 | 
						|
              const_cast<Constant*>(V),IdxList);
 | 
						|
      }
 | 
						|
        
 | 
						|
    // Handle casts from one packed constant to another.  We know that the src 
 | 
						|
    // and dest type have the same size (otherwise its an illegal cast).
 | 
						|
    if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
 | 
						|
      if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
 | 
						|
        assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
 | 
						|
               "Not cast between same sized vectors!");
 | 
						|
        // First, check for null and undef
 | 
						|
        if (isa<ConstantAggregateZero>(V))
 | 
						|
          return Constant::getNullValue(DestTy);
 | 
						|
        if (isa<UndefValue>(V))
 | 
						|
          return UndefValue::get(DestTy);
 | 
						|
 | 
						|
        if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
 | 
						|
          // This is a cast from a ConstantPacked of one type to a 
 | 
						|
          // ConstantPacked of another type.  Check to see if all elements of 
 | 
						|
          // the input are simple.
 | 
						|
          bool AllSimpleConstants = true;
 | 
						|
          for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
 | 
						|
            if (!isa<ConstantInt>(CP->getOperand(i)) &&
 | 
						|
                !isa<ConstantFP>(CP->getOperand(i))) {
 | 
						|
              AllSimpleConstants = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
              
 | 
						|
          // If all of the elements are simple constants, we can fold this.
 | 
						|
          if (AllSimpleConstants)
 | 
						|
            return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle sign conversion for integer no-op casts. We need to cast the
 | 
						|
    // value to the correct signedness before we try to cast it to the
 | 
						|
    // destination type. Be careful to do this only for integer types.
 | 
						|
    if (isa<ConstantIntegral>(V) && SrcTy->isInteger()) {
 | 
						|
      if (SrcTy->isSigned())
 | 
						|
        V = ConstantInt::get(SrcTy->getUnsignedVersion(), 
 | 
						|
                             cast<ConstantIntegral>(V)->getZExtValue());
 | 
						|
       else 
 | 
						|
        V = ConstantInt::get(SrcTy->getSignedVersion(), 
 | 
						|
                             cast<ConstantIntegral>(V)->getSExtValue());
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(!"Invalid CE CastInst opcode");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, no more folding possible, time to cast
 | 
						|
  ConstRules &Rules = ConstRules::get(V, V);
 | 
						|
  switch (DestTy->getTypeID()) {
 | 
						|
  case Type::BoolTyID:    return Rules.castToBool(V);
 | 
						|
  case Type::UByteTyID:   return Rules.castToUByte(V);
 | 
						|
  case Type::SByteTyID:   return Rules.castToSByte(V);
 | 
						|
  case Type::UShortTyID:  return Rules.castToUShort(V);
 | 
						|
  case Type::ShortTyID:   return Rules.castToShort(V);
 | 
						|
  case Type::UIntTyID:    return Rules.castToUInt(V);
 | 
						|
  case Type::IntTyID:     return Rules.castToInt(V);
 | 
						|
  case Type::ULongTyID:   return Rules.castToULong(V);
 | 
						|
  case Type::LongTyID:    return Rules.castToLong(V);
 | 
						|
  case Type::FloatTyID:   return Rules.castToFloat(V);
 | 
						|
  case Type::DoubleTyID:  return Rules.castToDouble(V);
 | 
						|
  case Type::PointerTyID:
 | 
						|
    return Rules.castToPointer(V, cast<PointerType>(DestTy));
 | 
						|
  // what about packed ?
 | 
						|
  default: return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
 | 
						|
                                              const Constant *V1,
 | 
						|
                                              const Constant *V2) {
 | 
						|
  if (const ConstantBool *CB = dyn_cast<ConstantBool>(Cond))
 | 
						|
    return const_cast<Constant*>(CB->getValue() ? V1 : V2);
 | 
						|
 | 
						|
  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
 | 
						|
  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
 | 
						|
  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
 | 
						|
  if (V1 == V2) return const_cast<Constant*>(V1);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
 | 
						|
                                                      const Constant *Idx) {
 | 
						|
  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
 | 
						|
    return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
 | 
						|
  if (Val->isNullValue())  // ee(zero, x) -> zero
 | 
						|
    return Constant::getNullValue(
 | 
						|
                          cast<PackedType>(Val->getType())->getElementType());
 | 
						|
  
 | 
						|
  if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
 | 
						|
    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
 | 
						|
    } else if (isa<UndefValue>(Idx)) {
 | 
						|
      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
 | 
						|
      return const_cast<Constant*>(CVal->getOperand(0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
 | 
						|
                                                     const Constant *Elt,
 | 
						|
                                                     const Constant *Idx) {
 | 
						|
  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
 | 
						|
  if (!CIdx) return 0;
 | 
						|
  uint64_t idxVal = CIdx->getZExtValue();
 | 
						|
  if (isa<UndefValue>(Val)) { 
 | 
						|
    // Insertion of scalar constant into packed undef
 | 
						|
    // Optimize away insertion of undef
 | 
						|
    if (isa<UndefValue>(Elt))
 | 
						|
      return const_cast<Constant*>(Val);
 | 
						|
    // Otherwise break the aggregate undef into multiple undefs and do
 | 
						|
    // the insertion
 | 
						|
    unsigned numOps = 
 | 
						|
      cast<PackedType>(Val->getType())->getNumElements();
 | 
						|
    std::vector<Constant*> Ops; 
 | 
						|
    Ops.reserve(numOps);
 | 
						|
    for (unsigned i = 0; i < numOps; ++i) {
 | 
						|
      const Constant *Op =
 | 
						|
        (i == idxVal) ? Elt : UndefValue::get(Elt->getType());
 | 
						|
      Ops.push_back(const_cast<Constant*>(Op));
 | 
						|
    }
 | 
						|
    return ConstantPacked::get(Ops);
 | 
						|
  }
 | 
						|
  if (isa<ConstantAggregateZero>(Val)) {
 | 
						|
    // Insertion of scalar constant into packed aggregate zero
 | 
						|
    // Optimize away insertion of zero
 | 
						|
    if (Elt->isNullValue())
 | 
						|
      return const_cast<Constant*>(Val);
 | 
						|
    // Otherwise break the aggregate zero into multiple zeros and do
 | 
						|
    // the insertion
 | 
						|
    unsigned numOps = 
 | 
						|
      cast<PackedType>(Val->getType())->getNumElements();
 | 
						|
    std::vector<Constant*> Ops; 
 | 
						|
    Ops.reserve(numOps);
 | 
						|
    for (unsigned i = 0; i < numOps; ++i) {
 | 
						|
      const Constant *Op =
 | 
						|
        (i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
 | 
						|
      Ops.push_back(const_cast<Constant*>(Op));
 | 
						|
    }
 | 
						|
    return ConstantPacked::get(Ops);
 | 
						|
  }
 | 
						|
  if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
 | 
						|
    // Insertion of scalar constant into packed constant
 | 
						|
    std::vector<Constant*> Ops; 
 | 
						|
    Ops.reserve(CVal->getNumOperands());
 | 
						|
    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
 | 
						|
      const Constant *Op =
 | 
						|
        (i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
 | 
						|
      Ops.push_back(const_cast<Constant*>(Op));
 | 
						|
    }
 | 
						|
    return ConstantPacked::get(Ops);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
 | 
						|
                                                     const Constant *V2,
 | 
						|
                                                     const Constant *Mask) {
 | 
						|
  // TODO:
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isZeroSizedType - This type is zero sized if its an array or structure of
 | 
						|
/// zero sized types.  The only leaf zero sized type is an empty structure.
 | 
						|
static bool isMaybeZeroSizedType(const Type *Ty) {
 | 
						|
  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
 | 
						|
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
 | 
						|
    // If all of elements have zero size, this does too.
 | 
						|
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | 
						|
      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
 | 
						|
    return true;
 | 
						|
 | 
						|
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    return isMaybeZeroSizedType(ATy->getElementType());
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IdxCompare - Compare the two constants as though they were getelementptr
 | 
						|
/// indices.  This allows coersion of the types to be the same thing.
 | 
						|
///
 | 
						|
/// If the two constants are the "same" (after coersion), return 0.  If the
 | 
						|
/// first is less than the second, return -1, if the second is less than the
 | 
						|
/// first, return 1.  If the constants are not integral, return -2.
 | 
						|
///
 | 
						|
static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
 | 
						|
  if (C1 == C2) return 0;
 | 
						|
 | 
						|
  // Ok, we found a different index.  Are either of the operands ConstantExprs?
 | 
						|
  // If so, we can't do anything with them.
 | 
						|
  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
 | 
						|
    return -2; // don't know!
 | 
						|
 | 
						|
  // Ok, we have two differing integer indices.  Sign extend them to be the same
 | 
						|
  // type.  Long is always big enough, so we use it.
 | 
						|
  if (C1->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
 | 
						|
    C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
 | 
						|
  else
 | 
						|
    C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
 | 
						|
  if (C2->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
 | 
						|
    C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
 | 
						|
  else
 | 
						|
    C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
 | 
						|
 | 
						|
  if (C1 == C2) return 0;  // Are they just differing types?
 | 
						|
 | 
						|
  // If the type being indexed over is really just a zero sized type, there is
 | 
						|
  // no pointer difference being made here.
 | 
						|
  if (isMaybeZeroSizedType(ElTy))
 | 
						|
    return -2; // dunno.
 | 
						|
 | 
						|
  // If they are really different, now that they are the same type, then we
 | 
						|
  // found a difference!
 | 
						|
  if (cast<ConstantInt>(C1)->getSExtValue() < 
 | 
						|
      cast<ConstantInt>(C2)->getSExtValue())
 | 
						|
    return -1;
 | 
						|
  else
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// evaluateRelation - This function determines if there is anything we can
 | 
						|
/// decide about the two constants provided.  This doesn't need to handle simple
 | 
						|
/// things like integer comparisons, but should instead handle ConstantExprs
 | 
						|
/// and GlobalValuess.  If we can determine that the two constants have a
 | 
						|
/// particular relation to each other, we should return the corresponding SetCC
 | 
						|
/// code, otherwise return Instruction::BinaryOpsEnd.
 | 
						|
///
 | 
						|
/// To simplify this code we canonicalize the relation so that the first
 | 
						|
/// operand is always the most "complex" of the two.  We consider simple
 | 
						|
/// constants (like ConstantInt) to be the simplest, followed by
 | 
						|
/// GlobalValues, followed by ConstantExpr's (the most complex).
 | 
						|
///
 | 
						|
static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
 | 
						|
  assert(V1->getType() == V2->getType() &&
 | 
						|
         "Cannot compare different types of values!");
 | 
						|
  if (V1 == V2) return Instruction::SetEQ;
 | 
						|
 | 
						|
  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
 | 
						|
    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
 | 
						|
      // We distilled this down to a simple case, use the standard constant
 | 
						|
      // folder.
 | 
						|
      ConstantBool *R = dyn_cast<ConstantBool>(ConstantExpr::getSetEQ(V1, V2));
 | 
						|
      if (R && R->getValue()) return Instruction::SetEQ;
 | 
						|
      R = dyn_cast<ConstantBool>(ConstantExpr::getSetLT(V1, V2));
 | 
						|
      if (R && R->getValue()) return Instruction::SetLT;
 | 
						|
      R = dyn_cast<ConstantBool>(ConstantExpr::getSetGT(V1, V2));
 | 
						|
      if (R && R->getValue()) return Instruction::SetGT;
 | 
						|
      
 | 
						|
      // If we couldn't figure it out, bail.
 | 
						|
      return Instruction::BinaryOpsEnd;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the first operand is simple, swap operands.
 | 
						|
    Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
 | 
						|
    if (SwappedRelation != Instruction::BinaryOpsEnd)
 | 
						|
      return SetCondInst::getSwappedCondition(SwappedRelation);
 | 
						|
 | 
						|
  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
 | 
						|
    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
 | 
						|
      Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
 | 
						|
      if (SwappedRelation != Instruction::BinaryOpsEnd)
 | 
						|
        return SetCondInst::getSwappedCondition(SwappedRelation);
 | 
						|
      else
 | 
						|
        return Instruction::BinaryOpsEnd;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now we know that the RHS is a GlobalValue or simple constant,
 | 
						|
    // which (since the types must match) means that it's a ConstantPointerNull.
 | 
						|
    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
 | 
						|
      assert(CPR1 != CPR2 &&
 | 
						|
             "GVs for the same value exist at different addresses??");
 | 
						|
      // FIXME: If both globals are external weak, they might both be null!
 | 
						|
      return Instruction::SetNE;
 | 
						|
    } else {
 | 
						|
      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
 | 
						|
      // Global can never be null.  FIXME: if we implement external weak
 | 
						|
      // linkage, this is not necessarily true!
 | 
						|
      return Instruction::SetNE;
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
 | 
						|
    // constantexpr, a CPR, or a simple constant.
 | 
						|
    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
 | 
						|
    Constant *CE1Op0 = CE1->getOperand(0);
 | 
						|
 | 
						|
    switch (CE1->getOpcode()) {
 | 
						|
    case Instruction::Trunc:
 | 
						|
    case Instruction::FPTrunc:
 | 
						|
    case Instruction::FPExt:
 | 
						|
    case Instruction::FPToUI:
 | 
						|
    case Instruction::FPToSI:
 | 
						|
      break; // We don't do anything with floating point.
 | 
						|
    case Instruction::ZExt:
 | 
						|
    case Instruction::SExt:
 | 
						|
    case Instruction::UIToFP:
 | 
						|
    case Instruction::SIToFP:
 | 
						|
    case Instruction::PtrToInt:
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
    case Instruction::BitCast:
 | 
						|
      // If the cast is not actually changing bits, and the second operand is a
 | 
						|
      // null pointer, do the comparison with the pre-casted value.
 | 
						|
      if (V2->isNullValue() &&
 | 
						|
          (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral()))
 | 
						|
        return evaluateRelation(CE1Op0,
 | 
						|
                                Constant::getNullValue(CE1Op0->getType()));
 | 
						|
 | 
						|
      // If the dest type is a pointer type, and the RHS is a constantexpr cast
 | 
						|
      // from the same type as the src of the LHS, evaluate the inputs.  This is
 | 
						|
      // important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
 | 
						|
      // which happens a lot in compilers with tagged integers.
 | 
						|
      if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
 | 
						|
        if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
 | 
						|
            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
 | 
						|
            CE1->getOperand(0)->getType()->isIntegral()) {
 | 
						|
          return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
 | 
						|
        }
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      // Ok, since this is a getelementptr, we know that the constant has a
 | 
						|
      // pointer type.  Check the various cases.
 | 
						|
      if (isa<ConstantPointerNull>(V2)) {
 | 
						|
        // If we are comparing a GEP to a null pointer, check to see if the base
 | 
						|
        // of the GEP equals the null pointer.
 | 
						|
        if (isa<GlobalValue>(CE1Op0)) {
 | 
						|
          // FIXME: this is not true when we have external weak references!
 | 
						|
          // No offset can go from a global to a null pointer.
 | 
						|
          return Instruction::SetGT;
 | 
						|
        } else if (isa<ConstantPointerNull>(CE1Op0)) {
 | 
						|
          // If we are indexing from a null pointer, check to see if we have any
 | 
						|
          // non-zero indices.
 | 
						|
          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
 | 
						|
            if (!CE1->getOperand(i)->isNullValue())
 | 
						|
              // Offsetting from null, must not be equal.
 | 
						|
              return Instruction::SetGT;
 | 
						|
          // Only zero indexes from null, must still be zero.
 | 
						|
          return Instruction::SetEQ;
 | 
						|
        }
 | 
						|
        // Otherwise, we can't really say if the first operand is null or not.
 | 
						|
      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
 | 
						|
        if (isa<ConstantPointerNull>(CE1Op0)) {
 | 
						|
          // FIXME: This is not true with external weak references.
 | 
						|
          return Instruction::SetLT;
 | 
						|
        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
 | 
						|
          if (CPR1 == CPR2) {
 | 
						|
            // If this is a getelementptr of the same global, then it must be
 | 
						|
            // different.  Because the types must match, the getelementptr could
 | 
						|
            // only have at most one index, and because we fold getelementptr's
 | 
						|
            // with a single zero index, it must be nonzero.
 | 
						|
            assert(CE1->getNumOperands() == 2 &&
 | 
						|
                   !CE1->getOperand(1)->isNullValue() &&
 | 
						|
                   "Suprising getelementptr!");
 | 
						|
            return Instruction::SetGT;
 | 
						|
          } else {
 | 
						|
            // If they are different globals, we don't know what the value is,
 | 
						|
            // but they can't be equal.
 | 
						|
            return Instruction::SetNE;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
 | 
						|
        const Constant *CE2Op0 = CE2->getOperand(0);
 | 
						|
 | 
						|
        // There are MANY other foldings that we could perform here.  They will
 | 
						|
        // probably be added on demand, as they seem needed.
 | 
						|
        switch (CE2->getOpcode()) {
 | 
						|
        default: break;
 | 
						|
        case Instruction::GetElementPtr:
 | 
						|
          // By far the most common case to handle is when the base pointers are
 | 
						|
          // obviously to the same or different globals.
 | 
						|
          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
 | 
						|
            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
 | 
						|
              return Instruction::SetNE;
 | 
						|
            // Ok, we know that both getelementptr instructions are based on the
 | 
						|
            // same global.  From this, we can precisely determine the relative
 | 
						|
            // ordering of the resultant pointers.
 | 
						|
            unsigned i = 1;
 | 
						|
 | 
						|
            // Compare all of the operands the GEP's have in common.
 | 
						|
            gep_type_iterator GTI = gep_type_begin(CE1);
 | 
						|
            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
 | 
						|
                 ++i, ++GTI)
 | 
						|
              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
 | 
						|
                                 GTI.getIndexedType())) {
 | 
						|
              case -1: return Instruction::SetLT;
 | 
						|
              case 1:  return Instruction::SetGT;
 | 
						|
              case -2: return Instruction::BinaryOpsEnd;
 | 
						|
              }
 | 
						|
 | 
						|
            // Ok, we ran out of things they have in common.  If any leftovers
 | 
						|
            // are non-zero then we have a difference, otherwise we are equal.
 | 
						|
            for (; i < CE1->getNumOperands(); ++i)
 | 
						|
              if (!CE1->getOperand(i)->isNullValue())
 | 
						|
                if (isa<ConstantIntegral>(CE1->getOperand(i)))
 | 
						|
                  return Instruction::SetGT;
 | 
						|
                else
 | 
						|
                  return Instruction::BinaryOpsEnd; // Might be equal.
 | 
						|
 | 
						|
            for (; i < CE2->getNumOperands(); ++i)
 | 
						|
              if (!CE2->getOperand(i)->isNullValue())
 | 
						|
                if (isa<ConstantIntegral>(CE2->getOperand(i)))
 | 
						|
                  return Instruction::SetLT;
 | 
						|
                else
 | 
						|
                  return Instruction::BinaryOpsEnd; // Might be equal.
 | 
						|
            return Instruction::SetEQ;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Instruction::BinaryOpsEnd;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
 | 
						|
                                              const Constant *V1,
 | 
						|
                                              const Constant *V2) {
 | 
						|
  Constant *C = 0;
 | 
						|
  switch (Opcode) {
 | 
						|
  default:                   break;
 | 
						|
  case Instruction::Add:     C = ConstRules::get(V1, V2).add(V1, V2); break;
 | 
						|
  case Instruction::Sub:     C = ConstRules::get(V1, V2).sub(V1, V2); break;
 | 
						|
  case Instruction::Mul:     C = ConstRules::get(V1, V2).mul(V1, V2); break;
 | 
						|
  case Instruction::UDiv:    C = ConstRules::get(V1, V2).udiv(V1, V2); break;
 | 
						|
  case Instruction::SDiv:    C = ConstRules::get(V1, V2).sdiv(V1, V2); break;
 | 
						|
  case Instruction::FDiv:    C = ConstRules::get(V1, V2).fdiv(V1, V2); break;
 | 
						|
  case Instruction::URem:    C = ConstRules::get(V1, V2).urem(V1, V2); break;
 | 
						|
  case Instruction::SRem:    C = ConstRules::get(V1, V2).srem(V1, V2); break;
 | 
						|
  case Instruction::FRem:    C = ConstRules::get(V1, V2).frem(V1, V2); break;
 | 
						|
  case Instruction::And:     C = ConstRules::get(V1, V2).op_and(V1, V2); break;
 | 
						|
  case Instruction::Or:      C = ConstRules::get(V1, V2).op_or (V1, V2); break;
 | 
						|
  case Instruction::Xor:     C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
 | 
						|
  case Instruction::Shl:     C = ConstRules::get(V1, V2).shl(V1, V2); break;
 | 
						|
  case Instruction::LShr:    C = ConstRules::get(V1, V2).lshr(V1, V2); break;
 | 
						|
  case Instruction::AShr:    C = ConstRules::get(V1, V2).ashr(V1, V2); break;
 | 
						|
  case Instruction::SetEQ:   C = ConstRules::get(V1, V2).equalto(V1, V2); break;
 | 
						|
  case Instruction::SetLT:   C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
 | 
						|
  case Instruction::SetGT:   C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
 | 
						|
  case Instruction::SetNE:   // V1 != V2  ===  !(V1 == V2)
 | 
						|
    C = ConstRules::get(V1, V2).equalto(V1, V2);
 | 
						|
    if (C) return ConstantExpr::getNot(C);
 | 
						|
    break;
 | 
						|
  case Instruction::SetLE:   // V1 <= V2  ===  !(V2 < V1)
 | 
						|
    C = ConstRules::get(V1, V2).lessthan(V2, V1);
 | 
						|
    if (C) return ConstantExpr::getNot(C);
 | 
						|
    break;
 | 
						|
  case Instruction::SetGE:   // V1 >= V2  ===  !(V1 < V2)
 | 
						|
    C = ConstRules::get(V1, V2).lessthan(V1, V2);
 | 
						|
    if (C) return ConstantExpr::getNot(C);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we successfully folded the expression, return it now.
 | 
						|
  if (C) return C;
 | 
						|
 | 
						|
  if (SetCondInst::isComparison(Opcode)) {
 | 
						|
    if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | 
						|
      return UndefValue::get(Type::BoolTy);
 | 
						|
    switch (evaluateRelation(const_cast<Constant*>(V1),
 | 
						|
                             const_cast<Constant*>(V2))) {
 | 
						|
    default: assert(0 && "Unknown relational!");
 | 
						|
    case Instruction::BinaryOpsEnd:
 | 
						|
      break;  // Couldn't determine anything about these constants.
 | 
						|
    case Instruction::SetEQ:   // We know the constants are equal!
 | 
						|
      // If we know the constants are equal, we can decide the result of this
 | 
						|
      // computation precisely.
 | 
						|
      return ConstantBool::get(Opcode == Instruction::SetEQ ||
 | 
						|
                               Opcode == Instruction::SetLE ||
 | 
						|
                               Opcode == Instruction::SetGE);
 | 
						|
    case Instruction::SetLT:
 | 
						|
      // If we know that V1 < V2, we can decide the result of this computation
 | 
						|
      // precisely.
 | 
						|
      return ConstantBool::get(Opcode == Instruction::SetLT ||
 | 
						|
                               Opcode == Instruction::SetNE ||
 | 
						|
                               Opcode == Instruction::SetLE);
 | 
						|
    case Instruction::SetGT:
 | 
						|
      // If we know that V1 > V2, we can decide the result of this computation
 | 
						|
      // precisely.
 | 
						|
      return ConstantBool::get(Opcode == Instruction::SetGT ||
 | 
						|
                               Opcode == Instruction::SetNE ||
 | 
						|
                               Opcode == Instruction::SetGE);
 | 
						|
    case Instruction::SetLE:
 | 
						|
      // If we know that V1 <= V2, we can only partially decide this relation.
 | 
						|
      if (Opcode == Instruction::SetGT) return ConstantBool::getFalse();
 | 
						|
      if (Opcode == Instruction::SetLT) return ConstantBool::getTrue();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::SetGE:
 | 
						|
      // If we know that V1 >= V2, we can only partially decide this relation.
 | 
						|
      if (Opcode == Instruction::SetLT) return ConstantBool::getFalse();
 | 
						|
      if (Opcode == Instruction::SetGT) return ConstantBool::getTrue();
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::SetNE:
 | 
						|
      // If we know that V1 != V2, we can only partially decide this relation.
 | 
						|
      if (Opcode == Instruction::SetEQ) return ConstantBool::getFalse();
 | 
						|
      if (Opcode == Instruction::SetNE) return ConstantBool::getTrue();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
 | 
						|
    switch (Opcode) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::Xor:
 | 
						|
      return UndefValue::get(V1->getType());
 | 
						|
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::And:
 | 
						|
      return Constant::getNullValue(V1->getType());
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
      if (!isa<UndefValue>(V2))                    // undef / X -> 0
 | 
						|
        return Constant::getNullValue(V1->getType());
 | 
						|
      return const_cast<Constant*>(V2);            // X / undef -> undef
 | 
						|
    case Instruction::Or:                          // X | undef -> -1
 | 
						|
      return ConstantInt::getAllOnesValue(V1->getType());
 | 
						|
    case Instruction::LShr:
 | 
						|
      if (isa<UndefValue>(V2) && isa<UndefValue>(V1))
 | 
						|
        return const_cast<Constant*>(V1);           // undef lshr undef -> undef
 | 
						|
      return Constant::getNullValue(V1->getType()); // X lshr undef -> 0
 | 
						|
                                                    // undef lshr X -> 0
 | 
						|
    case Instruction::AShr:
 | 
						|
      if (!isa<UndefValue>(V2))
 | 
						|
        return const_cast<Constant*>(V1);           // undef ashr X --> undef
 | 
						|
      else if (isa<UndefValue>(V1)) 
 | 
						|
        return const_cast<Constant*>(V1);           // undef ashr undef -> undef
 | 
						|
      else
 | 
						|
        return const_cast<Constant*>(V1);           // X ashr undef --> X
 | 
						|
    case Instruction::Shl:
 | 
						|
      // undef << X -> 0   or   X << undef -> 0
 | 
						|
      return Constant::getNullValue(V1->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
 | 
						|
    if (isa<ConstantExpr>(V2)) {
 | 
						|
      // There are many possible foldings we could do here.  We should probably
 | 
						|
      // at least fold add of a pointer with an integer into the appropriate
 | 
						|
      // getelementptr.  This will improve alias analysis a bit.
 | 
						|
    } else {
 | 
						|
      // Just implement a couple of simple identities.
 | 
						|
      switch (Opcode) {
 | 
						|
      case Instruction::Add:
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X + 0 == X
 | 
						|
        break;
 | 
						|
      case Instruction::Sub:
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X - 0 == X
 | 
						|
        break;
 | 
						|
      case Instruction::Mul:
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X * 0 == 0
 | 
						|
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | 
						|
          if (CI->getZExtValue() == 1)
 | 
						|
            return const_cast<Constant*>(V1);                     // X * 1 == X
 | 
						|
        break;
 | 
						|
      case Instruction::UDiv:
 | 
						|
      case Instruction::SDiv:
 | 
						|
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | 
						|
          if (CI->getZExtValue() == 1)
 | 
						|
            return const_cast<Constant*>(V1);                     // X / 1 == X
 | 
						|
        break;
 | 
						|
      case Instruction::URem:
 | 
						|
      case Instruction::SRem:
 | 
						|
        if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | 
						|
          if (CI->getZExtValue() == 1)
 | 
						|
            return Constant::getNullValue(CI->getType());         // X % 1 == 0
 | 
						|
        break;
 | 
						|
      case Instruction::And:
 | 
						|
        if (cast<ConstantIntegral>(V2)->isAllOnesValue())
 | 
						|
          return const_cast<Constant*>(V1);                       // X & -1 == X
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X & 0 == 0
 | 
						|
        if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
 | 
						|
          GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
 | 
						|
 | 
						|
          // Functions are at least 4-byte aligned.  If and'ing the address of a
 | 
						|
          // function with a constant < 4, fold it to zero.
 | 
						|
          if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | 
						|
            if (CI->getZExtValue() < 4 && isa<Function>(CPR))
 | 
						|
              return Constant::getNullValue(CI->getType());
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Instruction::Or:
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X | 0 == X
 | 
						|
        if (cast<ConstantIntegral>(V2)->isAllOnesValue())
 | 
						|
          return const_cast<Constant*>(V2);  // X | -1 == -1
 | 
						|
        break;
 | 
						|
      case Instruction::Xor:
 | 
						|
        if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X ^ 0 == X
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (isa<ConstantExpr>(V2)) {
 | 
						|
    // If V2 is a constant expr and V1 isn't, flop them around and fold the
 | 
						|
    // other way if possible.
 | 
						|
    switch (Opcode) {
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Mul:
 | 
						|
    case Instruction::And:
 | 
						|
    case Instruction::Or:
 | 
						|
    case Instruction::Xor:
 | 
						|
    case Instruction::SetEQ:
 | 
						|
    case Instruction::SetNE:
 | 
						|
      // No change of opcode required.
 | 
						|
      return ConstantFoldBinaryInstruction(Opcode, V2, V1);
 | 
						|
 | 
						|
    case Instruction::SetLT:
 | 
						|
    case Instruction::SetGT:
 | 
						|
    case Instruction::SetLE:
 | 
						|
    case Instruction::SetGE:
 | 
						|
      // Change the opcode as necessary to swap the operands.
 | 
						|
      Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
 | 
						|
      return ConstantFoldBinaryInstruction(Opcode, V2, V1);
 | 
						|
 | 
						|
    case Instruction::Shl:
 | 
						|
    case Instruction::LShr:
 | 
						|
    case Instruction::AShr:
 | 
						|
    case Instruction::Sub:
 | 
						|
    case Instruction::SDiv:
 | 
						|
    case Instruction::UDiv:
 | 
						|
    case Instruction::FDiv:
 | 
						|
    case Instruction::URem:
 | 
						|
    case Instruction::SRem:
 | 
						|
    case Instruction::FRem:
 | 
						|
    default:  // These instructions cannot be flopped around.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
 | 
						|
                                          const std::vector<Value*> &IdxList) {
 | 
						|
  if (IdxList.size() == 0 ||
 | 
						|
      (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
 | 
						|
    return const_cast<Constant*>(C);
 | 
						|
 | 
						|
  if (isa<UndefValue>(C)) {
 | 
						|
    const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
 | 
						|
                                                       true);
 | 
						|
    assert(Ty != 0 && "Invalid indices for GEP!");
 | 
						|
    return UndefValue::get(PointerType::get(Ty));
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *Idx0 = cast<Constant>(IdxList[0]);
 | 
						|
  if (C->isNullValue()) {
 | 
						|
    bool isNull = true;
 | 
						|
    for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
 | 
						|
      if (!cast<Constant>(IdxList[i])->isNullValue()) {
 | 
						|
        isNull = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (isNull) {
 | 
						|
      const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
 | 
						|
                                                         true);
 | 
						|
      assert(Ty != 0 && "Invalid indices for GEP!");
 | 
						|
      return ConstantPointerNull::get(PointerType::get(Ty));
 | 
						|
    }
 | 
						|
 | 
						|
    if (IdxList.size() == 1) {
 | 
						|
      const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
 | 
						|
      if (uint32_t ElSize = ElTy->getPrimitiveSize()) {
 | 
						|
        // gep null, C is equal to C*sizeof(nullty).  If nullty is a known llvm
 | 
						|
        // type, we can statically fold this.
 | 
						|
        Constant *R = ConstantInt::get(Type::UIntTy, ElSize);
 | 
						|
        R = ConstantExpr::getCast(R, Idx0->getType());
 | 
						|
        R = ConstantExpr::getMul(R, Idx0);
 | 
						|
        return ConstantExpr::getCast(R, C->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
 | 
						|
    // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
    // is a getelementptr instruction, combine the indices of the two
 | 
						|
    // getelementptr instructions into a single instruction.
 | 
						|
    //
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
      const Type *LastTy = 0;
 | 
						|
      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | 
						|
           I != E; ++I)
 | 
						|
        LastTy = *I;
 | 
						|
 | 
						|
      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
 | 
						|
        std::vector<Value*> NewIndices;
 | 
						|
        NewIndices.reserve(IdxList.size() + CE->getNumOperands());
 | 
						|
        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
 | 
						|
          NewIndices.push_back(CE->getOperand(i));
 | 
						|
 | 
						|
        // Add the last index of the source with the first index of the new GEP.
 | 
						|
        // Make sure to handle the case when they are actually different types.
 | 
						|
        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
 | 
						|
        // Otherwise it must be an array.
 | 
						|
        if (!Idx0->isNullValue()) {
 | 
						|
          const Type *IdxTy = Combined->getType();
 | 
						|
          if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy;
 | 
						|
          Combined =
 | 
						|
            ConstantExpr::get(Instruction::Add,
 | 
						|
                              ConstantExpr::getCast(Idx0, IdxTy),
 | 
						|
                              ConstantExpr::getCast(Combined, IdxTy));
 | 
						|
        }
 | 
						|
 | 
						|
        NewIndices.push_back(Combined);
 | 
						|
        NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
 | 
						|
        return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Implement folding of:
 | 
						|
    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
 | 
						|
    //                        long 0, long 0)
 | 
						|
    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
 | 
						|
    //
 | 
						|
    if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
 | 
						|
      if (const PointerType *SPT =
 | 
						|
          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
 | 
						|
        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
 | 
						|
          if (const ArrayType *CAT =
 | 
						|
        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
 | 
						|
            if (CAT->getElementType() == SAT->getElementType())
 | 
						|
              return ConstantExpr::getGetElementPtr(
 | 
						|
                      (Constant*)CE->getOperand(0), IdxList);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 |