mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	since it is trivial and will be shared between ppc and x86. This substantially simplifies the X86 backend also. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119089 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			12033 lines
		
	
	
		
			462 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			12033 lines
		
	
	
		
			462 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the interfaces that X86 uses to lower LLVM code into a
 | |
| // selection DAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-isel"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86ShuffleDecode.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86TargetObjectFile.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Dwarf.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| using namespace dwarf;
 | |
| 
 | |
| STATISTIC(NumTailCalls, "Number of tail calls");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
 | |
| 
 | |
| // Forward declarations.
 | |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                        SDValue V2);
 | |
| 
 | |
| static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
 | |
| 
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
| 
 | |
|   if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
 | |
|     if (is64Bit) return new X8664_MachoTargetObjectFile();
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
|   } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
 | |
|     if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
 | |
|     return new X8632_ELFTargetObjectFile(TM);
 | |
|   } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
 | |
|     return new TargetLoweringObjectFileCOFF();
 | |
|   }
 | |
|   llvm_unreachable("unknown subtarget type");
 | |
| }
 | |
| 
 | |
| X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
 | |
|   : TargetLowering(TM, createTLOF(TM)) {
 | |
|   Subtarget = &TM.getSubtarget<X86Subtarget>();
 | |
|   X86ScalarSSEf64 = Subtarget->hasSSE2();
 | |
|   X86ScalarSSEf32 = Subtarget->hasSSE1();
 | |
|   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
 | |
| 
 | |
|   RegInfo = TM.getRegisterInfo();
 | |
|   TD = getTargetData();
 | |
| 
 | |
|   // Set up the TargetLowering object.
 | |
| 
 | |
|   // X86 is weird, it always uses i8 for shift amounts and setcc results.
 | |
|   setShiftAmountType(MVT::i8);
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
|   setStackPointerRegisterToSaveRestore(X86StackPtr);
 | |
| 
 | |
|   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
 | |
|     // Setup Windows compiler runtime calls.
 | |
|     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
 | |
|     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
 | |
|     setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
 | |
|     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
 | |
|     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
 | |
|     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isTargetDarwin()) {
 | |
|     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|     setUseUnderscoreSetJmp(false);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else if (Subtarget->isTargetMingw()) {
 | |
|     // MS runtime is weird: it exports _setjmp, but longjmp!
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(false);
 | |
|   } else {
 | |
|     setUseUnderscoreSetJmp(true);
 | |
|     setUseUnderscoreLongJmp(true);
 | |
|   }
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
 | |
|   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
 | |
|   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
 | |
|   if (Subtarget->is64Bit())
 | |
|     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
 | |
| 
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
| 
 | |
|   // We don't accept any truncstore of integer registers.
 | |
|   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
 | |
|   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
 | |
|   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
 | |
|   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
 | |
|   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
 | |
|   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
 | |
| 
 | |
|   // SETOEQ and SETUNE require checking two conditions.
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
 | |
| 
 | |
|   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
 | |
|   // operation.
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
 | |
|   } else if (!UseSoftFloat) {
 | |
|     // We have an algorithm for SSE2->double, and we turn this into a
 | |
|     // 64-bit FILD followed by conditional FADD for other targets.
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
 | |
|     // We have an algorithm for SSE2, and we turn this into a 64-bit
 | |
|     // FILD for other targets.
 | |
|     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
 | |
| 
 | |
|   if (!UseSoftFloat) {
 | |
|     // SSE has no i16 to fp conversion, only i32
 | |
|     if (X86ScalarSSEf32) {
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | |
|       // f32 and f64 cases are Legal, f80 case is not
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | |
|     } else {
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
 | |
|       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
 | |
|     }
 | |
|   } else {
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
 | |
|     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
 | |
|   }
 | |
| 
 | |
|   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
 | |
|   // are Legal, f80 is custom lowered.
 | |
|   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
 | |
| 
 | |
|   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
 | |
|   // this operation.
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
 | |
| 
 | |
|   if (X86ScalarSSEf32) {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
 | |
|     // f32 and f64 cases are Legal, f80 case is not
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
 | |
|     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // Handle FP_TO_UINT by promoting the destination to a larger signed
 | |
|   // conversion.
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
 | |
|   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
 | |
|   } else if (!UseSoftFloat) {
 | |
|     if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
 | |
|       // Expand FP_TO_UINT into a select.
 | |
|       // FIXME: We would like to use a Custom expander here eventually to do
 | |
|       // the optimal thing for SSE vs. the default expansion in the legalizer.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
 | |
|     else
 | |
|       // With SSE3 we can use fisttpll to convert to a signed i64; without
 | |
|       // SSE, we're stuck with a fistpll.
 | |
|       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
 | |
|   }
 | |
| 
 | |
|   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
 | |
|   if (!X86ScalarSSEf64) {
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
 | |
|     setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
 | |
|       // Without SSE, i64->f64 goes through memory.
 | |
|       setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scalar integer divide and remainder are lowered to use operations that
 | |
|   // produce two results, to match the available instructions. This exposes
 | |
|   // the two-result form to trivial CSE, which is able to combine x/y and x%y
 | |
|   // into a single instruction.
 | |
|   //
 | |
|   // Scalar integer multiply-high is also lowered to use two-result
 | |
|   // operations, to match the available instructions. However, plain multiply
 | |
|   // (low) operations are left as Legal, as there are single-result
 | |
|   // instructions for this in x86. Using the two-result multiply instructions
 | |
|   // when both high and low results are needed must be arranged by dagcombine.
 | |
|   setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i8    , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i16   , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::SREM            , MVT::i64   , Expand);
 | |
|   setOperationAction(ISD::UREM            , MVT::i64   , Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
 | |
|   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
 | |
|   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
 | |
|   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
 | |
| 
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
 | |
|     setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
 | |
|   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
 | |
| 
 | |
|   // These should be promoted to a larger select which is supported.
 | |
|   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
 | |
|   // X86 wants to expand cmov itself.
 | |
|   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
 | |
|   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
 | |
|   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
 | |
|   }
 | |
|   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
 | |
| 
 | |
|   // Darwin ABI issue.
 | |
|   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
 | |
|   }
 | |
|   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
 | |
|   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE1())
 | |
|     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
 | |
| 
 | |
|   // We may not have a libcall for MEMBARRIER so we should lower this.
 | |
|   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
 | |
| 
 | |
|   // On X86 and X86-64, atomic operations are lowered to locked instructions.
 | |
|   // Locked instructions, in turn, have implicit fence semantics (all memory
 | |
|   // operations are flushed before issuing the locked instruction, and they
 | |
|   // are not buffered), so we can fold away the common pattern of
 | |
|   // fence-atomic-fence.
 | |
|   setShouldFoldAtomicFences(true);
 | |
| 
 | |
|   // Expand certain atomics
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   // FIXME - use subtarget debug flags
 | |
|   if (!Subtarget->isTargetDarwin() &&
 | |
|       !Subtarget->isTargetELF() &&
 | |
|       !Subtarget->isTargetCygMing()) {
 | |
|     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setExceptionPointerRegister(X86::RAX);
 | |
|     setExceptionSelectorRegister(X86::RDX);
 | |
|   } else {
 | |
|     setExceptionPointerRegister(X86::EAX);
 | |
|     setExceptionSelectorRegister(X86::EDX);
 | |
|   }
 | |
|   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
 | |
|   } else {
 | |
|     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
 | |
|     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
 | |
|   if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
 | |
| 
 | |
|   if (!UseSoftFloat && X86ScalarSSEf64) {
 | |
|     // f32 and f64 use SSE.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
 | |
|     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
 | |
| 
 | |
|     // Use ANDPD to simulate FABS.
 | |
|     setOperationAction(ISD::FABS , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FABS , MVT::f32, Custom);
 | |
| 
 | |
|     // Use XORP to simulate FNEG.
 | |
|     setOperationAction(ISD::FNEG , MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | |
| 
 | |
|     // Use ANDPD and ORPD to simulate FCOPYSIGN.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|     // We don't support sin/cos/fmod
 | |
|     setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
| 
 | |
|     // Expand FP immediates into loads from the stack, except for the special
 | |
|     // cases we handle.
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // xorpd
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | |
|   } else if (!UseSoftFloat && X86ScalarSSEf32) {
 | |
|     // Use SSE for f32, x87 for f64.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
 | |
|     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
 | |
| 
 | |
|     // Use ANDPS to simulate FABS.
 | |
|     setOperationAction(ISD::FABS , MVT::f32, Custom);
 | |
| 
 | |
|     // Use XORP to simulate FNEG.
 | |
|     setOperationAction(ISD::FNEG , MVT::f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | |
| 
 | |
|     // Use ANDPS and ORPS to simulate FCOPYSIGN.
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
 | |
| 
 | |
|     // We don't support sin/cos/fmod
 | |
|     setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
| 
 | |
|     // Special cases we handle for FP constants.
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // xorps
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | |
|     }
 | |
|   } else if (!UseSoftFloat) {
 | |
|     // f32 and f64 in x87.
 | |
|     // Set up the FP register classes.
 | |
|     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
 | |
|     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
 | |
|     }
 | |
|     addLegalFPImmediate(APFloat(+0.0)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
 | |
|     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
 | |
|     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
 | |
|     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
 | |
|     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
 | |
|   }
 | |
| 
 | |
|   // Long double always uses X87.
 | |
|   if (!UseSoftFloat) {
 | |
|     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
 | |
|     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
 | |
|     {
 | |
|       bool ignored;
 | |
|       APFloat TmpFlt(+0.0);
 | |
|       TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
 | |
|                      &ignored);
 | |
|       addLegalFPImmediate(TmpFlt);  // FLD0
 | |
|       TmpFlt.changeSign();
 | |
|       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
 | |
|       APFloat TmpFlt2(+1.0);
 | |
|       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
 | |
|                       &ignored);
 | |
|       addLegalFPImmediate(TmpFlt2);  // FLD1
 | |
|       TmpFlt2.changeSign();
 | |
|       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
 | |
|     }
 | |
| 
 | |
|     if (!UnsafeFPMath) {
 | |
|       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
 | |
|       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Always use a library call for pow.
 | |
|   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
 | |
|   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
 | |
|   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FLOG, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FEXP, MVT::f80, Expand);
 | |
|   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
 | |
| 
 | |
|   // First set operation action for all vector types to either promote
 | |
|   // (for widening) or expand (for scalarization). Then we will selectively
 | |
|   // turn on ones that can be effectively codegen'd.
 | |
|   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | |
|     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
 | |
|     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
 | |
|     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
 | |
|     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
 | |
|       setTruncStoreAction((MVT::SimpleValueType)VT,
 | |
|                           (MVT::SimpleValueType)InnerVT, Expand);
 | |
|     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
 | |
|   // with -msoft-float, disable use of MMX as well.
 | |
|   if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
 | |
|     addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
 | |
|     // No operations on x86mmx supported, everything uses intrinsics.
 | |
|   }
 | |
| 
 | |
|   // MMX-sized vectors (other than x86mmx) are expected to be expanded
 | |
|   // into smaller operations.
 | |
|   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Expand);
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasSSE1()) {
 | |
|     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasSSE2()) {
 | |
|     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
 | |
| 
 | |
|     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
 | |
|     // registers cannot be used even for integer operations.
 | |
|     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
 | |
|     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
 | |
| 
 | |
|     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
|       // Do not attempt to custom lower non-power-of-2 vectors
 | |
|       if (!isPowerOf2_32(VT.getVectorNumElements()))
 | |
|         continue;
 | |
|       // Do not attempt to custom lower non-128-bit vectors
 | |
|       if (!VT.is128BitVector())
 | |
|         continue;
 | |
|       setOperationAction(ISD::BUILD_VECTOR,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
 | |
|                          VT.getSimpleVT().SimpleTy, Custom);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
 | |
|     }
 | |
| 
 | |
|     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
 | |
|       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
 | |
|       EVT VT = SVT;
 | |
| 
 | |
|       // Do not attempt to promote non-128-bit vectors
 | |
|       if (!VT.is128BitVector())
 | |
|         continue;
 | |
| 
 | |
|       setOperationAction(ISD::AND,    SVT, Promote);
 | |
|       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::OR,     SVT, Promote);
 | |
|       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::XOR,    SVT, Promote);
 | |
|       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::LOAD,   SVT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
 | |
|       setOperationAction(ISD::SELECT, SVT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
 | |
|     }
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|     // Custom lower v2i64 and v2f64 selects.
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE41()) {
 | |
|     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
 | |
|     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
 | |
|     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
 | |
|     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
 | |
|     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
 | |
|     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
 | |
|     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
 | |
|     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
 | |
| 
 | |
|     // FIXME: Do we need to handle scalar-to-vector here?
 | |
|     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
 | |
| 
 | |
|     // Can turn SHL into an integer multiply.
 | |
|     setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
 | |
| 
 | |
|     // i8 and i16 vectors are custom , because the source register and source
 | |
|     // source memory operand types are not the same width.  f32 vectors are
 | |
|     // custom since the immediate controlling the insert encodes additional
 | |
|     // information.
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasSSE42()) {
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!UseSoftFloat && Subtarget->hasAVX()) {
 | |
|     addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
 | |
|     addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
 | |
|     //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
 | |
| 
 | |
|     // Operations to consider commented out -v16i16 v32i8
 | |
|     //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
 | |
|     //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
 | |
|     //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
 | |
|     //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
 | |
|     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
 | |
|     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
 | |
|     // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
 | |
|     // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
 | |
|     setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
 | |
| 
 | |
|     // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
 | |
|     // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
 | |
|     // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
 | |
| 
 | |
| #if 0
 | |
|     // Not sure we want to do this since there are no 256-bit integer
 | |
|     // operations in AVX
 | |
| 
 | |
|     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
 | |
|     // This includes 256-bit vectors
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       // Do not attempt to custom lower non-power-of-2 vectors
 | |
|       if (!isPowerOf2_32(VT.getVectorNumElements()))
 | |
|         continue;
 | |
| 
 | |
|       setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
 | |
|     }
 | |
| 
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     // Not sure we want to do this since there are no 256-bit integer
 | |
|     // operations in AVX
 | |
| 
 | |
|     // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
 | |
|     // Including 256-bit vectors
 | |
|     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
 | |
|       EVT VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       if (!VT.is256BitVector()) {
 | |
|         continue;
 | |
|       }
 | |
|       setOperationAction(ISD::AND,    VT, Promote);
 | |
|       AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::OR,     VT, Promote);
 | |
|       AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::XOR,    VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::LOAD,   VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
 | |
|       setOperationAction(ISD::SELECT, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
 | |
|     }
 | |
| 
 | |
|     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // Add/Sub/Mul with overflow operations are custom lowered.
 | |
|   setOperationAction(ISD::SADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::UADDO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::USUBO, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::SMULO, MVT::i32, Custom);
 | |
| 
 | |
|   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
 | |
|   // handle type legalization for these operations here.
 | |
|   //
 | |
|   // FIXME: We really should do custom legalization for addition and
 | |
|   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
 | |
|   // than generic legalization for 64-bit multiplication-with-overflow, though.
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     setOperationAction(ISD::SADDO, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UADDO, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SSUBO, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::USUBO, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SMULO, MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (!Subtarget->is64Bit()) {
 | |
|     // These libcalls are not available in 32-bit.
 | |
|     setLibcallName(RTLIB::SHL_I128, 0);
 | |
|     setLibcallName(RTLIB::SRL_I128, 0);
 | |
|     setLibcallName(RTLIB::SRA_I128, 0);
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
 | |
|   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
 | |
|   setTargetDAGCombine(ISD::BUILD_VECTOR);
 | |
|   setTargetDAGCombine(ISD::SELECT);
 | |
|   setTargetDAGCombine(ISD::SHL);
 | |
|   setTargetDAGCombine(ISD::SRA);
 | |
|   setTargetDAGCombine(ISD::SRL);
 | |
|   setTargetDAGCombine(ISD::OR);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|   if (Subtarget->is64Bit())
 | |
|     setTargetDAGCombine(ISD::MUL);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // FIXME: These should be based on subtarget info. Plus, the values should
 | |
|   // be smaller when we are in optimizing for size mode.
 | |
|   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
 | |
|   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
 | |
|   maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
 | |
|   setPrefLoopAlignment(16);
 | |
|   benefitFromCodePlacementOpt = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   return MVT::i8;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | |
| /// the desired ByVal argument alignment.
 | |
| static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
 | |
|   if (MaxAlign == 16)
 | |
|     return;
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     if (VTy->getBitWidth() == 128)
 | |
|       MaxAlign = 16;
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     unsigned EltAlign = 0;
 | |
|     getMaxByValAlign(ATy->getElementType(), EltAlign);
 | |
|     if (EltAlign > MaxAlign)
 | |
|       MaxAlign = EltAlign;
 | |
|   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       unsigned EltAlign = 0;
 | |
|       getMaxByValAlign(STy->getElementType(i), EltAlign);
 | |
|       if (EltAlign > MaxAlign)
 | |
|         MaxAlign = EltAlign;
 | |
|       if (MaxAlign == 16)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area. For X86, aggregates
 | |
| /// that contain SSE vectors are placed at 16-byte boundaries while the rest
 | |
| /// are at 4-byte boundaries.
 | |
| unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     // Max of 8 and alignment of type.
 | |
|     unsigned TyAlign = TD->getABITypeAlignment(Ty);
 | |
|     if (TyAlign > 8)
 | |
|       return TyAlign;
 | |
|     return 8;
 | |
|   }
 | |
| 
 | |
|   unsigned Align = 4;
 | |
|   if (Subtarget->hasSSE1())
 | |
|     getMaxByValAlign(Ty, Align);
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
| /// and store operations as a result of memset, memcpy, and memmove
 | |
| /// lowering. If DstAlign is zero that means it's safe to destination
 | |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | |
| /// means there isn't a need to check it against alignment requirement,
 | |
| /// probably because the source does not need to be loaded. If
 | |
| /// 'NonScalarIntSafe' is true, that means it's safe to return a
 | |
| /// non-scalar-integer type, e.g. empty string source, constant, or loaded
 | |
| /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
 | |
| /// constant so it does not need to be loaded.
 | |
| /// It returns EVT::Other if the type should be determined using generic
 | |
| /// target-independent logic.
 | |
| EVT
 | |
| X86TargetLowering::getOptimalMemOpType(uint64_t Size,
 | |
|                                        unsigned DstAlign, unsigned SrcAlign,
 | |
|                                        bool NonScalarIntSafe,
 | |
|                                        bool MemcpyStrSrc,
 | |
|                                        MachineFunction &MF) const {
 | |
|   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
 | |
|   // linux.  This is because the stack realignment code can't handle certain
 | |
|   // cases like PR2962.  This should be removed when PR2962 is fixed.
 | |
|   const Function *F = MF.getFunction();
 | |
|   if (NonScalarIntSafe &&
 | |
|       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
 | |
|     if (Size >= 16 &&
 | |
|         (Subtarget->isUnalignedMemAccessFast() ||
 | |
|          ((DstAlign == 0 || DstAlign >= 16) &&
 | |
|           (SrcAlign == 0 || SrcAlign >= 16))) &&
 | |
|         Subtarget->getStackAlignment() >= 16) {
 | |
|       if (Subtarget->hasSSE2())
 | |
|         return MVT::v4i32;
 | |
|       if (Subtarget->hasSSE1())
 | |
|         return MVT::v4f32;
 | |
|     } else if (!MemcpyStrSrc && Size >= 8 &&
 | |
|                !Subtarget->is64Bit() &&
 | |
|                Subtarget->getStackAlignment() >= 8 &&
 | |
|                Subtarget->hasSSE2()) {
 | |
|       // Do not use f64 to lower memcpy if source is string constant. It's
 | |
|       // better to use i32 to avoid the loads.
 | |
|       return MVT::f64;
 | |
|     }
 | |
|   }
 | |
|   if (Subtarget->is64Bit() && Size >= 8)
 | |
|     return MVT::i64;
 | |
|   return MVT::i32;
 | |
| }
 | |
| 
 | |
| /// getJumpTableEncoding - Return the entry encoding for a jump table in the
 | |
| /// current function.  The returned value is a member of the
 | |
| /// MachineJumpTableInfo::JTEntryKind enum.
 | |
| unsigned X86TargetLowering::getJumpTableEncoding() const {
 | |
|   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
 | |
|   // symbol.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       Subtarget->isPICStyleGOT())
 | |
|     return MachineJumpTableInfo::EK_Custom32;
 | |
| 
 | |
|   // Otherwise, use the normal jump table encoding heuristics.
 | |
|   return TargetLowering::getJumpTableEncoding();
 | |
| }
 | |
| 
 | |
| const MCExpr *
 | |
| X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
 | |
|                                              const MachineBasicBlock *MBB,
 | |
|                                              unsigned uid,MCContext &Ctx) const{
 | |
|   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|          Subtarget->isPICStyleGOT());
 | |
|   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
 | |
|   // entries.
 | |
|   return MCSymbolRefExpr::Create(MBB->getSymbol(),
 | |
|                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
 | |
| }
 | |
| 
 | |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
 | |
| /// jumptable.
 | |
| SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   if (!Subtarget->is64Bit())
 | |
|     // This doesn't have DebugLoc associated with it, but is not really the
 | |
|     // same as a Register.
 | |
|     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
 | |
| /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
 | |
| /// MCExpr.
 | |
| const MCExpr *X86TargetLowering::
 | |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
 | |
|                              MCContext &Ctx) const {
 | |
|   // X86-64 uses RIP relative addressing based on the jump table label.
 | |
|   if (Subtarget->isPICStyleRIPRel())
 | |
|     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | |
| 
 | |
|   // Otherwise, the reference is relative to the PIC base.
 | |
|   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
 | |
|   return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
 | |
| }
 | |
| 
 | |
| std::pair<const TargetRegisterClass*, uint8_t>
 | |
| X86TargetLowering::findRepresentativeClass(EVT VT) const{
 | |
|   const TargetRegisterClass *RRC = 0;
 | |
|   uint8_t Cost = 1;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     return TargetLowering::findRepresentativeClass(VT);
 | |
|   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
 | |
|     RRC = (Subtarget->is64Bit()
 | |
|            ? X86::GR64RegisterClass : X86::GR32RegisterClass);
 | |
|     break;
 | |
|   case MVT::x86mmx:
 | |
|     RRC = X86::VR64RegisterClass;
 | |
|     break;
 | |
|   case MVT::f32: case MVT::f64:
 | |
|   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
 | |
|   case MVT::v4f32: case MVT::v2f64:
 | |
|   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
 | |
|   case MVT::v4f64:
 | |
|     RRC = X86::VR128RegisterClass;
 | |
|     break;
 | |
|   }
 | |
|   return std::make_pair(RRC, Cost);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
 | |
|                                        MachineFunction &MF) const {
 | |
|   unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
 | |
|   switch (RC->getID()) {
 | |
|   default:
 | |
|     return 0;
 | |
|   case X86::GR32RegClassID:
 | |
|     return 4 - FPDiff;
 | |
|   case X86::GR64RegClassID:
 | |
|     return 8 - FPDiff;
 | |
|   case X86::VR128RegClassID:
 | |
|     return Subtarget->is64Bit() ? 10 : 4;
 | |
|   case X86::VR64RegClassID:
 | |
|     return 4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
 | |
|                                                unsigned &Offset) const {
 | |
|   if (!Subtarget->isTargetLinux())
 | |
|     return false;
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
 | |
|     Offset = 0x28;
 | |
|     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
 | |
|       AddressSpace = 256;
 | |
|     else
 | |
|       AddressSpace = 257;
 | |
|   } else {
 | |
|     // %gs:0x14 on i386
 | |
|     Offset = 0x14;
 | |
|     AddressSpace = 256;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Return Value Calling Convention Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86GenCallingConv.inc"
 | |
| 
 | |
| bool
 | |
| X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
 | |
|                         const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                         LLVMContext &Context) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, Context);
 | |
|   return CCInfo.CheckReturn(Outs, RetCC_X86);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
 | |
| 
 | |
|   // Add the regs to the liveout set for the function.
 | |
|   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
 | |
|       MRI.addLiveOut(RVLocs[i].getLocReg());
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   SmallVector<SDValue, 6> RetOps;
 | |
|   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
 | |
|   // Operand #1 = Bytes To Pop
 | |
|   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
 | |
|                    MVT::i16));
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     SDValue ValToCopy = OutVals[i];
 | |
|     EVT ValVT = ValToCopy.getValueType();
 | |
| 
 | |
|     // If this is x86-64, and we disabled SSE, we can't return FP values,
 | |
|     // or SSE or MMX vectors.
 | |
|     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
 | |
|          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
 | |
|           (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
 | |
|       report_fatal_error("SSE register return with SSE disabled");
 | |
|     }
 | |
|     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
 | |
|     // llvm-gcc has never done it right and no one has noticed, so this
 | |
|     // should be OK for now.
 | |
|     if (ValVT == MVT::f64 &&
 | |
|         (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
 | |
|       report_fatal_error("SSE2 register return with SSE2 disabled");
 | |
| 
 | |
|     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
 | |
|     // the RET instruction and handled by the FP Stackifier.
 | |
|     if (VA.getLocReg() == X86::ST0 ||
 | |
|         VA.getLocReg() == X86::ST1) {
 | |
|       // If this is a copy from an xmm register to ST(0), use an FPExtend to
 | |
|       // change the value to the FP stack register class.
 | |
|       if (isScalarFPTypeInSSEReg(VA.getValVT()))
 | |
|         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
 | |
|       RetOps.push_back(ValToCopy);
 | |
|       // Don't emit a copytoreg.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
 | |
|     // which is returned in RAX / RDX.
 | |
|     if (Subtarget->is64Bit()) {
 | |
|       if (ValVT == MVT::x86mmx) {
 | |
|         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
 | |
|           ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
 | |
|           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
 | |
|                                   ValToCopy);
 | |
|           // If we don't have SSE2 available, convert to v4f32 so the generated
 | |
|           // register is legal.
 | |
|           if (!Subtarget->hasSSE2())
 | |
|             ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // The x86-64 ABI for returning structs by value requires that we copy
 | |
|   // the sret argument into %rax for the return. We saved the argument into
 | |
|   // a virtual register in the entry block, so now we copy the value out
 | |
|   // and into %rax.
 | |
|   if (Subtarget->is64Bit() &&
 | |
|       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|     unsigned Reg = FuncInfo->getSRetReturnReg();
 | |
|     assert(Reg &&
 | |
|            "SRetReturnReg should have been set in LowerFormalArguments().");
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
| 
 | |
|     // RAX now acts like a return value.
 | |
|     MRI.addLiveOut(X86::RAX);
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(X86ISD::RET_FLAG, dl,
 | |
|                      MVT::Other, &RetOps[0], RetOps.size());
 | |
| }
 | |
| 
 | |
| /// LowerCallResult - Lower the result values of a call into the
 | |
| /// appropriate copies out of appropriate physical registers.
 | |
| ///
 | |
| SDValue
 | |
| X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    DebugLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   bool Is64Bit = Subtarget->is64Bit();
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     EVT CopyVT = VA.getValVT();
 | |
| 
 | |
|     // If this is x86-64, and we disabled SSE, we can't return FP values
 | |
|     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
 | |
|         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
 | |
|       report_fatal_error("SSE register return with SSE disabled");
 | |
|     }
 | |
| 
 | |
|     SDValue Val;
 | |
| 
 | |
|     // If this is a call to a function that returns an fp value on the floating
 | |
|     // point stack, we must guarantee the the value is popped from the stack, so
 | |
|     // a CopyFromReg is not good enough - the copy instruction may be eliminated
 | |
|     // if the return value is not used. We use the FpGET_ST0 instructions
 | |
|     // instead.
 | |
|     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
 | |
|       // If we prefer to use the value in xmm registers, copy it out as f80 and
 | |
|       // use a truncate to move it from fp stack reg to xmm reg.
 | |
|       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
 | |
|       bool isST0 = VA.getLocReg() == X86::ST0;
 | |
|       unsigned Opc = 0;
 | |
|       if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
 | |
|       if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
 | |
|       if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
 | |
|       SDValue Ops[] = { Chain, InFlag };
 | |
|       Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
 | |
|                                          Ops, 2), 1);
 | |
|       Val = Chain.getValue(0);
 | |
| 
 | |
|       // Round the f80 to the right size, which also moves it to the appropriate
 | |
|       // xmm register.
 | |
|       if (CopyVT != VA.getValVT())
 | |
|         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
 | |
|                           // This truncation won't change the value.
 | |
|                           DAG.getIntPtrConstant(1));
 | |
|     } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
 | |
|       // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
 | |
|       if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
 | |
|         Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                    MVT::v2i64, InFlag).getValue(1);
 | |
|         Val = Chain.getValue(0);
 | |
|         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
 | |
|                           Val, DAG.getConstant(0, MVT::i64));
 | |
|       } else {
 | |
|         Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                    MVT::i64, InFlag).getValue(1);
 | |
|         Val = Chain.getValue(0);
 | |
|       }
 | |
|       Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
 | |
|     } else {
 | |
|       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
 | |
|                                  CopyVT, InFlag).getValue(1);
 | |
|       Val = Chain.getValue(0);
 | |
|     }
 | |
|     InFlag = Chain.getValue(2);
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                C & StdCall & Fast Calling Convention implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  StdCall calling convention seems to be standard for many Windows' API
 | |
| //  routines and around. It differs from C calling convention just a little:
 | |
| //  callee should clean up the stack, not caller. Symbols should be also
 | |
| //  decorated in some fancy way :) It doesn't support any vector arguments.
 | |
| //  For info on fast calling convention see Fast Calling Convention (tail call)
 | |
| //  implementation LowerX86_32FastCCCallTo.
 | |
| 
 | |
| /// CallIsStructReturn - Determines whether a call uses struct return
 | |
| /// semantics.
 | |
| static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | |
|   if (Outs.empty())
 | |
|     return false;
 | |
| 
 | |
|   return Outs[0].Flags.isSRet();
 | |
| }
 | |
| 
 | |
| /// ArgsAreStructReturn - Determines whether a function uses struct
 | |
| /// return semantics.
 | |
| static bool
 | |
| ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
 | |
|   if (Ins.empty())
 | |
|     return false;
 | |
| 
 | |
|   return Ins[0].Flags.isSRet();
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" with size and alignment information specified by
 | |
| /// the specific parameter attribute. The copy will be passed as a byval
 | |
| /// function parameter.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           DebugLoc dl) {
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
| 
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        /*isVolatile*/false, /*AlwaysInline=*/true,
 | |
|                        MachinePointerInfo(), MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| /// IsTailCallConvention - Return true if the calling convention is one that
 | |
| /// supports tail call optimization.
 | |
| static bool IsTailCallConvention(CallingConv::ID CC) {
 | |
|   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
 | |
| }
 | |
| 
 | |
| /// FuncIsMadeTailCallSafe - Return true if the function is being made into
 | |
| /// a tailcall target by changing its ABI.
 | |
| static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
 | |
|   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerMemArgument(SDValue Chain,
 | |
|                                     CallingConv::ID CallConv,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     MachineFrameInfo *MFI,
 | |
|                                     unsigned i) const {
 | |
|   // Create the nodes corresponding to a load from this parameter slot.
 | |
|   ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
 | |
|   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
 | |
|   EVT ValVT;
 | |
| 
 | |
|   // If value is passed by pointer we have address passed instead of the value
 | |
|   // itself.
 | |
|   if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|     ValVT = VA.getLocVT();
 | |
|   else
 | |
|     ValVT = VA.getValVT();
 | |
| 
 | |
|   // FIXME: For now, all byval parameter objects are marked mutable. This can be
 | |
|   // changed with more analysis.
 | |
|   // In case of tail call optimization mark all arguments mutable. Since they
 | |
|   // could be overwritten by lowering of arguments in case of a tail call.
 | |
|   if (Flags.isByVal()) {
 | |
|     int FI = MFI->CreateFixedObject(Flags.getByValSize(),
 | |
|                                     VA.getLocMemOffset(), isImmutable);
 | |
|     return DAG.getFrameIndex(FI, getPointerTy());
 | |
|   } else {
 | |
|     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
 | |
|                                     VA.getLocMemOffset(), isImmutable);
 | |
|     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
|     return DAG.getLoad(ValVT, dl, Chain, FIN,
 | |
|                        MachinePointerInfo::getFixedStack(FI),
 | |
|                        false, false, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv,
 | |
|                                         bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                         DebugLoc dl,
 | |
|                                         SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals)
 | |
|                                           const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   const Function* Fn = MF.getFunction();
 | |
|   if (Fn->hasExternalLinkage() &&
 | |
|       Subtarget->isTargetCygMing() &&
 | |
|       Fn->getName() == "main")
 | |
|     FuncInfo->setForceFramePointer(true);
 | |
| 
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   bool Is64Bit = Subtarget->is64Bit();
 | |
|   bool IsWin64 = Subtarget->isTargetWin64();
 | |
| 
 | |
|   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
 | |
|          "Var args not supported with calling convention fastcc or ghc");
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
 | |
| 
 | |
|   unsigned LastVal = ~0U;
 | |
|   SDValue ArgValue;
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
 | |
|     // places.
 | |
|     assert(VA.getValNo() != LastVal &&
 | |
|            "Don't support value assigned to multiple locs yet");
 | |
|     LastVal = VA.getValNo();
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       EVT RegVT = VA.getLocVT();
 | |
|       TargetRegisterClass *RC = NULL;
 | |
|       if (RegVT == MVT::i32)
 | |
|         RC = X86::GR32RegisterClass;
 | |
|       else if (Is64Bit && RegVT == MVT::i64)
 | |
|         RC = X86::GR64RegisterClass;
 | |
|       else if (RegVT == MVT::f32)
 | |
|         RC = X86::FR32RegisterClass;
 | |
|       else if (RegVT == MVT::f64)
 | |
|         RC = X86::FR64RegisterClass;
 | |
|       else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
 | |
|         RC = X86::VR256RegisterClass;
 | |
|       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
 | |
|         RC = X86::VR128RegisterClass;
 | |
|       else if (RegVT == MVT::x86mmx)
 | |
|         RC = X86::VR64RegisterClass;
 | |
|       else
 | |
|         llvm_unreachable("Unknown argument type!");
 | |
| 
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
 | |
| 
 | |
|       // If this is an 8 or 16-bit value, it is really passed promoted to 32
 | |
|       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
 | |
|       // right size.
 | |
|       if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
 | |
|                                DAG.getValueType(VA.getValVT()));
 | |
|       else if (VA.getLocInfo() == CCValAssign::BCvt)
 | |
|         ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
 | |
| 
 | |
|       if (VA.isExtInLoc()) {
 | |
|         // Handle MMX values passed in XMM regs.
 | |
|         if (RegVT.isVector()) {
 | |
|           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
 | |
|                                  ArgValue);
 | |
|         } else
 | |
|           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
 | |
|       }
 | |
|     } else {
 | |
|       assert(VA.isMemLoc());
 | |
|       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
 | |
|     }
 | |
| 
 | |
|     // If value is passed via pointer - do a load.
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
 | |
|                              MachinePointerInfo(), false, false, 0);
 | |
| 
 | |
|     InVals.push_back(ArgValue);
 | |
|   }
 | |
| 
 | |
|   // The x86-64 ABI for returning structs by value requires that we copy
 | |
|   // the sret argument into %rax for the return. Save the argument into
 | |
|   // a virtual register so that we can access it from the return points.
 | |
|   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
 | |
|     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|     unsigned Reg = FuncInfo->getSRetReturnReg();
 | |
|     if (!Reg) {
 | |
|       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
 | |
|       FuncInfo->setSRetReturnReg(Reg);
 | |
|     }
 | |
|     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
 | |
|   }
 | |
| 
 | |
|   unsigned StackSize = CCInfo.getNextStackOffset();
 | |
|   // Align stack specially for tail calls.
 | |
|   if (FuncIsMadeTailCallSafe(CallConv))
 | |
|     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
 | |
|                     CallConv != CallingConv::X86_ThisCall))) {
 | |
|       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
 | |
|     }
 | |
|     if (Is64Bit) {
 | |
|       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
 | |
| 
 | |
|       // FIXME: We should really autogenerate these arrays
 | |
|       static const unsigned GPR64ArgRegsWin64[] = {
 | |
|         X86::RCX, X86::RDX, X86::R8,  X86::R9
 | |
|       };
 | |
|       static const unsigned GPR64ArgRegs64Bit[] = {
 | |
|         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
 | |
|       };
 | |
|       static const unsigned XMMArgRegs64Bit[] = {
 | |
|         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|       };
 | |
|       const unsigned *GPR64ArgRegs;
 | |
|       unsigned NumXMMRegs = 0;
 | |
| 
 | |
|       if (IsWin64) {
 | |
|         // The XMM registers which might contain var arg parameters are shadowed
 | |
|         // in their paired GPR.  So we only need to save the GPR to their home
 | |
|         // slots.
 | |
|         TotalNumIntRegs = 4;
 | |
|         GPR64ArgRegs = GPR64ArgRegsWin64;
 | |
|       } else {
 | |
|         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
 | |
|         GPR64ArgRegs = GPR64ArgRegs64Bit;
 | |
| 
 | |
|         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
 | |
|       }
 | |
|       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
 | |
|                                                        TotalNumIntRegs);
 | |
| 
 | |
|       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
 | |
|       assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
 | |
|              "SSE register cannot be used when SSE is disabled!");
 | |
|       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
 | |
|              "SSE register cannot be used when SSE is disabled!");
 | |
|       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
 | |
|         // Kernel mode asks for SSE to be disabled, so don't push them
 | |
|         // on the stack.
 | |
|         TotalNumXMMRegs = 0;
 | |
| 
 | |
|       if (IsWin64) {
 | |
|         const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
 | |
|         // Get to the caller-allocated home save location.  Add 8 to account
 | |
|         // for the return address.
 | |
|         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
 | |
|         FuncInfo->setRegSaveFrameIndex(
 | |
|           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
 | |
|         FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
 | |
|       } else {
 | |
|         // For X86-64, if there are vararg parameters that are passed via
 | |
|         // registers, then we must store them to their spots on the stack so they
 | |
|         // may be loaded by deferencing the result of va_next.
 | |
|         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
 | |
|         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
 | |
|         FuncInfo->setRegSaveFrameIndex(
 | |
|           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
 | |
|                                false));
 | |
|       }
 | |
| 
 | |
|       // Store the integer parameter registers.
 | |
|       SmallVector<SDValue, 8> MemOps;
 | |
|       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
 | |
|                                         getPointerTy());
 | |
|       unsigned Offset = FuncInfo->getVarArgsGPOffset();
 | |
|       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
 | |
|         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
 | |
|                                   DAG.getIntPtrConstant(Offset));
 | |
|         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
 | |
|                                      X86::GR64RegisterClass);
 | |
|         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
|         SDValue Store =
 | |
|           DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                        MachinePointerInfo::getFixedStack(
 | |
|                          FuncInfo->getRegSaveFrameIndex(), Offset),
 | |
|                        false, false, 0);
 | |
|         MemOps.push_back(Store);
 | |
|         Offset += 8;
 | |
|       }
 | |
| 
 | |
|       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
 | |
|         // Now store the XMM (fp + vector) parameter registers.
 | |
|         SmallVector<SDValue, 11> SaveXMMOps;
 | |
|         SaveXMMOps.push_back(Chain);
 | |
| 
 | |
|         unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
 | |
|         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
 | |
|         SaveXMMOps.push_back(ALVal);
 | |
| 
 | |
|         SaveXMMOps.push_back(DAG.getIntPtrConstant(
 | |
|                                FuncInfo->getRegSaveFrameIndex()));
 | |
|         SaveXMMOps.push_back(DAG.getIntPtrConstant(
 | |
|                                FuncInfo->getVarArgsFPOffset()));
 | |
| 
 | |
|         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
 | |
|           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
 | |
|                                        X86::VR128RegisterClass);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
 | |
|           SaveXMMOps.push_back(Val);
 | |
|         }
 | |
|         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
 | |
|                                      MVT::Other,
 | |
|                                      &SaveXMMOps[0], SaveXMMOps.size()));
 | |
|       }
 | |
| 
 | |
|       if (!MemOps.empty())
 | |
|         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                             &MemOps[0], MemOps.size());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Some CCs need callee pop.
 | |
|   if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
 | |
|     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
 | |
|   } else {
 | |
|     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
 | |
|     // If this is an sret function, the return should pop the hidden pointer.
 | |
|     if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
 | |
|       FuncInfo->setBytesToPopOnReturn(4);
 | |
|   }
 | |
| 
 | |
|   if (!Is64Bit) {
 | |
|     // RegSaveFrameIndex is X86-64 only.
 | |
|     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
 | |
|     if (CallConv == CallingConv::X86_FastCall ||
 | |
|         CallConv == CallingConv::X86_ThisCall)
 | |
|       // fastcc functions can't have varargs.
 | |
|       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
 | |
|                                     SDValue StackPtr, SDValue Arg,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     const CCValAssign &VA,
 | |
|                                     ISD::ArgFlagsTy Flags) const {
 | |
|   const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
 | |
|   unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
 | |
|   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
|   if (Flags.isByVal())
 | |
|     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
 | |
| 
 | |
|   return DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                       MachinePointerInfo::getStack(LocMemOffset),
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
 | |
| /// optimization is performed and it is required.
 | |
| SDValue
 | |
| X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
 | |
|                                            SDValue &OutRetAddr, SDValue Chain,
 | |
|                                            bool IsTailCall, bool Is64Bit,
 | |
|                                            int FPDiff, DebugLoc dl) const {
 | |
|   // Adjust the Return address stack slot.
 | |
|   EVT VT = getPointerTy();
 | |
|   OutRetAddr = getReturnAddressFrameIndex(DAG);
 | |
| 
 | |
|   // Load the "old" Return address.
 | |
|   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
 | |
|                            false, false, 0);
 | |
|   return SDValue(OutRetAddr.getNode(), 1);
 | |
| }
 | |
| 
 | |
| /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
 | |
| /// optimization is performed and it is required (FPDiff!=0).
 | |
| static SDValue
 | |
| EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
 | |
|                          SDValue Chain, SDValue RetAddrFrIdx,
 | |
|                          bool Is64Bit, int FPDiff, DebugLoc dl) {
 | |
|   // Store the return address to the appropriate stack slot.
 | |
|   if (!FPDiff) return Chain;
 | |
|   // Calculate the new stack slot for the return address.
 | |
|   int SlotSize = Is64Bit ? 8 : 4;
 | |
|   int NewReturnAddrFI =
 | |
|     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
 | |
|   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
 | |
|   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
 | |
|   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
 | |
|                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
 | |
|                        false, false, 0);
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | |
|                              CallingConv::ID CallConv, bool isVarArg,
 | |
|                              bool &isTailCall,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                              const SmallVectorImpl<SDValue> &OutVals,
 | |
|                              const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                              DebugLoc dl, SelectionDAG &DAG,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool Is64Bit        = Subtarget->is64Bit();
 | |
|   bool IsStructRet    = CallIsStructReturn(Outs);
 | |
|   bool IsSibcall      = false;
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     // Check if it's really possible to do a tail call.
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | |
|                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
 | |
|                                                    Outs, OutVals, Ins, DAG);
 | |
| 
 | |
|     // Sibcalls are automatically detected tailcalls which do not require
 | |
|     // ABI changes.
 | |
|     if (!GuaranteedTailCallOpt && isTailCall)
 | |
|       IsSibcall = true;
 | |
| 
 | |
|     if (isTailCall)
 | |
|       ++NumTailCalls;
 | |
|   }
 | |
| 
 | |
|   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
 | |
|          "Var args not supported with calling convention fastcc or ghc");
 | |
| 
 | |
|   // Analyze operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = CCInfo.getNextStackOffset();
 | |
|   if (IsSibcall)
 | |
|     // This is a sibcall. The memory operands are available in caller's
 | |
|     // own caller's stack.
 | |
|     NumBytes = 0;
 | |
|   else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
 | |
|     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
 | |
| 
 | |
|   int FPDiff = 0;
 | |
|   if (isTailCall && !IsSibcall) {
 | |
|     // Lower arguments at fp - stackoffset + fpdiff.
 | |
|     unsigned NumBytesCallerPushed =
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
 | |
|     FPDiff = NumBytesCallerPushed - NumBytes;
 | |
| 
 | |
|     // Set the delta of movement of the returnaddr stackslot.
 | |
|     // But only set if delta is greater than previous delta.
 | |
|     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
 | |
|       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
 | |
|   }
 | |
| 
 | |
|   if (!IsSibcall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
| 
 | |
|   SDValue RetAddrFrIdx;
 | |
|   // Load return adress for tail calls.
 | |
|   if (isTailCall && FPDiff)
 | |
|     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
 | |
|                                     Is64Bit, FPDiff, dl);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   SDValue StackPtr;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.  In the case
 | |
|   // of tail call optimization arguments are handle later.
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     EVT RegVT = VA.getLocVT();
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     bool isByVal = Flags.isByVal();
 | |
| 
 | |
|     // Promote the value if needed.
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::AExt:
 | |
|       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
 | |
|         // Special case: passing MMX values in XMM registers.
 | |
|         Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
 | |
|         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
 | |
|         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
 | |
|       } else
 | |
|         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::BCvt:
 | |
|       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
 | |
|       break;
 | |
|     case CCValAssign::Indirect: {
 | |
|       // Store the argument.
 | |
|       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
 | |
|       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
 | |
|                            MachinePointerInfo::getFixedStack(FI),
 | |
|                            false, false, 0);
 | |
|       Arg = SpillSlot;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|       if (isVarArg && Subtarget->isTargetWin64()) {
 | |
|         // Win64 ABI requires argument XMM reg to be copied to the corresponding
 | |
|         // shadow reg if callee is a varargs function.
 | |
|         unsigned ShadowReg = 0;
 | |
|         switch (VA.getLocReg()) {
 | |
|         case X86::XMM0: ShadowReg = X86::RCX; break;
 | |
|         case X86::XMM1: ShadowReg = X86::RDX; break;
 | |
|         case X86::XMM2: ShadowReg = X86::R8; break;
 | |
|         case X86::XMM3: ShadowReg = X86::R9; break;
 | |
|         }
 | |
|         if (ShadowReg)
 | |
|           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
 | |
|       }
 | |
|     } else if (!IsSibcall && (!isTailCall || isByVal)) {
 | |
|       assert(VA.isMemLoc());
 | |
|       if (StackPtr.getNode() == 0)
 | |
|         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
 | |
|       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
 | |
|                                              dl, DAG, VA, Flags));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into registers.
 | |
|   SDValue InFlag;
 | |
|   // Tail call byval lowering might overwrite argument registers so in case of
 | |
|   // tail call optimization the copies to registers are lowered later.
 | |
|   if (!isTailCall)
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
| 
 | |
|   if (Subtarget->isPICStyleGOT()) {
 | |
|     // ELF / PIC requires GOT in the EBX register before function calls via PLT
 | |
|     // GOT pointer.
 | |
|     if (!isTailCall) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
 | |
|                                DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                            DebugLoc(), getPointerTy()),
 | |
|                                InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     } else {
 | |
|       // If we are tail calling and generating PIC/GOT style code load the
 | |
|       // address of the callee into ECX. The value in ecx is used as target of
 | |
|       // the tail jump. This is done to circumvent the ebx/callee-saved problem
 | |
|       // for tail calls on PIC/GOT architectures. Normally we would just put the
 | |
|       // address of GOT into ebx and then call target@PLT. But for tail calls
 | |
|       // ebx would be restored (since ebx is callee saved) before jumping to the
 | |
|       // target@PLT.
 | |
| 
 | |
|       // Note: The actual moving to ECX is done further down.
 | |
|       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | |
|       if (G && !G->getGlobal()->hasHiddenVisibility() &&
 | |
|           !G->getGlobal()->hasProtectedVisibility())
 | |
|         Callee = LowerGlobalAddress(Callee, DAG);
 | |
|       else if (isa<ExternalSymbolSDNode>(Callee))
 | |
|         Callee = LowerExternalSymbol(Callee, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
 | |
|     // From AMD64 ABI document:
 | |
|     // For calls that may call functions that use varargs or stdargs
 | |
|     // (prototype-less calls or calls to functions containing ellipsis (...) in
 | |
|     // the declaration) %al is used as hidden argument to specify the number
 | |
|     // of SSE registers used. The contents of %al do not need to match exactly
 | |
|     // the number of registers, but must be an ubound on the number of SSE
 | |
|     // registers used and is in the range 0 - 8 inclusive.
 | |
| 
 | |
|     // Count the number of XMM registers allocated.
 | |
|     static const unsigned XMMArgRegs[] = {
 | |
|       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
 | |
|       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
 | |
|     };
 | |
|     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
 | |
|     assert((Subtarget->hasSSE1() || !NumXMMRegs)
 | |
|            && "SSE registers cannot be used when SSE is disabled");
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
 | |
|                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // For tail calls lower the arguments to the 'real' stack slot.
 | |
|   if (isTailCall) {
 | |
|     // Force all the incoming stack arguments to be loaded from the stack
 | |
|     // before any new outgoing arguments are stored to the stack, because the
 | |
|     // outgoing stack slots may alias the incoming argument stack slots, and
 | |
|     // the alias isn't otherwise explicit. This is slightly more conservative
 | |
|     // than necessary, because it means that each store effectively depends
 | |
|     // on every argument instead of just those arguments it would clobber.
 | |
|     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|     SmallVector<SDValue, 8> MemOpChains2;
 | |
|     SDValue FIN;
 | |
|     int FI = 0;
 | |
|     // Do not flag preceeding copytoreg stuff together with the following stuff.
 | |
|     InFlag = SDValue();
 | |
|     if (GuaranteedTailCallOpt) {
 | |
|       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         if (VA.isRegLoc())
 | |
|           continue;
 | |
|         assert(VA.isMemLoc());
 | |
|         SDValue Arg = OutVals[i];
 | |
|         ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|         // Create frame index.
 | |
|         int32_t Offset = VA.getLocMemOffset()+FPDiff;
 | |
|         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
 | |
|         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
 | |
|         FIN = DAG.getFrameIndex(FI, getPointerTy());
 | |
| 
 | |
|         if (Flags.isByVal()) {
 | |
|           // Copy relative to framepointer.
 | |
|           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
 | |
|           if (StackPtr.getNode() == 0)
 | |
|             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
 | |
|                                           getPointerTy());
 | |
|           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
 | |
| 
 | |
|           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
 | |
|                                                            ArgChain,
 | |
|                                                            Flags, DAG, dl));
 | |
|         } else {
 | |
|           // Store relative to framepointer.
 | |
|           MemOpChains2.push_back(
 | |
|             DAG.getStore(ArgChain, dl, Arg, FIN,
 | |
|                          MachinePointerInfo::getFixedStack(FI),
 | |
|                          false, false, 0));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!MemOpChains2.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                           &MemOpChains2[0], MemOpChains2.size());
 | |
| 
 | |
|     // Copy arguments to their registers.
 | |
|     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                                RegsToPass[i].second, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     }
 | |
|     InFlag =SDValue();
 | |
| 
 | |
|     // Store the return address to the appropriate stack slot.
 | |
|     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
 | |
|                                      FPDiff, dl);
 | |
|   }
 | |
| 
 | |
|   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
 | |
|     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
 | |
|     // In the 64-bit large code model, we have to make all calls
 | |
|     // through a register, since the call instruction's 32-bit
 | |
|     // pc-relative offset may not be large enough to hold the whole
 | |
|     // address.
 | |
|   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // If the callee is a GlobalAddress node (quite common, every direct call
 | |
|     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
 | |
|     // it.
 | |
| 
 | |
|     // We should use extra load for direct calls to dllimported functions in
 | |
|     // non-JIT mode.
 | |
|     const GlobalValue *GV = G->getGlobal();
 | |
|     if (!GV->hasDLLImportLinkage()) {
 | |
|       unsigned char OpFlags = 0;
 | |
| 
 | |
|       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
 | |
|       // external symbols most go through the PLT in PIC mode.  If the symbol
 | |
|       // has hidden or protected visibility, or if it is static or local, then
 | |
|       // we don't need to use the PLT - we can directly call it.
 | |
|       if (Subtarget->isTargetELF() &&
 | |
|           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
 | |
|         OpFlags = X86II::MO_PLT;
 | |
|       } else if (Subtarget->isPICStyleStubAny() &&
 | |
|                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
 | |
|                  Subtarget->getDarwinVers() < 9) {
 | |
|         // PC-relative references to external symbols should go through $stub,
 | |
|         // unless we're building with the leopard linker or later, which
 | |
|         // automatically synthesizes these stubs.
 | |
|         OpFlags = X86II::MO_DARWIN_STUB;
 | |
|       }
 | |
| 
 | |
|       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
 | |
|                                           G->getOffset(), OpFlags);
 | |
|     }
 | |
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     unsigned char OpFlags = 0;
 | |
| 
 | |
|     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
 | |
|     // symbols should go through the PLT.
 | |
|     if (Subtarget->isTargetELF() &&
 | |
|         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
 | |
|       OpFlags = X86II::MO_PLT;
 | |
|     } else if (Subtarget->isPICStyleStubAny() &&
 | |
|                Subtarget->getDarwinVers() < 9) {
 | |
|       // PC-relative references to external symbols should go through $stub,
 | |
|       // unless we're building with the leopard linker or later, which
 | |
|       // automatically synthesizes these stubs.
 | |
|       OpFlags = X86II::MO_DARWIN_STUB;
 | |
|     }
 | |
| 
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
 | |
|                                          OpFlags);
 | |
|   }
 | |
| 
 | |
|   // Returns a chain & a flag for retval copy to use.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
| 
 | |
|   if (!IsSibcall && isTailCall) {
 | |
|     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                            DAG.getIntPtrConstant(0, true), InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   if (isTailCall)
 | |
|     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   // Add an implicit use GOT pointer in EBX.
 | |
|   if (!isTailCall && Subtarget->isPICStyleGOT())
 | |
|     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
 | |
| 
 | |
|   // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
 | |
|   if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
 | |
|     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     // We used to do:
 | |
|     //// If this is the first return lowered for this function, add the regs
 | |
|     //// to the liveout set for the function.
 | |
|     // This isn't right, although it's probably harmless on x86; liveouts
 | |
|     // should be computed from returns not tail calls.  Consider a void
 | |
|     // function making a tail call to a function returning int.
 | |
|     return DAG.getNode(X86ISD::TC_RETURN, dl,
 | |
|                        NodeTys, &Ops[0], Ops.size());
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Create the CALLSEQ_END node.
 | |
|   unsigned NumBytesForCalleeToPush;
 | |
|   if (Subtarget->IsCalleePop(isVarArg, CallConv))
 | |
|     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
 | |
|   else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
 | |
|     // If this is a call to a struct-return function, the callee
 | |
|     // pops the hidden struct pointer, so we have to push it back.
 | |
|     // This is common for Darwin/X86, Linux & Mingw32 targets.
 | |
|     NumBytesForCalleeToPush = 4;
 | |
|   else
 | |
|     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
 | |
| 
 | |
|   // Returns a flag for retval copy to use.
 | |
|   if (!IsSibcall) {
 | |
|     Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                                DAG.getIntPtrConstant(NumBytes, true),
 | |
|                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
 | |
|                                                      true),
 | |
|                                InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Handle result values, copying them out of physregs into vregs that we
 | |
|   // return.
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | |
|                          Ins, dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                Fast Calling Convention (tail call) implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //  Like std call, callee cleans arguments, convention except that ECX is
 | |
| //  reserved for storing the tail called function address. Only 2 registers are
 | |
| //  free for argument passing (inreg). Tail call optimization is performed
 | |
| //  provided:
 | |
| //                * tailcallopt is enabled
 | |
| //                * caller/callee are fastcc
 | |
| //  On X86_64 architecture with GOT-style position independent code only local
 | |
| //  (within module) calls are supported at the moment.
 | |
| //  To keep the stack aligned according to platform abi the function
 | |
| //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
 | |
| //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
 | |
| //  If a tail called function callee has more arguments than the caller the
 | |
| //  caller needs to make sure that there is room to move the RETADDR to. This is
 | |
| //  achieved by reserving an area the size of the argument delta right after the
 | |
| //  original REtADDR, but before the saved framepointer or the spilled registers
 | |
| //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
 | |
| //  stack layout:
 | |
| //    arg1
 | |
| //    arg2
 | |
| //    RETADDR
 | |
| //    [ new RETADDR
 | |
| //      move area ]
 | |
| //    (possible EBP)
 | |
| //    ESI
 | |
| //    EDI
 | |
| //    local1 ..
 | |
| 
 | |
| /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
 | |
| /// for a 16 byte align requirement.
 | |
| unsigned
 | |
| X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
 | |
|                                                SelectionDAG& DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const TargetFrameInfo &TFI = *TM.getFrameInfo();
 | |
|   unsigned StackAlignment = TFI.getStackAlignment();
 | |
|   uint64_t AlignMask = StackAlignment - 1;
 | |
|   int64_t Offset = StackSize;
 | |
|   uint64_t SlotSize = TD->getPointerSize();
 | |
|   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
 | |
|     // Number smaller than 12 so just add the difference.
 | |
|     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
 | |
|   } else {
 | |
|     // Mask out lower bits, add stackalignment once plus the 12 bytes.
 | |
|     Offset = ((~AlignMask) & Offset) + StackAlignment +
 | |
|       (StackAlignment-SlotSize);
 | |
|   }
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// MatchingStackOffset - Return true if the given stack call argument is
 | |
| /// already available in the same position (relatively) of the caller's
 | |
| /// incoming argument stack.
 | |
| static
 | |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
 | |
|                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
 | |
|                          const X86InstrInfo *TII) {
 | |
|   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
 | |
|   int FI = INT_MAX;
 | |
|   if (Arg.getOpcode() == ISD::CopyFromReg) {
 | |
|     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
 | |
|     if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
 | |
|       return false;
 | |
|     MachineInstr *Def = MRI->getVRegDef(VR);
 | |
|     if (!Def)
 | |
|       return false;
 | |
|     if (!Flags.isByVal()) {
 | |
|       if (!TII->isLoadFromStackSlot(Def, FI))
 | |
|         return false;
 | |
|     } else {
 | |
|       unsigned Opcode = Def->getOpcode();
 | |
|       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
 | |
|           Def->getOperand(1).isFI()) {
 | |
|         FI = Def->getOperand(1).getIndex();
 | |
|         Bytes = Flags.getByValSize();
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
|   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
 | |
|     if (Flags.isByVal())
 | |
|       // ByVal argument is passed in as a pointer but it's now being
 | |
|       // dereferenced. e.g.
 | |
|       // define @foo(%struct.X* %A) {
 | |
|       //   tail call @bar(%struct.X* byval %A)
 | |
|       // }
 | |
|       return false;
 | |
|     SDValue Ptr = Ld->getBasePtr();
 | |
|     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
 | |
|     if (!FINode)
 | |
|       return false;
 | |
|     FI = FINode->getIndex();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert(FI != INT_MAX);
 | |
|   if (!MFI->isFixedObjectIndex(FI))
 | |
|     return false;
 | |
|   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                                      bool isCalleeStructRet,
 | |
|                                                      bool isCallerStructRet,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   if (!IsTailCallConvention(CalleeCC) &&
 | |
|       CalleeCC != CallingConv::C)
 | |
|     return false;
 | |
| 
 | |
|   // If -tailcallopt is specified, make fastcc functions tail-callable.
 | |
|   const MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const Function *CallerF = DAG.getMachineFunction().getFunction();
 | |
|   CallingConv::ID CallerCC = CallerF->getCallingConv();
 | |
|   bool CCMatch = CallerCC == CalleeCC;
 | |
| 
 | |
|   if (GuaranteedTailCallOpt) {
 | |
|     if (IsTailCallConvention(CalleeCC) && CCMatch)
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Look for obvious safe cases to perform tail call optimization that do not
 | |
|   // require ABI changes. This is what gcc calls sibcall.
 | |
| 
 | |
|   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
 | |
|   // emit a special epilogue.
 | |
|   if (RegInfo->needsStackRealignment(MF))
 | |
|     return false;
 | |
| 
 | |
|   // Do not sibcall optimize vararg calls unless the call site is not passing
 | |
|   // any arguments.
 | |
|   if (isVarArg && !Outs.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Also avoid sibcall optimization if either caller or callee uses struct
 | |
|   // return semantics.
 | |
|   if (isCalleeStructRet || isCallerStructRet)
 | |
|     return false;
 | |
| 
 | |
|   // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
 | |
|   // Therefore if it's not used by the call it is not safe to optimize this into
 | |
|   // a sibcall.
 | |
|   bool Unused = false;
 | |
|   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | |
|     if (!Ins[i].Used) {
 | |
|       Unused = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (Unused) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs;
 | |
|     CCState CCInfo(CalleeCC, false, getTargetMachine(),
 | |
|                    RVLocs, *DAG.getContext());
 | |
|     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
 | |
|     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | |
|       CCValAssign &VA = RVLocs[i];
 | |
|       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the calling conventions do not match, then we'd better make sure the
 | |
|   // results are returned in the same way as what the caller expects.
 | |
|   if (!CCMatch) {
 | |
|     SmallVector<CCValAssign, 16> RVLocs1;
 | |
|     CCState CCInfo1(CalleeCC, false, getTargetMachine(),
 | |
|                     RVLocs1, *DAG.getContext());
 | |
|     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
 | |
| 
 | |
|     SmallVector<CCValAssign, 16> RVLocs2;
 | |
|     CCState CCInfo2(CallerCC, false, getTargetMachine(),
 | |
|                     RVLocs2, *DAG.getContext());
 | |
|     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
 | |
| 
 | |
|     if (RVLocs1.size() != RVLocs2.size())
 | |
|       return false;
 | |
|     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
 | |
|       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
 | |
|         return false;
 | |
|       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
 | |
|         return false;
 | |
|       if (RVLocs1[i].isRegLoc()) {
 | |
|         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
 | |
|           return false;
 | |
|       } else {
 | |
|         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the callee takes no arguments then go on to check the results of the
 | |
|   // call.
 | |
|   if (!Outs.empty()) {
 | |
|     // Check if stack adjustment is needed. For now, do not do this if any
 | |
|     // argument is passed on the stack.
 | |
|     SmallVector<CCValAssign, 16> ArgLocs;
 | |
|     CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
 | |
|                    ArgLocs, *DAG.getContext());
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
 | |
|     if (CCInfo.getNextStackOffset()) {
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
|       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
 | |
|         return false;
 | |
|       if (Subtarget->isTargetWin64())
 | |
|         // Win64 ABI has additional complications.
 | |
|         return false;
 | |
| 
 | |
|       // Check if the arguments are already laid out in the right way as
 | |
|       // the caller's fixed stack objects.
 | |
|       MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|       const MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
|       const X86InstrInfo *TII =
 | |
|         ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
 | |
|       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         SDValue Arg = OutVals[i];
 | |
|         ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|         if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|           return false;
 | |
|         if (!VA.isRegLoc()) {
 | |
|           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
 | |
|                                    MFI, MRI, TII))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the tailcall address may be in a register, then make sure it's
 | |
|     // possible to register allocate for it. In 32-bit, the call address can
 | |
|     // only target EAX, EDX, or ECX since the tail call must be scheduled after
 | |
|     // callee-saved registers are restored. These happen to be the same
 | |
|     // registers used to pass 'inreg' arguments so watch out for those.
 | |
|     if (!Subtarget->is64Bit() &&
 | |
|         !isa<GlobalAddressSDNode>(Callee) &&
 | |
|         !isa<ExternalSymbolSDNode>(Callee)) {
 | |
|       unsigned NumInRegs = 0;
 | |
|       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|         CCValAssign &VA = ArgLocs[i];
 | |
|         if (!VA.isRegLoc())
 | |
|           continue;
 | |
|         unsigned Reg = VA.getLocReg();
 | |
|         switch (Reg) {
 | |
|         default: break;
 | |
|         case X86::EAX: case X86::EDX: case X86::ECX:
 | |
|           if (++NumInRegs == 3)
 | |
|             return false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // An stdcall caller is expected to clean up its arguments; the callee
 | |
|   // isn't going to do that.
 | |
|   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FastISel *
 | |
| X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
 | |
|   return X86::createFastISel(funcInfo);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Other Lowering Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool MayFoldLoad(SDValue Op) {
 | |
|   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
 | |
| }
 | |
| 
 | |
| static bool MayFoldIntoStore(SDValue Op) {
 | |
|   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
 | |
| }
 | |
| 
 | |
| static bool isTargetShuffle(unsigned Opcode) {
 | |
|   switch(Opcode) {
 | |
|   default: return false;
 | |
|   case X86ISD::PSHUFD:
 | |
|   case X86ISD::PSHUFHW:
 | |
|   case X86ISD::PSHUFLW:
 | |
|   case X86ISD::SHUFPD:
 | |
|   case X86ISD::PALIGN:
 | |
|   case X86ISD::SHUFPS:
 | |
|   case X86ISD::MOVLHPS:
 | |
|   case X86ISD::MOVLHPD:
 | |
|   case X86ISD::MOVHLPS:
 | |
|   case X86ISD::MOVLPS:
 | |
|   case X86ISD::MOVLPD:
 | |
|   case X86ISD::MOVSHDUP:
 | |
|   case X86ISD::MOVSLDUP:
 | |
|   case X86ISD::MOVDDUP:
 | |
|   case X86ISD::MOVSS:
 | |
|   case X86ISD::MOVSD:
 | |
|   case X86ISD::UNPCKLPS:
 | |
|   case X86ISD::UNPCKLPD:
 | |
|   case X86ISD::PUNPCKLWD:
 | |
|   case X86ISD::PUNPCKLBW:
 | |
|   case X86ISD::PUNPCKLDQ:
 | |
|   case X86ISD::PUNPCKLQDQ:
 | |
|   case X86ISD::UNPCKHPS:
 | |
|   case X86ISD::UNPCKHPD:
 | |
|   case X86ISD::PUNPCKHWD:
 | |
|   case X86ISD::PUNPCKHBW:
 | |
|   case X86ISD::PUNPCKHDQ:
 | |
|   case X86ISD::PUNPCKHQDQ:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
 | |
|                                                SDValue V1, SelectionDAG &DAG) {
 | |
|   switch(Opc) {
 | |
|   default: llvm_unreachable("Unknown x86 shuffle node");
 | |
|   case X86ISD::MOVSHDUP:
 | |
|   case X86ISD::MOVSLDUP:
 | |
|   case X86ISD::MOVDDUP:
 | |
|     return DAG.getNode(Opc, dl, VT, V1);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
 | |
|                           SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
 | |
|   switch(Opc) {
 | |
|   default: llvm_unreachable("Unknown x86 shuffle node");
 | |
|   case X86ISD::PSHUFD:
 | |
|   case X86ISD::PSHUFHW:
 | |
|   case X86ISD::PSHUFLW:
 | |
|     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
 | |
|                SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
 | |
|   switch(Opc) {
 | |
|   default: llvm_unreachable("Unknown x86 shuffle node");
 | |
|   case X86ISD::PALIGN:
 | |
|   case X86ISD::SHUFPD:
 | |
|   case X86ISD::SHUFPS:
 | |
|     return DAG.getNode(Opc, dl, VT, V1, V2,
 | |
|                        DAG.getConstant(TargetMask, MVT::i8));
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
 | |
|                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
 | |
|   switch(Opc) {
 | |
|   default: llvm_unreachable("Unknown x86 shuffle node");
 | |
|   case X86ISD::MOVLHPS:
 | |
|   case X86ISD::MOVLHPD:
 | |
|   case X86ISD::MOVHLPS:
 | |
|   case X86ISD::MOVLPS:
 | |
|   case X86ISD::MOVLPD:
 | |
|   case X86ISD::MOVSS:
 | |
|   case X86ISD::MOVSD:
 | |
|   case X86ISD::UNPCKLPS:
 | |
|   case X86ISD::UNPCKLPD:
 | |
|   case X86ISD::PUNPCKLWD:
 | |
|   case X86ISD::PUNPCKLBW:
 | |
|   case X86ISD::PUNPCKLDQ:
 | |
|   case X86ISD::PUNPCKLQDQ:
 | |
|   case X86ISD::UNPCKHPS:
 | |
|   case X86ISD::UNPCKHPD:
 | |
|   case X86ISD::PUNPCKHWD:
 | |
|   case X86ISD::PUNPCKHBW:
 | |
|   case X86ISD::PUNPCKHDQ:
 | |
|   case X86ISD::PUNPCKHQDQ:
 | |
|     return DAG.getNode(Opc, dl, VT, V1, V2);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
|   int ReturnAddrIndex = FuncInfo->getRAIndex();
 | |
| 
 | |
|   if (ReturnAddrIndex == 0) {
 | |
|     // Set up a frame object for the return address.
 | |
|     uint64_t SlotSize = TD->getPointerSize();
 | |
|     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
 | |
|                                                            false);
 | |
|     FuncInfo->setRAIndex(ReturnAddrIndex);
 | |
|   }
 | |
| 
 | |
|   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
 | |
|                                        bool hasSymbolicDisplacement) {
 | |
|   // Offset should fit into 32 bit immediate field.
 | |
|   if (!isInt<32>(Offset))
 | |
|     return false;
 | |
| 
 | |
|   // If we don't have a symbolic displacement - we don't have any extra
 | |
|   // restrictions.
 | |
|   if (!hasSymbolicDisplacement)
 | |
|     return true;
 | |
| 
 | |
|   // FIXME: Some tweaks might be needed for medium code model.
 | |
|   if (M != CodeModel::Small && M != CodeModel::Kernel)
 | |
|     return false;
 | |
| 
 | |
|   // For small code model we assume that latest object is 16MB before end of 31
 | |
|   // bits boundary. We may also accept pretty large negative constants knowing
 | |
|   // that all objects are in the positive half of address space.
 | |
|   if (M == CodeModel::Small && Offset < 16*1024*1024)
 | |
|     return true;
 | |
| 
 | |
|   // For kernel code model we know that all object resist in the negative half
 | |
|   // of 32bits address space. We may not accept negative offsets, since they may
 | |
|   // be just off and we may accept pretty large positive ones.
 | |
|   if (M == CodeModel::Kernel && Offset > 0)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
 | |
| /// specific condition code, returning the condition code and the LHS/RHS of the
 | |
| /// comparison to make.
 | |
| static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
 | |
|                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
 | |
|   if (!isFP) {
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
 | |
|       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
 | |
|         // X > -1   -> X == 0, jump !sign.
 | |
|         RHS = DAG.getConstant(0, RHS.getValueType());
 | |
|         return X86::COND_NS;
 | |
|       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
 | |
|         // X < 0   -> X == 0, jump on sign.
 | |
|         return X86::COND_S;
 | |
|       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
 | |
|         // X < 1   -> X <= 0
 | |
|         RHS = DAG.getConstant(0, RHS.getValueType());
 | |
|         return X86::COND_LE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (SetCCOpcode) {
 | |
|     default: llvm_unreachable("Invalid integer condition!");
 | |
|     case ISD::SETEQ:  return X86::COND_E;
 | |
|     case ISD::SETGT:  return X86::COND_G;
 | |
|     case ISD::SETGE:  return X86::COND_GE;
 | |
|     case ISD::SETLT:  return X86::COND_L;
 | |
|     case ISD::SETLE:  return X86::COND_LE;
 | |
|     case ISD::SETNE:  return X86::COND_NE;
 | |
|     case ISD::SETULT: return X86::COND_B;
 | |
|     case ISD::SETUGT: return X86::COND_A;
 | |
|     case ISD::SETULE: return X86::COND_BE;
 | |
|     case ISD::SETUGE: return X86::COND_AE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // First determine if it is required or is profitable to flip the operands.
 | |
| 
 | |
|   // If LHS is a foldable load, but RHS is not, flip the condition.
 | |
|   if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
 | |
|       !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
 | |
|     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
 | |
|     std::swap(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   switch (SetCCOpcode) {
 | |
|   default: break;
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // On a floating point condition, the flags are set as follows:
 | |
|   // ZF  PF  CF   op
 | |
|   //  0 | 0 | 0 | X > Y
 | |
|   //  0 | 0 | 1 | X < Y
 | |
|   //  1 | 0 | 0 | X == Y
 | |
|   //  1 | 1 | 1 | unordered
 | |
|   switch (SetCCOpcode) {
 | |
|   default: llvm_unreachable("Condcode should be pre-legalized away");
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETEQ:   return X86::COND_E;
 | |
|   case ISD::SETOLT:              // flipped
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:   return X86::COND_A;
 | |
|   case ISD::SETOLE:              // flipped
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:   return X86::COND_AE;
 | |
|   case ISD::SETUGT:              // flipped
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:   return X86::COND_B;
 | |
|   case ISD::SETUGE:              // flipped
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:   return X86::COND_BE;
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETNE:   return X86::COND_NE;
 | |
|   case ISD::SETUO:   return X86::COND_P;
 | |
|   case ISD::SETO:    return X86::COND_NP;
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETUNE:  return X86::COND_INVALID;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition
 | |
| /// code. Current x86 isa includes the following FP cmov instructions:
 | |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
 | |
| static bool hasFPCMov(unsigned X86CC) {
 | |
|   switch (X86CC) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::COND_B:
 | |
|   case X86::COND_BE:
 | |
|   case X86::COND_E:
 | |
|   case X86::COND_P:
 | |
|   case X86::COND_A:
 | |
|   case X86::COND_AE:
 | |
|   case X86::COND_NE:
 | |
|   case X86::COND_NP:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isFPImmLegal - Returns true if the target can instruction select the
 | |
| /// specified FP immediate natively. If false, the legalizer will
 | |
| /// materialize the FP immediate as a load from a constant pool.
 | |
| bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
 | |
|     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isUndefOrInRange - Return true if Val is undef or if its value falls within
 | |
| /// the specified range (L, H].
 | |
| static bool isUndefOrInRange(int Val, int Low, int Hi) {
 | |
|   return (Val < 0) || (Val >= Low && Val < Hi);
 | |
| }
 | |
| 
 | |
| /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
 | |
| /// specified value.
 | |
| static bool isUndefOrEqual(int Val, int CmpVal) {
 | |
|   if (Val < 0 || Val == CmpVal)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
 | |
| /// the second operand.
 | |
| static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
 | |
|     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
 | |
|   if (VT == MVT::v2f64 || VT == MVT::v2i64)
 | |
|     return (Mask[0] < 2 && Mask[1] < 2);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFDMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFHW.
 | |
| static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT != MVT::v8i16)
 | |
|     return false;
 | |
| 
 | |
|   // Lower quadword copied in order or undef.
 | |
|   for (int i = 0; i != 4; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != i)
 | |
|       return false;
 | |
| 
 | |
|   // Upper quadword shuffled.
 | |
|   for (int i = 4; i != 8; ++i)
 | |
|     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFHWMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PSHUFLW.
 | |
| static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT != MVT::v8i16)
 | |
|     return false;
 | |
| 
 | |
|   // Upper quadword copied in order.
 | |
|   for (int i = 4; i != 8; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != i)
 | |
|       return false;
 | |
| 
 | |
|   // Lower quadword shuffled.
 | |
|   for (int i = 0; i != 4; ++i)
 | |
|     if (Mask[i] >= 4)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isPSHUFLWMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
 | |
| /// is suitable for input to PALIGNR.
 | |
| static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                           bool hasSSSE3) {
 | |
|   int i, e = VT.getVectorNumElements();
 | |
| 
 | |
|   // Do not handle v2i64 / v2f64 shuffles with palignr.
 | |
|   if (e < 4 || !hasSSSE3)
 | |
|     return false;
 | |
| 
 | |
|   for (i = 0; i != e; ++i)
 | |
|     if (Mask[i] >= 0)
 | |
|       break;
 | |
| 
 | |
|   // All undef, not a palignr.
 | |
|   if (i == e)
 | |
|     return false;
 | |
| 
 | |
|   // Determine if it's ok to perform a palignr with only the LHS, since we
 | |
|   // don't have access to the actual shuffle elements to see if RHS is undef.
 | |
|   bool Unary = Mask[i] < (int)e;
 | |
|   bool NeedsUnary = false;
 | |
| 
 | |
|   int s = Mask[i] - i;
 | |
| 
 | |
|   // Check the rest of the elements to see if they are consecutive.
 | |
|   for (++i; i != e; ++i) {
 | |
|     int m = Mask[i];
 | |
|     if (m < 0)
 | |
|       continue;
 | |
| 
 | |
|     Unary = Unary && (m < (int)e);
 | |
|     NeedsUnary = NeedsUnary || (m < s);
 | |
| 
 | |
|     if (NeedsUnary && !Unary)
 | |
|       return false;
 | |
|     if (Unary && m != ((s+i) & (e-1)))
 | |
|       return false;
 | |
|     if (!Unary && m != (s+i))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isPALIGNRMask(M, N->getValueType(0), true);
 | |
| }
 | |
| 
 | |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*.
 | |
| static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   int Half = NumElems / 2;
 | |
|   for (int i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], 0, NumElems))
 | |
|       return false;
 | |
|   for (int i = Half; i < NumElems; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isSHUFPMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
 | |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
 | |
| /// half elements to come from vector 1 (which would equal the dest.) and
 | |
| /// the upper half to come from vector 2.
 | |
| static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   int Half = NumElems / 2;
 | |
|   for (int i = 0; i < Half; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
 | |
|       return false;
 | |
|   for (int i = Half; i < NumElems; ++i)
 | |
|     if (!isUndefOrInRange(Mask[i], 0, NumElems))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return isCommutedSHUFPMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
 | |
| bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
 | |
|   return isUndefOrEqual(N->getMaskElt(0), 6) &&
 | |
|          isUndefOrEqual(N->getMaskElt(1), 7) &&
 | |
|          isUndefOrEqual(N->getMaskElt(2), 2) &&
 | |
|          isUndefOrEqual(N->getMaskElt(3), 3);
 | |
| }
 | |
| 
 | |
| /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 3, 2, 3>
 | |
| bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   return isUndefOrEqual(N->getMaskElt(0), 2) &&
 | |
|   isUndefOrEqual(N->getMaskElt(1), 3) &&
 | |
|   isUndefOrEqual(N->getMaskElt(2), 2) &&
 | |
|   isUndefOrEqual(N->getMaskElt(3), 3);
 | |
| }
 | |
| 
 | |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
 | |
| bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = NumElems/2; i < NumElems; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
 | |
| bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumElems/2; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL.
 | |
| static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                          bool V2IsSplat = false) {
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (!isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH.
 | |
| static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                          bool V2IsSplat = false) {
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
|   if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j + NumElts/2))
 | |
|       return false;
 | |
|     if (V2IsSplat) {
 | |
|       if (isUndefOrEqual(BitI1, NumElts))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
 | |
| }
 | |
| 
 | |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
 | |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
 | |
| /// <0, 0, 1, 1>
 | |
| static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
 | |
| /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
 | |
| /// <2, 2, 3, 3>
 | |
| static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
 | |
|     int BitI  = Mask[i];
 | |
|     int BitI1 = Mask[i+1];
 | |
|     if (!isUndefOrEqual(BitI, j))
 | |
|       return false;
 | |
|     if (!isUndefOrEqual(BitI1, j))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSS,
 | |
| /// MOVSD, and MOVD, i.e. setting the lowest element.
 | |
| static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   if (VT.getVectorElementType().getSizeInBits() < 32)
 | |
|     return false;
 | |
| 
 | |
|   int NumElts = VT.getVectorNumElements();
 | |
| 
 | |
|   if (!isUndefOrEqual(Mask[0], NumElts))
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 1; i < NumElts; ++i)
 | |
|     if (!isUndefOrEqual(Mask[i], i))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return ::isMOVLMask(M, N->getValueType(0));
 | |
| }
 | |
| 
 | |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
 | |
| /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
 | |
| /// element of vector 2 and the other elements to come from vector 1 in order.
 | |
| static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
 | |
|                                bool V2IsSplat = false, bool V2IsUndef = false) {
 | |
|   int NumOps = VT.getVectorNumElements();
 | |
|   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
 | |
|     return false;
 | |
| 
 | |
|   if (!isUndefOrEqual(Mask[0], 0))
 | |
|     return false;
 | |
| 
 | |
|   for (int i = 1; i < NumOps; ++i)
 | |
|     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
 | |
|           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
 | |
|           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
 | |
|                            bool V2IsUndef = false) {
 | |
|   SmallVector<int, 8> M;
 | |
|   N->getMask(M);
 | |
|   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
 | |
| }
 | |
| 
 | |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
 | |
| bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 1, 1, 3, 3
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 3)
 | |
|       return false;
 | |
|     if (Elt == 3)
 | |
|       HasHi = true;
 | |
|   }
 | |
|   // Don't use movshdup if it can be done with a shufps.
 | |
|   // FIXME: verify that matching u, u, 3, 3 is what we want.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
 | |
| bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
 | |
|   if (N->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   // Expect 0, 0, 2, 2
 | |
|   for (unsigned i = 0; i < 2; ++i)
 | |
|     if (N->getMaskElt(i) > 0)
 | |
|       return false;
 | |
| 
 | |
|   bool HasHi = false;
 | |
|   for (unsigned i = 2; i < 4; ++i) {
 | |
|     int Elt = N->getMaskElt(i);
 | |
|     if (Elt >= 0 && Elt != 2)
 | |
|       return false;
 | |
|     if (Elt == 2)
 | |
|       HasHi = true;
 | |
|   }
 | |
|   // Don't use movsldup if it can be done with a shufps.
 | |
|   return HasHi;
 | |
| }
 | |
| 
 | |
| /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
 | |
| bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
 | |
|   int e = N->getValueType(0).getVectorNumElements() / 2;
 | |
| 
 | |
|   for (int i = 0; i < e; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(i), i))
 | |
|       return false;
 | |
|   for (int i = 0; i < e; ++i)
 | |
|     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
 | |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   unsigned Shift = (NumOperands == 4) ? 2 : 1;
 | |
|   unsigned Mask = 0;
 | |
|   for (int i = 0; i < NumOperands; ++i) {
 | |
|     int Val = SVOp->getMaskElt(NumOperands-i-1);
 | |
|     if (Val < 0) Val = 0;
 | |
|     if (Val >= NumOperands) Val -= NumOperands;
 | |
|     Mask |= Val;
 | |
|     if (i != NumOperands - 1)
 | |
|       Mask <<= Shift;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
 | |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the last 4.
 | |
|   for (unsigned i = 7; i >= 4; --i) {
 | |
|     int Val = SVOp->getMaskElt(i);
 | |
|     if (Val >= 0)
 | |
|       Mask |= (Val - 4);
 | |
|     if (i != 4)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
 | |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   unsigned Mask = 0;
 | |
|   // 8 nodes, but we only care about the first 4.
 | |
|   for (int i = 3; i >= 0; --i) {
 | |
|     int Val = SVOp->getMaskElt(i);
 | |
|     if (Val >= 0)
 | |
|       Mask |= Val;
 | |
|     if (i != 0)
 | |
|       Mask <<= 2;
 | |
|   }
 | |
|   return Mask;
 | |
| }
 | |
| 
 | |
| /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
 | |
| /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
 | |
| unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   EVT VVT = N->getValueType(0);
 | |
|   unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
 | |
|   int Val = 0;
 | |
| 
 | |
|   unsigned i, e;
 | |
|   for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
 | |
|     Val = SVOp->getMaskElt(i);
 | |
|     if (Val >= 0)
 | |
|       break;
 | |
|   }
 | |
|   return (Val - i) * EltSize;
 | |
| }
 | |
| 
 | |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point
 | |
| /// constant +0.0.
 | |
| bool X86::isZeroNode(SDValue Elt) {
 | |
|   return ((isa<ConstantSDNode>(Elt) &&
 | |
|            cast<ConstantSDNode>(Elt)->isNullValue()) ||
 | |
|           (isa<ConstantFPSDNode>(Elt) &&
 | |
|            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
 | |
| }
 | |
| 
 | |
| /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
 | |
| /// their permute mask.
 | |
| static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
 | |
|                                     SelectionDAG &DAG) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> MaskVec;
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int idx = SVOp->getMaskElt(i);
 | |
|     if (idx < 0)
 | |
|       MaskVec.push_back(idx);
 | |
|     else if (idx < (int)NumElems)
 | |
|       MaskVec.push_back(idx + NumElems);
 | |
|     else
 | |
|       MaskVec.push_back(idx - NumElems);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
 | |
|                               SVOp->getOperand(0), &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
 | |
| /// the two vector operands have swapped position.
 | |
| static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int idx = Mask[i];
 | |
|     if (idx < 0)
 | |
|       continue;
 | |
|     else if (idx < (int)NumElems)
 | |
|       Mask[i] = idx + NumElems;
 | |
|     else
 | |
|       Mask[i] = idx - NumElems;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
 | |
| /// match movhlps. The lower half elements should come from upper half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order).
 | |
| static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
 | |
|   if (Op->getValueType(0).getVectorNumElements() != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = 2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
 | |
|       return false;
 | |
|   for (unsigned i = 2; i != 4; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that
 | |
| /// is promoted to a vector. It also returns the LoadSDNode by reference if
 | |
| /// required.
 | |
| static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
 | |
|   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
 | |
|     return false;
 | |
|   N = N->getOperand(0).getNode();
 | |
|   if (!ISD::isNON_EXTLoad(N))
 | |
|     return false;
 | |
|   if (LD)
 | |
|     *LD = cast<LoadSDNode>(N);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
 | |
| /// match movlp{s|d}. The lower half elements should come from lower half of
 | |
| /// V1 (and in order), and the upper half elements should come from the upper
 | |
| /// half of V2 (and in order). And since V1 will become the source of the
 | |
| /// MOVLP, it must be either a vector load or a scalar load to vector.
 | |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
 | |
|                                ShuffleVectorSDNode *Op) {
 | |
|   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
 | |
|     return false;
 | |
|   // Is V2 is a vector load, don't do this transformation. We will try to use
 | |
|   // load folding shufps op.
 | |
|   if (ISD::isNON_EXTLoad(V2))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = Op->getValueType(0).getVectorNumElements();
 | |
| 
 | |
|   if (NumElems != 2 && NumElems != 4)
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i))
 | |
|       return false;
 | |
|   for (unsigned i = NumElems/2; i != NumElems; ++i)
 | |
|     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
 | |
| /// all the same.
 | |
| static bool isSplatVector(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDValue SplatValue = N->getOperand(0);
 | |
|   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i) != SplatValue)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
 | |
| /// to an zero vector.
 | |
| /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
 | |
| static bool isZeroShuffle(ShuffleVectorSDNode *N) {
 | |
|   SDValue V1 = N->getOperand(0);
 | |
|   SDValue V2 = N->getOperand(1);
 | |
|   unsigned NumElems = N->getValueType(0).getVectorNumElements();
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     int Idx = N->getMaskElt(i);
 | |
|     if (Idx >= (int)NumElems) {
 | |
|       unsigned Opc = V2.getOpcode();
 | |
|       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
 | |
|         continue;
 | |
|       if (Opc != ISD::BUILD_VECTOR ||
 | |
|           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
 | |
|         return false;
 | |
|     } else if (Idx >= 0) {
 | |
|       unsigned Opc = V1.getOpcode();
 | |
|       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
 | |
|         continue;
 | |
|       if (Opc != ISD::BUILD_VECTOR ||
 | |
|           !X86::isZeroNode(V1.getOperand(Idx)))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getZeroVector - Returns a vector of specified type with all zero elements.
 | |
| ///
 | |
| static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
 | |
|                              DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
| 
 | |
|   // Always build SSE zero vectors as <4 x i32> bitcasted
 | |
|   // to their dest type. This ensures they get CSE'd.
 | |
|   SDValue Vec;
 | |
|   if (VT.getSizeInBits() == 128) {  // SSE
 | |
|     if (HasSSE2) {  // SSE2
 | |
|       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
 | |
|       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
 | |
|     } else { // SSE1
 | |
|       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
 | |
|       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
 | |
|     }
 | |
|   } else if (VT.getSizeInBits() == 256) { // AVX
 | |
|     // 256-bit logic and arithmetic instructions in AVX are
 | |
|     // all floating-point, no support for integer ops. Default
 | |
|     // to emitting fp zeroed vectors then.
 | |
|     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
 | |
|     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
 | |
|     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
 | |
| }
 | |
| 
 | |
| /// getOnesVector - Returns a vector of specified type with all bits set.
 | |
| ///
 | |
| static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
| 
 | |
|   // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
 | |
|   // type.  This ensures they get CSE'd.
 | |
|   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
 | |
|   SDValue Vec;
 | |
|   Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
 | |
| /// that point to V2 points to its first element.
 | |
| static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   SVOp->getMask(MaskVec);
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElems; ++i) {
 | |
|     if (MaskVec[i] > (int)NumElems) {
 | |
|       MaskVec[i] = NumElems;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   if (Changed)
 | |
|     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
 | |
|                                 SVOp->getOperand(1), &MaskVec[0]);
 | |
|   return SDValue(SVOp, 0);
 | |
| }
 | |
| 
 | |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
 | |
| /// operation of specified width.
 | |
| static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                        SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> Mask;
 | |
|   Mask.push_back(NumElems);
 | |
|   for (unsigned i = 1; i != NumElems; ++i)
 | |
|     Mask.push_back(i);
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
 | |
| static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                           SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> Mask;
 | |
|   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
 | |
|     Mask.push_back(i);
 | |
|     Mask.push_back(i + NumElems);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
 | |
| static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
 | |
|                           SDValue V2) {
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   unsigned Half = NumElems/2;
 | |
|   SmallVector<int, 8> Mask;
 | |
|   for (unsigned i = 0; i != Half; ++i) {
 | |
|     Mask.push_back(i + Half);
 | |
|     Mask.push_back(i + NumElems + Half);
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
 | |
| }
 | |
| 
 | |
| /// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
 | |
| static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
 | |
|   EVT PVT = MVT::v4f32;
 | |
|   EVT VT = SV->getValueType(0);
 | |
|   DebugLoc dl = SV->getDebugLoc();
 | |
|   SDValue V1 = SV->getOperand(0);
 | |
|   int NumElems = VT.getVectorNumElements();
 | |
|   int EltNo = SV->getSplatIndex();
 | |
| 
 | |
|   // unpack elements to the correct location
 | |
|   while (NumElems > 4) {
 | |
|     if (EltNo < NumElems/2) {
 | |
|       V1 = getUnpackl(DAG, dl, VT, V1, V1);
 | |
|     } else {
 | |
|       V1 = getUnpackh(DAG, dl, VT, V1, V1);
 | |
|       EltNo -= NumElems/2;
 | |
|     }
 | |
|     NumElems >>= 1;
 | |
|   }
 | |
| 
 | |
|   // Perform the splat.
 | |
|   int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
 | |
|   V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
 | |
| }
 | |
| 
 | |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
 | |
| /// vector of zero or undef vector.  This produces a shuffle where the low
 | |
| /// element of V2 is swizzled into the zero/undef vector, landing at element
 | |
| /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
 | |
| static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
 | |
|                                              bool isZero, bool HasSSE2,
 | |
|                                              SelectionDAG &DAG) {
 | |
|   EVT VT = V2.getValueType();
 | |
|   SDValue V1 = isZero
 | |
|     ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   SmallVector<int, 16> MaskVec;
 | |
|   for (unsigned i = 0; i != NumElems; ++i)
 | |
|     // If this is the insertion idx, put the low elt of V2 here.
 | |
|     MaskVec.push_back(i == Idx ? NumElems : i);
 | |
|   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// getShuffleScalarElt - Returns the scalar element that will make up the ith
 | |
| /// element of the result of the vector shuffle.
 | |
| SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
 | |
|                             unsigned Depth) {
 | |
|   if (Depth == 6)
 | |
|     return SDValue();  // Limit search depth.
 | |
| 
 | |
|   SDValue V = SDValue(N, 0);
 | |
|   EVT VT = V.getValueType();
 | |
|   unsigned Opcode = V.getOpcode();
 | |
| 
 | |
|   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
 | |
|   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
 | |
|     Index = SV->getMaskElt(Index);
 | |
| 
 | |
|     if (Index < 0)
 | |
|       return DAG.getUNDEF(VT.getVectorElementType());
 | |
| 
 | |
|     int NumElems = VT.getVectorNumElements();
 | |
|     SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
 | |
|     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
 | |
|   }
 | |
| 
 | |
|   // Recurse into target specific vector shuffles to find scalars.
 | |
|   if (isTargetShuffle(Opcode)) {
 | |
|     int NumElems = VT.getVectorNumElements();
 | |
|     SmallVector<unsigned, 16> ShuffleMask;
 | |
|     SDValue ImmN;
 | |
| 
 | |
|     switch(Opcode) {
 | |
|     case X86ISD::SHUFPS:
 | |
|     case X86ISD::SHUFPD:
 | |
|       ImmN = N->getOperand(N->getNumOperands()-1);
 | |
|       DecodeSHUFPSMask(NumElems,
 | |
|                        cast<ConstantSDNode>(ImmN)->getZExtValue(),
 | |
|                        ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::PUNPCKHBW:
 | |
|     case X86ISD::PUNPCKHWD:
 | |
|     case X86ISD::PUNPCKHDQ:
 | |
|     case X86ISD::PUNPCKHQDQ:
 | |
|       DecodePUNPCKHMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::UNPCKHPS:
 | |
|     case X86ISD::UNPCKHPD:
 | |
|       DecodeUNPCKHPMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::PUNPCKLBW:
 | |
|     case X86ISD::PUNPCKLWD:
 | |
|     case X86ISD::PUNPCKLDQ:
 | |
|     case X86ISD::PUNPCKLQDQ:
 | |
|       DecodePUNPCKLMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::UNPCKLPS:
 | |
|     case X86ISD::UNPCKLPD:
 | |
|       DecodeUNPCKLPMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::MOVHLPS:
 | |
|       DecodeMOVHLPSMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::MOVLHPS:
 | |
|       DecodeMOVLHPSMask(NumElems, ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::PSHUFD:
 | |
|       ImmN = N->getOperand(N->getNumOperands()-1);
 | |
|       DecodePSHUFMask(NumElems,
 | |
|                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
 | |
|                       ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::PSHUFHW:
 | |
|       ImmN = N->getOperand(N->getNumOperands()-1);
 | |
|       DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
 | |
|                         ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::PSHUFLW:
 | |
|       ImmN = N->getOperand(N->getNumOperands()-1);
 | |
|       DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
 | |
|                         ShuffleMask);
 | |
|       break;
 | |
|     case X86ISD::MOVSS:
 | |
|     case X86ISD::MOVSD: {
 | |
|       // The index 0 always comes from the first element of the second source,
 | |
|       // this is why MOVSS and MOVSD are used in the first place. The other
 | |
|       // elements come from the other positions of the first source vector.
 | |
|       unsigned OpNum = (Index == 0) ? 1 : 0;
 | |
|       return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
 | |
|                                  Depth+1);
 | |
|     }
 | |
|     default:
 | |
|       assert("not implemented for target shuffle node");
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     Index = ShuffleMask[Index];
 | |
|     if (Index < 0)
 | |
|       return DAG.getUNDEF(VT.getVectorElementType());
 | |
| 
 | |
|     SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
 | |
|     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
 | |
|                                Depth+1);
 | |
|   }
 | |
| 
 | |
|   // Actual nodes that may contain scalar elements
 | |
|   if (Opcode == ISD::BIT_CONVERT) {
 | |
|     V = V.getOperand(0);
 | |
|     EVT SrcVT = V.getValueType();
 | |
|     unsigned NumElems = VT.getVectorNumElements();
 | |
| 
 | |
|     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     return (Index == 0) ? V.getOperand(0)
 | |
|                           : DAG.getUNDEF(VT.getVectorElementType());
 | |
| 
 | |
|   if (V.getOpcode() == ISD::BUILD_VECTOR)
 | |
|     return V.getOperand(Index);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// getNumOfConsecutiveZeros - Return the number of elements of a vector
 | |
| /// shuffle operation which come from a consecutively from a zero. The
 | |
| /// search can start in two diferent directions, from left or right.
 | |
| static
 | |
| unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
 | |
|                                   bool ZerosFromLeft, SelectionDAG &DAG) {
 | |
|   int i = 0;
 | |
| 
 | |
|   while (i < NumElems) {
 | |
|     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
 | |
|     SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
 | |
|     if (!(Elt.getNode() &&
 | |
|          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
 | |
|       break;
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
 | |
| /// MaskE correspond consecutively to elements from one of the vector operands,
 | |
| /// starting from its index OpIdx. Also tell OpNum which source vector operand.
 | |
| static
 | |
| bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
 | |
|                               int OpIdx, int NumElems, unsigned &OpNum) {
 | |
|   bool SeenV1 = false;
 | |
|   bool SeenV2 = false;
 | |
| 
 | |
|   for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
 | |
|     int Idx = SVOp->getMaskElt(i);
 | |
|     // Ignore undef indicies
 | |
|     if (Idx < 0)
 | |
|       continue;
 | |
| 
 | |
|     if (Idx < NumElems)
 | |
|       SeenV1 = true;
 | |
|     else
 | |
|       SeenV2 = true;
 | |
| 
 | |
|     // Only accept consecutive elements from the same vector
 | |
|     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   OpNum = SeenV1 ? 0 : 1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
 | |
| /// logical left shift of a vector.
 | |
| static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
 | |
|                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
 | |
|   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
 | |
|   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
 | |
|               false /* check zeros from right */, DAG);
 | |
|   unsigned OpSrc;
 | |
| 
 | |
|   if (!NumZeros)
 | |
|     return false;
 | |
| 
 | |
|   // Considering the elements in the mask that are not consecutive zeros,
 | |
|   // check if they consecutively come from only one of the source vectors.
 | |
|   //
 | |
|   //               V1 = {X, A, B, C}     0
 | |
|   //                         \  \  \    /
 | |
|   //   vector_shuffle V1, V2 <1, 2, 3, X>
 | |
|   //
 | |
|   if (!isShuffleMaskConsecutive(SVOp,
 | |
|             0,                   // Mask Start Index
 | |
|             NumElems-NumZeros-1, // Mask End Index
 | |
|             NumZeros,            // Where to start looking in the src vector
 | |
|             NumElems,            // Number of elements in vector
 | |
|             OpSrc))              // Which source operand ?
 | |
|     return false;
 | |
| 
 | |
|   isLeft = false;
 | |
|   ShAmt = NumZeros;
 | |
|   ShVal = SVOp->getOperand(OpSrc);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
 | |
| /// logical left shift of a vector.
 | |
| static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
 | |
|                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
 | |
|   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
 | |
|   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
 | |
|               true /* check zeros from left */, DAG);
 | |
|   unsigned OpSrc;
 | |
| 
 | |
|   if (!NumZeros)
 | |
|     return false;
 | |
| 
 | |
|   // Considering the elements in the mask that are not consecutive zeros,
 | |
|   // check if they consecutively come from only one of the source vectors.
 | |
|   //
 | |
|   //                           0    { A, B, X, X } = V2
 | |
|   //                          / \    /  /
 | |
|   //   vector_shuffle V1, V2 <X, X, 4, 5>
 | |
|   //
 | |
|   if (!isShuffleMaskConsecutive(SVOp,
 | |
|             NumZeros,     // Mask Start Index
 | |
|             NumElems-1,   // Mask End Index
 | |
|             0,            // Where to start looking in the src vector
 | |
|             NumElems,     // Number of elements in vector
 | |
|             OpSrc))       // Which source operand ?
 | |
|     return false;
 | |
| 
 | |
|   isLeft = true;
 | |
|   ShAmt = NumZeros;
 | |
|   ShVal = SVOp->getOperand(OpSrc);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVectorShift - Returns true if the shuffle can be implemented as a
 | |
| /// logical left or right shift of a vector.
 | |
| static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
 | |
|                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
 | |
|   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
 | |
|       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
 | |
| ///
 | |
| static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
 | |
|                                        unsigned NumNonZero, unsigned NumZero,
 | |
|                                        SelectionDAG &DAG,
 | |
|                                        const TargetLowering &TLI) {
 | |
|   if (NumNonZero > 8)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 16; ++i) {
 | |
|     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (ThisIsNonZero && First) {
 | |
|       if (NumZero)
 | |
|         V = getZeroVector(MVT::v8i16, true, DAG, dl);
 | |
|       else
 | |
|         V = DAG.getUNDEF(MVT::v8i16);
 | |
|       First = false;
 | |
|     }
 | |
| 
 | |
|     if ((i & 1) != 0) {
 | |
|       SDValue ThisElt(0, 0), LastElt(0, 0);
 | |
|       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
 | |
|       if (LastIsNonZero) {
 | |
|         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
 | |
|                               MVT::i16, Op.getOperand(i-1));
 | |
|       }
 | |
|       if (ThisIsNonZero) {
 | |
|         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
 | |
|         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
 | |
|                               ThisElt, DAG.getConstant(8, MVT::i8));
 | |
|         if (LastIsNonZero)
 | |
|           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
 | |
|       } else
 | |
|         ThisElt = LastElt;
 | |
| 
 | |
|       if (ThisElt.getNode())
 | |
|         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
 | |
|                         DAG.getIntPtrConstant(i/2));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
 | |
| }
 | |
| 
 | |
| /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
 | |
| ///
 | |
| static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
 | |
|                                      unsigned NumNonZero, unsigned NumZero,
 | |
|                                      SelectionDAG &DAG,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   if (NumNonZero > 4)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V(0, 0);
 | |
|   bool First = true;
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     bool isNonZero = (NonZeros & (1 << i)) != 0;
 | |
|     if (isNonZero) {
 | |
|       if (First) {
 | |
|         if (NumZero)
 | |
|           V = getZeroVector(MVT::v8i16, true, DAG, dl);
 | |
|         else
 | |
|           V = DAG.getUNDEF(MVT::v8i16);
 | |
|         First = false;
 | |
|       }
 | |
|       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
 | |
|                       MVT::v8i16, V, Op.getOperand(i),
 | |
|                       DAG.getIntPtrConstant(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getVShift - Return a vector logical shift node.
 | |
| ///
 | |
| static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
 | |
|                          unsigned NumBits, SelectionDAG &DAG,
 | |
|                          const TargetLowering &TLI, DebugLoc dl) {
 | |
|   EVT ShVT = MVT::v2i64;
 | |
|   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
 | |
|   SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                      DAG.getNode(Opc, dl, ShVT, SrcOp,
 | |
|                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
 | |
|                                           SelectionDAG &DAG) const {
 | |
| 
 | |
|   // Check if the scalar load can be widened into a vector load. And if
 | |
|   // the address is "base + cst" see if the cst can be "absorbed" into
 | |
|   // the shuffle mask.
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
 | |
|     SDValue Ptr = LD->getBasePtr();
 | |
|     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
 | |
|       return SDValue();
 | |
|     EVT PVT = LD->getValueType(0);
 | |
|     if (PVT != MVT::i32 && PVT != MVT::f32)
 | |
|       return SDValue();
 | |
| 
 | |
|     int FI = -1;
 | |
|     int64_t Offset = 0;
 | |
|     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
 | |
|       FI = FINode->getIndex();
 | |
|       Offset = 0;
 | |
|     } else if (Ptr.getOpcode() == ISD::ADD &&
 | |
|                isa<ConstantSDNode>(Ptr.getOperand(1)) &&
 | |
|                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
 | |
|       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | |
|       Offset = Ptr.getConstantOperandVal(1);
 | |
|       Ptr = Ptr.getOperand(0);
 | |
|     } else {
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     SDValue Chain = LD->getChain();
 | |
|     // Make sure the stack object alignment is at least 16.
 | |
|     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     if (DAG.InferPtrAlignment(Ptr) < 16) {
 | |
|       if (MFI->isFixedObjectIndex(FI)) {
 | |
|         // Can't change the alignment. FIXME: It's possible to compute
 | |
|         // the exact stack offset and reference FI + adjust offset instead.
 | |
|         // If someone *really* cares about this. That's the way to implement it.
 | |
|         return SDValue();
 | |
|       } else {
 | |
|         MFI->setObjectAlignment(FI, 16);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (Offset % 16) must be multiple of 4. Then address is then
 | |
|     // Ptr + (Offset & ~15).
 | |
|     if (Offset < 0)
 | |
|       return SDValue();
 | |
|     if ((Offset % 16) & 3)
 | |
|       return SDValue();
 | |
|     int64_t StartOffset = Offset & ~15;
 | |
|     if (StartOffset)
 | |
|       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
 | |
|                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
 | |
| 
 | |
|     int EltNo = (Offset - StartOffset) >> 2;
 | |
|     int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
 | |
|     EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
 | |
|     SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
 | |
|                              LD->getPointerInfo().getWithOffset(StartOffset),
 | |
|                              false, false, 0);
 | |
|     // Canonicalize it to a v4i32 shuffle.
 | |
|     V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                        DAG.getVectorShuffle(MVT::v4i32, dl, V1,
 | |
|                                             DAG.getUNDEF(MVT::v4i32),&Mask[0]));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
 | |
| /// vector of type 'VT', see if the elements can be replaced by a single large
 | |
| /// load which has the same value as a build_vector whose operands are 'elts'.
 | |
| ///
 | |
| /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
 | |
| ///
 | |
| /// FIXME: we'd also like to handle the case where the last elements are zero
 | |
| /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
 | |
| /// There's even a handy isZeroNode for that purpose.
 | |
| static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
 | |
|                                         DebugLoc &DL, SelectionDAG &DAG) {
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   unsigned NumElems = Elts.size();
 | |
| 
 | |
|   LoadSDNode *LDBase = NULL;
 | |
|   unsigned LastLoadedElt = -1U;
 | |
| 
 | |
|   // For each element in the initializer, see if we've found a load or an undef.
 | |
|   // If we don't find an initial load element, or later load elements are
 | |
|   // non-consecutive, bail out.
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     SDValue Elt = Elts[i];
 | |
| 
 | |
|     if (!Elt.getNode() ||
 | |
|         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
 | |
|       return SDValue();
 | |
|     if (!LDBase) {
 | |
|       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
 | |
|         return SDValue();
 | |
|       LDBase = cast<LoadSDNode>(Elt.getNode());
 | |
|       LastLoadedElt = i;
 | |
|       continue;
 | |
|     }
 | |
|     if (Elt.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
| 
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Elt);
 | |
|     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
 | |
|       return SDValue();
 | |
|     LastLoadedElt = i;
 | |
|   }
 | |
| 
 | |
|   // If we have found an entire vector of loads and undefs, then return a large
 | |
|   // load of the entire vector width starting at the base pointer.  If we found
 | |
|   // consecutive loads for the low half, generate a vzext_load node.
 | |
|   if (LastLoadedElt == NumElems - 1) {
 | |
|     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
 | |
|       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
 | |
|                          LDBase->getPointerInfo(),
 | |
|                          LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
 | |
|     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
 | |
|                        LDBase->getPointerInfo(),
 | |
|                        LDBase->isVolatile(), LDBase->isNonTemporal(),
 | |
|                        LDBase->getAlignment());
 | |
|   } else if (NumElems == 4 && LastLoadedElt == 1) {
 | |
|     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
 | |
|     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
 | |
|     SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
 | |
|                                               Ops, 2, MVT::i32,
 | |
|                                               LDBase->getMemOperand());
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
 | |
|   // All one's are handled with pcmpeqd. In AVX, zero's are handled with
 | |
|   // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
 | |
|   // is present, so AllOnes is ignored.
 | |
|   if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
 | |
|       (Op.getValueType().getSizeInBits() != 256 &&
 | |
|        ISD::isBuildVectorAllOnes(Op.getNode()))) {
 | |
|     // Canonicalize this to <4 x i32> (SSE) to
 | |
|     // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
 | |
|     // eliminated on x86-32 hosts.
 | |
|     if (Op.getValueType() == MVT::v4i32)
 | |
|       return Op;
 | |
| 
 | |
|     if (ISD::isBuildVectorAllOnes(Op.getNode()))
 | |
|       return getOnesVector(Op.getValueType(), DAG, dl);
 | |
|     return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
 | |
|   }
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT ExtVT = VT.getVectorElementType();
 | |
|   unsigned EVTBits = ExtVT.getSizeInBits();
 | |
| 
 | |
|   unsigned NumElems = Op.getNumOperands();
 | |
|   unsigned NumZero  = 0;
 | |
|   unsigned NumNonZero = 0;
 | |
|   unsigned NonZeros = 0;
 | |
|   bool IsAllConstants = true;
 | |
|   SmallSet<SDValue, 8> Values;
 | |
|   for (unsigned i = 0; i < NumElems; ++i) {
 | |
|     SDValue Elt = Op.getOperand(i);
 | |
|     if (Elt.getOpcode() == ISD::UNDEF)
 | |
|       continue;
 | |
|     Values.insert(Elt);
 | |
|     if (Elt.getOpcode() != ISD::Constant &&
 | |
|         Elt.getOpcode() != ISD::ConstantFP)
 | |
|       IsAllConstants = false;
 | |
|     if (X86::isZeroNode(Elt))
 | |
|       NumZero++;
 | |
|     else {
 | |
|       NonZeros |= (1 << i);
 | |
|       NumNonZero++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
 | |
|   if (NumNonZero == 0)
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   // Special case for single non-zero, non-undef, element.
 | |
|   if (NumNonZero == 1) {
 | |
|     unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|     SDValue Item = Op.getOperand(Idx);
 | |
| 
 | |
|     // If this is an insertion of an i64 value on x86-32, and if the top bits of
 | |
|     // the value are obviously zero, truncate the value to i32 and do the
 | |
|     // insertion that way.  Only do this if the value is non-constant or if the
 | |
|     // value is a constant being inserted into element 0.  It is cheaper to do
 | |
|     // a constant pool load than it is to do a movd + shuffle.
 | |
|     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
 | |
|         (!IsAllConstants || Idx == 0)) {
 | |
|       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
 | |
|         // Handle SSE only.
 | |
|         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
 | |
|         EVT VecVT = MVT::v4i32;
 | |
|         unsigned VecElts = 4;
 | |
| 
 | |
|         // Truncate the value (which may itself be a constant) to i32, and
 | |
|         // convert it to a vector with movd (S2V+shuffle to zero extend).
 | |
|         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
 | |
|         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
 | |
|                                            Subtarget->hasSSE2(), DAG);
 | |
| 
 | |
|         // Now we have our 32-bit value zero extended in the low element of
 | |
|         // a vector.  If Idx != 0, swizzle it into place.
 | |
|         if (Idx != 0) {
 | |
|           SmallVector<int, 4> Mask;
 | |
|           Mask.push_back(Idx);
 | |
|           for (unsigned i = 1; i != VecElts; ++i)
 | |
|             Mask.push_back(i);
 | |
|           Item = DAG.getVectorShuffle(VecVT, dl, Item,
 | |
|                                       DAG.getUNDEF(Item.getValueType()),
 | |
|                                       &Mask[0]);
 | |
|         }
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we have a constant or non-constant insertion into the low element of
 | |
|     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
 | |
|     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
 | |
|     // depending on what the source datatype is.
 | |
|     if (Idx == 0) {
 | |
|       if (NumZero == 0) {
 | |
|         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
|       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
 | |
|           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
|         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
 | |
|         return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
 | |
|                                            DAG);
 | |
|       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
 | |
|         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
 | |
|         assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
 | |
|         EVT MiddleVT = MVT::v4i32;
 | |
|         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
 | |
|         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
 | |
|                                            Subtarget->hasSSE2(), DAG);
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Is it a vector logical left shift?
 | |
|     if (NumElems == 2 && Idx == 1 &&
 | |
|         X86::isZeroNode(Op.getOperand(0)) &&
 | |
|         !X86::isZeroNode(Op.getOperand(1))) {
 | |
|       unsigned NumBits = VT.getSizeInBits();
 | |
|       return getVShift(true, VT,
 | |
|                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                    VT, Op.getOperand(1)),
 | |
|                        NumBits/2, DAG, *this, dl);
 | |
|     }
 | |
| 
 | |
|     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
 | |
|       return SDValue();
 | |
| 
 | |
|     // Otherwise, if this is a vector with i32 or f32 elements, and the element
 | |
|     // is a non-constant being inserted into an element other than the low one,
 | |
|     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
 | |
|     // movd/movss) to move this into the low element, then shuffle it into
 | |
|     // place.
 | |
|     if (EVTBits == 32) {
 | |
|       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
 | |
| 
 | |
|       // Turn it into a shuffle of zero and zero-extended scalar to vector.
 | |
|       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
 | |
|                                          Subtarget->hasSSE2(), DAG);
 | |
|       SmallVector<int, 8> MaskVec;
 | |
|       for (unsigned i = 0; i < NumElems; i++)
 | |
|         MaskVec.push_back(i == Idx ? 0 : 1);
 | |
|       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Splat is obviously ok. Let legalizer expand it to a shuffle.
 | |
|   if (Values.size() == 1) {
 | |
|     if (EVTBits == 32) {
 | |
|       // Instead of a shuffle like this:
 | |
|       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
 | |
|       // Check if it's possible to issue this instead.
 | |
|       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
 | |
|       unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|       SDValue Item = Op.getOperand(Idx);
 | |
|       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
 | |
|         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // A vector full of immediates; various special cases are already
 | |
|   // handled, so this is best done with a single constant-pool load.
 | |
|   if (IsAllConstants)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Let legalizer expand 2-wide build_vectors.
 | |
|   if (EVTBits == 64) {
 | |
|     if (NumNonZero == 1) {
 | |
|       // One half is zero or undef.
 | |
|       unsigned Idx = CountTrailingZeros_32(NonZeros);
 | |
|       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
 | |
|                                  Op.getOperand(Idx));
 | |
|       return getShuffleVectorZeroOrUndef(V2, Idx, true,
 | |
|                                          Subtarget->hasSSE2(), DAG);
 | |
|     }
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // If element VT is < 32 bits, convert it to inserts into a zero vector.
 | |
|   if (EVTBits == 8 && NumElems == 16) {
 | |
|     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                         *this);
 | |
|     if (V.getNode()) return V;
 | |
|   }
 | |
| 
 | |
|   if (EVTBits == 16 && NumElems == 8) {
 | |
|     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
 | |
|                                       *this);
 | |
|     if (V.getNode()) return V;
 | |
|   }
 | |
| 
 | |
|   // If element VT is == 32 bits, turn it into a number of shuffles.
 | |
|   SmallVector<SDValue, 8> V;
 | |
|   V.resize(NumElems);
 | |
|   if (NumElems == 4 && NumZero > 0) {
 | |
|     for (unsigned i = 0; i < 4; ++i) {
 | |
|       bool isZero = !(NonZeros & (1 << i));
 | |
|       if (isZero)
 | |
|         V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
 | |
|       else
 | |
|         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < 2; ++i) {
 | |
|       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
 | |
|         default: break;
 | |
|         case 0:
 | |
|           V[i] = V[i*2];  // Must be a zero vector.
 | |
|           break;
 | |
|         case 1:
 | |
|           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
 | |
|           break;
 | |
|         case 2:
 | |
|           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
 | |
|           break;
 | |
|         case 3:
 | |
|           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SmallVector<int, 8> MaskVec;
 | |
|     bool Reverse = (NonZeros & 0x3) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       MaskVec.push_back(Reverse ? 1-i : i);
 | |
|     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
 | |
|     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
 | |
|   }
 | |
| 
 | |
|   if (Values.size() > 1 && VT.getSizeInBits() == 128) {
 | |
|     // Check for a build vector of consecutive loads.
 | |
|     for (unsigned i = 0; i < NumElems; ++i)
 | |
|       V[i] = Op.getOperand(i);
 | |
| 
 | |
|     // Check for elements which are consecutive loads.
 | |
|     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
 | |
|     if (LD.getNode())
 | |
|       return LD;
 | |
| 
 | |
|     // For SSE 4.1, use insertps to put the high elements into the low element.
 | |
|     if (getSubtarget()->hasSSE41()) {
 | |
|       SDValue Result;
 | |
|       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
 | |
|         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
 | |
|       else
 | |
|         Result = DAG.getUNDEF(VT);
 | |
| 
 | |
|       for (unsigned i = 1; i < NumElems; ++i) {
 | |
|         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
 | |
|                              Op.getOperand(i), DAG.getIntPtrConstant(i));
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, expand into a number of unpckl*, start by extending each of
 | |
|     // our (non-undef) elements to the full vector width with the element in the
 | |
|     // bottom slot of the vector (which generates no code for SSE).
 | |
|     for (unsigned i = 0; i < NumElems; ++i) {
 | |
|       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
 | |
|       else
 | |
|         V[i] = DAG.getUNDEF(VT);
 | |
|     }
 | |
| 
 | |
|     // Next, we iteratively mix elements, e.g. for v4f32:
 | |
|     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
 | |
|     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
 | |
|     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
 | |
|     unsigned EltStride = NumElems >> 1;
 | |
|     while (EltStride != 0) {
 | |
|       for (unsigned i = 0; i < EltStride; ++i) {
 | |
|         // If V[i+EltStride] is undef and this is the first round of mixing,
 | |
|         // then it is safe to just drop this shuffle: V[i] is already in the
 | |
|         // right place, the one element (since it's the first round) being
 | |
|         // inserted as undef can be dropped.  This isn't safe for successive
 | |
|         // rounds because they will permute elements within both vectors.
 | |
|         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
 | |
|             EltStride == NumElems/2)
 | |
|           continue;
 | |
| 
 | |
|         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
 | |
|       }
 | |
|       EltStride >>= 1;
 | |
|     }
 | |
|     return V[0];
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // We support concatenate two MMX registers and place them in a MMX
 | |
|   // register.  This is better than doing a stack convert.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT ResVT = Op.getValueType();
 | |
|   assert(Op.getNumOperands() == 2);
 | |
|   assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
 | |
|          ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
 | |
|   int Mask[2];
 | |
|   SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
 | |
|   SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
 | |
|   InVec = Op.getOperand(1);
 | |
|   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | |
|     unsigned NumElts = ResVT.getVectorNumElements();
 | |
|     VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
 | |
|     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
 | |
|                        InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
 | |
|   } else {
 | |
|     InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
 | |
|     SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
 | |
|     Mask[0] = 0; Mask[1] = 2;
 | |
|     VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
 | |
| }
 | |
| 
 | |
| // v8i16 shuffles - Prefer shuffles in the following order:
 | |
| // 1. [all]   pshuflw, pshufhw, optional move
 | |
| // 2. [ssse3] 1 x pshufb
 | |
| // 3. [ssse3] 2 x pshufb + 1 x por
 | |
| // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
 | |
| SDValue
 | |
| X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   SmallVector<int, 8> MaskVals;
 | |
| 
 | |
|   // Determine if more than 1 of the words in each of the low and high quadwords
 | |
|   // of the result come from the same quadword of one of the two inputs.  Undef
 | |
|   // mask values count as coming from any quadword, for better codegen.
 | |
|   SmallVector<unsigned, 4> LoQuad(4);
 | |
|   SmallVector<unsigned, 4> HiQuad(4);
 | |
|   BitVector InputQuads(4);
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
 | |
|     int EltIdx = SVOp->getMaskElt(i);
 | |
|     MaskVals.push_back(EltIdx);
 | |
|     if (EltIdx < 0) {
 | |
|       ++Quad[0];
 | |
|       ++Quad[1];
 | |
|       ++Quad[2];
 | |
|       ++Quad[3];
 | |
|       continue;
 | |
|     }
 | |
|     ++Quad[EltIdx / 4];
 | |
|     InputQuads.set(EltIdx / 4);
 | |
|   }
 | |
| 
 | |
|   int BestLoQuad = -1;
 | |
|   unsigned MaxQuad = 1;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     if (LoQuad[i] > MaxQuad) {
 | |
|       BestLoQuad = i;
 | |
|       MaxQuad = LoQuad[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int BestHiQuad = -1;
 | |
|   MaxQuad = 1;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     if (HiQuad[i] > MaxQuad) {
 | |
|       BestHiQuad = i;
 | |
|       MaxQuad = HiQuad[i];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
 | |
|   // of the two input vectors, shuffle them into one input vector so only a
 | |
|   // single pshufb instruction is necessary. If There are more than 2 input
 | |
|   // quads, disable the next transformation since it does not help SSSE3.
 | |
|   bool V1Used = InputQuads[0] || InputQuads[1];
 | |
|   bool V2Used = InputQuads[2] || InputQuads[3];
 | |
|   if (Subtarget->hasSSSE3()) {
 | |
|     if (InputQuads.count() == 2 && V1Used && V2Used) {
 | |
|       BestLoQuad = InputQuads.find_first();
 | |
|       BestHiQuad = InputQuads.find_next(BestLoQuad);
 | |
|     }
 | |
|     if (InputQuads.count() > 2) {
 | |
|       BestLoQuad = -1;
 | |
|       BestHiQuad = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
 | |
|   // the shuffle mask.  If a quad is scored as -1, that means that it contains
 | |
|   // words from all 4 input quadwords.
 | |
|   SDValue NewV;
 | |
|   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
 | |
|     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
 | |
|     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
 | |
|                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
 | |
|                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
 | |
|     NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
 | |
| 
 | |
|     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
 | |
|     // source words for the shuffle, to aid later transformations.
 | |
|     bool AllWordsInNewV = true;
 | |
|     bool InOrder[2] = { true, true };
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx != (int)i)
 | |
|         InOrder[i/4] = false;
 | |
|       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
 | |
|         continue;
 | |
|       AllWordsInNewV = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
 | |
|     if (AllWordsInNewV) {
 | |
|       for (int i = 0; i != 8; ++i) {
 | |
|         int idx = MaskVals[i];
 | |
|         if (idx < 0)
 | |
|           continue;
 | |
|         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
 | |
|         if ((idx != i) && idx < 4)
 | |
|           pshufhw = false;
 | |
|         if ((idx != i) && idx > 3)
 | |
|           pshuflw = false;
 | |
|       }
 | |
|       V1 = NewV;
 | |
|       V2Used = false;
 | |
|       BestLoQuad = 0;
 | |
|       BestHiQuad = 1;
 | |
|     }
 | |
| 
 | |
|     // If we've eliminated the use of V2, and the new mask is a pshuflw or
 | |
|     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
 | |
|     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
 | |
|       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
 | |
|       unsigned TargetMask = 0;
 | |
|       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
 | |
|                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
 | |
|       TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
 | |
|                              X86::getShufflePSHUFLWImmediate(NewV.getNode());
 | |
|       V1 = NewV.getOperand(0);
 | |
|       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have SSSE3, and all words of the result are from 1 input vector,
 | |
|   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
 | |
|   // is present, fall back to case 4.
 | |
|   if (Subtarget->hasSSSE3()) {
 | |
|     SmallVector<SDValue,16> pshufbMask;
 | |
| 
 | |
|     // If we have elements from both input vectors, set the high bit of the
 | |
|     // shuffle mask element to zero out elements that come from V2 in the V1
 | |
|     // mask, and elements that come from V1 in the V2 mask, so that the two
 | |
|     // results can be OR'd together.
 | |
|     bool TwoInputs = V1Used && V2Used;
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int EltIdx = MaskVals[i] * 2;
 | |
|       if (TwoInputs && (EltIdx >= 16)) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
 | |
|     }
 | |
|     V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
 | |
|     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     if (!TwoInputs)
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
| 
 | |
|     // Calculate the shuffle mask for the second input, shuffle it, and
 | |
|     // OR it with the first shuffled input.
 | |
|     pshufbMask.clear();
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       int EltIdx = MaskVals[i] * 2;
 | |
|       if (EltIdx < 16) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
 | |
|     }
 | |
|     V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
 | |
|     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
|   }
 | |
| 
 | |
|   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
 | |
|   // and update MaskVals with new element order.
 | |
|   BitVector InOrder(8);
 | |
|   if (BestLoQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     for (int i = 0; i != 4; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx < 0) {
 | |
|         MaskV.push_back(-1);
 | |
|         InOrder.set(i);
 | |
|       } else if ((idx / 4) == BestLoQuad) {
 | |
|         MaskV.push_back(idx & 3);
 | |
|         InOrder.set(i);
 | |
|       } else {
 | |
|         MaskV.push_back(-1);
 | |
|       }
 | |
|     }
 | |
|     for (unsigned i = 4; i != 8; ++i)
 | |
|       MaskV.push_back(i);
 | |
|     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
 | |
|                                 &MaskV[0]);
 | |
| 
 | |
|     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
 | |
|       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
 | |
|                                NewV.getOperand(0),
 | |
|                                X86::getShufflePSHUFLWImmediate(NewV.getNode()),
 | |
|                                DAG);
 | |
|   }
 | |
| 
 | |
|   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
 | |
|   // and update MaskVals with the new element order.
 | |
|   if (BestHiQuad >= 0) {
 | |
|     SmallVector<int, 8> MaskV;
 | |
|     for (unsigned i = 0; i != 4; ++i)
 | |
|       MaskV.push_back(i);
 | |
|     for (unsigned i = 4; i != 8; ++i) {
 | |
|       int idx = MaskVals[i];
 | |
|       if (idx < 0) {
 | |
|         MaskV.push_back(-1);
 | |
|         InOrder.set(i);
 | |
|       } else if ((idx / 4) == BestHiQuad) {
 | |
|         MaskV.push_back((idx & 3) + 4);
 | |
|         InOrder.set(i);
 | |
|       } else {
 | |
|         MaskV.push_back(-1);
 | |
|       }
 | |
|     }
 | |
|     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
 | |
|                                 &MaskV[0]);
 | |
| 
 | |
|     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
 | |
|       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
 | |
|                               NewV.getOperand(0),
 | |
|                               X86::getShufflePSHUFHWImmediate(NewV.getNode()),
 | |
|                               DAG);
 | |
|   }
 | |
| 
 | |
|   // In case BestHi & BestLo were both -1, which means each quadword has a word
 | |
|   // from each of the four input quadwords, calculate the InOrder bitvector now
 | |
|   // before falling through to the insert/extract cleanup.
 | |
|   if (BestLoQuad == -1 && BestHiQuad == -1) {
 | |
|     NewV = V1;
 | |
|     for (int i = 0; i != 8; ++i)
 | |
|       if (MaskVals[i] < 0 || MaskVals[i] == i)
 | |
|         InOrder.set(i);
 | |
|   }
 | |
| 
 | |
|   // The other elements are put in the right place using pextrw and pinsrw.
 | |
|   for (unsigned i = 0; i != 8; ++i) {
 | |
|     if (InOrder[i])
 | |
|       continue;
 | |
|     int EltIdx = MaskVals[i];
 | |
|     if (EltIdx < 0)
 | |
|       continue;
 | |
|     SDValue ExtOp = (EltIdx < 8)
 | |
|     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
 | |
|                   DAG.getIntPtrConstant(EltIdx))
 | |
|     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
 | |
|                   DAG.getIntPtrConstant(EltIdx - 8));
 | |
|     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
 | |
|                        DAG.getIntPtrConstant(i));
 | |
|   }
 | |
|   return NewV;
 | |
| }
 | |
| 
 | |
| // v16i8 shuffles - Prefer shuffles in the following order:
 | |
| // 1. [ssse3] 1 x pshufb
 | |
| // 2. [ssse3] 2 x pshufb + 1 x por
 | |
| // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
 | |
| static
 | |
| SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
 | |
|                                  SelectionDAG &DAG,
 | |
|                                  const X86TargetLowering &TLI) {
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   SmallVector<int, 16> MaskVals;
 | |
|   SVOp->getMask(MaskVals);
 | |
| 
 | |
|   // If we have SSSE3, case 1 is generated when all result bytes come from
 | |
|   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
 | |
|   // present, fall back to case 3.
 | |
|   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
 | |
|   bool V1Only = true;
 | |
|   bool V2Only = true;
 | |
|   for (unsigned i = 0; i < 16; ++i) {
 | |
|     int EltIdx = MaskVals[i];
 | |
|     if (EltIdx < 0)
 | |
|       continue;
 | |
|     if (EltIdx < 16)
 | |
|       V2Only = false;
 | |
|     else
 | |
|       V1Only = false;
 | |
|   }
 | |
| 
 | |
|   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
 | |
|   if (TLI.getSubtarget()->hasSSSE3()) {
 | |
|     SmallVector<SDValue,16> pshufbMask;
 | |
| 
 | |
|     // If all result elements are from one input vector, then only translate
 | |
|     // undef mask values to 0x80 (zero out result) in the pshufb mask.
 | |
|     //
 | |
|     // Otherwise, we have elements from both input vectors, and must zero out
 | |
|     // elements that come from V2 in the first mask, and V1 in the second mask
 | |
|     // so that we can OR them together.
 | |
|     bool TwoInputs = !(V1Only || V2Only);
 | |
|     for (unsigned i = 0; i != 16; ++i) {
 | |
|       int EltIdx = MaskVals[i];
 | |
|       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
 | |
|     }
 | |
|     // If all the elements are from V2, assign it to V1 and return after
 | |
|     // building the first pshufb.
 | |
|     if (V2Only)
 | |
|       V1 = V2;
 | |
|     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     if (!TwoInputs)
 | |
|       return V1;
 | |
| 
 | |
|     // Calculate the shuffle mask for the second input, shuffle it, and
 | |
|     // OR it with the first shuffled input.
 | |
|     pshufbMask.clear();
 | |
|     for (unsigned i = 0; i != 16; ++i) {
 | |
|       int EltIdx = MaskVals[i];
 | |
|       if (EltIdx < 16) {
 | |
|         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
 | |
|         continue;
 | |
|       }
 | |
|       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
 | |
|     }
 | |
|     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, dl,
 | |
|                                  MVT::v16i8, &pshufbMask[0], 16));
 | |
|     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
 | |
|   }
 | |
| 
 | |
|   // No SSSE3 - Calculate in place words and then fix all out of place words
 | |
|   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
 | |
|   // the 16 different words that comprise the two doublequadword input vectors.
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
 | |
|   V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
 | |
|   SDValue NewV = V2Only ? V2 : V1;
 | |
|   for (int i = 0; i != 8; ++i) {
 | |
|     int Elt0 = MaskVals[i*2];
 | |
|     int Elt1 = MaskVals[i*2+1];
 | |
| 
 | |
|     // This word of the result is all undef, skip it.
 | |
|     if (Elt0 < 0 && Elt1 < 0)
 | |
|       continue;
 | |
| 
 | |
|     // This word of the result is already in the correct place, skip it.
 | |
|     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
 | |
|       continue;
 | |
|     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
 | |
|       continue;
 | |
| 
 | |
|     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
 | |
|     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
 | |
|     SDValue InsElt;
 | |
| 
 | |
|     // If Elt0 and Elt1 are defined, are consecutive, and can be load
 | |
|     // using a single extract together, load it and store it.
 | |
|     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
 | |
|       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
 | |
|                            DAG.getIntPtrConstant(Elt1 / 2));
 | |
|       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
 | |
|                         DAG.getIntPtrConstant(i));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If Elt1 is defined, extract it from the appropriate source.  If the
 | |
|     // source byte is not also odd, shift the extracted word left 8 bits
 | |
|     // otherwise clear the bottom 8 bits if we need to do an or.
 | |
|     if (Elt1 >= 0) {
 | |
|       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
 | |
|                            DAG.getIntPtrConstant(Elt1 / 2));
 | |
|       if ((Elt1 & 1) == 0)
 | |
|         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
 | |
|                              DAG.getConstant(8, TLI.getShiftAmountTy()));
 | |
|       else if (Elt0 >= 0)
 | |
|         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
 | |
|                              DAG.getConstant(0xFF00, MVT::i16));
 | |
|     }
 | |
|     // If Elt0 is defined, extract it from the appropriate source.  If the
 | |
|     // source byte is not also even, shift the extracted word right 8 bits. If
 | |
|     // Elt1 was also defined, OR the extracted values together before
 | |
|     // inserting them in the result.
 | |
|     if (Elt0 >= 0) {
 | |
|       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
 | |
|                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
 | |
|       if ((Elt0 & 1) != 0)
 | |
|         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
 | |
|                               DAG.getConstant(8, TLI.getShiftAmountTy()));
 | |
|       else if (Elt1 >= 0)
 | |
|         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
 | |
|                              DAG.getConstant(0x00FF, MVT::i16));
 | |
|       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
 | |
|                          : InsElt0;
 | |
|     }
 | |
|     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
 | |
|                        DAG.getIntPtrConstant(i));
 | |
|   }
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
 | |
| }
 | |
| 
 | |
| /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
 | |
| /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
 | |
| /// done when every pair / quad of shuffle mask elements point to elements in
 | |
| /// the right sequence. e.g.
 | |
| /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
 | |
| static
 | |
| SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
 | |
|                                  SelectionDAG &DAG, DebugLoc dl) {
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
 | |
|   EVT NewVT;
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: assert(false && "Unexpected!");
 | |
|   case MVT::v4f32: NewVT = MVT::v2f64; break;
 | |
|   case MVT::v4i32: NewVT = MVT::v2i64; break;
 | |
|   case MVT::v8i16: NewVT = MVT::v4i32; break;
 | |
|   case MVT::v16i8: NewVT = MVT::v4i32; break;
 | |
|   }
 | |
| 
 | |
|   int Scale = NumElems / NewWidth;
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   for (unsigned i = 0; i < NumElems; i += Scale) {
 | |
|     int StartIdx = -1;
 | |
|     for (int j = 0; j < Scale; ++j) {
 | |
|       int EltIdx = SVOp->getMaskElt(i+j);
 | |
|       if (EltIdx < 0)
 | |
|         continue;
 | |
|       if (StartIdx == -1)
 | |
|         StartIdx = EltIdx - (EltIdx % Scale);
 | |
|       if (EltIdx != StartIdx + j)
 | |
|         return SDValue();
 | |
|     }
 | |
|     if (StartIdx == -1)
 | |
|       MaskVec.push_back(-1);
 | |
|     else
 | |
|       MaskVec.push_back(StartIdx / Scale);
 | |
|   }
 | |
| 
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
 | |
|   V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
 | |
|   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
 | |
| }
 | |
| 
 | |
| /// getVZextMovL - Return a zero-extending vector move low node.
 | |
| ///
 | |
| static SDValue getVZextMovL(EVT VT, EVT OpVT,
 | |
|                             SDValue SrcOp, SelectionDAG &DAG,
 | |
|                             const X86Subtarget *Subtarget, DebugLoc dl) {
 | |
|   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
 | |
|     LoadSDNode *LD = NULL;
 | |
|     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
 | |
|       LD = dyn_cast<LoadSDNode>(SrcOp);
 | |
|     if (!LD) {
 | |
|       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
 | |
|       // instead.
 | |
|       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
 | |
|       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
 | |
|           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | |
|           SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
 | |
|           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
 | |
|         // PR2108
 | |
|         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
 | |
|         return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    OpVT,
 | |
|                                                    SrcOp.getOperand(0)
 | |
|                                                           .getOperand(0))));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
 | |
|                                  DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                              OpVT, SrcOp)));
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
 | |
| /// shuffles.
 | |
| static SDValue
 | |
| LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
 | |
|   SDValue V1 = SVOp->getOperand(0);
 | |
|   SDValue V2 = SVOp->getOperand(1);
 | |
|   DebugLoc dl = SVOp->getDebugLoc();
 | |
|   EVT VT = SVOp->getValueType(0);
 | |
| 
 | |
|   SmallVector<std::pair<int, int>, 8> Locs;
 | |
|   Locs.resize(4);
 | |
|   SmallVector<int, 8> Mask1(4U, -1);
 | |
|   SmallVector<int, 8> PermMask;
 | |
|   SVOp->getMask(PermMask);
 | |
| 
 | |
|   unsigned NumHi = 0;
 | |
|   unsigned NumLo = 0;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     int Idx = PermMask[i];
 | |
|     if (Idx < 0) {
 | |
|       Locs[i] = std::make_pair(-1, -1);
 | |
|     } else {
 | |
|       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
 | |
|       if (Idx < 4) {
 | |
|         Locs[i] = std::make_pair(0, NumLo);
 | |
|         Mask1[NumLo] = Idx;
 | |
|         NumLo++;
 | |
|       } else {
 | |
|         Locs[i] = std::make_pair(1, NumHi);
 | |
|         if (2+NumHi < 4)
 | |
|           Mask1[2+NumHi] = Idx;
 | |
|         NumHi++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NumLo <= 2 && NumHi <= 2) {
 | |
|     // If no more than two elements come from either vector. This can be
 | |
|     // implemented with two shuffles. First shuffle gather the elements.
 | |
|     // The second shuffle, which takes the first shuffle as both of its
 | |
|     // vector operands, put the elements into the right order.
 | |
|     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
| 
 | |
|     SmallVector<int, 8> Mask2(4U, -1);
 | |
| 
 | |
|     for (unsigned i = 0; i != 4; ++i) {
 | |
|       if (Locs[i].first == -1)
 | |
|         continue;
 | |
|       else {
 | |
|         unsigned Idx = (i < 2) ? 0 : 4;
 | |
|         Idx += Locs[i].first * 2 + Locs[i].second;
 | |
|         Mask2[i] = Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
 | |
|   } else if (NumLo == 3 || NumHi == 3) {
 | |
|     // Otherwise, we must have three elements from one vector, call it X, and
 | |
|     // one element from the other, call it Y.  First, use a shufps to build an
 | |
|     // intermediate vector with the one element from Y and the element from X
 | |
|     // that will be in the same half in the final destination (the indexes don't
 | |
|     // matter). Then, use a shufps to build the final vector, taking the half
 | |
|     // containing the element from Y from the intermediate, and the other half
 | |
|     // from X.
 | |
|     if (NumHi == 3) {
 | |
|       // Normalize it so the 3 elements come from V1.
 | |
|       CommuteVectorShuffleMask(PermMask, VT);
 | |
|       std::swap(V1, V2);
 | |
|     }
 | |
| 
 | |
|     // Find the element from V2.
 | |
|     unsigned HiIndex;
 | |
|     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
 | |
|       int Val = PermMask[HiIndex];
 | |
|       if (Val < 0)
 | |
|         continue;
 | |
|       if (Val >= 4)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     Mask1[0] = PermMask[HiIndex];
 | |
|     Mask1[1] = -1;
 | |
|     Mask1[2] = PermMask[HiIndex^1];
 | |
|     Mask1[3] = -1;
 | |
|     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
| 
 | |
|     if (HiIndex >= 2) {
 | |
|       Mask1[0] = PermMask[0];
 | |
|       Mask1[1] = PermMask[1];
 | |
|       Mask1[2] = HiIndex & 1 ? 6 : 4;
 | |
|       Mask1[3] = HiIndex & 1 ? 4 : 6;
 | |
|       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
 | |
|     } else {
 | |
|       Mask1[0] = HiIndex & 1 ? 2 : 0;
 | |
|       Mask1[1] = HiIndex & 1 ? 0 : 2;
 | |
|       Mask1[2] = PermMask[2];
 | |
|       Mask1[3] = PermMask[3];
 | |
|       if (Mask1[2] >= 0)
 | |
|         Mask1[2] += 4;
 | |
|       if (Mask1[3] >= 0)
 | |
|         Mask1[3] += 4;
 | |
|       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Break it into (shuffle shuffle_hi, shuffle_lo).
 | |
|   Locs.clear();
 | |
|   SmallVector<int,8> LoMask(4U, -1);
 | |
|   SmallVector<int,8> HiMask(4U, -1);
 | |
| 
 | |
|   SmallVector<int,8> *MaskPtr = &LoMask;
 | |
|   unsigned MaskIdx = 0;
 | |
|   unsigned LoIdx = 0;
 | |
|   unsigned HiIdx = 2;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     if (i == 2) {
 | |
|       MaskPtr = &HiMask;
 | |
|       MaskIdx = 1;
 | |
|       LoIdx = 0;
 | |
|       HiIdx = 2;
 | |
|     }
 | |
|     int Idx = PermMask[i];
 | |
|     if (Idx < 0) {
 | |
|       Locs[i] = std::make_pair(-1, -1);
 | |
|     } else if (Idx < 4) {
 | |
|       Locs[i] = std::make_pair(MaskIdx, LoIdx);
 | |
|       (*MaskPtr)[LoIdx] = Idx;
 | |
|       LoIdx++;
 | |
|     } else {
 | |
|       Locs[i] = std::make_pair(MaskIdx, HiIdx);
 | |
|       (*MaskPtr)[HiIdx] = Idx;
 | |
|       HiIdx++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
 | |
|   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
 | |
|   SmallVector<int, 8> MaskOps;
 | |
|   for (unsigned i = 0; i != 4; ++i) {
 | |
|     if (Locs[i].first == -1) {
 | |
|       MaskOps.push_back(-1);
 | |
|     } else {
 | |
|       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
 | |
|       MaskOps.push_back(Idx);
 | |
|     }
 | |
|   }
 | |
|   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
 | |
| }
 | |
| 
 | |
| static bool MayFoldVectorLoad(SDValue V) {
 | |
|   if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
 | |
|     V = V.getOperand(0);
 | |
|   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     V = V.getOperand(0);
 | |
|   if (MayFoldLoad(V))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FIXME: the version above should always be used. Since there's
 | |
| // a bug where several vector shuffles can't be folded because the
 | |
| // DAG is not updated during lowering and a node claims to have two
 | |
| // uses while it only has one, use this version, and let isel match
 | |
| // another instruction if the load really happens to have more than
 | |
| // one use. Remove this version after this bug get fixed.
 | |
| // rdar://8434668, PR8156
 | |
| static bool RelaxedMayFoldVectorLoad(SDValue V) {
 | |
|   if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
 | |
|     V = V.getOperand(0);
 | |
|   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     V = V.getOperand(0);
 | |
|   if (ISD::isNormalLoad(V.getNode()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
 | |
| /// a vector extract, and if both can be later optimized into a single load.
 | |
| /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
 | |
| /// here because otherwise a target specific shuffle node is going to be
 | |
| /// emitted for this shuffle, and the optimization not done.
 | |
| /// FIXME: This is probably not the best approach, but fix the problem
 | |
| /// until the right path is decided.
 | |
| static
 | |
| bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
 | |
|                                          const TargetLowering &TLI) {
 | |
|   EVT VT = V.getValueType();
 | |
|   ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
 | |
| 
 | |
|   // Be sure that the vector shuffle is present in a pattern like this:
 | |
|   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
 | |
|   if (!V.hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   SDNode *N = *V.getNode()->use_begin();
 | |
|   if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|     return false;
 | |
| 
 | |
|   SDValue EltNo = N->getOperand(1);
 | |
|   if (!isa<ConstantSDNode>(EltNo))
 | |
|     return false;
 | |
| 
 | |
|   // If the bit convert changed the number of elements, it is unsafe
 | |
|   // to examine the mask.
 | |
|   bool HasShuffleIntoBitcast = false;
 | |
|   if (V.getOpcode() == ISD::BIT_CONVERT) {
 | |
|     EVT SrcVT = V.getOperand(0).getValueType();
 | |
|     if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
 | |
|       return false;
 | |
|     V = V.getOperand(0);
 | |
|     HasShuffleIntoBitcast = true;
 | |
|   }
 | |
| 
 | |
|   // Select the input vector, guarding against out of range extract vector.
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
 | |
|   int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
 | |
|   V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
 | |
| 
 | |
|   // Skip one more bit_convert if necessary
 | |
|   if (V.getOpcode() == ISD::BIT_CONVERT)
 | |
|     V = V.getOperand(0);
 | |
| 
 | |
|   if (ISD::isNormalLoad(V.getNode())) {
 | |
|     // Is the original load suitable?
 | |
|     LoadSDNode *LN0 = cast<LoadSDNode>(V);
 | |
| 
 | |
|     // FIXME: avoid the multi-use bug that is preventing lots of
 | |
|     // of foldings to be detected, this is still wrong of course, but
 | |
|     // give the temporary desired behavior, and if it happens that
 | |
|     // the load has real more uses, during isel it will not fold, and
 | |
|     // will generate poor code.
 | |
|     if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
 | |
|       return false;
 | |
| 
 | |
|     if (!HasShuffleIntoBitcast)
 | |
|       return true;
 | |
| 
 | |
|     // If there's a bitcast before the shuffle, check if the load type and
 | |
|     // alignment is valid.
 | |
|     unsigned Align = LN0->getAlignment();
 | |
|     unsigned NewAlign =
 | |
|       TLI.getTargetData()->getABITypeAlignment(
 | |
|                                     VT.getTypeForEVT(*DAG.getContext()));
 | |
| 
 | |
|     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static
 | |
| SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Canonizalize to v2f64.
 | |
|   V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
 | |
|                                           V1, DAG));
 | |
| }
 | |
| 
 | |
| static
 | |
| SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
 | |
|                         bool HasSSE2) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   assert(VT != MVT::v2i64 && "unsupported shuffle type");
 | |
| 
 | |
|   if (HasSSE2 && VT == MVT::v2f64)
 | |
|     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
 | |
| 
 | |
|   // v4f32 or v4i32
 | |
|   return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
 | |
| }
 | |
| 
 | |
| static
 | |
| SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
 | |
|          "unsupported shuffle type");
 | |
| 
 | |
|   if (V2.getOpcode() == ISD::UNDEF)
 | |
|     V2 = V1;
 | |
| 
 | |
|   // v4i32 or v4f32
 | |
|   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
 | |
| }
 | |
| 
 | |
| static
 | |
| SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
| 
 | |
|   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
 | |
|   // operand of these instructions is only memory, so check if there's a
 | |
|   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
 | |
|   // same masks.
 | |
|   bool CanFoldLoad = false;
 | |
| 
 | |
|   // Trivial case, when V2 comes from a load.
 | |
|   if (MayFoldVectorLoad(V2))
 | |
|     CanFoldLoad = true;
 | |
| 
 | |
|   // When V1 is a load, it can be folded later into a store in isel, example:
 | |
|   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
 | |
|   //    turns into:
 | |
|   //  (MOVLPSmr addr:$src1, VR128:$src2)
 | |
|   // So, recognize this potential and also use MOVLPS or MOVLPD
 | |
|   if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
 | |
|     CanFoldLoad = true;
 | |
| 
 | |
|   if (CanFoldLoad) {
 | |
|     if (HasSSE2 && NumElems == 2)
 | |
|       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
 | |
| 
 | |
|     if (NumElems == 4)
 | |
|       return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
 | |
|   }
 | |
| 
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   // movl and movlp will both match v2i64, but v2i64 is never matched by
 | |
|   // movl earlier because we make it strict to avoid messing with the movlp load
 | |
|   // folding logic (see the code above getMOVLP call). Match it here then,
 | |
|   // this is horrible, but will stay like this until we move all shuffle
 | |
|   // matching to x86 specific nodes. Note that for the 1st condition all
 | |
|   // types are matched with movsd.
 | |
|   if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
 | |
|     return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
 | |
|   else if (HasSSE2)
 | |
|     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
 | |
| 
 | |
| 
 | |
|   assert(VT != MVT::v4i32 && "unsupported shuffle type");
 | |
| 
 | |
|   // Invert the operand order and use SHUFPS to match it.
 | |
|   return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
 | |
|                               X86::getShuffleSHUFImmediate(SVOp), DAG);
 | |
| }
 | |
| 
 | |
| static inline unsigned getUNPCKLOpcode(EVT VT) {
 | |
|   switch(VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::v4i32: return X86ISD::PUNPCKLDQ;
 | |
|   case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
 | |
|   case MVT::v4f32: return X86ISD::UNPCKLPS;
 | |
|   case MVT::v2f64: return X86ISD::UNPCKLPD;
 | |
|   case MVT::v16i8: return X86ISD::PUNPCKLBW;
 | |
|   case MVT::v8i16: return X86ISD::PUNPCKLWD;
 | |
|   default:
 | |
|     llvm_unreachable("Unknow type for unpckl");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned getUNPCKHOpcode(EVT VT) {
 | |
|   switch(VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::v4i32: return X86ISD::PUNPCKHDQ;
 | |
|   case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
 | |
|   case MVT::v4f32: return X86ISD::UNPCKHPS;
 | |
|   case MVT::v2f64: return X86ISD::UNPCKHPD;
 | |
|   case MVT::v16i8: return X86ISD::PUNPCKHBW;
 | |
|   case MVT::v8i16: return X86ISD::PUNPCKHWD;
 | |
|   default:
 | |
|     llvm_unreachable("Unknow type for unpckh");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static
 | |
| SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
 | |
|                                const TargetLowering &TLI,
 | |
|                                const X86Subtarget *Subtarget) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
| 
 | |
|   if (isZeroShuffle(SVOp))
 | |
|     return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
 | |
| 
 | |
|   // Handle splat operations
 | |
|   if (SVOp->isSplat()) {
 | |
|     // Special case, this is the only place now where it's
 | |
|     // allowed to return a vector_shuffle operation without
 | |
|     // using a target specific node, because *hopefully* it
 | |
|     // will be optimized away by the dag combiner.
 | |
|     if (VT.getVectorNumElements() <= 4 &&
 | |
|         CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
 | |
|       return Op;
 | |
| 
 | |
|     // Handle splats by matching through known masks
 | |
|     if (VT.getVectorNumElements() <= 4)
 | |
|       return SDValue();
 | |
| 
 | |
|     // Canonicalize all of the remaining to v4f32.
 | |
|     return PromoteSplat(SVOp, DAG);
 | |
|   }
 | |
| 
 | |
|   // If the shuffle can be profitably rewritten as a narrower shuffle, then
 | |
|   // do it!
 | |
|   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
 | |
|     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
 | |
|     if (NewOp.getNode())
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
 | |
|   } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
 | |
|     // FIXME: Figure out a cleaner way to do this.
 | |
|     // Try to make use of movq to zero out the top part.
 | |
|     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
 | |
|       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
 | |
|       if (NewOp.getNode()) {
 | |
|         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
 | |
|           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
 | |
|                               DAG, Subtarget, dl);
 | |
|       }
 | |
|     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
 | |
|       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
 | |
|       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
 | |
|         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
 | |
|                             DAG, Subtarget, dl);
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned NumElems = VT.getVectorNumElements();
 | |
|   bool isMMX = VT.getSizeInBits() == 64;
 | |
|   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
 | |
|   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
 | |
|   bool V1IsSplat = false;
 | |
|   bool V2IsSplat = false;
 | |
|   bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
 | |
|   bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
 | |
|   bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
 | |
| 
 | |
|   // Shuffle operations on MMX not supported.
 | |
|   if (isMMX)
 | |
|     return Op;
 | |
| 
 | |
|   // Vector shuffle lowering takes 3 steps:
 | |
|   //
 | |
|   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
 | |
|   //    narrowing and commutation of operands should be handled.
 | |
|   // 2) Matching of shuffles with known shuffle masks to x86 target specific
 | |
|   //    shuffle nodes.
 | |
|   // 3) Rewriting of unmatched masks into new generic shuffle operations,
 | |
|   //    so the shuffle can be broken into other shuffles and the legalizer can
 | |
|   //    try the lowering again.
 | |
|   //
 | |
|   // The general ideia is that no vector_shuffle operation should be left to
 | |
|   // be matched during isel, all of them must be converted to a target specific
 | |
|   // node here.
 | |
| 
 | |
|   // Normalize the input vectors. Here splats, zeroed vectors, profitable
 | |
|   // narrowing and commutation of operands should be handled. The actual code
 | |
|   // doesn't include all of those, work in progress...
 | |
|   SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
 | |
|   if (NewOp.getNode())
 | |
|     return NewOp;
 | |
| 
 | |
|   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
 | |
|   // unpckh_undef). Only use pshufd if speed is more important than size.
 | |
|   if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
 | |
|     if (VT != MVT::v2i64 && VT != MVT::v2f64)
 | |
|       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
 | |
|   if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
 | |
|     if (VT != MVT::v2i64 && VT != MVT::v2f64)
 | |
|       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
 | |
| 
 | |
|   if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
 | |
|       RelaxedMayFoldVectorLoad(V1))
 | |
|     return getMOVDDup(Op, dl, V1, DAG);
 | |
| 
 | |
|   if (X86::isMOVHLPS_v_undef_Mask(SVOp))
 | |
|     return getMOVHighToLow(Op, dl, DAG);
 | |
| 
 | |
|   // Use to match splats
 | |
|   if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
 | |
|       (VT == MVT::v2f64 || VT == MVT::v2i64))
 | |
|     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
 | |
| 
 | |
|   if (X86::isPSHUFDMask(SVOp)) {
 | |
|     // The actual implementation will match the mask in the if above and then
 | |
|     // during isel it can match several different instructions, not only pshufd
 | |
|     // as its name says, sad but true, emulate the behavior for now...
 | |
|     if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
 | |
|         return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
 | |
| 
 | |
|     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
 | |
| 
 | |
|     if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
 | |
|       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
 | |
| 
 | |
|     if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
 | |
|       return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
 | |
|                                   TargetMask, DAG);
 | |
| 
 | |
|     if (VT == MVT::v4f32)
 | |
|       return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
 | |
|                                   TargetMask, DAG);
 | |
|   }
 | |
| 
 | |
|   // Check if this can be converted into a logical shift.
 | |
|   bool isLeft = false;
 | |
|   unsigned ShAmt = 0;
 | |
|   SDValue ShVal;
 | |
|   bool isShift = getSubtarget()->hasSSE2() &&
 | |
|     isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
 | |
|   if (isShift && ShVal.hasOneUse()) {
 | |
|     // If the shifted value has multiple uses, it may be cheaper to use
 | |
|     // v_set0 + movlhps or movhlps, etc.
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
|     ShAmt *= EltVT.getSizeInBits();
 | |
|     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
 | |
|   }
 | |
| 
 | |
|   if (X86::isMOVLMask(SVOp)) {
 | |
|     if (V1IsUndef)
 | |
|       return V2;
 | |
|     if (ISD::isBuildVectorAllZeros(V1.getNode()))
 | |
|       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
 | |
|     if (!X86::isMOVLPMask(SVOp)) {
 | |
|       if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
 | |
|         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
 | |
| 
 | |
|       if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: fold these into legal mask.
 | |
|   if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
 | |
|     return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
 | |
| 
 | |
|   if (X86::isMOVHLPSMask(SVOp))
 | |
|     return getMOVHighToLow(Op, dl, DAG);
 | |
| 
 | |
|   if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
 | |
|     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
 | |
| 
 | |
|   if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
 | |
|     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
 | |
| 
 | |
|   if (X86::isMOVLPMask(SVOp))
 | |
|     return getMOVLP(Op, dl, DAG, HasSSE2);
 | |
| 
 | |
|   if (ShouldXformToMOVHLPS(SVOp) ||
 | |
|       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
 | |
|     return CommuteVectorShuffle(SVOp, DAG);
 | |
| 
 | |
|   if (isShift) {
 | |
|     // No better options. Use a vshl / vsrl.
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
|     ShAmt *= EltVT.getSizeInBits();
 | |
|     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
 | |
|   }
 | |
| 
 | |
|   bool Commuted = false;
 | |
|   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
 | |
|   // 1,1,1,1 -> v8i16 though.
 | |
|   V1IsSplat = isSplatVector(V1.getNode());
 | |
|   V2IsSplat = isSplatVector(V2.getNode());
 | |
| 
 | |
|   // Canonicalize the splat or undef, if present, to be on the RHS.
 | |
|   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
 | |
|     Op = CommuteVectorShuffle(SVOp, DAG);
 | |
|     SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|     V1 = SVOp->getOperand(0);
 | |
|     V2 = SVOp->getOperand(1);
 | |
|     std::swap(V1IsSplat, V2IsSplat);
 | |
|     std::swap(V1IsUndef, V2IsUndef);
 | |
|     Commuted = true;
 | |
|   }
 | |
| 
 | |
|   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
 | |
|     // Shuffling low element of v1 into undef, just return v1.
 | |
|     if (V2IsUndef)
 | |
|       return V1;
 | |
|     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
 | |
|     // the instruction selector will not match, so get a canonical MOVL with
 | |
|     // swapped operands to undo the commute.
 | |
|     return getMOVL(DAG, dl, VT, V2, V1);
 | |
|   }
 | |
| 
 | |
|   if (X86::isUNPCKLMask(SVOp))
 | |
|     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
 | |
| 
 | |
|   if (X86::isUNPCKHMask(SVOp))
 | |
|     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
 | |
| 
 | |
|   if (V2IsSplat) {
 | |
|     // Normalize mask so all entries that point to V2 points to its first
 | |
|     // element then try to match unpck{h|l} again. If match, return a
 | |
|     // new vector_shuffle with the corrected mask.
 | |
|     SDValue NewMask = NormalizeMask(SVOp, DAG);
 | |
|     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
 | |
|     if (NSVOp != SVOp) {
 | |
|       if (X86::isUNPCKLMask(NSVOp, true)) {
 | |
|         return NewMask;
 | |
|       } else if (X86::isUNPCKHMask(NSVOp, true)) {
 | |
|         return NewMask;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Commuted) {
 | |
|     // Commute is back and try unpck* again.
 | |
|     // FIXME: this seems wrong.
 | |
|     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
 | |
|     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
 | |
| 
 | |
|     if (X86::isUNPCKLMask(NewSVOp))
 | |
|       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
 | |
| 
 | |
|     if (X86::isUNPCKHMask(NewSVOp))
 | |
|       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
 | |
|   }
 | |
| 
 | |
|   // Normalize the node to match x86 shuffle ops if needed
 | |
|   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
 | |
|     return CommuteVectorShuffle(SVOp, DAG);
 | |
| 
 | |
|   // The checks below are all present in isShuffleMaskLegal, but they are
 | |
|   // inlined here right now to enable us to directly emit target specific
 | |
|   // nodes, and remove one by one until they don't return Op anymore.
 | |
|   SmallVector<int, 16> M;
 | |
|   SVOp->getMask(M);
 | |
| 
 | |
|   if (isPALIGNRMask(M, VT, HasSSSE3))
 | |
|     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
 | |
|                                 X86::getShufflePALIGNRImmediate(SVOp),
 | |
|                                 DAG);
 | |
| 
 | |
|   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
 | |
|       SVOp->getSplatIndex() == 0 && V2IsUndef) {
 | |
|     if (VT == MVT::v2f64)
 | |
|       return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
 | |
|     if (VT == MVT::v2i64)
 | |
|       return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
 | |
|   }
 | |
| 
 | |
|   if (isPSHUFHWMask(M, VT))
 | |
|     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
 | |
|                                 X86::getShufflePSHUFHWImmediate(SVOp),
 | |
|                                 DAG);
 | |
| 
 | |
|   if (isPSHUFLWMask(M, VT))
 | |
|     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
 | |
|                                 X86::getShufflePSHUFLWImmediate(SVOp),
 | |
|                                 DAG);
 | |
| 
 | |
|   if (isSHUFPMask(M, VT)) {
 | |
|     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
 | |
|     if (VT == MVT::v4f32 || VT == MVT::v4i32)
 | |
|       return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
 | |
|                                   TargetMask, DAG);
 | |
|     if (VT == MVT::v2f64 || VT == MVT::v2i64)
 | |
|       return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
 | |
|                                   TargetMask, DAG);
 | |
|   }
 | |
| 
 | |
|   if (X86::isUNPCKL_v_undef_Mask(SVOp))
 | |
|     if (VT != MVT::v2i64 && VT != MVT::v2f64)
 | |
|       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
 | |
|   if (X86::isUNPCKH_v_undef_Mask(SVOp))
 | |
|     if (VT != MVT::v2i64 && VT != MVT::v2f64)
 | |
|       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
 | |
| 
 | |
|   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
 | |
|   if (VT == MVT::v8i16) {
 | |
|     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
 | |
|     if (NewOp.getNode())
 | |
|       return NewOp;
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::v16i8) {
 | |
|     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
 | |
|     if (NewOp.getNode())
 | |
|       return NewOp;
 | |
|   }
 | |
| 
 | |
|   // Handle all 4 wide cases with a number of shuffles.
 | |
|   if (NumElems == 4)
 | |
|     return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (VT.getSizeInBits() == 8) {
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT.getSizeInBits() == 16) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
 | |
|     if (Idx == 0)
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
 | |
|                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                      DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                  MVT::v4i32,
 | |
|                                                  Op.getOperand(0)),
 | |
|                                      Op.getOperand(1)));
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT == MVT::f32) {
 | |
|     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
 | |
|     // the result back to FR32 register. It's only worth matching if the
 | |
|     // result has a single use which is a store or a bitcast to i32.  And in
 | |
|     // the case of a store, it's not worth it if the index is a constant 0,
 | |
|     // because a MOVSSmr can be used instead, which is smaller and faster.
 | |
|     if (!Op.hasOneUse())
 | |
|       return SDValue();
 | |
|     SDNode *User = *Op.getNode()->use_begin();
 | |
|     if ((User->getOpcode() != ISD::STORE ||
 | |
|          (isa<ConstantSDNode>(Op.getOperand(1)) &&
 | |
|           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
 | |
|         (User->getOpcode() != ISD::BIT_CONVERT ||
 | |
|          User->getValueType(0) != MVT::i32))
 | |
|       return SDValue();
 | |
|     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
 | |
|                                               Op.getOperand(0)),
 | |
|                                               Op.getOperand(1));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
 | |
|   } else if (VT == MVT::i32) {
 | |
|     // ExtractPS works with constant index.
 | |
|     if (isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|       return Op;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Subtarget->hasSSE41()) {
 | |
|     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
 | |
|     if (Res.getNode())
 | |
|       return Res;
 | |
|   }
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // TODO: handle v16i8.
 | |
|   if (VT.getSizeInBits() == 16) {
 | |
|     SDValue Vec = Op.getOperand(0);
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
 | |
|                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
 | |
|                                      DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                                  MVT::v4i32, Vec),
 | |
|                                      Op.getOperand(1)));
 | |
|     // Transform it so it match pextrw which produces a 32-bit result.
 | |
|     EVT EltVT = MVT::i32;
 | |
|     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
 | |
|                                     Op.getOperand(0), Op.getOperand(1));
 | |
|     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
 | |
|                                     DAG.getValueType(VT));
 | |
|     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
 | |
|   } else if (VT.getSizeInBits() == 32) {
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
| 
 | |
|     // SHUFPS the element to the lowest double word, then movss.
 | |
|     int Mask[4] = { Idx, -1, -1, -1 };
 | |
|     EVT VVT = Op.getOperand(0).getValueType();
 | |
|     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
 | |
|                                        DAG.getUNDEF(VVT), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   } else if (VT.getSizeInBits() == 64) {
 | |
|     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
 | |
|     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
 | |
|     //        to match extract_elt for f64.
 | |
|     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|     if (Idx == 0)
 | |
|       return Op;
 | |
| 
 | |
|     // UNPCKHPD the element to the lowest double word, then movsd.
 | |
|     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
 | |
|     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
 | |
|     int Mask[2] = { 1, -1 };
 | |
|     EVT VVT = Op.getOperand(0).getValueType();
 | |
|     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
 | |
|                                        DAG.getUNDEF(VVT), Mask);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2 = Op.getOperand(2);
 | |
| 
 | |
|   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
 | |
|       isa<ConstantSDNode>(N2)) {
 | |
|     unsigned Opc;
 | |
|     if (VT == MVT::v8i16)
 | |
|       Opc = X86ISD::PINSRW;
 | |
|     else if (VT == MVT::v16i8)
 | |
|       Opc = X86ISD::PINSRB;
 | |
|     else
 | |
|       Opc = X86ISD::PINSRB;
 | |
| 
 | |
|     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
 | |
|     // argument.
 | |
|     if (N1.getValueType() != MVT::i32)
 | |
|       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | |
|     if (N2.getValueType() != MVT::i32)
 | |
|       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
 | |
|     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
 | |
|   } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
 | |
|     // Bits [7:6] of the constant are the source select.  This will always be
 | |
|     //  zero here.  The DAG Combiner may combine an extract_elt index into these
 | |
|     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
 | |
|     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
 | |
|     // Bits [5:4] of the constant are the destination select.  This is the
 | |
|     //  value of the incoming immediate.
 | |
|     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
 | |
|     //   combine either bitwise AND or insert of float 0.0 to set these bits.
 | |
|     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
 | |
|     // Create this as a scalar to vector..
 | |
|     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
 | |
|     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
 | |
|   } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
 | |
|     // PINSR* works with constant index.
 | |
|     return Op;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
| 
 | |
|   if (Subtarget->hasSSE41())
 | |
|     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
 | |
| 
 | |
|   if (EltVT == MVT::i8)
 | |
|     return SDValue();
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   SDValue N1 = Op.getOperand(1);
 | |
|   SDValue N2 = Op.getOperand(2);
 | |
| 
 | |
|   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
 | |
|     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
 | |
|     // as its second argument.
 | |
|     if (N1.getValueType() != MVT::i32)
 | |
|       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
 | |
|     if (N2.getValueType() != MVT::i32)
 | |
|       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
 | |
|     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Op.getValueType() == MVT::v1i64 &&
 | |
|       Op.getOperand(0).getValueType() == MVT::i64)
 | |
|     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
 | |
| 
 | |
|   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
 | |
|   assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
 | |
|          "Expected an SSE type!");
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
 | |
|                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
 | |
| }
 | |
| 
 | |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
 | |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
 | |
| // one of the above mentioned nodes. It has to be wrapped because otherwise
 | |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
 | |
| // be used to form addressing mode. These wrapped nodes will be selected
 | |
| // into MOV32ri.
 | |
| SDValue
 | |
| X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
| 
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
| 
 | |
|   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
 | |
|                                              CP->getAlignment(),
 | |
|                                              CP->getOffset(), OpFlag);
 | |
|   DebugLoc DL = CP->getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (OpFlag) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc(), getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
| 
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
| 
 | |
|   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
 | |
|                                           OpFlag);
 | |
|   DebugLoc DL = JT->getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
| 
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (OpFlag) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc(), getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
 | |
| 
 | |
|   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|   // global base reg.
 | |
|   unsigned char OpFlag = 0;
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   else if (Subtarget->isPICStyleGOT())
 | |
|     OpFlag = X86II::MO_GOTOFF;
 | |
|   else if (Subtarget->isPICStyleStubPIC())
 | |
|     OpFlag = X86II::MO_PIC_BASE_OFFSET;
 | |
| 
 | |
|   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
 | |
| 
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
| 
 | |
| 
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
 | |
|       !Subtarget->is64Bit()) {
 | |
|     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                      DebugLoc(), getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Create the TargetBlockAddressAddress node.
 | |
|   unsigned char OpFlags =
 | |
|     Subtarget->ClassifyBlockAddressReference();
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
 | |
|                                        /*isTarget=*/true, OpFlags);
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
 | |
|   else
 | |
|     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
 | |
| 
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (isGlobalRelativeToPICBase(OpFlags)) {
 | |
|     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
 | |
|                                       int64_t Offset,
 | |
|                                       SelectionDAG &DAG) const {
 | |
|   // Create the TargetGlobalAddress node, folding in the constant
 | |
|   // offset if it is legal.
 | |
|   unsigned char OpFlags =
 | |
|     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
|   SDValue Result;
 | |
|   if (OpFlags == X86II::MO_NO_FLAG &&
 | |
|       X86::isOffsetSuitableForCodeModel(Offset, M)) {
 | |
|     // A direct static reference to a global.
 | |
|     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
 | |
|     Offset = 0;
 | |
|   } else {
 | |
|     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->isPICStyleRIPRel() &&
 | |
|       (M == CodeModel::Small || M == CodeModel::Kernel))
 | |
|     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
 | |
|   else
 | |
|     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
 | |
| 
 | |
|   // With PIC, the address is actually $g + Offset.
 | |
|   if (isGlobalRelativeToPICBase(OpFlags)) {
 | |
|     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
 | |
|                          Result);
 | |
|   }
 | |
| 
 | |
|   // For globals that require a load from a stub to get the address, emit the
 | |
|   // load.
 | |
|   if (isGlobalStubReference(OpFlags))
 | |
|     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
 | |
|                          MachinePointerInfo::getGOT(), false, false, 0);
 | |
| 
 | |
|   // If there was a non-zero offset that we didn't fold, create an explicit
 | |
|   // addition for it.
 | |
|   if (Offset != 0)
 | |
|     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
 | |
|                          DAG.getConstant(Offset, getPointerTy()));
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | |
|   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | |
|   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
 | |
| }
 | |
| 
 | |
| static SDValue
 | |
| GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
 | |
|            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
 | |
|            unsigned char OperandFlags) {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
|   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | |
|                                            GA->getValueType(0),
 | |
|                                            GA->getOffset(),
 | |
|                                            OperandFlags);
 | |
|   if (InFlag) {
 | |
|     SDValue Ops[] = { Chain,  TGA, *InFlag };
 | |
|     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
 | |
|   } else {
 | |
|     SDValue Ops[]  = { Chain, TGA };
 | |
|     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
 | |
|   }
 | |
| 
 | |
|   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
 | |
|   MFI->setAdjustsStack(true);
 | |
| 
 | |
|   SDValue Flag = Chain.getValue(1);
 | |
|   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
 | |
| static SDValue
 | |
| LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                 const EVT PtrVT) {
 | |
|   SDValue InFlag;
 | |
|   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
 | |
|   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
 | |
|                                      DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                                  DebugLoc(), PtrVT), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
 | |
| static SDValue
 | |
| LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                 const EVT PtrVT) {
 | |
|   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
 | |
|                     X86::RAX, X86II::MO_TLSGD);
 | |
| }
 | |
| 
 | |
| // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
 | |
| // "local exec" model.
 | |
| static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
 | |
|                                    const EVT PtrVT, TLSModel::Model model,
 | |
|                                    bool is64Bit) {
 | |
|   DebugLoc dl = GA->getDebugLoc();
 | |
| 
 | |
|   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
 | |
|   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
 | |
|                                                          is64Bit ? 257 : 256));
 | |
| 
 | |
|   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | |
|                                       DAG.getIntPtrConstant(0),
 | |
|                                       MachinePointerInfo(Ptr), false, false, 0);
 | |
| 
 | |
|   unsigned char OperandFlags = 0;
 | |
|   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
 | |
|   // initialexec.
 | |
|   unsigned WrapperKind = X86ISD::Wrapper;
 | |
|   if (model == TLSModel::LocalExec) {
 | |
|     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
 | |
|   } else if (is64Bit) {
 | |
|     assert(model == TLSModel::InitialExec);
 | |
|     OperandFlags = X86II::MO_GOTTPOFF;
 | |
|     WrapperKind = X86ISD::WrapperRIP;
 | |
|   } else {
 | |
|     assert(model == TLSModel::InitialExec);
 | |
|     OperandFlags = X86II::MO_INDNTPOFF;
 | |
|   }
 | |
| 
 | |
|   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
 | |
|   // exec)
 | |
|   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
 | |
|                                            GA->getValueType(0),
 | |
|                                            GA->getOffset(), OperandFlags);
 | |
|   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
 | |
| 
 | |
|   if (model == TLSModel::InitialExec)
 | |
|     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
 | |
|                          MachinePointerInfo::getGOT(), false, false, 0);
 | |
| 
 | |
|   // The address of the thread local variable is the add of the thread
 | |
|   // pointer with the offset of the variable.
 | |
|   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
 | |
| 
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
| 
 | |
|   if (Subtarget->isTargetELF()) {
 | |
|     // TODO: implement the "local dynamic" model
 | |
|     // TODO: implement the "initial exec"model for pic executables
 | |
| 
 | |
|     // If GV is an alias then use the aliasee for determining
 | |
|     // thread-localness.
 | |
|     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       GV = GA->resolveAliasedGlobal(false);
 | |
| 
 | |
|     TLSModel::Model model
 | |
|       = getTLSModel(GV, getTargetMachine().getRelocationModel());
 | |
| 
 | |
|     switch (model) {
 | |
|       case TLSModel::GeneralDynamic:
 | |
|       case TLSModel::LocalDynamic: // not implemented
 | |
|         if (Subtarget->is64Bit())
 | |
|           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
 | |
|         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
 | |
| 
 | |
|       case TLSModel::InitialExec:
 | |
|       case TLSModel::LocalExec:
 | |
|         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
 | |
|                                    Subtarget->is64Bit());
 | |
|     }
 | |
|   } else if (Subtarget->isTargetDarwin()) {
 | |
|     // Darwin only has one model of TLS.  Lower to that.
 | |
|     unsigned char OpFlag = 0;
 | |
|     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
 | |
|                            X86ISD::WrapperRIP : X86ISD::Wrapper;
 | |
| 
 | |
|     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
 | |
|     // global base reg.
 | |
|     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
 | |
|                   !Subtarget->is64Bit();
 | |
|     if (PIC32)
 | |
|       OpFlag = X86II::MO_TLVP_PIC_BASE;
 | |
|     else
 | |
|       OpFlag = X86II::MO_TLVP;
 | |
|     DebugLoc DL = Op.getDebugLoc();
 | |
|     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
 | |
|                                                 getPointerTy(),
 | |
|                                                 GA->getOffset(), OpFlag);
 | |
|     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
 | |
| 
 | |
|     // With PIC32, the address is actually $g + Offset.
 | |
|     if (PIC32)
 | |
|       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                            DAG.getNode(X86ISD::GlobalBaseReg,
 | |
|                                        DebugLoc(), getPointerTy()),
 | |
|                            Offset);
 | |
| 
 | |
|     // Lowering the machine isd will make sure everything is in the right
 | |
|     // location.
 | |
|     SDValue Args[] = { Offset };
 | |
|     SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
 | |
| 
 | |
|     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
 | |
|     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     MFI->setAdjustsStack(true);
 | |
| 
 | |
|     // And our return value (tls address) is in the standard call return value
 | |
|     // location.
 | |
|     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
 | |
|     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
 | |
|   }
 | |
| 
 | |
|   assert(false &&
 | |
|          "TLS not implemented for this target.");
 | |
| 
 | |
|   llvm_unreachable("Unreachable");
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
 | |
| /// take a 2 x i32 value to shift plus a shift amount.
 | |
| SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned VTBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
 | |
|   SDValue ShOpLo = Op.getOperand(0);
 | |
|   SDValue ShOpHi = Op.getOperand(1);
 | |
|   SDValue ShAmt  = Op.getOperand(2);
 | |
|   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
 | |
|                                      DAG.getConstant(VTBits - 1, MVT::i8))
 | |
|                        : DAG.getConstant(0, VT);
 | |
| 
 | |
|   SDValue Tmp2, Tmp3;
 | |
|   if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | |
|     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
 | |
|   } else {
 | |
|     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
 | |
|     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
 | |
|   }
 | |
| 
 | |
|   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
 | |
|                                 DAG.getConstant(VTBits, MVT::i8));
 | |
|   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
 | |
|                              AndNode, DAG.getConstant(0, MVT::i8));
 | |
| 
 | |
|   SDValue Hi, Lo;
 | |
|   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
 | |
|   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
 | |
| 
 | |
|   if (Op.getOpcode() == ISD::SHL_PARTS) {
 | |
|     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
 | |
|     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
 | |
|   } else {
 | |
|     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
 | |
|     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[2] = { Lo, Hi };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   EVT SrcVT = Op.getOperand(0).getValueType();
 | |
| 
 | |
|   if (SrcVT.isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
 | |
|          "Unknown SINT_TO_FP to lower!");
 | |
| 
 | |
|   // These are really Legal; return the operand so the caller accepts it as
 | |
|   // Legal.
 | |
|   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
 | |
|     return Op;
 | |
|   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
 | |
|       Subtarget->is64Bit()) {
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned Size = SrcVT.getSizeInBits()/8;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | |
|                                StackSlot,
 | |
|                                MachinePointerInfo::getFixedStack(SSFI),
 | |
|                                false, false, 0);
 | |
|   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
 | |
|                                      SDValue StackSlot,
 | |
|                                      SelectionDAG &DAG) const {
 | |
|   // Build the FILD
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   SDVTList Tys;
 | |
|   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
 | |
|   if (useSSE)
 | |
|     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
 | |
|   else
 | |
|     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
 | |
| 
 | |
|   unsigned ByteSize = SrcVT.getSizeInBits()/8;
 | |
| 
 | |
|   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
 | |
|   MachineMemOperand *MMO =
 | |
|     DAG.getMachineFunction()
 | |
|     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                           MachineMemOperand::MOLoad, ByteSize, ByteSize);
 | |
| 
 | |
|   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
 | |
|   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
 | |
|                                            X86ISD::FILD, DL,
 | |
|                                            Tys, Ops, array_lengthof(Ops),
 | |
|                                            SrcVT, MMO);
 | |
| 
 | |
|   if (useSSE) {
 | |
|     Chain = Result.getValue(1);
 | |
|     SDValue InFlag = Result.getValue(2);
 | |
| 
 | |
|     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
 | |
|     // shouldn't be necessary except that RFP cannot be live across
 | |
|     // multiple blocks. When stackifier is fixed, they can be uncoupled.
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
 | |
|     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
 | |
|     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|     Tys = DAG.getVTList(MVT::Other);
 | |
|     SDValue Ops[] = {
 | |
|       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
 | |
|     };
 | |
|     MachineMemOperand *MMO =
 | |
|       DAG.getMachineFunction()
 | |
|       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                             MachineMemOperand::MOStore, SSFISize, SSFISize);
 | |
| 
 | |
|     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
 | |
|                                     Ops, array_lengthof(Ops),
 | |
|                                     Op.getValueType(), MMO);
 | |
|     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
 | |
|                          MachinePointerInfo::getFixedStack(SSFI),
 | |
|                          false, false, 0);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   // This algorithm is not obvious. Here it is in C code, more or less:
 | |
|   /*
 | |
|     double uint64_to_double( uint32_t hi, uint32_t lo ) {
 | |
|       static const __m128i exp = { 0x4330000045300000ULL, 0 };
 | |
|       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
 | |
| 
 | |
|       // Copy ints to xmm registers.
 | |
|       __m128i xh = _mm_cvtsi32_si128( hi );
 | |
|       __m128i xl = _mm_cvtsi32_si128( lo );
 | |
| 
 | |
|       // Combine into low half of a single xmm register.
 | |
|       __m128i x = _mm_unpacklo_epi32( xh, xl );
 | |
|       __m128d d;
 | |
|       double sd;
 | |
| 
 | |
|       // Merge in appropriate exponents to give the integer bits the right
 | |
|       // magnitude.
 | |
|       x = _mm_unpacklo_epi32( x, exp );
 | |
| 
 | |
|       // Subtract away the biases to deal with the IEEE-754 double precision
 | |
|       // implicit 1.
 | |
|       d = _mm_sub_pd( (__m128d) x, bias );
 | |
| 
 | |
|       // All conversions up to here are exact. The correctly rounded result is
 | |
|       // calculated using the current rounding mode using the following
 | |
|       // horizontal add.
 | |
|       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
 | |
|       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
 | |
|                                 // store doesn't really need to be here (except
 | |
|                                 // maybe to zero the other double)
 | |
|       return sd;
 | |
|     }
 | |
|   */
 | |
| 
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
| 
 | |
|   // Build some magic constants.
 | |
|   std::vector<Constant*> CV0;
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
 | |
|   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
 | |
|   Constant *C0 = ConstantVector::get(CV0);
 | |
|   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
 | |
| 
 | |
|   std::vector<Constant*> CV1;
 | |
|   CV1.push_back(
 | |
|     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
 | |
|   CV1.push_back(
 | |
|     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
 | |
|   Constant *C1 = ConstantVector::get(CV1);
 | |
|   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
 | |
| 
 | |
|   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                         Op.getOperand(0),
 | |
|                                         DAG.getIntPtrConstant(1)));
 | |
|   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                         Op.getOperand(0),
 | |
|                                         DAG.getIntPtrConstant(0)));
 | |
|   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
 | |
|   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
 | |
|                               MachinePointerInfo::getConstantPool(),
 | |
|                               false, false, 16);
 | |
|   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
 | |
|   SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
 | |
|   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
 | |
|                               MachinePointerInfo::getConstantPool(),
 | |
|                               false, false, 16);
 | |
|   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
 | |
| 
 | |
|   // Add the halves; easiest way is to swap them into another reg first.
 | |
|   int ShufMask[2] = { 1, -1 };
 | |
|   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
 | |
|                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
 | |
|   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
 | |
|   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| }
 | |
| 
 | |
| // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // FP constant to bias correct the final result.
 | |
|   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
 | |
|                                    MVT::f64);
 | |
| 
 | |
|   // Load the 32-bit value into an XMM register.
 | |
|   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
 | |
|                              DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                                          Op.getOperand(0),
 | |
|                                          DAG.getIntPtrConstant(0)));
 | |
| 
 | |
|   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
 | |
|                      DAG.getIntPtrConstant(0));
 | |
| 
 | |
|   // Or the load with the bias.
 | |
|   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
 | |
|                            DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    MVT::v2f64, Load)),
 | |
|                            DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
 | |
|                                                    MVT::v2f64, Bias)));
 | |
|   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
 | |
|                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
 | |
|                    DAG.getIntPtrConstant(0));
 | |
| 
 | |
|   // Subtract the bias.
 | |
|   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
 | |
| 
 | |
|   // Handle final rounding.
 | |
|   EVT DestVT = Op.getValueType();
 | |
| 
 | |
|   if (DestVT.bitsLT(MVT::f64)) {
 | |
|     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
 | |
|                        DAG.getIntPtrConstant(0));
 | |
|   } else if (DestVT.bitsGT(MVT::f64)) {
 | |
|     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
 | |
|   }
 | |
| 
 | |
|   // Handle final rounding.
 | |
|   return Sub;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue N0 = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
 | |
|   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
 | |
|   // the optimization here.
 | |
|   if (DAG.SignBitIsZero(N0))
 | |
|     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
 | |
| 
 | |
|   EVT SrcVT = N0.getValueType();
 | |
|   EVT DstVT = Op.getValueType();
 | |
|   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
 | |
|     return LowerUINT_TO_FP_i64(Op, DAG);
 | |
|   else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
 | |
|     return LowerUINT_TO_FP_i32(Op, DAG);
 | |
| 
 | |
|   // Make a 64-bit buffer, and use it to build an FILD.
 | |
|   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
 | |
|   if (SrcVT == MVT::i32) {
 | |
|     SDValue WordOff = DAG.getConstant(4, getPointerTy());
 | |
|     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
 | |
|                                      getPointerTy(), StackSlot, WordOff);
 | |
|     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | |
|                                   StackSlot, MachinePointerInfo(),
 | |
|                                   false, false, 0);
 | |
|     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
 | |
|                                   OffsetSlot, MachinePointerInfo(),
 | |
|                                   false, false, 0);
 | |
|     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
 | |
|     return Fild;
 | |
|   }
 | |
| 
 | |
|   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
 | |
|                                 StackSlot, MachinePointerInfo(),
 | |
|                                false, false, 0);
 | |
|   // For i64 source, we need to add the appropriate power of 2 if the input
 | |
|   // was negative.  This is the same as the optimization in
 | |
|   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
 | |
|   // we must be careful to do the computation in x87 extended precision, not
 | |
|   // in SSE. (The generic code can't know it's OK to do this, or how to.)
 | |
|   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
 | |
|   MachineMemOperand *MMO =
 | |
|     DAG.getMachineFunction()
 | |
|     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                           MachineMemOperand::MOLoad, 8, 8);
 | |
| 
 | |
|   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
 | |
|   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
 | |
|   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
 | |
|                                          MVT::i64, MMO);
 | |
| 
 | |
|   APInt FF(32, 0x5F800000ULL);
 | |
| 
 | |
|   // Check whether the sign bit is set.
 | |
|   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
 | |
|                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
 | |
|                                  ISD::SETLT);
 | |
| 
 | |
|   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
 | |
|   SDValue FudgePtr = DAG.getConstantPool(
 | |
|                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
 | |
|                                          getPointerTy());
 | |
| 
 | |
|   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
 | |
|   SDValue Zero = DAG.getIntPtrConstant(0);
 | |
|   SDValue Four = DAG.getIntPtrConstant(4);
 | |
|   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
 | |
|                                Zero, Four);
 | |
|   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
 | |
| 
 | |
|   // Load the value out, extending it from f32 to f80.
 | |
|   // FIXME: Avoid the extend by constructing the right constant pool?
 | |
|   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
 | |
|                                  FudgePtr, MachinePointerInfo::getConstantPool(),
 | |
|                                  MVT::f32, false, false, 4);
 | |
|   // Extend everything to 80 bits to force it to be done on x87.
 | |
|   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
 | |
|   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
 | |
| }
 | |
| 
 | |
| std::pair<SDValue,SDValue> X86TargetLowering::
 | |
| FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   EVT DstTy = Op.getValueType();
 | |
| 
 | |
|   if (!IsSigned) {
 | |
|     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
 | |
|     DstTy = MVT::i64;
 | |
|   }
 | |
| 
 | |
|   assert(DstTy.getSimpleVT() <= MVT::i64 &&
 | |
|          DstTy.getSimpleVT() >= MVT::i16 &&
 | |
|          "Unknown FP_TO_SINT to lower!");
 | |
| 
 | |
|   // These are really Legal.
 | |
|   if (DstTy == MVT::i32 &&
 | |
|       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
|   if (Subtarget->is64Bit() &&
 | |
|       DstTy == MVT::i64 &&
 | |
|       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
 | |
|     return std::make_pair(SDValue(), SDValue());
 | |
| 
 | |
|   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
 | |
|   // stack slot.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   unsigned MemSize = DstTy.getSizeInBits()/8;
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
| 
 | |
| 
 | |
| 
 | |
|   unsigned Opc;
 | |
|   switch (DstTy.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
 | |
|   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
 | |
|   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
 | |
|   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
 | |
|   }
 | |
| 
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   SDValue Value = Op.getOperand(0);
 | |
|   EVT TheVT = Op.getOperand(0).getValueType();
 | |
|   if (isScalarFPTypeInSSEReg(TheVT)) {
 | |
|     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
 | |
|     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
 | |
|                          MachinePointerInfo::getFixedStack(SSFI),
 | |
|                          false, false, 0);
 | |
|     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
 | |
|     SDValue Ops[] = {
 | |
|       Chain, StackSlot, DAG.getValueType(TheVT)
 | |
|     };
 | |
| 
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                               MachineMemOperand::MOLoad, MemSize, MemSize);
 | |
|     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
 | |
|                                     DstTy, MMO);
 | |
|     Chain = Value.getValue(1);
 | |
|     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
 | |
|     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
|   }
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                             MachineMemOperand::MOStore, MemSize, MemSize);
 | |
| 
 | |
|   // Build the FP_TO_INT*_IN_MEM
 | |
|   SDValue Ops[] = { Chain, Value, StackSlot };
 | |
|   SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
 | |
|                                          Ops, 3, DstTy, MMO);
 | |
| 
 | |
|   return std::make_pair(FIST, StackSlot);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   if (Op.getValueType().isVector())
 | |
|     return SDValue();
 | |
| 
 | |
|   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
 | |
|   SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
 | |
|   if (FIST.getNode() == 0) return Op;
 | |
| 
 | |
|   // Load the result.
 | |
|   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
 | |
|                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
 | |
|   SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|   assert(FIST.getNode() && "Unexpected failure");
 | |
| 
 | |
|   // Load the result.
 | |
|   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
 | |
|                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFABS(SDValue Op,
 | |
|                                      SelectionDAG &DAG) const {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT;
 | |
|   if (VT.isVector())
 | |
|     EltVT = VT.getVectorElementType();
 | |
|   std::vector<Constant*> CV;
 | |
|   if (EltVT == MVT::f64) {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   } else {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                              MachinePointerInfo::getConstantPool(),
 | |
|                              false, false, 16);
 | |
|   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT EltVT = VT;
 | |
|   if (VT.isVector())
 | |
|     EltVT = VT.getVectorElementType();
 | |
|   std::vector<Constant*> CV;
 | |
|   if (EltVT == MVT::f64) {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   } else {
 | |
|     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|     CV.push_back(C);
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                              MachinePointerInfo::getConstantPool(),
 | |
|                              false, false, 16);
 | |
|   if (VT.isVector()) {
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
 | |
|                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
 | |
|                                 Op.getOperand(0)),
 | |
|                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
 | |
|   } else {
 | |
|     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT SrcVT = Op1.getValueType();
 | |
| 
 | |
|   // If second operand is smaller, extend it first.
 | |
|   if (SrcVT.bitsLT(VT)) {
 | |
|     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
 | |
|     SrcVT = VT;
 | |
|   }
 | |
|   // And if it is bigger, shrink it first.
 | |
|   if (SrcVT.bitsGT(VT)) {
 | |
|     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
 | |
|     SrcVT = VT;
 | |
|   }
 | |
| 
 | |
|   // At this point the operands and the result should have the same
 | |
|   // type, and that won't be f80 since that is not custom lowered.
 | |
| 
 | |
|   // First get the sign bit of second operand.
 | |
|   std::vector<Constant*> CV;
 | |
|   if (SrcVT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|   }
 | |
|   Constant *C = ConstantVector::get(CV);
 | |
|   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                               MachinePointerInfo::getConstantPool(),
 | |
|                               false, false, 16);
 | |
|   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
 | |
| 
 | |
|   // Shift sign bit right or left if the two operands have different types.
 | |
|   if (SrcVT.bitsGT(VT)) {
 | |
|     // Op0 is MVT::f32, Op1 is MVT::f64.
 | |
|     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
 | |
|     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
 | |
|                           DAG.getConstant(32, MVT::i32));
 | |
|     SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
 | |
|     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
 | |
|                           DAG.getIntPtrConstant(0));
 | |
|   }
 | |
| 
 | |
|   // Clear first operand sign bit.
 | |
|   CV.clear();
 | |
|   if (VT == MVT::f64) {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
 | |
|   } else {
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
 | |
|   }
 | |
|   C = ConstantVector::get(CV);
 | |
|   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                               MachinePointerInfo::getConstantPool(),
 | |
|                               false, false, 16);
 | |
|   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
 | |
| 
 | |
|   // Or the value with the sign bit.
 | |
|   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
 | |
| }
 | |
| 
 | |
| /// Emit nodes that will be selected as "test Op0,Op0", or something
 | |
| /// equivalent.
 | |
| SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
 | |
|                                     SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // CF and OF aren't always set the way we want. Determine which
 | |
|   // of these we need.
 | |
|   bool NeedCF = false;
 | |
|   bool NeedOF = false;
 | |
|   switch (X86CC) {
 | |
|   default: break;
 | |
|   case X86::COND_A: case X86::COND_AE:
 | |
|   case X86::COND_B: case X86::COND_BE:
 | |
|     NeedCF = true;
 | |
|     break;
 | |
|   case X86::COND_G: case X86::COND_GE:
 | |
|   case X86::COND_L: case X86::COND_LE:
 | |
|   case X86::COND_O: case X86::COND_NO:
 | |
|     NeedOF = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // See if we can use the EFLAGS value from the operand instead of
 | |
|   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
 | |
|   // we prove that the arithmetic won't overflow, we can't use OF or CF.
 | |
|   if (Op.getResNo() != 0 || NeedOF || NeedCF)
 | |
|     // Emit a CMP with 0, which is the TEST pattern.
 | |
|     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
 | |
|                        DAG.getConstant(0, Op.getValueType()));
 | |
| 
 | |
|   unsigned Opcode = 0;
 | |
|   unsigned NumOperands = 0;
 | |
|   switch (Op.getNode()->getOpcode()) {
 | |
|   case ISD::ADD:
 | |
|     // Due to an isel shortcoming, be conservative if this add is likely to be
 | |
|     // selected as part of a load-modify-store instruction. When the root node
 | |
|     // in a match is a store, isel doesn't know how to remap non-chain non-flag
 | |
|     // uses of other nodes in the match, such as the ADD in this case. This
 | |
|     // leads to the ADD being left around and reselected, with the result being
 | |
|     // two adds in the output.  Alas, even if none our users are stores, that
 | |
|     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
 | |
|     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
 | |
|     // climbing the DAG back to the root, and it doesn't seem to be worth the
 | |
|     // effort.
 | |
|     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|            UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | |
|       if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
 | |
|         goto default_case;
 | |
| 
 | |
|     if (ConstantSDNode *C =
 | |
|         dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
 | |
|       // An add of one will be selected as an INC.
 | |
|       if (C->getAPIntValue() == 1) {
 | |
|         Opcode = X86ISD::INC;
 | |
|         NumOperands = 1;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // An add of negative one (subtract of one) will be selected as a DEC.
 | |
|       if (C->getAPIntValue().isAllOnesValue()) {
 | |
|         Opcode = X86ISD::DEC;
 | |
|         NumOperands = 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise use a regular EFLAGS-setting add.
 | |
|     Opcode = X86ISD::ADD;
 | |
|     NumOperands = 2;
 | |
|     break;
 | |
|   case ISD::AND: {
 | |
|     // If the primary and result isn't used, don't bother using X86ISD::AND,
 | |
|     // because a TEST instruction will be better.
 | |
|     bool NonFlagUse = false;
 | |
|     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       unsigned UOpNo = UI.getOperandNo();
 | |
|       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
 | |
|         // Look pass truncate.
 | |
|         UOpNo = User->use_begin().getOperandNo();
 | |
|         User = *User->use_begin();
 | |
|       }
 | |
| 
 | |
|       if (User->getOpcode() != ISD::BRCOND &&
 | |
|           User->getOpcode() != ISD::SETCC &&
 | |
|           (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
 | |
|         NonFlagUse = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!NonFlagUse)
 | |
|       break;
 | |
|   }
 | |
|     // FALL THROUGH
 | |
|   case ISD::SUB:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     // Due to the ISEL shortcoming noted above, be conservative if this op is
 | |
|     // likely to be selected as part of a load-modify-store instruction.
 | |
|     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|            UE = Op.getNode()->use_end(); UI != UE; ++UI)
 | |
|       if (UI->getOpcode() == ISD::STORE)
 | |
|         goto default_case;
 | |
| 
 | |
|     // Otherwise use a regular EFLAGS-setting instruction.
 | |
|     switch (Op.getNode()->getOpcode()) {
 | |
|     default: llvm_unreachable("unexpected operator!");
 | |
|     case ISD::SUB: Opcode = X86ISD::SUB; break;
 | |
|     case ISD::OR:  Opcode = X86ISD::OR;  break;
 | |
|     case ISD::XOR: Opcode = X86ISD::XOR; break;
 | |
|     case ISD::AND: Opcode = X86ISD::AND; break;
 | |
|     }
 | |
| 
 | |
|     NumOperands = 2;
 | |
|     break;
 | |
|   case X86ISD::ADD:
 | |
|   case X86ISD::SUB:
 | |
|   case X86ISD::INC:
 | |
|   case X86ISD::DEC:
 | |
|   case X86ISD::OR:
 | |
|   case X86ISD::XOR:
 | |
|   case X86ISD::AND:
 | |
|     return SDValue(Op.getNode(), 1);
 | |
|   default:
 | |
|   default_case:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Opcode == 0)
 | |
|     // Emit a CMP with 0, which is the TEST pattern.
 | |
|     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
 | |
|                        DAG.getConstant(0, Op.getValueType()));
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
|   for (unsigned i = 0; i != NumOperands; ++i)
 | |
|     Ops.push_back(Op.getOperand(i));
 | |
| 
 | |
|   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
 | |
|   DAG.ReplaceAllUsesWith(Op, New);
 | |
|   return SDValue(New.getNode(), 1);
 | |
| }
 | |
| 
 | |
| /// Emit nodes that will be selected as "cmp Op0,Op1", or something
 | |
| /// equivalent.
 | |
| SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
 | |
|                                    SelectionDAG &DAG) const {
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
 | |
|     if (C->getAPIntValue() == 0)
 | |
|       return EmitTest(Op0, X86CC, DAG);
 | |
| 
 | |
|   DebugLoc dl = Op0.getDebugLoc();
 | |
|   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
 | |
| }
 | |
| 
 | |
| /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
 | |
| /// if it's possible.
 | |
| SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
 | |
|                                      DebugLoc dl, SelectionDAG &DAG) const {
 | |
|   SDValue Op0 = And.getOperand(0);
 | |
|   SDValue Op1 = And.getOperand(1);
 | |
|   if (Op0.getOpcode() == ISD::TRUNCATE)
 | |
|     Op0 = Op0.getOperand(0);
 | |
|   if (Op1.getOpcode() == ISD::TRUNCATE)
 | |
|     Op1 = Op1.getOperand(0);
 | |
| 
 | |
|   SDValue LHS, RHS;
 | |
|   if (Op1.getOpcode() == ISD::SHL)
 | |
|     std::swap(Op0, Op1);
 | |
|   if (Op0.getOpcode() == ISD::SHL) {
 | |
|     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
 | |
|       if (And00C->getZExtValue() == 1) {
 | |
|         // If we looked past a truncate, check that it's only truncating away
 | |
|         // known zeros.
 | |
|         unsigned BitWidth = Op0.getValueSizeInBits();
 | |
|         unsigned AndBitWidth = And.getValueSizeInBits();
 | |
|         if (BitWidth > AndBitWidth) {
 | |
|           APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
 | |
|           DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
 | |
|           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
 | |
|             return SDValue();
 | |
|         }
 | |
|         LHS = Op1;
 | |
|         RHS = Op0.getOperand(1);
 | |
|       }
 | |
|   } else if (Op1.getOpcode() == ISD::Constant) {
 | |
|     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
 | |
|     SDValue AndLHS = Op0;
 | |
|     if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
 | |
|       LHS = AndLHS.getOperand(0);
 | |
|       RHS = AndLHS.getOperand(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LHS.getNode()) {
 | |
|     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
 | |
|     // instruction.  Since the shift amount is in-range-or-undefined, we know
 | |
|     // that doing a bittest on the i32 value is ok.  We extend to i32 because
 | |
|     // the encoding for the i16 version is larger than the i32 version.
 | |
|     // Also promote i16 to i32 for performance / code size reason.
 | |
|     if (LHS.getValueType() == MVT::i8 ||
 | |
|         LHS.getValueType() == MVT::i16)
 | |
|       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
 | |
| 
 | |
|     // If the operand types disagree, extend the shift amount to match.  Since
 | |
|     // BT ignores high bits (like shifts) we can use anyextend.
 | |
|     if (LHS.getValueType() != RHS.getValueType())
 | |
|       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
 | |
| 
 | |
|     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
 | |
|     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
 | |
|     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                        DAG.getConstant(Cond, MVT::i8), BT);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
| 
 | |
|   // Optimize to BT if possible.
 | |
|   // Lower (X & (1 << N)) == 0 to BT(X, N).
 | |
|   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
 | |
|   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
 | |
|   if (Op0.getOpcode() == ISD::AND &&
 | |
|       Op0.hasOneUse() &&
 | |
|       Op1.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(Op1)->isNullValue() &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
 | |
|     if (NewSetCC.getNode())
 | |
|       return NewSetCC;
 | |
|   }
 | |
| 
 | |
|   // Look for "(setcc) == / != 1" to avoid unncessary setcc.
 | |
|   if (Op0.getOpcode() == X86ISD::SETCC &&
 | |
|       Op1.getOpcode() == ISD::Constant &&
 | |
|       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
 | |
|        cast<ConstantSDNode>(Op1)->isNullValue()) &&
 | |
|       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
 | |
|     bool Invert = (CC == ISD::SETNE) ^
 | |
|       cast<ConstantSDNode>(Op1)->isNullValue();
 | |
|     if (Invert)
 | |
|       CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                        DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
 | |
|   }
 | |
| 
 | |
|   bool isFP = Op1.getValueType().isFloatingPoint();
 | |
|   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
 | |
|   if (X86CC == X86::COND_INVALID)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
 | |
| 
 | |
|   // Use sbb x, x to materialize carry bit into a GPR.
 | |
|   if (X86CC == X86::COND_B)
 | |
|     return DAG.getNode(ISD::AND, dl, MVT::i8,
 | |
|                        DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
 | |
|                                    DAG.getConstant(X86CC, MVT::i8), Cond),
 | |
|                        DAG.getConstant(1, MVT::i8));
 | |
| 
 | |
|   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                      DAG.getConstant(X86CC, MVT::i8), Cond);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDValue Cond;
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue CC = Op.getOperand(2);
 | |
|   EVT VT = Op.getValueType();
 | |
|   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
 | |
|   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (isFP) {
 | |
|     unsigned SSECC = 8;
 | |
|     EVT VT0 = Op0.getValueType();
 | |
|     assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
 | |
|     unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
 | |
|     bool Swap = false;
 | |
| 
 | |
|     switch (SetCCOpcode) {
 | |
|     default: break;
 | |
|     case ISD::SETOEQ:
 | |
|     case ISD::SETEQ:  SSECC = 0; break;
 | |
|     case ISD::SETOGT:
 | |
|     case ISD::SETGT: Swap = true; // Fallthrough
 | |
|     case ISD::SETLT:
 | |
|     case ISD::SETOLT: SSECC = 1; break;
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE: Swap = true; // Fallthrough
 | |
|     case ISD::SETLE:
 | |
|     case ISD::SETOLE: SSECC = 2; break;
 | |
|     case ISD::SETUO:  SSECC = 3; break;
 | |
|     case ISD::SETUNE:
 | |
|     case ISD::SETNE:  SSECC = 4; break;
 | |
|     case ISD::SETULE: Swap = true;
 | |
|     case ISD::SETUGE: SSECC = 5; break;
 | |
|     case ISD::SETULT: Swap = true;
 | |
|     case ISD::SETUGT: SSECC = 6; break;
 | |
|     case ISD::SETO:   SSECC = 7; break;
 | |
|     }
 | |
|     if (Swap)
 | |
|       std::swap(Op0, Op1);
 | |
| 
 | |
|     // In the two special cases we can't handle, emit two comparisons.
 | |
|     if (SSECC == 8) {
 | |
|       if (SetCCOpcode == ISD::SETUEQ) {
 | |
|         SDValue UNORD, EQ;
 | |
|         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
 | |
|         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
 | |
|         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
 | |
|       }
 | |
|       else if (SetCCOpcode == ISD::SETONE) {
 | |
|         SDValue ORD, NEQ;
 | |
|         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
 | |
|         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
 | |
|         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
 | |
|       }
 | |
|       llvm_unreachable("Illegal FP comparison");
 | |
|     }
 | |
|     // Handle all other FP comparisons here.
 | |
|     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
 | |
|   }
 | |
| 
 | |
|   // We are handling one of the integer comparisons here.  Since SSE only has
 | |
|   // GT and EQ comparisons for integer, swapping operands and multiple
 | |
|   // operations may be required for some comparisons.
 | |
|   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
 | |
|   bool Swap = false, Invert = false, FlipSigns = false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: break;
 | |
|   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
 | |
|   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
 | |
|   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
 | |
|   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
 | |
|   }
 | |
| 
 | |
|   switch (SetCCOpcode) {
 | |
|   default: break;
 | |
|   case ISD::SETNE:  Invert = true;
 | |
|   case ISD::SETEQ:  Opc = EQOpc; break;
 | |
|   case ISD::SETLT:  Swap = true;
 | |
|   case ISD::SETGT:  Opc = GTOpc; break;
 | |
|   case ISD::SETGE:  Swap = true;
 | |
|   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
 | |
|   case ISD::SETULT: Swap = true;
 | |
|   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
 | |
|   case ISD::SETUGE: Swap = true;
 | |
|   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
 | |
|   }
 | |
|   if (Swap)
 | |
|     std::swap(Op0, Op1);
 | |
| 
 | |
|   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
 | |
|   // bits of the inputs before performing those operations.
 | |
|   if (FlipSigns) {
 | |
|     EVT EltVT = VT.getVectorElementType();
 | |
|     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
 | |
|                                       EltVT);
 | |
|     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
 | |
|     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
 | |
|                                     SignBits.size());
 | |
|     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
 | |
|     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
 | |
|   }
 | |
| 
 | |
|   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
 | |
| 
 | |
|   // If the logical-not of the result is required, perform that now.
 | |
|   if (Invert)
 | |
|     Result = DAG.getNOT(dl, Result, VT);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
 | |
| static bool isX86LogicalCmp(SDValue Op) {
 | |
|   unsigned Opc = Op.getNode()->getOpcode();
 | |
|   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
 | |
|     return true;
 | |
|   if (Op.getResNo() == 1 &&
 | |
|       (Opc == X86ISD::ADD ||
 | |
|        Opc == X86ISD::SUB ||
 | |
|        Opc == X86ISD::SMUL ||
 | |
|        Opc == X86ISD::UMUL ||
 | |
|        Opc == X86ISD::INC ||
 | |
|        Opc == X86ISD::DEC ||
 | |
|        Opc == X86ISD::OR ||
 | |
|        Opc == X86ISD::XOR ||
 | |
|        Opc == X86ISD::AND))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
 | |
|   bool addTest = true;
 | |
|   SDValue Cond  = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue CC;
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC) {
 | |
|     SDValue NewCond = LowerSETCC(Cond, DAG);
 | |
|     if (NewCond.getNode())
 | |
|       Cond = NewCond;
 | |
|   }
 | |
| 
 | |
|   // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue Op2 = Op.getOperand(2);
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC &&
 | |
|       cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
 | |
|     SDValue Cmp = Cond.getOperand(1);
 | |
|     if (Cmp.getOpcode() == X86ISD::CMP) {
 | |
|       ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
 | |
|       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
 | |
|       ConstantSDNode *RHSC =
 | |
|         dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
 | |
|       if (N1C && N1C->isAllOnesValue() &&
 | |
|           N2C && N2C->isNullValue() &&
 | |
|           RHSC && RHSC->isNullValue()) {
 | |
|         SDValue CmpOp0 = Cmp.getOperand(0);
 | |
|         Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
 | |
|                           CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
 | |
|         return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
 | |
|                            DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look pass (and (setcc_carry (cmp ...)), 1).
 | |
|   if (Cond.getOpcode() == ISD::AND &&
 | |
|       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | |
|     if (C && C->getAPIntValue() == 1)
 | |
|       Cond = Cond.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | |
|   // setting operand in place of the X86ISD::SETCC.
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC ||
 | |
|       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     SDValue Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     EVT VT = Op.getValueType();
 | |
| 
 | |
|     bool IllegalFPCMov = false;
 | |
|     if (VT.isFloatingPoint() && !VT.isVector() &&
 | |
|         !isScalarFPTypeInSSEReg(VT))  // FPStack?
 | |
|       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
 | |
| 
 | |
|     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
 | |
|         Opc == X86ISD::BT) { // FIXME
 | |
|       Cond = Cmp;
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     // Look pass the truncate.
 | |
|     if (Cond.getOpcode() == ISD::TRUNCATE)
 | |
|       Cond = Cond.getOperand(0);
 | |
| 
 | |
|     // We know the result of AND is compared against zero. Try to match
 | |
|     // it to BT.
 | |
|     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
 | |
|       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
 | |
|       if (NewSetCC.getNode()) {
 | |
|         CC = NewSetCC.getOperand(0);
 | |
|         Cond = NewSetCC.getOperand(1);
 | |
|         addTest = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     Cond = EmitTest(Cond, X86::COND_NE, DAG);
 | |
|   }
 | |
| 
 | |
|   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
 | |
|   // condition is true.
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
 | |
|   SDValue Ops[] = { Op2, Op1, CC, Cond };
 | |
|   return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
 | |
| // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
 | |
| // from the AND / OR.
 | |
| static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
 | |
|   Opc = Op.getOpcode();
 | |
|   if (Opc != ISD::OR && Opc != ISD::AND)
 | |
|     return false;
 | |
|   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | |
|           Op.getOperand(0).hasOneUse() &&
 | |
|           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
 | |
|           Op.getOperand(1).hasOneUse());
 | |
| }
 | |
| 
 | |
| // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
 | |
| // 1 and that the SETCC node has a single use.
 | |
| static bool isXor1OfSetCC(SDValue Op) {
 | |
|   if (Op.getOpcode() != ISD::XOR)
 | |
|     return false;
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|   if (N1C && N1C->getAPIntValue() == 1) {
 | |
|     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
 | |
|       Op.getOperand(0).hasOneUse();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
 | |
|   bool addTest = true;
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Cond  = Op.getOperand(1);
 | |
|   SDValue Dest  = Op.getOperand(2);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue CC;
 | |
| 
 | |
|   if (Cond.getOpcode() == ISD::SETCC) {
 | |
|     SDValue NewCond = LowerSETCC(Cond, DAG);
 | |
|     if (NewCond.getNode())
 | |
|       Cond = NewCond;
 | |
|   }
 | |
| #if 0
 | |
|   // FIXME: LowerXALUO doesn't handle these!!
 | |
|   else if (Cond.getOpcode() == X86ISD::ADD  ||
 | |
|            Cond.getOpcode() == X86ISD::SUB  ||
 | |
|            Cond.getOpcode() == X86ISD::SMUL ||
 | |
|            Cond.getOpcode() == X86ISD::UMUL)
 | |
|     Cond = LowerXALUO(Cond, DAG);
 | |
| #endif
 | |
| 
 | |
|   // Look pass (and (setcc_carry (cmp ...)), 1).
 | |
|   if (Cond.getOpcode() == ISD::AND &&
 | |
|       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
 | |
|     if (C && C->getAPIntValue() == 1)
 | |
|       Cond = Cond.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // If condition flag is set by a X86ISD::CMP, then use it as the condition
 | |
|   // setting operand in place of the X86ISD::SETCC.
 | |
|   if (Cond.getOpcode() == X86ISD::SETCC ||
 | |
|       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
 | |
|     CC = Cond.getOperand(0);
 | |
| 
 | |
|     SDValue Cmp = Cond.getOperand(1);
 | |
|     unsigned Opc = Cmp.getOpcode();
 | |
|     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
 | |
|     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
 | |
|       Cond = Cmp;
 | |
|       addTest = false;
 | |
|     } else {
 | |
|       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
 | |
|       default: break;
 | |
|       case X86::COND_O:
 | |
|       case X86::COND_B:
 | |
|         // These can only come from an arithmetic instruction with overflow,
 | |
|         // e.g. SADDO, UADDO.
 | |
|         Cond = Cond.getNode()->getOperand(1);
 | |
|         addTest = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     unsigned CondOpc;
 | |
|     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
 | |
|       SDValue Cmp = Cond.getOperand(0).getOperand(1);
 | |
|       if (CondOpc == ISD::OR) {
 | |
|         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
 | |
|         // two branches instead of an explicit OR instruction with a
 | |
|         // separate test.
 | |
|         if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | |
|             isX86LogicalCmp(Cmp)) {
 | |
|           CC = Cond.getOperand(0).getOperand(0);
 | |
|           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                               Chain, Dest, CC, Cmp);
 | |
|           CC = Cond.getOperand(1).getOperand(0);
 | |
|           Cond = Cmp;
 | |
|           addTest = false;
 | |
|         }
 | |
|       } else { // ISD::AND
 | |
|         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
 | |
|         // two branches instead of an explicit AND instruction with a
 | |
|         // separate test. However, we only do this if this block doesn't
 | |
|         // have a fall-through edge, because this requires an explicit
 | |
|         // jmp when the condition is false.
 | |
|         if (Cmp == Cond.getOperand(1).getOperand(1) &&
 | |
|             isX86LogicalCmp(Cmp) &&
 | |
|             Op.getNode()->hasOneUse()) {
 | |
|           X86::CondCode CCode =
 | |
|             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | |
|           CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|           CC = DAG.getConstant(CCode, MVT::i8);
 | |
|           SDNode *User = *Op.getNode()->use_begin();
 | |
|           // Look for an unconditional branch following this conditional branch.
 | |
|           // We need this because we need to reverse the successors in order
 | |
|           // to implement FCMP_OEQ.
 | |
|           if (User->getOpcode() == ISD::BR) {
 | |
|             SDValue FalseBB = User->getOperand(1);
 | |
|             SDNode *NewBR =
 | |
|               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
 | |
|             assert(NewBR == User);
 | |
|             (void)NewBR;
 | |
|             Dest = FalseBB;
 | |
| 
 | |
|             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                                 Chain, Dest, CC, Cmp);
 | |
|             X86::CondCode CCode =
 | |
|               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
 | |
|             CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|             CC = DAG.getConstant(CCode, MVT::i8);
 | |
|             Cond = Cmp;
 | |
|             addTest = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
 | |
|       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
 | |
|       // It should be transformed during dag combiner except when the condition
 | |
|       // is set by a arithmetics with overflow node.
 | |
|       X86::CondCode CCode =
 | |
|         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
 | |
|       CCode = X86::GetOppositeBranchCondition(CCode);
 | |
|       CC = DAG.getConstant(CCode, MVT::i8);
 | |
|       Cond = Cond.getOperand(0).getOperand(1);
 | |
|       addTest = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     // Look pass the truncate.
 | |
|     if (Cond.getOpcode() == ISD::TRUNCATE)
 | |
|       Cond = Cond.getOperand(0);
 | |
| 
 | |
|     // We know the result of AND is compared against zero. Try to match
 | |
|     // it to BT.
 | |
|     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
 | |
|       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
 | |
|       if (NewSetCC.getNode()) {
 | |
|         CC = NewSetCC.getOperand(0);
 | |
|         Cond = NewSetCC.getOperand(1);
 | |
|         addTest = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (addTest) {
 | |
|     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
 | |
|     Cond = EmitTest(Cond, X86::COND_NE, DAG);
 | |
|   }
 | |
|   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
 | |
|                      Chain, Dest, CC, Cond);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
 | |
| // Calls to _alloca is needed to probe the stack when allocating more than 4k
 | |
| // bytes in one go. Touching the stack at 4K increments is necessary to ensure
 | |
| // that the guard pages used by the OS virtual memory manager are allocated in
 | |
| // correct sequence.
 | |
| SDValue
 | |
| X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
 | |
|          "This should be used only on Windows targets");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   // FIXME: Ensure alignment here
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
 | |
| 
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
| 
 | |
|   Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
 | |
| 
 | |
|   SDValue Ops1[2] = { Chain.getValue(0), Chain };
 | |
|   return DAG.getMergeValues(Ops1, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
 | |
| 
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | |
|                                    getPointerTy());
 | |
|     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
 | |
|                         MachinePointerInfo(SV), false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // __va_list_tag:
 | |
|   //   gp_offset         (0 - 6 * 8)
 | |
|   //   fp_offset         (48 - 48 + 8 * 16)
 | |
|   //   overflow_arg_area (point to parameters coming in memory).
 | |
|   //   reg_save_area
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   SDValue FIN = Op.getOperand(1);
 | |
|   // Store gp_offset
 | |
|   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
 | |
|                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
 | |
|                                                MVT::i32),
 | |
|                                FIN, MachinePointerInfo(SV), false, false, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store fp_offset
 | |
|   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(4));
 | |
|   Store = DAG.getStore(Op.getOperand(0), DL,
 | |
|                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
 | |
|                                        MVT::i32),
 | |
|                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to overflow_arg_area
 | |
|   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(4));
 | |
|   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | |
|                                     getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
 | |
|                        MachinePointerInfo(SV, 8),
 | |
|                        false, false, 0);
 | |
|   MemOps.push_back(Store);
 | |
| 
 | |
|   // Store ptr to reg_save_area.
 | |
|   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
 | |
|                     FIN, DAG.getIntPtrConstant(8));
 | |
|   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
 | |
|                                     getPointerTy());
 | |
|   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
 | |
|                        MachinePointerInfo(SV, 16), false, false, 0);
 | |
|   MemOps.push_back(Store);
 | |
|   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | |
|                      &MemOps[0], MemOps.size());
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->is64Bit() &&
 | |
|          "LowerVAARG only handles 64-bit va_arg!");
 | |
|   assert((Subtarget->isTargetLinux() ||
 | |
|           Subtarget->isTargetDarwin()) &&
 | |
|           "Unhandled target in LowerVAARG");
 | |
|   assert(Op.getNode()->getNumOperands() == 4);
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue SrcPtr = Op.getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   unsigned Align = Op.getConstantOperandVal(3);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   EVT ArgVT = Op.getNode()->getValueType(0);
 | |
|   const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
 | |
|   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
 | |
|   uint8_t ArgMode;
 | |
| 
 | |
|   // Decide which area this value should be read from.
 | |
|   // TODO: Implement the AMD64 ABI in its entirety. This simple
 | |
|   // selection mechanism works only for the basic types.
 | |
|   if (ArgVT == MVT::f80) {
 | |
|     llvm_unreachable("va_arg for f80 not yet implemented");
 | |
|   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
 | |
|     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
 | |
|   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
 | |
|     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
 | |
|   } else {
 | |
|     llvm_unreachable("Unhandled argument type in LowerVAARG");
 | |
|   }
 | |
| 
 | |
|   if (ArgMode == 2) {
 | |
|     // Sanity Check: Make sure using fp_offset makes sense.
 | |
|     assert(!UseSoftFloat &&
 | |
|            !(DAG.getMachineFunction()
 | |
|                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
 | |
|            Subtarget->hasSSE1());
 | |
|   }
 | |
| 
 | |
|   // Insert VAARG_64 node into the DAG
 | |
|   // VAARG_64 returns two values: Variable Argument Address, Chain
 | |
|   SmallVector<SDValue, 11> InstOps;
 | |
|   InstOps.push_back(Chain);
 | |
|   InstOps.push_back(SrcPtr);
 | |
|   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
 | |
|   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
 | |
|   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
 | |
|   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
 | |
|   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
 | |
|                                           VTs, &InstOps[0], InstOps.size(),
 | |
|                                           MVT::i64,
 | |
|                                           MachinePointerInfo(SV),
 | |
|                                           /*Align=*/0,
 | |
|                                           /*Volatile=*/false,
 | |
|                                           /*ReadMem=*/true,
 | |
|                                           /*WriteMem=*/true);
 | |
|   Chain = VAARG.getValue(1);
 | |
| 
 | |
|   // Load the next argument and return it
 | |
|   return DAG.getLoad(ArgVT, dl,
 | |
|                      Chain,
 | |
|                      VAARG,
 | |
|                      MachinePointerInfo(),
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
 | |
|   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue DstPtr = Op.getOperand(1);
 | |
|   SDValue SrcPtr = Op.getOperand(2);
 | |
|   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | |
|   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
 | |
|                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
 | |
|                        false,
 | |
|                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   switch (IntNo) {
 | |
|   default: return SDValue();    // Don't custom lower most intrinsics.
 | |
|   // Comparison intrinsics.
 | |
|   case Intrinsic::x86_sse_comieq_ss:
 | |
|   case Intrinsic::x86_sse_comilt_ss:
 | |
|   case Intrinsic::x86_sse_comile_ss:
 | |
|   case Intrinsic::x86_sse_comigt_ss:
 | |
|   case Intrinsic::x86_sse_comige_ss:
 | |
|   case Intrinsic::x86_sse_comineq_ss:
 | |
|   case Intrinsic::x86_sse_ucomieq_ss:
 | |
|   case Intrinsic::x86_sse_ucomilt_ss:
 | |
|   case Intrinsic::x86_sse_ucomile_ss:
 | |
|   case Intrinsic::x86_sse_ucomigt_ss:
 | |
|   case Intrinsic::x86_sse_ucomige_ss:
 | |
|   case Intrinsic::x86_sse_ucomineq_ss:
 | |
|   case Intrinsic::x86_sse2_comieq_sd:
 | |
|   case Intrinsic::x86_sse2_comilt_sd:
 | |
|   case Intrinsic::x86_sse2_comile_sd:
 | |
|   case Intrinsic::x86_sse2_comigt_sd:
 | |
|   case Intrinsic::x86_sse2_comige_sd:
 | |
|   case Intrinsic::x86_sse2_comineq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|   case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomile_sd:
 | |
|   case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|   case Intrinsic::x86_sse2_ucomige_sd:
 | |
|   case Intrinsic::x86_sse2_ucomineq_sd: {
 | |
|     unsigned Opc = 0;
 | |
|     ISD::CondCode CC = ISD::SETCC_INVALID;
 | |
|     switch (IntNo) {
 | |
|     default: break;
 | |
|     case Intrinsic::x86_sse_comieq_ss:
 | |
|     case Intrinsic::x86_sse2_comieq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comilt_ss:
 | |
|     case Intrinsic::x86_sse2_comilt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comile_ss:
 | |
|     case Intrinsic::x86_sse2_comile_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comigt_ss:
 | |
|     case Intrinsic::x86_sse2_comigt_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comige_ss:
 | |
|     case Intrinsic::x86_sse2_comige_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_comineq_ss:
 | |
|     case Intrinsic::x86_sse2_comineq_sd:
 | |
|       Opc = X86ISD::COMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomieq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomieq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETEQ;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomilt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomilt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomile_ss:
 | |
|     case Intrinsic::x86_sse2_ucomile_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETLE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomigt_ss:
 | |
|     case Intrinsic::x86_sse2_ucomigt_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGT;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomige_ss:
 | |
|     case Intrinsic::x86_sse2_ucomige_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETGE;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse_ucomineq_ss:
 | |
|     case Intrinsic::x86_sse2_ucomineq_sd:
 | |
|       Opc = X86ISD::UCOMI;
 | |
|       CC = ISD::SETNE;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue LHS = Op.getOperand(1);
 | |
|     SDValue RHS = Op.getOperand(2);
 | |
|     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
 | |
|     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
 | |
|     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
 | |
|     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
 | |
|                                 DAG.getConstant(X86CC, MVT::i8), Cond);
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | |
|   }
 | |
|   // ptest and testp intrinsics. The intrinsic these come from are designed to
 | |
|   // return an integer value, not just an instruction so lower it to the ptest
 | |
|   // or testp pattern and a setcc for the result.
 | |
|   case Intrinsic::x86_sse41_ptestz:
 | |
|   case Intrinsic::x86_sse41_ptestc:
 | |
|   case Intrinsic::x86_sse41_ptestnzc:
 | |
|   case Intrinsic::x86_avx_ptestz_256:
 | |
|   case Intrinsic::x86_avx_ptestc_256:
 | |
|   case Intrinsic::x86_avx_ptestnzc_256:
 | |
|   case Intrinsic::x86_avx_vtestz_ps:
 | |
|   case Intrinsic::x86_avx_vtestc_ps:
 | |
|   case Intrinsic::x86_avx_vtestnzc_ps:
 | |
|   case Intrinsic::x86_avx_vtestz_pd:
 | |
|   case Intrinsic::x86_avx_vtestc_pd:
 | |
|   case Intrinsic::x86_avx_vtestnzc_pd:
 | |
|   case Intrinsic::x86_avx_vtestz_ps_256:
 | |
|   case Intrinsic::x86_avx_vtestc_ps_256:
 | |
|   case Intrinsic::x86_avx_vtestnzc_ps_256:
 | |
|   case Intrinsic::x86_avx_vtestz_pd_256:
 | |
|   case Intrinsic::x86_avx_vtestc_pd_256:
 | |
|   case Intrinsic::x86_avx_vtestnzc_pd_256: {
 | |
|     bool IsTestPacked = false;
 | |
|     unsigned X86CC = 0;
 | |
|     switch (IntNo) {
 | |
|     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
 | |
|     case Intrinsic::x86_avx_vtestz_ps:
 | |
|     case Intrinsic::x86_avx_vtestz_pd:
 | |
|     case Intrinsic::x86_avx_vtestz_ps_256:
 | |
|     case Intrinsic::x86_avx_vtestz_pd_256:
 | |
|       IsTestPacked = true; // Fallthrough
 | |
|     case Intrinsic::x86_sse41_ptestz:
 | |
|     case Intrinsic::x86_avx_ptestz_256:
 | |
|       // ZF = 1
 | |
|       X86CC = X86::COND_E;
 | |
|       break;
 | |
|     case Intrinsic::x86_avx_vtestc_ps:
 | |
|     case Intrinsic::x86_avx_vtestc_pd:
 | |
|     case Intrinsic::x86_avx_vtestc_ps_256:
 | |
|     case Intrinsic::x86_avx_vtestc_pd_256:
 | |
|       IsTestPacked = true; // Fallthrough
 | |
|     case Intrinsic::x86_sse41_ptestc:
 | |
|     case Intrinsic::x86_avx_ptestc_256:
 | |
|       // CF = 1
 | |
|       X86CC = X86::COND_B;
 | |
|       break;
 | |
|     case Intrinsic::x86_avx_vtestnzc_ps:
 | |
|     case Intrinsic::x86_avx_vtestnzc_pd:
 | |
|     case Intrinsic::x86_avx_vtestnzc_ps_256:
 | |
|     case Intrinsic::x86_avx_vtestnzc_pd_256:
 | |
|       IsTestPacked = true; // Fallthrough
 | |
|     case Intrinsic::x86_sse41_ptestnzc:
 | |
|     case Intrinsic::x86_avx_ptestnzc_256:
 | |
|       // ZF and CF = 0
 | |
|       X86CC = X86::COND_A;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue LHS = Op.getOperand(1);
 | |
|     SDValue RHS = Op.getOperand(2);
 | |
|     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
 | |
|     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
 | |
|     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
 | |
|     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
 | |
|   }
 | |
| 
 | |
|   // Fix vector shift instructions where the last operand is a non-immediate
 | |
|   // i32 value.
 | |
|   case Intrinsic::x86_sse2_pslli_w:
 | |
|   case Intrinsic::x86_sse2_pslli_d:
 | |
|   case Intrinsic::x86_sse2_pslli_q:
 | |
|   case Intrinsic::x86_sse2_psrli_w:
 | |
|   case Intrinsic::x86_sse2_psrli_d:
 | |
|   case Intrinsic::x86_sse2_psrli_q:
 | |
|   case Intrinsic::x86_sse2_psrai_w:
 | |
|   case Intrinsic::x86_sse2_psrai_d:
 | |
|   case Intrinsic::x86_mmx_pslli_w:
 | |
|   case Intrinsic::x86_mmx_pslli_d:
 | |
|   case Intrinsic::x86_mmx_pslli_q:
 | |
|   case Intrinsic::x86_mmx_psrli_w:
 | |
|   case Intrinsic::x86_mmx_psrli_d:
 | |
|   case Intrinsic::x86_mmx_psrli_q:
 | |
|   case Intrinsic::x86_mmx_psrai_w:
 | |
|   case Intrinsic::x86_mmx_psrai_d: {
 | |
|     SDValue ShAmt = Op.getOperand(2);
 | |
|     if (isa<ConstantSDNode>(ShAmt))
 | |
|       return SDValue();
 | |
| 
 | |
|     unsigned NewIntNo = 0;
 | |
|     EVT ShAmtVT = MVT::v4i32;
 | |
|     switch (IntNo) {
 | |
|     case Intrinsic::x86_sse2_pslli_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_pslli_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_pslli_q:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psll_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_d;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrli_q:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psrl_q;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrai_w:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psra_w;
 | |
|       break;
 | |
|     case Intrinsic::x86_sse2_psrai_d:
 | |
|       NewIntNo = Intrinsic::x86_sse2_psra_d;
 | |
|       break;
 | |
|     default: {
 | |
|       ShAmtVT = MVT::v2i32;
 | |
|       switch (IntNo) {
 | |
|       case Intrinsic::x86_mmx_pslli_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_pslli_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_d;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_pslli_q:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psll_q;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_d;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrli_q:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psrl_q;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrai_w:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psra_w;
 | |
|         break;
 | |
|       case Intrinsic::x86_mmx_psrai_d:
 | |
|         NewIntNo = Intrinsic::x86_mmx_psra_d;
 | |
|         break;
 | |
|       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     // The vector shift intrinsics with scalars uses 32b shift amounts but
 | |
|     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
 | |
|     // to be zero.
 | |
|     SDValue ShOps[4];
 | |
|     ShOps[0] = ShAmt;
 | |
|     ShOps[1] = DAG.getConstant(0, MVT::i32);
 | |
|     if (ShAmtVT == MVT::v4i32) {
 | |
|       ShOps[2] = DAG.getUNDEF(MVT::i32);
 | |
|       ShOps[3] = DAG.getUNDEF(MVT::i32);
 | |
|       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
 | |
|     } else {
 | |
|       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
 | |
| // FIXME this must be lowered to get rid of the invalid type.
 | |
|     }
 | |
| 
 | |
|     EVT VT = Op.getValueType();
 | |
|     ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
 | |
|     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(NewIntNo, MVT::i32),
 | |
|                        Op.getOperand(1), ShAmt);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Depth > 0) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset =
 | |
|       DAG.getConstant(TD->getPointerSize(),
 | |
|                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
 | |
|     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                                    FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Just load the return address.
 | |
|   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
 | |
|   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                      RetAddrFI, MachinePointerInfo(), false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | |
|                             MachinePointerInfo(),
 | |
|                             false, false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   return DAG.getIntPtrConstant(2*TD->getPointerSize());
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SDValue Chain     = Op.getOperand(0);
 | |
|   SDValue Offset    = Op.getOperand(1);
 | |
|   SDValue Handler   = Op.getOperand(2);
 | |
|   DebugLoc dl       = Op.getDebugLoc();
 | |
| 
 | |
|   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | |
|                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
 | |
|                                      getPointerTy());
 | |
|   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
 | |
| 
 | |
|   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
 | |
|                                   DAG.getIntPtrConstant(TD->getPointerSize()));
 | |
|   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
 | |
|   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
 | |
|                        false, false, 0);
 | |
|   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
 | |
|   MF.getRegInfo().addLiveOut(StoreAddrReg);
 | |
| 
 | |
|   return DAG.getNode(X86ISD::EH_RETURN, dl,
 | |
|                      MVT::Other,
 | |
|                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   SDValue Root = Op.getOperand(0);
 | |
|   SDValue Trmp = Op.getOperand(1); // trampoline
 | |
|   SDValue FPtr = Op.getOperand(2); // nested function
 | |
|   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | |
|   DebugLoc dl  = Op.getDebugLoc();
 | |
| 
 | |
|   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     SDValue OutChains[6];
 | |
| 
 | |
|     // Large code-model.
 | |
|     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
 | |
|     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
 | |
| 
 | |
|     const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
 | |
|     const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
 | |
| 
 | |
|     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
 | |
| 
 | |
|     // Load the pointer to the nested function into R11.
 | |
|     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
 | |
|     SDValue Addr = Trmp;
 | |
|     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, MachinePointerInfo(TrmpAddr),
 | |
|                                 false, false, 0);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(2, MVT::i64));
 | |
|     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 2),
 | |
|                                 false, false, 2);
 | |
| 
 | |
|     // Load the 'nest' parameter value into R10.
 | |
|     // R10 is specified in X86CallingConv.td
 | |
|     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(10, MVT::i64));
 | |
|     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, MachinePointerInfo(TrmpAddr, 10),
 | |
|                                 false, false, 0);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(12, MVT::i64));
 | |
|     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 12),
 | |
|                                 false, false, 2);
 | |
| 
 | |
|     // Jump to the nested function.
 | |
|     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(20, MVT::i64));
 | |
|     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
 | |
|                                 Addr, MachinePointerInfo(TrmpAddr, 20),
 | |
|                                 false, false, 0);
 | |
| 
 | |
|     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
 | |
|                        DAG.getConstant(22, MVT::i64));
 | |
|     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 22),
 | |
|                                 false, false, 0);
 | |
| 
 | |
|     SDValue Ops[] =
 | |
|       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
 | |
|     return DAG.getMergeValues(Ops, 2, dl);
 | |
|   } else {
 | |
|     const Function *Func =
 | |
|       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
 | |
|     CallingConv::ID CC = Func->getCallingConv();
 | |
|     unsigned NestReg;
 | |
| 
 | |
|     switch (CC) {
 | |
|     default:
 | |
|       llvm_unreachable("Unsupported calling convention");
 | |
|     case CallingConv::C:
 | |
|     case CallingConv::X86_StdCall: {
 | |
|       // Pass 'nest' parameter in ECX.
 | |
|       // Must be kept in sync with X86CallingConv.td
 | |
|       NestReg = X86::ECX;
 | |
| 
 | |
|       // Check that ECX wasn't needed by an 'inreg' parameter.
 | |
|       const FunctionType *FTy = Func->getFunctionType();
 | |
|       const AttrListPtr &Attrs = Func->getAttributes();
 | |
| 
 | |
|       if (!Attrs.isEmpty() && !Func->isVarArg()) {
 | |
|         unsigned InRegCount = 0;
 | |
|         unsigned Idx = 1;
 | |
| 
 | |
|         for (FunctionType::param_iterator I = FTy->param_begin(),
 | |
|              E = FTy->param_end(); I != E; ++I, ++Idx)
 | |
|           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
 | |
|             // FIXME: should only count parameters that are lowered to integers.
 | |
|             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
 | |
| 
 | |
|         if (InRegCount > 2) {
 | |
|           report_fatal_error("Nest register in use - reduce number of inreg"
 | |
|                              " parameters!");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case CallingConv::X86_FastCall:
 | |
|     case CallingConv::X86_ThisCall:
 | |
|     case CallingConv::Fast:
 | |
|       // Pass 'nest' parameter in EAX.
 | |
|       // Must be kept in sync with X86CallingConv.td
 | |
|       NestReg = X86::EAX;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SDValue OutChains[4];
 | |
|     SDValue Addr, Disp;
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(10, MVT::i32));
 | |
|     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
 | |
| 
 | |
|     // This is storing the opcode for MOV32ri.
 | |
|     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
 | |
|     const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
 | |
|     OutChains[0] = DAG.getStore(Root, dl,
 | |
|                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
 | |
|                                 Trmp, MachinePointerInfo(TrmpAddr),
 | |
|                                 false, false, 0);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(1, MVT::i32));
 | |
|     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 1),
 | |
|                                 false, false, 1);
 | |
| 
 | |
|     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(5, MVT::i32));
 | |
|     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 5),
 | |
|                                 false, false, 1);
 | |
| 
 | |
|     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
 | |
|                        DAG.getConstant(6, MVT::i32));
 | |
|     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
 | |
|                                 MachinePointerInfo(TrmpAddr, 6),
 | |
|                                 false, false, 1);
 | |
| 
 | |
|     SDValue Ops[] =
 | |
|       { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
 | |
|     return DAG.getMergeValues(Ops, 2, dl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   /*
 | |
|    The rounding mode is in bits 11:10 of FPSR, and has the following
 | |
|    settings:
 | |
|      00 Round to nearest
 | |
|      01 Round to -inf
 | |
|      10 Round to +inf
 | |
|      11 Round to 0
 | |
| 
 | |
|   FLT_ROUNDS, on the other hand, expects the following:
 | |
|     -1 Undefined
 | |
|      0 Round to 0
 | |
|      1 Round to nearest
 | |
|      2 Round to +inf
 | |
|      3 Round to -inf
 | |
| 
 | |
|   To perform the conversion, we do:
 | |
|     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
 | |
|   */
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const TargetFrameInfo &TFI = *TM.getFrameInfo();
 | |
|   unsigned StackAlignment = TFI.getStackAlignment();
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   // Save FP Control Word to stack slot
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
 | |
| 
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
 | |
|                            MachineMemOperand::MOStore, 2, 2);
 | |
| 
 | |
|   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
 | |
|   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
 | |
|                                           DAG.getVTList(MVT::Other),
 | |
|                                           Ops, 2, MVT::i16, MMO);
 | |
| 
 | |
|   // Load FP Control Word from stack slot
 | |
|   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
 | |
|                             MachinePointerInfo(), false, false, 0);
 | |
| 
 | |
|   // Transform as necessary
 | |
|   SDValue CWD1 =
 | |
|     DAG.getNode(ISD::SRL, DL, MVT::i16,
 | |
|                 DAG.getNode(ISD::AND, DL, MVT::i16,
 | |
|                             CWD, DAG.getConstant(0x800, MVT::i16)),
 | |
|                 DAG.getConstant(11, MVT::i8));
 | |
|   SDValue CWD2 =
 | |
|     DAG.getNode(ISD::SRL, DL, MVT::i16,
 | |
|                 DAG.getNode(ISD::AND, DL, MVT::i16,
 | |
|                             CWD, DAG.getConstant(0x400, MVT::i16)),
 | |
|                 DAG.getConstant(9, MVT::i8));
 | |
| 
 | |
|   SDValue RetVal =
 | |
|     DAG.getNode(ISD::AND, DL, MVT::i16,
 | |
|                 DAG.getNode(ISD::ADD, DL, MVT::i16,
 | |
|                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
 | |
|                             DAG.getConstant(1, MVT::i16)),
 | |
|                 DAG.getConstant(3, MVT::i16));
 | |
| 
 | |
| 
 | |
|   return DAG.getNode((VT.getSizeInBits() < 16 ?
 | |
|                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT OpVT = VT;
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   Op = Op.getOperand(0);
 | |
|   if (VT == MVT::i8) {
 | |
|     // Zero extend to i32 since there is not an i8 bsr.
 | |
|     OpVT = MVT::i32;
 | |
|     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
 | |
|   }
 | |
| 
 | |
|   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
 | |
|   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
 | |
| 
 | |
|   // If src is zero (i.e. bsr sets ZF), returns NumBits.
 | |
|   SDValue Ops[] = {
 | |
|     Op,
 | |
|     DAG.getConstant(NumBits+NumBits-1, OpVT),
 | |
|     DAG.getConstant(X86::COND_E, MVT::i8),
 | |
|     Op.getValue(1)
 | |
|   };
 | |
|   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
 | |
| 
 | |
|   // Finally xor with NumBits-1.
 | |
|   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
 | |
| 
 | |
|   if (VT == MVT::i8)
 | |
|     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT OpVT = VT;
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   Op = Op.getOperand(0);
 | |
|   if (VT == MVT::i8) {
 | |
|     OpVT = MVT::i32;
 | |
|     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
 | |
|   }
 | |
| 
 | |
|   // Issue a bsf (scan bits forward) which also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
 | |
|   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
 | |
| 
 | |
|   // If src is zero (i.e. bsf sets ZF), returns NumBits.
 | |
|   SDValue Ops[] = {
 | |
|     Op,
 | |
|     DAG.getConstant(NumBits, OpVT),
 | |
|     DAG.getConstant(X86::COND_E, MVT::i8),
 | |
|     Op.getValue(1)
 | |
|   };
 | |
|   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
 | |
| 
 | |
|   if (VT == MVT::i8)
 | |
|     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
 | |
|   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
 | |
|   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
 | |
|   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
 | |
|   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
 | |
|   //
 | |
|   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
 | |
|   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
 | |
|   //  return AloBlo + AloBhi + AhiBlo;
 | |
| 
 | |
|   SDValue A = Op.getOperand(0);
 | |
|   SDValue B = Op.getOperand(1);
 | |
| 
 | |
|   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                        A, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                        B, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        A, B);
 | |
|   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        A, Bhi);
 | |
|   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
 | |
|                        Ahi, B);
 | |
|   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                        AloBhi, DAG.getConstant(32, MVT::i32));
 | |
|   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                        AhiBlo, DAG.getConstant(32, MVT::i32));
 | |
|   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
 | |
|   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue R = Op.getOperand(0);
 | |
| 
 | |
|   LLVMContext *Context = DAG.getContext();
 | |
| 
 | |
|   assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
 | |
| 
 | |
|   if (VT == MVT::v4i32) {
 | |
|     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
 | |
|                      Op.getOperand(1), DAG.getConstant(23, MVT::i32));
 | |
| 
 | |
|     ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
 | |
| 
 | |
|     std::vector<Constant*> CV(4, CI);
 | |
|     Constant *C = ConstantVector::get(CV);
 | |
|     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                                  MachinePointerInfo::getConstantPool(),
 | |
|                                  false, false, 16);
 | |
| 
 | |
|     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
 | |
|     Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
 | |
|     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
 | |
|     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
 | |
|   }
 | |
|   if (VT == MVT::v16i8) {
 | |
|     // a = a << 5;
 | |
|     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
 | |
|                      Op.getOperand(1), DAG.getConstant(5, MVT::i32));
 | |
| 
 | |
|     ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
 | |
|     ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
 | |
| 
 | |
|     std::vector<Constant*> CVM1(16, CM1);
 | |
|     std::vector<Constant*> CVM2(16, CM2);
 | |
|     Constant *C = ConstantVector::get(CVM1);
 | |
|     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|     SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                             MachinePointerInfo::getConstantPool(),
 | |
|                             false, false, 16);
 | |
| 
 | |
|     // r = pblendv(r, psllw(r & (char16)15, 4), a);
 | |
|     M = DAG.getNode(ISD::AND, dl, VT, R, M);
 | |
|     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
 | |
|                     DAG.getConstant(4, MVT::i32));
 | |
|     R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                     DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
 | |
|                     R, M, Op);
 | |
|     // a += a
 | |
|     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
 | |
| 
 | |
|     C = ConstantVector::get(CVM2);
 | |
|     CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
 | |
|     M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
 | |
|                     MachinePointerInfo::getConstantPool(),
 | |
|                     false, false, 16);
 | |
| 
 | |
|     // r = pblendv(r, psllw(r & (char16)63, 2), a);
 | |
|     M = DAG.getNode(ISD::AND, dl, VT, R, M);
 | |
|     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
 | |
|                     DAG.getConstant(2, MVT::i32));
 | |
|     R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                     DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
 | |
|                     R, M, Op);
 | |
|     // a += a
 | |
|     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
 | |
| 
 | |
|     // return pblendv(r, r+r, a);
 | |
|     R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
 | |
|                     DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
 | |
|                     R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
 | |
|     return R;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
 | |
|   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
 | |
|   // looks for this combo and may remove the "setcc" instruction if the "setcc"
 | |
|   // has only one use.
 | |
|   SDNode *N = Op.getNode();
 | |
|   SDValue LHS = N->getOperand(0);
 | |
|   SDValue RHS = N->getOperand(1);
 | |
|   unsigned BaseOp = 0;
 | |
|   unsigned Cond = 0;
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Unknown ovf instruction!");
 | |
|   case ISD::SADDO:
 | |
|     // A subtract of one will be selected as a INC. Note that INC doesn't
 | |
|     // set CF, so we can't do this for UADDO.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|       if (C->getAPIntValue() == 1) {
 | |
|         BaseOp = X86ISD::INC;
 | |
|         Cond = X86::COND_O;
 | |
|         break;
 | |
|       }
 | |
|     BaseOp = X86ISD::ADD;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::UADDO:
 | |
|     BaseOp = X86ISD::ADD;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   case ISD::SSUBO:
 | |
|     // A subtract of one will be selected as a DEC. Note that DEC doesn't
 | |
|     // set CF, so we can't do this for USUBO.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | |
|       if (C->getAPIntValue() == 1) {
 | |
|         BaseOp = X86ISD::DEC;
 | |
|         Cond = X86::COND_O;
 | |
|         break;
 | |
|       }
 | |
|     BaseOp = X86ISD::SUB;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::USUBO:
 | |
|     BaseOp = X86ISD::SUB;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   case ISD::SMULO:
 | |
|     BaseOp = X86ISD::SMUL;
 | |
|     Cond = X86::COND_O;
 | |
|     break;
 | |
|   case ISD::UMULO:
 | |
|     BaseOp = X86ISD::UMUL;
 | |
|     Cond = X86::COND_B;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Also sets EFLAGS.
 | |
|   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
 | |
|   SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
 | |
| 
 | |
|   SDValue SetCC =
 | |
|     DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
 | |
|                 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
 | |
| 
 | |
|   DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (!Subtarget->hasSSE2()) {
 | |
|     SDValue Chain = Op.getOperand(0);
 | |
|     SDValue Zero = DAG.getConstant(0,
 | |
|                                    Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
 | |
|     SDValue Ops[] = {
 | |
|       DAG.getRegister(X86::ESP, MVT::i32), // Base
 | |
|       DAG.getTargetConstant(1, MVT::i8),   // Scale
 | |
|       DAG.getRegister(0, MVT::i32),        // Index
 | |
|       DAG.getTargetConstant(0, MVT::i32),  // Disp
 | |
|       DAG.getRegister(0, MVT::i32),        // Segment.
 | |
|       Zero,
 | |
|       Chain
 | |
|     };
 | |
|     SDNode *Res =
 | |
|       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
 | |
|                           array_lengthof(Ops));
 | |
|     return SDValue(Res, 0);
 | |
|   }
 | |
| 
 | |
|   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
 | |
|   if (!isDev)
 | |
|     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
 | |
| 
 | |
|   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
 | |
|   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
| 
 | |
|   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
 | |
|   if (!Op1 && !Op2 && !Op3 && Op4)
 | |
|     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
 | |
| 
 | |
|   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
 | |
|   if (Op1 && !Op2 && !Op3 && !Op4)
 | |
|     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
 | |
| 
 | |
|   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
 | |
|   //           (MFENCE)>;
 | |
|   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT T = Op.getValueType();
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
|   unsigned Reg = 0;
 | |
|   unsigned size = 0;
 | |
|   switch(T.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     assert(false && "Invalid value type!");
 | |
|   case MVT::i8:  Reg = X86::AL;  size = 1; break;
 | |
|   case MVT::i16: Reg = X86::AX;  size = 2; break;
 | |
|   case MVT::i32: Reg = X86::EAX; size = 4; break;
 | |
|   case MVT::i64:
 | |
|     assert(Subtarget->is64Bit() && "Node not type legal!");
 | |
|     Reg = X86::RAX; size = 8;
 | |
|     break;
 | |
|   }
 | |
|   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
 | |
|                                     Op.getOperand(2), SDValue());
 | |
|   SDValue Ops[] = { cpIn.getValue(0),
 | |
|                     Op.getOperand(1),
 | |
|                     Op.getOperand(3),
 | |
|                     DAG.getTargetConstant(size, MVT::i8),
 | |
|                     cpIn.getValue(1) };
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
 | |
|   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
 | |
|                                            Ops, 5, T, MMO);
 | |
|   SDValue cpOut =
 | |
|     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
 | |
|   return cpOut;
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   assert(Subtarget->is64Bit() && "Result not type legalized?");
 | |
|   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|   SDValue TheChain = Op.getOperand(0);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
 | |
|   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
 | |
|   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
 | |
|                                    rax.getValue(2));
 | |
|   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
 | |
|                             DAG.getConstant(32, MVT::i8));
 | |
|   SDValue Ops[] = {
 | |
|     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
 | |
|     rdx.getValue(1)
 | |
|   };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   EVT SrcVT = Op.getOperand(0).getValueType();
 | |
|   EVT DstVT = Op.getValueType();
 | |
|   assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
 | |
|           Subtarget->hasMMX() && !DisableMMX) &&
 | |
|          "Unexpected custom BIT_CONVERT");
 | |
|   assert((DstVT == MVT::i64 ||
 | |
|           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
 | |
|          "Unexpected custom BIT_CONVERT");
 | |
|   // i64 <=> MMX conversions are Legal.
 | |
|   if (SrcVT==MVT::i64 && DstVT.isVector())
 | |
|     return Op;
 | |
|   if (DstVT==MVT::i64 && SrcVT.isVector())
 | |
|     return Op;
 | |
|   // MMX <=> MMX conversions are Legal.
 | |
|   if (SrcVT.isVector() && DstVT.isVector())
 | |
|     return Op;
 | |
|   // All other conversions need to be expanded.
 | |
|   return SDValue();
 | |
| }
 | |
| SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   EVT T = Node->getValueType(0);
 | |
|   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
 | |
|                               DAG.getConstant(0, T), Node->getOperand(2));
 | |
|   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
 | |
|                        cast<AtomicSDNode>(Node)->getMemoryVT(),
 | |
|                        Node->getOperand(0),
 | |
|                        Node->getOperand(1), negOp,
 | |
|                        cast<AtomicSDNode>(Node)->getSrcValue(),
 | |
|                        cast<AtomicSDNode>(Node)->getAlignment());
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Should not custom lower this!");
 | |
|   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
 | |
|   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
 | |
|   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
 | |
|   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::SHL_PARTS:
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
 | |
|   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | |
|   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | |
|   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
 | |
|   case ISD::FABS:               return LowerFABS(Op, DAG);
 | |
|   case ISD::FNEG:               return LowerFNEG(Op, DAG);
 | |
|   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
 | |
|   case ISD::SELECT:             return LowerSELECT(Op, DAG);
 | |
|   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | |
|   case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | |
|   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET:
 | |
|                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
 | |
|   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | |
|   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
 | |
|   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
 | |
|   case ISD::SHL:                return LowerSHL(Op, DAG);
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:              return LowerXALUO(Op, DAG);
 | |
|   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
 | |
|   case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86TargetLowering::
 | |
| ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
 | |
|                         SelectionDAG &DAG, unsigned NewOp) const {
 | |
|   EVT T = Node->getValueType(0);
 | |
|   DebugLoc dl = Node->getDebugLoc();
 | |
|   assert (T == MVT::i64 && "Only know how to expand i64 atomics");
 | |
| 
 | |
|   SDValue Chain = Node->getOperand(0);
 | |
|   SDValue In1 = Node->getOperand(1);
 | |
|   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                              Node->getOperand(2), DAG.getIntPtrConstant(0));
 | |
|   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
 | |
|                              Node->getOperand(2), DAG.getIntPtrConstant(1));
 | |
|   SDValue Ops[] = { Chain, In1, In2L, In2H };
 | |
|   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | |
|   SDValue Result =
 | |
|     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
 | |
|                             cast<MemSDNode>(Node)->getMemOperand());
 | |
|   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
 | |
|   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
 | |
|   Results.push_back(Result.getValue(2));
 | |
| }
 | |
| 
 | |
| /// ReplaceNodeResults - Replace a node with an illegal result type
 | |
| /// with a new node built out of custom code.
 | |
| void X86TargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     assert(false && "Do not know how to custom type legalize this operation!");
 | |
|     return;
 | |
|   case ISD::FP_TO_SINT: {
 | |
|     std::pair<SDValue,SDValue> Vals =
 | |
|         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
 | |
|     SDValue FIST = Vals.first, StackSlot = Vals.second;
 | |
|     if (FIST.getNode() != 0) {
 | |
|       EVT VT = N->getValueType(0);
 | |
|       // Return a load from the stack slot.
 | |
|       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
 | |
|                                     MachinePointerInfo(), false, false, 0));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::READCYCLECOUNTER: {
 | |
|     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     SDValue TheChain = N->getOperand(0);
 | |
|     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
 | |
|     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
 | |
|                                      rd.getValue(1));
 | |
|     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
 | |
|                                      eax.getValue(2));
 | |
|     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
 | |
|     SDValue Ops[] = { eax, edx };
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
 | |
|     Results.push_back(edx.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ATOMIC_CMP_SWAP: {
 | |
|     EVT T = N->getValueType(0);
 | |
|     assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
 | |
|     SDValue cpInL, cpInH;
 | |
|     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
 | |
|                         DAG.getConstant(0, MVT::i32));
 | |
|     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
 | |
|                         DAG.getConstant(1, MVT::i32));
 | |
|     cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
 | |
|     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
 | |
|                              cpInL.getValue(1));
 | |
|     SDValue swapInL, swapInH;
 | |
|     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
 | |
|                           DAG.getConstant(0, MVT::i32));
 | |
|     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
 | |
|                           DAG.getConstant(1, MVT::i32));
 | |
|     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
 | |
|                                cpInH.getValue(1));
 | |
|     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
 | |
|                                swapInL.getValue(1));
 | |
|     SDValue Ops[] = { swapInH.getValue(0),
 | |
|                       N->getOperand(1),
 | |
|                       swapInH.getValue(1) };
 | |
|     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
 | |
|     SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
 | |
|                                              Ops, 3, T, MMO);
 | |
|     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
 | |
|                                         MVT::i32, Result.getValue(1));
 | |
|     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
 | |
|                                         MVT::i32, cpOutL.getValue(2));
 | |
|     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
 | |
|     Results.push_back(cpOutH.getValue(1));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
 | |
|     return;
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return NULL;
 | |
|   case X86ISD::BSF:                return "X86ISD::BSF";
 | |
|   case X86ISD::BSR:                return "X86ISD::BSR";
 | |
|   case X86ISD::SHLD:               return "X86ISD::SHLD";
 | |
|   case X86ISD::SHRD:               return "X86ISD::SHRD";
 | |
|   case X86ISD::FAND:               return "X86ISD::FAND";
 | |
|   case X86ISD::FOR:                return "X86ISD::FOR";
 | |
|   case X86ISD::FXOR:               return "X86ISD::FXOR";
 | |
|   case X86ISD::FSRL:               return "X86ISD::FSRL";
 | |
|   case X86ISD::FILD:               return "X86ISD::FILD";
 | |
|   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
 | |
|   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
 | |
|   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
 | |
|   case X86ISD::FLD:                return "X86ISD::FLD";
 | |
|   case X86ISD::FST:                return "X86ISD::FST";
 | |
|   case X86ISD::CALL:               return "X86ISD::CALL";
 | |
|   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
 | |
|   case X86ISD::BT:                 return "X86ISD::BT";
 | |
|   case X86ISD::CMP:                return "X86ISD::CMP";
 | |
|   case X86ISD::COMI:               return "X86ISD::COMI";
 | |
|   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
 | |
|   case X86ISD::SETCC:              return "X86ISD::SETCC";
 | |
|   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
 | |
|   case X86ISD::CMOV:               return "X86ISD::CMOV";
 | |
|   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
 | |
|   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
 | |
|   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
 | |
|   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
 | |
|   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
 | |
|   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
 | |
|   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
 | |
|   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
 | |
|   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
 | |
|   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
 | |
|   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
 | |
|   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
 | |
|   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
 | |
|   case X86ISD::FMAX:               return "X86ISD::FMAX";
 | |
|   case X86ISD::FMIN:               return "X86ISD::FMIN";
 | |
|   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
 | |
|   case X86ISD::FRCP:               return "X86ISD::FRCP";
 | |
|   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
 | |
|   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
 | |
|   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
 | |
|   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
 | |
|   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
 | |
|   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
 | |
|   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
 | |
|   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
 | |
|   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
 | |
|   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
 | |
|   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
 | |
|   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
 | |
|   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
 | |
|   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
 | |
|   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
 | |
|   case X86ISD::VSHL:               return "X86ISD::VSHL";
 | |
|   case X86ISD::VSRL:               return "X86ISD::VSRL";
 | |
|   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
 | |
|   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
 | |
|   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
 | |
|   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
 | |
|   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
 | |
|   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
 | |
|   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
 | |
|   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
 | |
|   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
 | |
|   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
 | |
|   case X86ISD::ADD:                return "X86ISD::ADD";
 | |
|   case X86ISD::SUB:                return "X86ISD::SUB";
 | |
|   case X86ISD::SMUL:               return "X86ISD::SMUL";
 | |
|   case X86ISD::UMUL:               return "X86ISD::UMUL";
 | |
|   case X86ISD::INC:                return "X86ISD::INC";
 | |
|   case X86ISD::DEC:                return "X86ISD::DEC";
 | |
|   case X86ISD::OR:                 return "X86ISD::OR";
 | |
|   case X86ISD::XOR:                return "X86ISD::XOR";
 | |
|   case X86ISD::AND:                return "X86ISD::AND";
 | |
|   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
 | |
|   case X86ISD::PTEST:              return "X86ISD::PTEST";
 | |
|   case X86ISD::TESTP:              return "X86ISD::TESTP";
 | |
|   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
 | |
|   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
 | |
|   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
 | |
|   case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
 | |
|   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
 | |
|   case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
 | |
|   case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
 | |
|   case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
 | |
|   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
 | |
|   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
 | |
|   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
 | |
|   case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
 | |
|   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
 | |
|   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
 | |
|   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
 | |
|   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
 | |
|   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
 | |
|   case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
 | |
|   case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
 | |
|   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
 | |
|   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
 | |
|   case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
 | |
|   case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
 | |
|   case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
 | |
|   case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
 | |
|   case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
 | |
|   case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
 | |
|   case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
 | |
|   case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
 | |
|   case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
 | |
|   case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
 | |
|   case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
 | |
|   case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
 | |
|   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
 | |
|   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
 | |
|   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
 | |
|   }
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               const Type *Ty) const {
 | |
|   // X86 supports extremely general addressing modes.
 | |
|   CodeModel::Model M = getTargetMachine().getCodeModel();
 | |
|   Reloc::Model R = getTargetMachine().getRelocationModel();
 | |
| 
 | |
|   // X86 allows a sign-extended 32-bit immediate field as a displacement.
 | |
|   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
 | |
|     return false;
 | |
| 
 | |
|   if (AM.BaseGV) {
 | |
|     unsigned GVFlags =
 | |
|       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
 | |
| 
 | |
|     // If a reference to this global requires an extra load, we can't fold it.
 | |
|     if (isGlobalStubReference(GVFlags))
 | |
|       return false;
 | |
| 
 | |
|     // If BaseGV requires a register for the PIC base, we cannot also have a
 | |
|     // BaseReg specified.
 | |
|     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
 | |
|       return false;
 | |
| 
 | |
|     // If lower 4G is not available, then we must use rip-relative addressing.
 | |
|     if ((M != CodeModel::Small || R != Reloc::Static) &&
 | |
|         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:
 | |
|   case 1:
 | |
|   case 2:
 | |
|   case 4:
 | |
|   case 8:
 | |
|     // These scales always work.
 | |
|     break;
 | |
|   case 3:
 | |
|   case 5:
 | |
|   case 9:
 | |
|     // These scales are formed with basereg+scalereg.  Only accept if there is
 | |
|     // no basereg yet.
 | |
|     if (AM.HasBaseReg)
 | |
|       return false;
 | |
|     break;
 | |
|   default:  // Other stuff never works.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   if (NumBits1 <= NumBits2)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   if (NumBits1 <= NumBits2)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
 | |
|   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | |
|   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
 | |
|   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
 | |
|   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
 | |
|   // i16 instructions are longer (0x66 prefix) and potentially slower.
 | |
|   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
 | |
| }
 | |
| 
 | |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only
 | |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
 | |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
 | |
| /// are assumed to be legal.
 | |
| bool
 | |
| X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
 | |
|                                       EVT VT) const {
 | |
|   // Very little shuffling can be done for 64-bit vectors right now.
 | |
|   if (VT.getSizeInBits() == 64)
 | |
|     return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
 | |
| 
 | |
|   // FIXME: pshufb, blends, shifts.
 | |
|   return (VT.getVectorNumElements() == 2 ||
 | |
|           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
 | |
|           isMOVLMask(M, VT) ||
 | |
|           isSHUFPMask(M, VT) ||
 | |
|           isPSHUFDMask(M, VT) ||
 | |
|           isPSHUFHWMask(M, VT) ||
 | |
|           isPSHUFLWMask(M, VT) ||
 | |
|           isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
 | |
|           isUNPCKLMask(M, VT) ||
 | |
|           isUNPCKHMask(M, VT) ||
 | |
|           isUNPCKL_v_undef_Mask(M, VT) ||
 | |
|           isUNPCKH_v_undef_Mask(M, VT));
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
 | |
|                                           EVT VT) const {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   // FIXME: This collection of masks seems suspect.
 | |
|   if (NumElts == 2)
 | |
|     return true;
 | |
|   if (NumElts == 4 && VT.getSizeInBits() == 128) {
 | |
|     return (isMOVLMask(Mask, VT)  ||
 | |
|             isCommutedMOVLMask(Mask, VT, true) ||
 | |
|             isSHUFPMask(Mask, VT) ||
 | |
|             isCommutedSHUFPMask(Mask, VT));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Scheduler Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // private utility function
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
 | |
|                                                        MachineBasicBlock *MBB,
 | |
|                                                        unsigned regOpc,
 | |
|                                                        unsigned immOpc,
 | |
|                                                        unsigned LoadOpc,
 | |
|                                                        unsigned CXchgOpc,
 | |
|                                                        unsigned notOpc,
 | |
|                                                        unsigned EAXreg,
 | |
|                                                        TargetRegisterClass *RC,
 | |
|                                                        bool invSrc) const {
 | |
|   // For the atomic bitwise operator, we generate
 | |
|   //   thisMBB:
 | |
|   //   newMBB:
 | |
|   //     ld  t1 = [bitinstr.addr]
 | |
|   //     op  t2 = t1, [bitinstr.val]
 | |
|   //     mov EAX = t1
 | |
|   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
 | |
|   //     bz  newMBB
 | |
|   //     fallthrough -->nextMBB
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
 | |
|   nextMBB->splice(nextMBB->begin(), thisMBB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(bInstr)),
 | |
|                   thisMBB->end());
 | |
|   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to itself and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
 | |
|          "unexpected number of operands");
 | |
|   DebugLoc dl = bInstr->getDebugLoc();
 | |
|   MachineOperand& destOper = bInstr->getOperand(0);
 | |
|   MachineOperand* argOpers[2 + X86::AddrNumOperands];
 | |
|   int numArgs = bInstr->getNumOperands() - 1;
 | |
|   for (int i=0; i < numArgs; ++i)
 | |
|     argOpers[i] = &bInstr->getOperand(i+1);
 | |
| 
 | |
|   // x86 address has 4 operands: base, index, scale, and displacement
 | |
|   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
 | |
|   if (invSrc) {
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
 | |
|   }
 | |
|   else
 | |
|     tt = t1;
 | |
| 
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
 | |
|   MIB.addReg(tt);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MIB.addReg(t2);
 | |
|   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).setMemRefs(bInstr->memoperands_begin(),
 | |
|                     bInstr->memoperands_end());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
 | |
|   MIB.addReg(EAXreg);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
 | |
| 
 | |
|   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| // private utility function:  64 bit atomics on 32 bit host.
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
 | |
|                                                        MachineBasicBlock *MBB,
 | |
|                                                        unsigned regOpcL,
 | |
|                                                        unsigned regOpcH,
 | |
|                                                        unsigned immOpcL,
 | |
|                                                        unsigned immOpcH,
 | |
|                                                        bool invSrc) const {
 | |
|   // For the atomic bitwise operator, we generate
 | |
|   //   thisMBB (instructions are in pairs, except cmpxchg8b)
 | |
|   //     ld t1,t2 = [bitinstr.addr]
 | |
|   //   newMBB:
 | |
|   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
 | |
|   //     op  t5, t6 <- out1, out2, [bitinstr.val]
 | |
|   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
 | |
|   //     mov ECX, EBX <- t5, t6
 | |
|   //     mov EAX, EDX <- t1, t2
 | |
|   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
 | |
|   //     mov t3, t4 <- EAX, EDX
 | |
|   //     bz  newMBB
 | |
|   //     result in out1, out2
 | |
|   //     fallthrough -->nextMBB
 | |
| 
 | |
|   const TargetRegisterClass *RC = X86::GR32RegisterClass;
 | |
|   const unsigned LoadOpc = X86::MOV32rm;
 | |
|   const unsigned NotOpc = X86::NOT32r;
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
 | |
|   nextMBB->splice(nextMBB->begin(), thisMBB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(bInstr)),
 | |
|                   thisMBB->end());
 | |
|   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to itself and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   DebugLoc dl = bInstr->getDebugLoc();
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
 | |
|   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
 | |
|          "unexpected number of operands");
 | |
|   MachineOperand& dest1Oper = bInstr->getOperand(0);
 | |
|   MachineOperand& dest2Oper = bInstr->getOperand(1);
 | |
|   MachineOperand* argOpers[2 + X86::AddrNumOperands];
 | |
|   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
 | |
|     argOpers[i] = &bInstr->getOperand(i+2);
 | |
| 
 | |
|     // We use some of the operands multiple times, so conservatively just
 | |
|     // clear any kill flags that might be present.
 | |
|     if (argOpers[i]->isReg() && argOpers[i]->isUse())
 | |
|       argOpers[i]->setIsKill(false);
 | |
|   }
 | |
| 
 | |
|   // x86 address has 5 operands: base, index, scale, displacement, and segment.
 | |
|   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
 | |
|   // add 4 to displacement.
 | |
|   for (int i=0; i <= lastAddrIndx-2; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MachineOperand newOp3 = *(argOpers[3]);
 | |
|   if (newOp3.isImm())
 | |
|     newOp3.setImm(newOp3.getImm()+4);
 | |
|   else
 | |
|     newOp3.setOffset(newOp3.getOffset()+4);
 | |
|   (*MIB).addOperand(newOp3);
 | |
|   (*MIB).addOperand(*argOpers[lastAddrIndx]);
 | |
| 
 | |
|   // t3/4 are defined later, at the bottom of the loop
 | |
|   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
 | |
|     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
 | |
|   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
 | |
|     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
 | |
| 
 | |
|   // The subsequent operations should be using the destination registers of
 | |
|   //the PHI instructions.
 | |
|   if (invSrc) {
 | |
|     t1 = F->getRegInfo().createVirtualRegister(RC);
 | |
|     t2 = F->getRegInfo().createVirtualRegister(RC);
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
 | |
|   } else {
 | |
|     t1 = dest1Oper.getReg();
 | |
|     t2 = dest2Oper.getReg();
 | |
|   }
 | |
| 
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
|   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
 | |
|   if (regOpcL != X86::MOV32rr)
 | |
|     MIB.addReg(t1);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
|   assert(argOpers[valArgIndx + 1]->isReg() ==
 | |
|          argOpers[valArgIndx]->isReg());
 | |
|   assert(argOpers[valArgIndx + 1]->isImm() ==
 | |
|          argOpers[valArgIndx]->isImm());
 | |
|   if (argOpers[valArgIndx + 1]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
 | |
|   if (regOpcH != X86::MOV32rr)
 | |
|     MIB.addReg(t2);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
 | |
|   MIB.addReg(t1);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
 | |
|   MIB.addReg(t2);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
 | |
|   MIB.addReg(t5);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
 | |
|   MIB.addReg(t6);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).setMemRefs(bInstr->memoperands_begin(),
 | |
|                     bInstr->memoperands_end());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
 | |
|   MIB.addReg(X86::EAX);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
 | |
|   MIB.addReg(X86::EDX);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
 | |
| 
 | |
|   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| // private utility function
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
 | |
|                                                       MachineBasicBlock *MBB,
 | |
|                                                       unsigned cmovOpc) const {
 | |
|   // For the atomic min/max operator, we generate
 | |
|   //   thisMBB:
 | |
|   //   newMBB:
 | |
|   //     ld t1 = [min/max.addr]
 | |
|   //     mov t2 = [min/max.val]
 | |
|   //     cmp  t1, t2
 | |
|   //     cmov[cond] t2 = t1
 | |
|   //     mov EAX = t1
 | |
|   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
 | |
|   //     bz   newMBB
 | |
|   //     fallthrough -->nextMBB
 | |
|   //
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
| 
 | |
|   /// First build the CFG
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, newMBB);
 | |
|   F->insert(MBBIter, nextMBB);
 | |
| 
 | |
|   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
 | |
|   nextMBB->splice(nextMBB->begin(), thisMBB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(mInstr)),
 | |
|                   thisMBB->end());
 | |
|   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
 | |
| 
 | |
|   // Update thisMBB to fall through to newMBB
 | |
|   thisMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   // newMBB jumps to newMBB and fall through to nextMBB
 | |
|   newMBB->addSuccessor(nextMBB);
 | |
|   newMBB->addSuccessor(newMBB);
 | |
| 
 | |
|   DebugLoc dl = mInstr->getDebugLoc();
 | |
|   // Insert instructions into newMBB based on incoming instruction
 | |
|   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
 | |
|          "unexpected number of operands");
 | |
|   MachineOperand& destOper = mInstr->getOperand(0);
 | |
|   MachineOperand* argOpers[2 + X86::AddrNumOperands];
 | |
|   int numArgs = mInstr->getNumOperands() - 1;
 | |
|   for (int i=0; i < numArgs; ++i)
 | |
|     argOpers[i] = &mInstr->getOperand(i+1);
 | |
| 
 | |
|   // x86 address has 4 operands: base, index, scale, and displacement
 | |
|   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
 | |
|   int valArgIndx = lastAddrIndx + 1;
 | |
| 
 | |
|   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
| 
 | |
|   // We only support register and immediate values
 | |
|   assert((argOpers[valArgIndx]->isReg() ||
 | |
|           argOpers[valArgIndx]->isImm()) &&
 | |
|          "invalid operand");
 | |
| 
 | |
|   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   if (argOpers[valArgIndx]->isReg())
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
 | |
|   else
 | |
|     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
 | |
|   (*MIB).addOperand(*argOpers[valArgIndx]);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
 | |
|   MIB.addReg(t1);
 | |
|   MIB.addReg(t2);
 | |
| 
 | |
|   // Generate movc
 | |
|   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
 | |
|   MIB.addReg(t2);
 | |
|   MIB.addReg(t1);
 | |
| 
 | |
|   // Cmp and exchange if none has modified the memory location
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
 | |
|   for (int i=0; i <= lastAddrIndx; ++i)
 | |
|     (*MIB).addOperand(*argOpers[i]);
 | |
|   MIB.addReg(t3);
 | |
|   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
 | |
|   (*MIB).setMemRefs(mInstr->memoperands_begin(),
 | |
|                     mInstr->memoperands_end());
 | |
| 
 | |
|   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
 | |
|   MIB.addReg(X86::EAX);
 | |
| 
 | |
|   // insert branch
 | |
|   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
 | |
| 
 | |
|   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return nextMBB;
 | |
| }
 | |
| 
 | |
| // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
 | |
| // or XMM0_V32I8 in AVX all of this code can be replaced with that
 | |
| // in the .td file.
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                             unsigned numArgs, bool memArg) const {
 | |
| 
 | |
|   assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
 | |
|          "Target must have SSE4.2 or AVX features enabled");
 | |
| 
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   unsigned Opc;
 | |
| 
 | |
|   if (!Subtarget->hasAVX()) {
 | |
|     if (memArg)
 | |
|       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
 | |
|     else
 | |
|       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
 | |
|   } else {
 | |
|     if (memArg)
 | |
|       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
 | |
|     else
 | |
|       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
 | |
|   }
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
 | |
| 
 | |
|   for (unsigned i = 0; i < numArgs; ++i) {
 | |
|     MachineOperand &Op = MI->getOperand(i+1);
 | |
| 
 | |
|     if (!(Op.isReg() && Op.isImplicit()))
 | |
|       MIB.addOperand(Op);
 | |
|   }
 | |
| 
 | |
|   BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
 | |
|     .addReg(X86::XMM0);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitVAARG64WithCustomInserter(
 | |
|                    MachineInstr *MI,
 | |
|                    MachineBasicBlock *MBB) const {
 | |
|   // Emit va_arg instruction on X86-64.
 | |
| 
 | |
|   // Operands to this pseudo-instruction:
 | |
|   // 0  ) Output        : destination address (reg)
 | |
|   // 1-5) Input         : va_list address (addr, i64mem)
 | |
|   // 6  ) ArgSize       : Size (in bytes) of vararg type
 | |
|   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
 | |
|   // 8  ) Align         : Alignment of type
 | |
|   // 9  ) EFLAGS (implicit-def)
 | |
| 
 | |
|   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
 | |
|   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
 | |
| 
 | |
|   unsigned DestReg = MI->getOperand(0).getReg();
 | |
|   MachineOperand &Base = MI->getOperand(1);
 | |
|   MachineOperand &Scale = MI->getOperand(2);
 | |
|   MachineOperand &Index = MI->getOperand(3);
 | |
|   MachineOperand &Disp = MI->getOperand(4);
 | |
|   MachineOperand &Segment = MI->getOperand(5);
 | |
|   unsigned ArgSize = MI->getOperand(6).getImm();
 | |
|   unsigned ArgMode = MI->getOperand(7).getImm();
 | |
|   unsigned Align = MI->getOperand(8).getImm();
 | |
| 
 | |
|   // Memory Reference
 | |
|   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
 | |
|   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
 | |
|   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
 | |
| 
 | |
|   // Machine Information
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
 | |
|   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   // struct va_list {
 | |
|   //   i32   gp_offset
 | |
|   //   i32   fp_offset
 | |
|   //   i64   overflow_area (address)
 | |
|   //   i64   reg_save_area (address)
 | |
|   // }
 | |
|   // sizeof(va_list) = 24
 | |
|   // alignment(va_list) = 8
 | |
| 
 | |
|   unsigned TotalNumIntRegs = 6;
 | |
|   unsigned TotalNumXMMRegs = 8;
 | |
|   bool UseGPOffset = (ArgMode == 1);
 | |
|   bool UseFPOffset = (ArgMode == 2);
 | |
|   unsigned MaxOffset = TotalNumIntRegs * 8 +
 | |
|                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
 | |
| 
 | |
|   /* Align ArgSize to a multiple of 8 */
 | |
|   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
 | |
|   bool NeedsAlign = (Align > 8);
 | |
| 
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *overflowMBB;
 | |
|   MachineBasicBlock *offsetMBB;
 | |
|   MachineBasicBlock *endMBB;
 | |
| 
 | |
|   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
 | |
|   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
 | |
|   unsigned OffsetReg = 0;
 | |
| 
 | |
|   if (!UseGPOffset && !UseFPOffset) {
 | |
|     // If we only pull from the overflow region, we don't create a branch.
 | |
|     // We don't need to alter control flow.
 | |
|     OffsetDestReg = 0; // unused
 | |
|     OverflowDestReg = DestReg;
 | |
| 
 | |
|     offsetMBB = NULL;
 | |
|     overflowMBB = thisMBB;
 | |
|     endMBB = thisMBB;
 | |
|   } else {
 | |
|     // First emit code to check if gp_offset (or fp_offset) is below the bound.
 | |
|     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
 | |
|     // If not, pull from overflow_area. (branch to overflowMBB)
 | |
|     //
 | |
|     //       thisMBB
 | |
|     //         |     .
 | |
|     //         |        .
 | |
|     //     offsetMBB   overflowMBB
 | |
|     //         |        .
 | |
|     //         |     .
 | |
|     //        endMBB
 | |
| 
 | |
|     // Registers for the PHI in endMBB
 | |
|     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
 | |
|     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
 | |
| 
 | |
|     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|     MachineFunction *MF = MBB->getParent();
 | |
|     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
|     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
 | |
| 
 | |
|     MachineFunction::iterator MBBIter = MBB;
 | |
|     ++MBBIter;
 | |
| 
 | |
|     // Insert the new basic blocks
 | |
|     MF->insert(MBBIter, offsetMBB);
 | |
|     MF->insert(MBBIter, overflowMBB);
 | |
|     MF->insert(MBBIter, endMBB);
 | |
| 
 | |
|     // Transfer the remainder of MBB and its successor edges to endMBB.
 | |
|     endMBB->splice(endMBB->begin(), thisMBB,
 | |
|                     llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                     thisMBB->end());
 | |
|     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
 | |
| 
 | |
|     // Make offsetMBB and overflowMBB successors of thisMBB
 | |
|     thisMBB->addSuccessor(offsetMBB);
 | |
|     thisMBB->addSuccessor(overflowMBB);
 | |
| 
 | |
|     // endMBB is a successor of both offsetMBB and overflowMBB
 | |
|     offsetMBB->addSuccessor(endMBB);
 | |
|     overflowMBB->addSuccessor(endMBB);
 | |
| 
 | |
|     // Load the offset value into a register
 | |
|     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
 | |
|     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
 | |
|       .addOperand(Base)
 | |
|       .addOperand(Scale)
 | |
|       .addOperand(Index)
 | |
|       .addDisp(Disp, UseFPOffset ? 4 : 0)
 | |
|       .addOperand(Segment)
 | |
|       .setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|     // Check if there is enough room left to pull this argument.
 | |
|     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
 | |
|       .addReg(OffsetReg)
 | |
|       .addImm(MaxOffset + 8 - ArgSizeA8);
 | |
| 
 | |
|     // Branch to "overflowMBB" if offset >= max
 | |
|     // Fall through to "offsetMBB" otherwise
 | |
|     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
 | |
|       .addMBB(overflowMBB);
 | |
|   }
 | |
| 
 | |
|   // In offsetMBB, emit code to use the reg_save_area.
 | |
|   if (offsetMBB) {
 | |
|     assert(OffsetReg != 0);
 | |
| 
 | |
|     // Read the reg_save_area address.
 | |
|     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
 | |
|     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
 | |
|       .addOperand(Base)
 | |
|       .addOperand(Scale)
 | |
|       .addOperand(Index)
 | |
|       .addDisp(Disp, 16)
 | |
|       .addOperand(Segment)
 | |
|       .setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|     // Zero-extend the offset
 | |
|     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
 | |
|       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
 | |
|         .addImm(0)
 | |
|         .addReg(OffsetReg)
 | |
|         .addImm(X86::sub_32bit);
 | |
| 
 | |
|     // Add the offset to the reg_save_area to get the final address.
 | |
|     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
 | |
|       .addReg(OffsetReg64)
 | |
|       .addReg(RegSaveReg);
 | |
| 
 | |
|     // Compute the offset for the next argument
 | |
|     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
 | |
|     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
 | |
|       .addReg(OffsetReg)
 | |
|       .addImm(UseFPOffset ? 16 : 8);
 | |
| 
 | |
|     // Store it back into the va_list.
 | |
|     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
 | |
|       .addOperand(Base)
 | |
|       .addOperand(Scale)
 | |
|       .addOperand(Index)
 | |
|       .addDisp(Disp, UseFPOffset ? 4 : 0)
 | |
|       .addOperand(Segment)
 | |
|       .addReg(NextOffsetReg)
 | |
|       .setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|     // Jump to endMBB
 | |
|     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
 | |
|       .addMBB(endMBB);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Emit code to use overflow area
 | |
|   //
 | |
| 
 | |
|   // Load the overflow_area address into a register.
 | |
|   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
 | |
|   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
 | |
|     .addOperand(Base)
 | |
|     .addOperand(Scale)
 | |
|     .addOperand(Index)
 | |
|     .addDisp(Disp, 8)
 | |
|     .addOperand(Segment)
 | |
|     .setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // If we need to align it, do so. Otherwise, just copy the address
 | |
|   // to OverflowDestReg.
 | |
|   if (NeedsAlign) {
 | |
|     // Align the overflow address
 | |
|     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
 | |
|     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
 | |
| 
 | |
|     // aligned_addr = (addr + (align-1)) & ~(align-1)
 | |
|     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
 | |
|       .addReg(OverflowAddrReg)
 | |
|       .addImm(Align-1);
 | |
| 
 | |
|     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
 | |
|       .addReg(TmpReg)
 | |
|       .addImm(~(uint64_t)(Align-1));
 | |
|   } else {
 | |
|     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
 | |
|       .addReg(OverflowAddrReg);
 | |
|   }
 | |
| 
 | |
|   // Compute the next overflow address after this argument.
 | |
|   // (the overflow address should be kept 8-byte aligned)
 | |
|   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
 | |
|   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
 | |
|     .addReg(OverflowDestReg)
 | |
|     .addImm(ArgSizeA8);
 | |
| 
 | |
|   // Store the new overflow address.
 | |
|   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
 | |
|     .addOperand(Base)
 | |
|     .addOperand(Scale)
 | |
|     .addOperand(Index)
 | |
|     .addDisp(Disp, 8)
 | |
|     .addOperand(Segment)
 | |
|     .addReg(NextAddrReg)
 | |
|     .setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // If we branched, emit the PHI to the front of endMBB.
 | |
|   if (offsetMBB) {
 | |
|     BuildMI(*endMBB, endMBB->begin(), DL,
 | |
|             TII->get(X86::PHI), DestReg)
 | |
|       .addReg(OffsetDestReg).addMBB(offsetMBB)
 | |
|       .addReg(OverflowDestReg).addMBB(overflowMBB);
 | |
|   }
 | |
| 
 | |
|   // Erase the pseudo instruction
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   return endMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
 | |
|                                                  MachineInstr *MI,
 | |
|                                                  MachineBasicBlock *MBB) const {
 | |
|   // Emit code to save XMM registers to the stack. The ABI says that the
 | |
|   // number of registers to save is given in %al, so it's theoretically
 | |
|   // possible to do an indirect jump trick to avoid saving all of them,
 | |
|   // however this code takes a simpler approach and just executes all
 | |
|   // of the stores if %al is non-zero. It's less code, and it's probably
 | |
|   // easier on the hardware branch predictor, and stores aren't all that
 | |
|   // expensive anyway.
 | |
| 
 | |
|   // Create the new basic blocks. One block contains all the XMM stores,
 | |
|   // and one block is the final destination regardless of whether any
 | |
|   // stores were performed.
 | |
|   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   MachineFunction::iterator MBBIter = MBB;
 | |
|   ++MBBIter;
 | |
|   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(MBBIter, XMMSaveMBB);
 | |
|   F->insert(MBBIter, EndMBB);
 | |
| 
 | |
|   // Transfer the remainder of MBB and its successor edges to EndMBB.
 | |
|   EndMBB->splice(EndMBB->begin(), MBB,
 | |
|                  llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                  MBB->end());
 | |
|   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   // The original block will now fall through to the XMM save block.
 | |
|   MBB->addSuccessor(XMMSaveMBB);
 | |
|   // The XMMSaveMBB will fall through to the end block.
 | |
|   XMMSaveMBB->addSuccessor(EndMBB);
 | |
| 
 | |
|   // Now add the instructions.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   unsigned CountReg = MI->getOperand(0).getReg();
 | |
|   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
 | |
|   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
 | |
| 
 | |
|   if (!Subtarget->isTargetWin64()) {
 | |
|     // If %al is 0, branch around the XMM save block.
 | |
|     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
 | |
|     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
 | |
|     MBB->addSuccessor(EndMBB);
 | |
|   }
 | |
| 
 | |
|   // In the XMM save block, save all the XMM argument registers.
 | |
|   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
 | |
|     MachineMemOperand *MMO =
 | |
|       F->getMachineMemOperand(
 | |
|           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
 | |
|         MachineMemOperand::MOStore,
 | |
|         /*Size=*/16, /*Align=*/16);
 | |
|     BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
 | |
|       .addFrameIndex(RegSaveFrameIndex)
 | |
|       .addImm(/*Scale=*/1)
 | |
|       .addReg(/*IndexReg=*/0)
 | |
|       .addImm(/*Disp=*/Offset)
 | |
|       .addReg(/*Segment=*/0)
 | |
|       .addReg(MI->getOperand(i).getReg())
 | |
|       .addMemOperand(MMO);
 | |
|   }
 | |
| 
 | |
|   MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
| 
 | |
|   return EndMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   // To "insert" a SELECT_CC instruction, we actually have to insert the
 | |
|   // diamond control-flow pattern.  The incoming instruction knows the
 | |
|   // destination vreg to set, the condition code register to branch on, the
 | |
|   // true/false values to select between, and a branch opcode to use.
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   TrueVal = ...
 | |
|   //   cmpTY ccX, r1, r2
 | |
|   //   bCC copy1MBB
 | |
|   //   fallthrough --> copy0MBB
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, copy0MBB);
 | |
|   F->insert(It, sinkMBB);
 | |
| 
 | |
|   // If the EFLAGS register isn't dead in the terminator, then claim that it's
 | |
|   // live into the sink and copy blocks.
 | |
|   const MachineFunction *MF = BB->getParent();
 | |
|   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
 | |
|   BitVector ReservedRegs = TRI->getReservedRegs(*MF);
 | |
| 
 | |
|   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
 | |
|     const MachineOperand &MO = MI->getOperand(I);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg != X86::EFLAGS) continue;
 | |
|     copy0MBB->addLiveIn(Reg);
 | |
|     sinkMBB->addLiveIn(Reg);
 | |
|   }
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|   sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                   llvm::next(MachineBasicBlock::iterator(MI)),
 | |
|                   BB->end());
 | |
|   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   // Add the true and fallthrough blocks as its successors.
 | |
|   BB->addSuccessor(copy0MBB);
 | |
|   BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   // Create the conditional branch instruction.
 | |
|   unsigned Opc =
 | |
|     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
 | |
|   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
 | |
| 
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = ...
 | |
|   //   # fallthrough to sinkMBB
 | |
|   copy0MBB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|   //  ...
 | |
|   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | |
|           TII->get(X86::PHI), MI->getOperand(0).getReg())
 | |
|     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
 | |
|     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|   MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return sinkMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
 | |
|                                           MachineBasicBlock *BB) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
 | |
|   // non-trivial part is impdef of ESP.
 | |
|   // FIXME: The code should be tweaked as soon as we'll try to do codegen for
 | |
|   // mingw-w64.
 | |
| 
 | |
|   const char *StackProbeSymbol =
 | |
|       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
 | |
| 
 | |
|   BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
 | |
|     .addExternalSymbol(StackProbeSymbol)
 | |
|     .addReg(X86::EAX, RegState::Implicit)
 | |
|     .addReg(X86::ESP, RegState::Implicit)
 | |
|     .addReg(X86::EAX, RegState::Define | RegState::Implicit)
 | |
|     .addReg(X86::ESP, RegState::Define | RegState::Implicit)
 | |
|     .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
 | |
| 
 | |
|   MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
 | |
|                                       MachineBasicBlock *BB) const {
 | |
|   // This is pretty easy.  We're taking the value that we received from
 | |
|   // our load from the relocation, sticking it in either RDI (x86-64)
 | |
|   // or EAX and doing an indirect call.  The return value will then
 | |
|   // be in the normal return register.
 | |
|   const X86InstrInfo *TII
 | |
|     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
|   MachineFunction *F = BB->getParent();
 | |
| 
 | |
|   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
 | |
|   assert(MI->getOperand(3).isGlobal() && "This should be a global");
 | |
| 
 | |
|   if (Subtarget->is64Bit()) {
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
 | |
|                                       TII->get(X86::MOV64rm), X86::RDI)
 | |
|     .addReg(X86::RIP)
 | |
|     .addImm(0).addReg(0)
 | |
|     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
 | |
|                       MI->getOperand(3).getTargetFlags())
 | |
|     .addReg(0);
 | |
|     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
 | |
|     addDirectMem(MIB, X86::RDI);
 | |
|   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
 | |
|                                       TII->get(X86::MOV32rm), X86::EAX)
 | |
|     .addReg(0)
 | |
|     .addImm(0).addReg(0)
 | |
|     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
 | |
|                       MI->getOperand(3).getTargetFlags())
 | |
|     .addReg(0);
 | |
|     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
 | |
|     addDirectMem(MIB, X86::EAX);
 | |
|   } else {
 | |
|     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
 | |
|                                       TII->get(X86::MOV32rm), X86::EAX)
 | |
|     .addReg(TII->getGlobalBaseReg(F))
 | |
|     .addImm(0).addReg(0)
 | |
|     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
 | |
|                       MI->getOperand(3).getTargetFlags())
 | |
|     .addReg(0);
 | |
|     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
 | |
|     addDirectMem(MIB, X86::EAX);
 | |
|   }
 | |
| 
 | |
|   MI->eraseFromParent(); // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: assert(false && "Unexpected instr type to insert");
 | |
|   case X86::WIN_ALLOCA:
 | |
|     return EmitLoweredWinAlloca(MI, BB);
 | |
|   case X86::TLSCall_32:
 | |
|   case X86::TLSCall_64:
 | |
|     return EmitLoweredTLSCall(MI, BB);
 | |
|   case X86::CMOV_GR8:
 | |
|   case X86::CMOV_FR32:
 | |
|   case X86::CMOV_FR64:
 | |
|   case X86::CMOV_V4F32:
 | |
|   case X86::CMOV_V2F64:
 | |
|   case X86::CMOV_V2I64:
 | |
|   case X86::CMOV_GR16:
 | |
|   case X86::CMOV_GR32:
 | |
|   case X86::CMOV_RFP32:
 | |
|   case X86::CMOV_RFP64:
 | |
|   case X86::CMOV_RFP80:
 | |
|     return EmitLoweredSelect(MI, BB);
 | |
| 
 | |
|   case X86::FP32_TO_INT16_IN_MEM:
 | |
|   case X86::FP32_TO_INT32_IN_MEM:
 | |
|   case X86::FP32_TO_INT64_IN_MEM:
 | |
|   case X86::FP64_TO_INT16_IN_MEM:
 | |
|   case X86::FP64_TO_INT32_IN_MEM:
 | |
|   case X86::FP64_TO_INT64_IN_MEM:
 | |
|   case X86::FP80_TO_INT16_IN_MEM:
 | |
|   case X86::FP80_TO_INT32_IN_MEM:
 | |
|   case X86::FP80_TO_INT64_IN_MEM: {
 | |
|     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|     DebugLoc DL = MI->getDebugLoc();
 | |
| 
 | |
|     // Change the floating point control register to use "round towards zero"
 | |
|     // mode when truncating to an integer value.
 | |
|     MachineFunction *F = BB->getParent();
 | |
|     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
 | |
|     addFrameReference(BuildMI(*BB, MI, DL,
 | |
|                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Load the old value of the high byte of the control word...
 | |
|     unsigned OldCW =
 | |
|       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
 | |
|     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
 | |
|                       CWFrameIdx);
 | |
| 
 | |
|     // Set the high part to be round to zero...
 | |
|     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
 | |
|       .addImm(0xC7F);
 | |
| 
 | |
|     // Reload the modified control word now...
 | |
|     addFrameReference(BuildMI(*BB, MI, DL,
 | |
|                               TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     // Restore the memory image of control word to original value
 | |
|     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
 | |
|       .addReg(OldCW);
 | |
| 
 | |
|     // Get the X86 opcode to use.
 | |
|     unsigned Opc;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("illegal opcode!");
 | |
|     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
 | |
|     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
 | |
|     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
 | |
|     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
 | |
|     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
 | |
|     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
 | |
|     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
 | |
|     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
 | |
|     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
 | |
|     }
 | |
| 
 | |
|     X86AddressMode AM;
 | |
|     MachineOperand &Op = MI->getOperand(0);
 | |
|     if (Op.isReg()) {
 | |
|       AM.BaseType = X86AddressMode::RegBase;
 | |
|       AM.Base.Reg = Op.getReg();
 | |
|     } else {
 | |
|       AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|       AM.Base.FrameIndex = Op.getIndex();
 | |
|     }
 | |
|     Op = MI->getOperand(1);
 | |
|     if (Op.isImm())
 | |
|       AM.Scale = Op.getImm();
 | |
|     Op = MI->getOperand(2);
 | |
|     if (Op.isImm())
 | |
|       AM.IndexReg = Op.getImm();
 | |
|     Op = MI->getOperand(3);
 | |
|     if (Op.isGlobal()) {
 | |
|       AM.GV = Op.getGlobal();
 | |
|     } else {
 | |
|       AM.Disp = Op.getImm();
 | |
|     }
 | |
|     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
 | |
|                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
 | |
| 
 | |
|     // Reload the original control word now.
 | |
|     addFrameReference(BuildMI(*BB, MI, DL,
 | |
|                               TII->get(X86::FLDCW16m)), CWFrameIdx);
 | |
| 
 | |
|     MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|     return BB;
 | |
|   }
 | |
|     // String/text processing lowering.
 | |
|   case X86::PCMPISTRM128REG:
 | |
|   case X86::VPCMPISTRM128REG:
 | |
|     return EmitPCMP(MI, BB, 3, false /* in-mem */);
 | |
|   case X86::PCMPISTRM128MEM:
 | |
|   case X86::VPCMPISTRM128MEM:
 | |
|     return EmitPCMP(MI, BB, 3, true /* in-mem */);
 | |
|   case X86::PCMPESTRM128REG:
 | |
|   case X86::VPCMPESTRM128REG:
 | |
|     return EmitPCMP(MI, BB, 5, false /* in mem */);
 | |
|   case X86::PCMPESTRM128MEM:
 | |
|   case X86::VPCMPESTRM128MEM:
 | |
|     return EmitPCMP(MI, BB, 5, true /* in mem */);
 | |
| 
 | |
|     // Atomic Lowering.
 | |
|   case X86::ATOMAND32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMOR32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
 | |
|                                                X86::OR32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMXOR32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
 | |
|                                                X86::XOR32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass);
 | |
|   case X86::ATOMNAND32:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::MOV32rm,
 | |
|                                                X86::LCMPXCHG32,
 | |
|                                                X86::NOT32r, X86::EAX,
 | |
|                                                X86::GR32RegisterClass, true);
 | |
|   case X86::ATOMMIN32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
 | |
|   case X86::ATOMMAX32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
 | |
|   case X86::ATOMUMIN32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
 | |
|   case X86::ATOMUMAX32:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
 | |
| 
 | |
|   case X86::ATOMAND16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
 | |
|                                                X86::AND16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMOR16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
 | |
|                                                X86::OR16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMXOR16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
 | |
|                                                X86::XOR16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass);
 | |
|   case X86::ATOMNAND16:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
 | |
|                                                X86::AND16ri, X86::MOV16rm,
 | |
|                                                X86::LCMPXCHG16,
 | |
|                                                X86::NOT16r, X86::AX,
 | |
|                                                X86::GR16RegisterClass, true);
 | |
|   case X86::ATOMMIN16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
 | |
|   case X86::ATOMMAX16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
 | |
|   case X86::ATOMUMIN16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
 | |
|   case X86::ATOMUMAX16:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
 | |
| 
 | |
|   case X86::ATOMAND8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
 | |
|                                                X86::AND8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMOR8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
 | |
|                                                X86::OR8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMXOR8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
 | |
|                                                X86::XOR8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass);
 | |
|   case X86::ATOMNAND8:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
 | |
|                                                X86::AND8ri, X86::MOV8rm,
 | |
|                                                X86::LCMPXCHG8,
 | |
|                                                X86::NOT8r, X86::AL,
 | |
|                                                X86::GR8RegisterClass, true);
 | |
|   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
 | |
|   // This group is for 64-bit host.
 | |
|   case X86::ATOMAND64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
 | |
|                                                X86::AND64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMOR64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
 | |
|                                                X86::OR64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMXOR64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
 | |
|                                                X86::XOR64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass);
 | |
|   case X86::ATOMNAND64:
 | |
|     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
 | |
|                                                X86::AND64ri32, X86::MOV64rm,
 | |
|                                                X86::LCMPXCHG64,
 | |
|                                                X86::NOT64r, X86::RAX,
 | |
|                                                X86::GR64RegisterClass, true);
 | |
|   case X86::ATOMMIN64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
 | |
|   case X86::ATOMMAX64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
 | |
|   case X86::ATOMUMIN64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
 | |
|   case X86::ATOMUMAX64:
 | |
|     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
 | |
| 
 | |
|   // This group does 64-bit operations on a 32-bit host.
 | |
|   case X86::ATOMAND6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::AND32rr, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::AND32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMOR6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::OR32rr, X86::OR32rr,
 | |
|                                                X86::OR32ri, X86::OR32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMXOR6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::XOR32rr, X86::XOR32rr,
 | |
|                                                X86::XOR32ri, X86::XOR32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMNAND6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::AND32rr, X86::AND32rr,
 | |
|                                                X86::AND32ri, X86::AND32ri,
 | |
|                                                true);
 | |
|   case X86::ATOMADD6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::ADD32rr, X86::ADC32rr,
 | |
|                                                X86::ADD32ri, X86::ADC32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMSUB6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::SUB32rr, X86::SBB32rr,
 | |
|                                                X86::SUB32ri, X86::SBB32ri,
 | |
|                                                false);
 | |
|   case X86::ATOMSWAP6432:
 | |
|     return EmitAtomicBit6432WithCustomInserter(MI, BB,
 | |
|                                                X86::MOV32rr, X86::MOV32rr,
 | |
|                                                X86::MOV32ri, X86::MOV32ri,
 | |
|                                                false);
 | |
|   case X86::VASTART_SAVE_XMM_REGS:
 | |
|     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
 | |
| 
 | |
|   case X86::VAARG_64:
 | |
|     return EmitVAARG64WithCustomInserter(MI, BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        const APInt &Mask,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   unsigned Opc = Op.getOpcode();
 | |
|   assert((Opc >= ISD::BUILTIN_OP_END ||
 | |
|           Opc == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Opc == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
| 
 | |
|   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86ISD::ADD:
 | |
|   case X86ISD::SUB:
 | |
|   case X86ISD::SMUL:
 | |
|   case X86ISD::UMUL:
 | |
|   case X86ISD::INC:
 | |
|   case X86ISD::DEC:
 | |
|   case X86ISD::OR:
 | |
|   case X86ISD::XOR:
 | |
|   case X86ISD::AND:
 | |
|     // These nodes' second result is a boolean.
 | |
|     if (Op.getResNo() == 0)
 | |
|       break;
 | |
|     // Fallthrough
 | |
|   case X86ISD::SETCC:
 | |
|     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
 | |
|                                        Mask.getBitWidth() - 1);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                          unsigned Depth) const {
 | |
|   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
 | |
|   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
 | |
|     return Op.getValueType().getScalarType().getSizeInBits();
 | |
| 
 | |
|   // Fallback case.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
| /// node is a GlobalAddress + offset.
 | |
| bool X86TargetLowering::isGAPlusOffset(SDNode *N,
 | |
|                                        const GlobalValue* &GA,
 | |
|                                        int64_t &Offset) const {
 | |
|   if (N->getOpcode() == X86ISD::Wrapper) {
 | |
|     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
 | |
|       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
 | |
|       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::isGAPlusOffset(N, GA, Offset);
 | |
| }
 | |
| 
 | |
| /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
 | |
| /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
 | |
| /// if the load addresses are consecutive, non-overlapping, and in the right
 | |
| /// order.
 | |
| static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   if (VT.getSizeInBits() != 128)
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 16> Elts;
 | |
|   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
 | |
|     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
 | |
| 
 | |
|   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
 | |
| }
 | |
| 
 | |
| /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
 | |
| /// generation and convert it from being a bunch of shuffles and extracts
 | |
| /// to a simple store and scalar loads to extract the elements.
 | |
| static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                                 const TargetLowering &TLI) {
 | |
|   SDValue InputVector = N->getOperand(0);
 | |
| 
 | |
|   // Only operate on vectors of 4 elements, where the alternative shuffling
 | |
|   // gets to be more expensive.
 | |
|   if (InputVector.getValueType() != MVT::v4i32)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
 | |
|   // single use which is a sign-extend or zero-extend, and all elements are
 | |
|   // used.
 | |
|   SmallVector<SDNode *, 4> Uses;
 | |
|   unsigned ExtractedElements = 0;
 | |
|   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
 | |
|        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
 | |
|     if (UI.getUse().getResNo() != InputVector.getResNo())
 | |
|       return SDValue();
 | |
| 
 | |
|     SDNode *Extract = *UI;
 | |
|     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | |
|       return SDValue();
 | |
| 
 | |
|     if (Extract->getValueType(0) != MVT::i32)
 | |
|       return SDValue();
 | |
|     if (!Extract->hasOneUse())
 | |
|       return SDValue();
 | |
|     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
 | |
|         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
 | |
|       return SDValue();
 | |
|     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
 | |
|       return SDValue();
 | |
| 
 | |
|     // Record which element was extracted.
 | |
|     ExtractedElements |=
 | |
|       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
 | |
| 
 | |
|     Uses.push_back(Extract);
 | |
|   }
 | |
| 
 | |
|   // If not all the elements were used, this may not be worthwhile.
 | |
|   if (ExtractedElements != 15)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Ok, we've now decided to do the transformation.
 | |
|   DebugLoc dl = InputVector.getDebugLoc();
 | |
| 
 | |
|   // Store the value to a temporary stack slot.
 | |
|   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
 | |
|   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
 | |
|                             MachinePointerInfo(), false, false, 0);
 | |
| 
 | |
|   // Replace each use (extract) with a load of the appropriate element.
 | |
|   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
 | |
|        UE = Uses.end(); UI != UE; ++UI) {
 | |
|     SDNode *Extract = *UI;
 | |
| 
 | |
|     // Compute the element's address.
 | |
|     SDValue Idx = Extract->getOperand(1);
 | |
|     unsigned EltSize =
 | |
|         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
 | |
|     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
 | |
|     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
 | |
| 
 | |
|     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
 | |
|                                      StackPtr, OffsetVal);
 | |
| 
 | |
|     // Load the scalar.
 | |
|     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
 | |
|                                      ScalarAddr, MachinePointerInfo(),
 | |
|                                      false, false, 0);
 | |
| 
 | |
|     // Replace the exact with the load.
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
 | |
|   }
 | |
| 
 | |
|   // The replacement was made in place; don't return anything.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
 | |
| static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                     const X86Subtarget *Subtarget) {
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   SDValue Cond = N->getOperand(0);
 | |
|   // Get the LHS/RHS of the select.
 | |
|   SDValue LHS = N->getOperand(1);
 | |
|   SDValue RHS = N->getOperand(2);
 | |
| 
 | |
|   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
 | |
|   // instructions match the semantics of the common C idiom x<y?x:y but not
 | |
|   // x<=y?x:y, because of how they handle negative zero (which can be
 | |
|   // ignored in unsafe-math mode).
 | |
|   if (Subtarget->hasSSE2() &&
 | |
|       (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
 | |
|       Cond.getOpcode() == ISD::SETCC) {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
 | |
| 
 | |
|     unsigned Opcode = 0;
 | |
|     // Check for x CC y ? x : y.
 | |
|     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
 | |
|         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETULT:
 | |
|         // Converting this to a min would handle NaNs incorrectly, and swapping
 | |
|         // the operands would cause it to handle comparisons between positive
 | |
|         // and negative zero incorrectly.
 | |
|         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
 | |
|           if (!UnsafeFPMath &&
 | |
|               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|             break;
 | |
|           std::swap(LHS, RHS);
 | |
|         }
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
|       case ISD::SETOLE:
 | |
|         // Converting this to a min would handle comparisons between positive
 | |
|         // and negative zero incorrectly.
 | |
|         if (!UnsafeFPMath &&
 | |
|             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
 | |
|           break;
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|         // Converting this to a min would handle both negative zeros and NaNs
 | |
|         // incorrectly, but we can swap the operands to fix both.
 | |
|         std::swap(LHS, RHS);
 | |
|       case ISD::SETOLT:
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETLE:
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
| 
 | |
|       case ISD::SETOGE:
 | |
|         // Converting this to a max would handle comparisons between positive
 | |
|         // and negative zero incorrectly.
 | |
|         if (!UnsafeFPMath &&
 | |
|             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
 | |
|           break;
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       case ISD::SETUGT:
 | |
|         // Converting this to a max would handle NaNs incorrectly, and swapping
 | |
|         // the operands would cause it to handle comparisons between positive
 | |
|         // and negative zero incorrectly.
 | |
|         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
 | |
|           if (!UnsafeFPMath &&
 | |
|               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
 | |
|             break;
 | |
|           std::swap(LHS, RHS);
 | |
|         }
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       case ISD::SETUGE:
 | |
|         // Converting this to a max would handle both negative zeros and NaNs
 | |
|         // incorrectly, but we can swap the operands to fix both.
 | |
|         std::swap(LHS, RHS);
 | |
|       case ISD::SETOGT:
 | |
|       case ISD::SETGT:
 | |
|       case ISD::SETGE:
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       }
 | |
|     // Check for x CC y ? y : x -- a min/max with reversed arms.
 | |
|     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
 | |
|                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETOGE:
 | |
|         // Converting this to a min would handle comparisons between positive
 | |
|         // and negative zero incorrectly, and swapping the operands would
 | |
|         // cause it to handle NaNs incorrectly.
 | |
|         if (!UnsafeFPMath &&
 | |
|             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
 | |
|           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | |
|             break;
 | |
|           std::swap(LHS, RHS);
 | |
|         }
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
|       case ISD::SETUGT:
 | |
|         // Converting this to a min would handle NaNs incorrectly.
 | |
|         if (!UnsafeFPMath &&
 | |
|             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
 | |
|           break;
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
|       case ISD::SETUGE:
 | |
|         // Converting this to a min would handle both negative zeros and NaNs
 | |
|         // incorrectly, but we can swap the operands to fix both.
 | |
|         std::swap(LHS, RHS);
 | |
|       case ISD::SETOGT:
 | |
|       case ISD::SETGT:
 | |
|       case ISD::SETGE:
 | |
|         Opcode = X86ISD::FMIN;
 | |
|         break;
 | |
| 
 | |
|       case ISD::SETULT:
 | |
|         // Converting this to a max would handle NaNs incorrectly.
 | |
|         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | |
|           break;
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       case ISD::SETOLE:
 | |
|         // Converting this to a max would handle comparisons between positive
 | |
|         // and negative zero incorrectly, and swapping the operands would
 | |
|         // cause it to handle NaNs incorrectly.
 | |
|         if (!UnsafeFPMath &&
 | |
|             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
 | |
|           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
 | |
|             break;
 | |
|           std::swap(LHS, RHS);
 | |
|         }
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       case ISD::SETULE:
 | |
|         // Converting this to a max would handle both negative zeros and NaNs
 | |
|         // incorrectly, but we can swap the operands to fix both.
 | |
|         std::swap(LHS, RHS);
 | |
|       case ISD::SETOLT:
 | |
|       case ISD::SETLT:
 | |
|       case ISD::SETLE:
 | |
|         Opcode = X86ISD::FMAX;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Opcode)
 | |
|       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   // If this is a select between two integer constants, try to do some
 | |
|   // optimizations.
 | |
|   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
 | |
|     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
 | |
|       // Don't do this for crazy integer types.
 | |
|       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
 | |
|         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
 | |
|         // so that TrueC (the true value) is larger than FalseC.
 | |
|         bool NeedsCondInvert = false;
 | |
| 
 | |
|         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
 | |
|             // Efficiently invertible.
 | |
|             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
 | |
|              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
 | |
|               isa<ConstantSDNode>(Cond.getOperand(1))))) {
 | |
|           NeedsCondInvert = true;
 | |
|           std::swap(TrueC, FalseC);
 | |
|         }
 | |
| 
 | |
|         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
 | |
|         if (FalseC->getAPIntValue() == 0 &&
 | |
|             TrueC->getAPIntValue().isPowerOf2()) {
 | |
|           if (NeedsCondInvert) // Invert the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(1, Cond.getValueType()));
 | |
| 
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
 | |
| 
 | |
|           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | |
|           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
 | |
|                              DAG.getConstant(ShAmt, MVT::i8));
 | |
|         }
 | |
| 
 | |
|         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
 | |
|         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
 | |
|           if (NeedsCondInvert) // Invert the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(1, Cond.getValueType()));
 | |
| 
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
 | |
|                              FalseC->getValueType(0), Cond);
 | |
|           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                              SDValue(FalseC, 0));
 | |
|         }
 | |
| 
 | |
|         // Optimize cases that will turn into an LEA instruction.  This requires
 | |
|         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | |
|         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | |
|           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
 | |
|           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
 | |
| 
 | |
|           bool isFastMultiplier = false;
 | |
|           if (Diff < 10) {
 | |
|             switch ((unsigned char)Diff) {
 | |
|               default: break;
 | |
|               case 1:  // result = add base, cond
 | |
|               case 2:  // result = lea base(    , cond*2)
 | |
|               case 3:  // result = lea base(cond, cond*2)
 | |
|               case 4:  // result = lea base(    , cond*4)
 | |
|               case 5:  // result = lea base(cond, cond*4)
 | |
|               case 8:  // result = lea base(    , cond*8)
 | |
|               case 9:  // result = lea base(cond, cond*8)
 | |
|                 isFastMultiplier = true;
 | |
|                 break;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (isFastMultiplier) {
 | |
|             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
 | |
|             if (NeedsCondInvert) // Invert the condition if needed.
 | |
|               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
 | |
|                                  DAG.getConstant(1, Cond.getValueType()));
 | |
| 
 | |
|             // Zero extend the condition if needed.
 | |
|             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
 | |
|                                Cond);
 | |
|             // Scale the condition by the difference.
 | |
|             if (Diff != 1)
 | |
|               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | |
|                                  DAG.getConstant(Diff, Cond.getValueType()));
 | |
| 
 | |
|             // Add the base if non-zero.
 | |
|             if (FalseC->getAPIntValue() != 0)
 | |
|               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                                  SDValue(FalseC, 0));
 | |
|             return Cond;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
 | |
| static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                   TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
| 
 | |
|   // If the flag operand isn't dead, don't touch this CMOV.
 | |
|   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
 | |
|     return SDValue();
 | |
| 
 | |
|   // If this is a select between two integer constants, try to do some
 | |
|   // optimizations.  Note that the operands are ordered the opposite of SELECT
 | |
|   // operands.
 | |
|   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
 | |
|       // larger than FalseC (the false value).
 | |
|       X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
 | |
| 
 | |
|       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
 | |
|         CC = X86::GetOppositeBranchCondition(CC);
 | |
|         std::swap(TrueC, FalseC);
 | |
|       }
 | |
| 
 | |
|       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
 | |
|       // This is efficient for any integer data type (including i8/i16) and
 | |
|       // shift amount.
 | |
|       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
 | |
|         SDValue Cond = N->getOperand(3);
 | |
|         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                            DAG.getConstant(CC, MVT::i8), Cond);
 | |
| 
 | |
|         // Zero extend the condition if needed.
 | |
|         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
 | |
| 
 | |
|         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
 | |
|         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
 | |
|                            DAG.getConstant(ShAmt, MVT::i8));
 | |
|         if (N->getNumValues() == 2)  // Dead flag value?
 | |
|           return DCI.CombineTo(N, Cond, SDValue());
 | |
|         return Cond;
 | |
|       }
 | |
| 
 | |
|       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
 | |
|       // for any integer data type, including i8/i16.
 | |
|       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
 | |
|         SDValue Cond = N->getOperand(3);
 | |
|         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                            DAG.getConstant(CC, MVT::i8), Cond);
 | |
| 
 | |
|         // Zero extend the condition if needed.
 | |
|         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
 | |
|                            FalseC->getValueType(0), Cond);
 | |
|         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                            SDValue(FalseC, 0));
 | |
| 
 | |
|         if (N->getNumValues() == 2)  // Dead flag value?
 | |
|           return DCI.CombineTo(N, Cond, SDValue());
 | |
|         return Cond;
 | |
|       }
 | |
| 
 | |
|       // Optimize cases that will turn into an LEA instruction.  This requires
 | |
|       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
 | |
|       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
 | |
|         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
 | |
|         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
 | |
| 
 | |
|         bool isFastMultiplier = false;
 | |
|         if (Diff < 10) {
 | |
|           switch ((unsigned char)Diff) {
 | |
|           default: break;
 | |
|           case 1:  // result = add base, cond
 | |
|           case 2:  // result = lea base(    , cond*2)
 | |
|           case 3:  // result = lea base(cond, cond*2)
 | |
|           case 4:  // result = lea base(    , cond*4)
 | |
|           case 5:  // result = lea base(cond, cond*4)
 | |
|           case 8:  // result = lea base(    , cond*8)
 | |
|           case 9:  // result = lea base(cond, cond*8)
 | |
|             isFastMultiplier = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (isFastMultiplier) {
 | |
|           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
 | |
|           SDValue Cond = N->getOperand(3);
 | |
|           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
 | |
|                              DAG.getConstant(CC, MVT::i8), Cond);
 | |
|           // Zero extend the condition if needed.
 | |
|           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
 | |
|                              Cond);
 | |
|           // Scale the condition by the difference.
 | |
|           if (Diff != 1)
 | |
|             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
 | |
|                                DAG.getConstant(Diff, Cond.getValueType()));
 | |
| 
 | |
|           // Add the base if non-zero.
 | |
|           if (FalseC->getAPIntValue() != 0)
 | |
|             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
 | |
|                                SDValue(FalseC, 0));
 | |
|           if (N->getNumValues() == 2)  // Dead flag value?
 | |
|             return DCI.CombineTo(N, Cond, SDValue());
 | |
|           return Cond;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PerformMulCombine - Optimize a single multiply with constant into two
 | |
| /// in order to implement it with two cheaper instructions, e.g.
 | |
| /// LEA + SHL, LEA + LEA.
 | |
| static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                  TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | |
|   if (!C)
 | |
|     return SDValue();
 | |
|   uint64_t MulAmt = C->getZExtValue();
 | |
|   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
 | |
|     return SDValue();
 | |
| 
 | |
|   uint64_t MulAmt1 = 0;
 | |
|   uint64_t MulAmt2 = 0;
 | |
|   if ((MulAmt % 9) == 0) {
 | |
|     MulAmt1 = 9;
 | |
|     MulAmt2 = MulAmt / 9;
 | |
|   } else if ((MulAmt % 5) == 0) {
 | |
|     MulAmt1 = 5;
 | |
|     MulAmt2 = MulAmt / 5;
 | |
|   } else if ((MulAmt % 3) == 0) {
 | |
|     MulAmt1 = 3;
 | |
|     MulAmt2 = MulAmt / 3;
 | |
|   }
 | |
|   if (MulAmt2 &&
 | |
|       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
 | |
|     DebugLoc DL = N->getDebugLoc();
 | |
| 
 | |
|     if (isPowerOf2_64(MulAmt2) &&
 | |
|         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
 | |
|       // If second multiplifer is pow2, issue it first. We want the multiply by
 | |
|       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
 | |
|       // is an add.
 | |
|       std::swap(MulAmt1, MulAmt2);
 | |
| 
 | |
|     SDValue NewMul;
 | |
|     if (isPowerOf2_64(MulAmt1))
 | |
|       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
 | |
|                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
 | |
|     else
 | |
|       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
 | |
|                            DAG.getConstant(MulAmt1, VT));
 | |
| 
 | |
|     if (isPowerOf2_64(MulAmt2))
 | |
|       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
 | |
|                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
 | |
|     else
 | |
|       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
 | |
|                            DAG.getConstant(MulAmt2, VT));
 | |
| 
 | |
|     // Do not add new nodes to DAG combiner worklist.
 | |
|     DCI.CombineTo(N, NewMul, false);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 | |
|   EVT VT = N0.getValueType();
 | |
| 
 | |
|   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
 | |
|   // since the result of setcc_c is all zero's or all ones.
 | |
|   if (N1C && N0.getOpcode() == ISD::AND &&
 | |
|       N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     SDValue N00 = N0.getOperand(0);
 | |
|     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
 | |
|         ((N00.getOpcode() == ISD::ANY_EXTEND ||
 | |
|           N00.getOpcode() == ISD::ZERO_EXTEND) &&
 | |
|          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
 | |
|       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|       APInt ShAmt = N1C->getAPIntValue();
 | |
|       Mask = Mask.shl(ShAmt);
 | |
|       if (Mask != 0)
 | |
|         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
 | |
|                            N00, DAG.getConstant(Mask, VT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
 | |
| ///                       when possible.
 | |
| static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
 | |
|                                    const X86Subtarget *Subtarget) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (!VT.isVector() && VT.isInteger() &&
 | |
|       N->getOpcode() == ISD::SHL)
 | |
|     return PerformSHLCombine(N, DAG);
 | |
| 
 | |
|   // On X86 with SSE2 support, we can transform this to a vector shift if
 | |
|   // all elements are shifted by the same amount.  We can't do this in legalize
 | |
|   // because the a constant vector is typically transformed to a constant pool
 | |
|   // so we have no knowledge of the shift amount.
 | |
|   if (!Subtarget->hasSSE2())
 | |
|     return SDValue();
 | |
| 
 | |
|   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ShAmtOp = N->getOperand(1);
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   SDValue BaseShAmt = SDValue();
 | |
|   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|     unsigned NumElts = VT.getVectorNumElements();
 | |
|     unsigned i = 0;
 | |
|     for (; i != NumElts; ++i) {
 | |
|       SDValue Arg = ShAmtOp.getOperand(i);
 | |
|       if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|       BaseShAmt = Arg;
 | |
|       break;
 | |
|     }
 | |
|     for (; i != NumElts; ++i) {
 | |
|       SDValue Arg = ShAmtOp.getOperand(i);
 | |
|       if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|       if (Arg != BaseShAmt) {
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
 | |
|              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
 | |
|     SDValue InVec = ShAmtOp.getOperand(0);
 | |
|     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       unsigned NumElts = InVec.getValueType().getVectorNumElements();
 | |
|       unsigned i = 0;
 | |
|       for (; i != NumElts; ++i) {
 | |
|         SDValue Arg = InVec.getOperand(i);
 | |
|         if (Arg.getOpcode() == ISD::UNDEF) continue;
 | |
|         BaseShAmt = Arg;
 | |
|         break;
 | |
|       }
 | |
|     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
 | |
|        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
 | |
|          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
 | |
|          if (C->getZExtValue() == SplatIdx)
 | |
|            BaseShAmt = InVec.getOperand(1);
 | |
|        }
 | |
|     }
 | |
|     if (BaseShAmt.getNode() == 0)
 | |
|       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
 | |
|                               DAG.getIntPtrConstant(0));
 | |
|   } else
 | |
|     return SDValue();
 | |
| 
 | |
|   // The shift amount is an i32.
 | |
|   if (EltVT.bitsGT(MVT::i32))
 | |
|     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
 | |
|   else if (EltVT.bitsLT(MVT::i32))
 | |
|     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
 | |
| 
 | |
|   // The shift amount is identical so we can do a vector shift.
 | |
|   SDValue  ValOp = N->getOperand(0);
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown shift opcode!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (VT == MVT::v2i64)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (VT == MVT::v2i64)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT == MVT::v4i32)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     if (VT ==  MVT::v8i16)
 | |
|       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
 | |
|                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
 | |
|                          ValOp, BaseShAmt);
 | |
|     break;
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI,
 | |
|                                 const X86Subtarget *Subtarget) {
 | |
|   if (DCI.isBeforeLegalizeOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
 | |
|     std::swap(N0, N1);
 | |
|   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
 | |
|     return SDValue();
 | |
|   if (!N0.hasOneUse() || !N1.hasOneUse())
 | |
|     return SDValue();
 | |
| 
 | |
|   SDValue ShAmt0 = N0.getOperand(1);
 | |
|   if (ShAmt0.getValueType() != MVT::i8)
 | |
|     return SDValue();
 | |
|   SDValue ShAmt1 = N1.getOperand(1);
 | |
|   if (ShAmt1.getValueType() != MVT::i8)
 | |
|     return SDValue();
 | |
|   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
 | |
|     ShAmt0 = ShAmt0.getOperand(0);
 | |
|   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
 | |
|     ShAmt1 = ShAmt1.getOperand(0);
 | |
| 
 | |
|   DebugLoc DL = N->getDebugLoc();
 | |
|   unsigned Opc = X86ISD::SHLD;
 | |
|   SDValue Op0 = N0.getOperand(0);
 | |
|   SDValue Op1 = N1.getOperand(0);
 | |
|   if (ShAmt0.getOpcode() == ISD::SUB) {
 | |
|     Opc = X86ISD::SHRD;
 | |
|     std::swap(Op0, Op1);
 | |
|     std::swap(ShAmt0, ShAmt1);
 | |
|   }
 | |
| 
 | |
|   unsigned Bits = VT.getSizeInBits();
 | |
|   if (ShAmt1.getOpcode() == ISD::SUB) {
 | |
|     SDValue Sum = ShAmt1.getOperand(0);
 | |
|     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
 | |
|       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
 | |
|       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
 | |
|         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
 | |
|       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
 | |
|         return DAG.getNode(Opc, DL, VT,
 | |
|                            Op0, Op1,
 | |
|                            DAG.getNode(ISD::TRUNCATE, DL,
 | |
|                                        MVT::i8, ShAmt0));
 | |
|     }
 | |
|   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
 | |
|     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
 | |
|     if (ShAmt0C &&
 | |
|         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
 | |
|       return DAG.getNode(Opc, DL, VT,
 | |
|                          N0.getOperand(0), N1.getOperand(0),
 | |
|                          DAG.getNode(ISD::TRUNCATE, DL,
 | |
|                                        MVT::i8, ShAmt0));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
 | |
| static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
 | |
|                                    const X86Subtarget *Subtarget) {
 | |
|   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
 | |
|   // the FP state in cases where an emms may be missing.
 | |
|   // A preferable solution to the general problem is to figure out the right
 | |
|   // places to insert EMMS.  This qualifies as a quick hack.
 | |
| 
 | |
|   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
 | |
|   StoreSDNode *St = cast<StoreSDNode>(N);
 | |
|   EVT VT = St->getValue().getValueType();
 | |
|   if (VT.getSizeInBits() != 64)
 | |
|     return SDValue();
 | |
| 
 | |
|   const Function *F = DAG.getMachineFunction().getFunction();
 | |
|   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
 | |
|   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
 | |
|     && Subtarget->hasSSE2();
 | |
|   if ((VT.isVector() ||
 | |
|        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
 | |
|       isa<LoadSDNode>(St->getValue()) &&
 | |
|       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
 | |
|       St->getChain().hasOneUse() && !St->isVolatile()) {
 | |
|     SDNode* LdVal = St->getValue().getNode();
 | |
|     LoadSDNode *Ld = 0;
 | |
|     int TokenFactorIndex = -1;
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     SDNode* ChainVal = St->getChain().getNode();
 | |
|     // Must be a store of a load.  We currently handle two cases:  the load
 | |
|     // is a direct child, and it's under an intervening TokenFactor.  It is
 | |
|     // possible to dig deeper under nested TokenFactors.
 | |
|     if (ChainVal == LdVal)
 | |
|       Ld = cast<LoadSDNode>(St->getChain());
 | |
|     else if (St->getValue().hasOneUse() &&
 | |
|              ChainVal->getOpcode() == ISD::TokenFactor) {
 | |
|       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
 | |
|         if (ChainVal->getOperand(i).getNode() == LdVal) {
 | |
|           TokenFactorIndex = i;
 | |
|           Ld = cast<LoadSDNode>(St->getValue());
 | |
|         } else
 | |
|           Ops.push_back(ChainVal->getOperand(i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!Ld || !ISD::isNormalLoad(Ld))
 | |
|       return SDValue();
 | |
| 
 | |
|     // If this is not the MMX case, i.e. we are just turning i64 load/store
 | |
|     // into f64 load/store, avoid the transformation if there are multiple
 | |
|     // uses of the loaded value.
 | |
|     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
 | |
|       return SDValue();
 | |
| 
 | |
|     DebugLoc LdDL = Ld->getDebugLoc();
 | |
|     DebugLoc StDL = N->getDebugLoc();
 | |
|     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
 | |
|     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
 | |
|     // pair instead.
 | |
|     if (Subtarget->is64Bit() || F64IsLegal) {
 | |
|       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
 | |
|       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
 | |
|                                   Ld->getPointerInfo(), Ld->isVolatile(),
 | |
|                                   Ld->isNonTemporal(), Ld->getAlignment());
 | |
|       SDValue NewChain = NewLd.getValue(1);
 | |
|       if (TokenFactorIndex != -1) {
 | |
|         Ops.push_back(NewChain);
 | |
|         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
 | |
|                                Ops.size());
 | |
|       }
 | |
|       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
 | |
|                           St->getPointerInfo(),
 | |
|                           St->isVolatile(), St->isNonTemporal(),
 | |
|                           St->getAlignment());
 | |
|     }
 | |
| 
 | |
|     // Otherwise, lower to two pairs of 32-bit loads / stores.
 | |
|     SDValue LoAddr = Ld->getBasePtr();
 | |
|     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
 | |
|                                  DAG.getConstant(4, MVT::i32));
 | |
| 
 | |
|     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
 | |
|                                Ld->getPointerInfo(),
 | |
|                                Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                                Ld->getAlignment());
 | |
|     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
 | |
|                                Ld->getPointerInfo().getWithOffset(4),
 | |
|                                Ld->isVolatile(), Ld->isNonTemporal(),
 | |
|                                MinAlign(Ld->getAlignment(), 4));
 | |
| 
 | |
|     SDValue NewChain = LoLd.getValue(1);
 | |
|     if (TokenFactorIndex != -1) {
 | |
|       Ops.push_back(LoLd);
 | |
|       Ops.push_back(HiLd);
 | |
|       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
 | |
|                              Ops.size());
 | |
|     }
 | |
| 
 | |
|     LoAddr = St->getBasePtr();
 | |
|     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
 | |
|                          DAG.getConstant(4, MVT::i32));
 | |
| 
 | |
|     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
 | |
|                                 St->getPointerInfo(),
 | |
|                                 St->isVolatile(), St->isNonTemporal(),
 | |
|                                 St->getAlignment());
 | |
|     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
 | |
|                                 St->getPointerInfo().getWithOffset(4),
 | |
|                                 St->isVolatile(),
 | |
|                                 St->isNonTemporal(),
 | |
|                                 MinAlign(St->getAlignment(), 4));
 | |
|     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
 | |
| /// X86ISD::FXOR nodes.
 | |
| static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
 | |
|   // F[X]OR(0.0, x) -> x
 | |
|   // F[X]OR(x, 0.0) -> x
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(1);
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(0);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
 | |
| static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // FAND(0.0, x) -> 0.0
 | |
|   // FAND(x, 0.0) -> 0.0
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(0);
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
 | |
|     if (C->getValueAPF().isPosZero())
 | |
|       return N->getOperand(1);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformBTCombine(SDNode *N,
 | |
|                                 SelectionDAG &DAG,
 | |
|                                 TargetLowering::DAGCombinerInfo &DCI) {
 | |
|   // BT ignores high bits in the bit index operand.
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op1.hasOneUse()) {
 | |
|     unsigned BitWidth = Op1.getValueSizeInBits();
 | |
|     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
 | |
|     APInt KnownZero, KnownOne;
 | |
|     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | |
|                                           !DCI.isBeforeLegalizeOps());
 | |
|     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
 | |
|         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
 | |
|       DCI.CommitTargetLoweringOpt(TLO);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   SDValue Op = N->getOperand(0);
 | |
|   if (Op.getOpcode() == ISD::BIT_CONVERT)
 | |
|     Op = Op.getOperand(0);
 | |
|   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
 | |
|   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
 | |
|       VT.getVectorElementType().getSizeInBits() ==
 | |
|       OpVT.getVectorElementType().getSizeInBits()) {
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
 | |
|   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
 | |
|   //           (and (i32 x86isd::setcc_carry), 1)
 | |
|   // This eliminates the zext. This transformation is necessary because
 | |
|   // ISD::SETCC is always legalized to i8.
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (N0.getOpcode() == ISD::AND &&
 | |
|       N0.hasOneUse() &&
 | |
|       N0.getOperand(0).hasOneUse()) {
 | |
|     SDValue N00 = N0.getOperand(0);
 | |
|     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
 | |
|       return SDValue();
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | |
|     if (!C || C->getZExtValue() != 1)
 | |
|       return SDValue();
 | |
|     return DAG.getNode(ISD::AND, dl, VT,
 | |
|                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
 | |
|                                    N00.getOperand(0), N00.getOperand(1)),
 | |
|                        DAG.getConstant(1, VT));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|                         return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
 | |
|   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
 | |
|   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
 | |
|   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
 | |
|   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
 | |
|   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
 | |
|   case X86ISD::FXOR:
 | |
|   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
 | |
|   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
 | |
|   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
 | |
|   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
 | |
|   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
 | |
|   case X86ISD::SHUFPS:      // Handle all target specific shuffles
 | |
|   case X86ISD::SHUFPD:
 | |
|   case X86ISD::PALIGN:
 | |
|   case X86ISD::PUNPCKHBW:
 | |
|   case X86ISD::PUNPCKHWD:
 | |
|   case X86ISD::PUNPCKHDQ:
 | |
|   case X86ISD::PUNPCKHQDQ:
 | |
|   case X86ISD::UNPCKHPS:
 | |
|   case X86ISD::UNPCKHPD:
 | |
|   case X86ISD::PUNPCKLBW:
 | |
|   case X86ISD::PUNPCKLWD:
 | |
|   case X86ISD::PUNPCKLDQ:
 | |
|   case X86ISD::PUNPCKLQDQ:
 | |
|   case X86ISD::UNPCKLPS:
 | |
|   case X86ISD::UNPCKLPD:
 | |
|   case X86ISD::MOVHLPS:
 | |
|   case X86ISD::MOVLHPS:
 | |
|   case X86ISD::PSHUFD:
 | |
|   case X86ISD::PSHUFHW:
 | |
|   case X86ISD::PSHUFLW:
 | |
|   case X86ISD::MOVSS:
 | |
|   case X86ISD::MOVSD:
 | |
|   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isTypeDesirableForOp - Return true if the target has native support for
 | |
| /// the specified value type and it is 'desirable' to use the type for the
 | |
| /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
 | |
| /// instruction encodings are longer and some i16 instructions are slow.
 | |
| bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
 | |
|   if (!isTypeLegal(VT))
 | |
|     return false;
 | |
|   if (VT != MVT::i16)
 | |
|     return true;
 | |
| 
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     return true;
 | |
|   case ISD::LOAD:
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND:
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL:
 | |
|   case ISD::SUB:
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IsDesirableToPromoteOp - This method query the target whether it is
 | |
| /// beneficial for dag combiner to promote the specified node. If true, it
 | |
| /// should return the desired promotion type by reference.
 | |
| bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT != MVT::i16)
 | |
|     return false;
 | |
| 
 | |
|   bool Promote = false;
 | |
|   bool Commute = false;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     // If the non-extending load has a single use and it's not live out, then it
 | |
|     // might be folded.
 | |
|     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
 | |
|                                                      Op.hasOneUse()*/) {
 | |
|       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
 | |
|              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
 | |
|         // The only case where we'd want to promote LOAD (rather then it being
 | |
|         // promoted as an operand is when it's only use is liveout.
 | |
|         if (UI->getOpcode() != ISD::CopyToReg)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     Promote = true;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND:
 | |
|     Promote = true;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRL: {
 | |
|     SDValue N0 = Op.getOperand(0);
 | |
|     // Look out for (store (shl (load), x)).
 | |
|     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
 | |
|       return false;
 | |
|     Promote = true;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     Commute = true;
 | |
|     // fallthrough
 | |
|   case ISD::SUB: {
 | |
|     SDValue N0 = Op.getOperand(0);
 | |
|     SDValue N1 = Op.getOperand(1);
 | |
|     if (!Commute && MayFoldLoad(N1))
 | |
|       return false;
 | |
|     // Avoid disabling potential load folding opportunities.
 | |
|     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
 | |
|       return false;
 | |
|     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
 | |
|       return false;
 | |
|     Promote = true;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   PVT = MVT::i32;
 | |
|   return Promote;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           X86 Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool LowerToBSwap(CallInst *CI) {
 | |
|   // FIXME: this should verify that we are targetting a 486 or better.  If not,
 | |
|   // we will turn this bswap into something that will be lowered to logical ops
 | |
|   // instead of emitting the bswap asm.  For now, we don't support 486 or lower
 | |
|   // so don't worry about this.
 | |
| 
 | |
|   // Verify this is a simple bswap.
 | |
|   if (CI->getNumArgOperands() != 1 ||
 | |
|       CI->getType() != CI->getArgOperand(0)->getType() ||
 | |
|       !CI->getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
 | |
|   if (!Ty || Ty->getBitWidth() % 16 != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we can do this xform, do so now.
 | |
|   const Type *Tys[] = { Ty };
 | |
|   Module *M = CI->getParent()->getParent()->getParent();
 | |
|   Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
 | |
| 
 | |
|   Value *Op = CI->getArgOperand(0);
 | |
|   Op = CallInst::Create(Int, Op, CI->getName(), CI);
 | |
| 
 | |
|   CI->replaceAllUsesWith(Op);
 | |
|   CI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
 | |
|   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
 | |
|   InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
 | |
| 
 | |
|   std::string AsmStr = IA->getAsmString();
 | |
| 
 | |
|   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
 | |
|   SmallVector<StringRef, 4> AsmPieces;
 | |
|   SplitString(AsmStr, AsmPieces, ";\n");
 | |
| 
 | |
|   switch (AsmPieces.size()) {
 | |
|   default: return false;
 | |
|   case 1:
 | |
|     AsmStr = AsmPieces[0];
 | |
|     AsmPieces.clear();
 | |
|     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
 | |
| 
 | |
|     // bswap $0
 | |
|     if (AsmPieces.size() == 2 &&
 | |
|         (AsmPieces[0] == "bswap" ||
 | |
|          AsmPieces[0] == "bswapq" ||
 | |
|          AsmPieces[0] == "bswapl") &&
 | |
|         (AsmPieces[1] == "$0" ||
 | |
|          AsmPieces[1] == "${0:q}")) {
 | |
|       // No need to check constraints, nothing other than the equivalent of
 | |
|       // "=r,0" would be valid here.
 | |
|       return LowerToBSwap(CI);
 | |
|     }
 | |
|     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
 | |
|     if (CI->getType()->isIntegerTy(16) &&
 | |
|         AsmPieces.size() == 3 &&
 | |
|         (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
 | |
|         AsmPieces[1] == "$$8," &&
 | |
|         AsmPieces[2] == "${0:w}" &&
 | |
|         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
 | |
|       AsmPieces.clear();
 | |
|       const std::string &Constraints = IA->getConstraintString();
 | |
|       SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
 | |
|       std::sort(AsmPieces.begin(), AsmPieces.end());
 | |
|       if (AsmPieces.size() == 4 &&
 | |
|           AsmPieces[0] == "~{cc}" &&
 | |
|           AsmPieces[1] == "~{dirflag}" &&
 | |
|           AsmPieces[2] == "~{flags}" &&
 | |
|           AsmPieces[3] == "~{fpsr}") {
 | |
|         return LowerToBSwap(CI);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case 3:
 | |
|     if (CI->getType()->isIntegerTy(32) &&
 | |
|         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
 | |
|       SmallVector<StringRef, 4> Words;
 | |
|       SplitString(AsmPieces[0], Words, " \t,");
 | |
|       if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
 | |
|           Words[2] == "${0:w}") {
 | |
|         Words.clear();
 | |
|         SplitString(AsmPieces[1], Words, " \t,");
 | |
|         if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
 | |
|             Words[2] == "$0") {
 | |
|           Words.clear();
 | |
|           SplitString(AsmPieces[2], Words, " \t,");
 | |
|           if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
 | |
|               Words[2] == "${0:w}") {
 | |
|             AsmPieces.clear();
 | |
|             const std::string &Constraints = IA->getConstraintString();
 | |
|             SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
 | |
|             std::sort(AsmPieces.begin(), AsmPieces.end());
 | |
|             if (AsmPieces.size() == 4 &&
 | |
|                 AsmPieces[0] == "~{cc}" &&
 | |
|                 AsmPieces[1] == "~{dirflag}" &&
 | |
|                 AsmPieces[2] == "~{flags}" &&
 | |
|                 AsmPieces[3] == "~{fpsr}") {
 | |
|               return LowerToBSwap(CI);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (CI->getType()->isIntegerTy(64) &&
 | |
|         Constraints.size() >= 2 &&
 | |
|         Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
 | |
|         Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
 | |
|       // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
 | |
|       SmallVector<StringRef, 4> Words;
 | |
|       SplitString(AsmPieces[0], Words, " \t");
 | |
|       if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
 | |
|         Words.clear();
 | |
|         SplitString(AsmPieces[1], Words, " \t");
 | |
|         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
 | |
|           Words.clear();
 | |
|           SplitString(AsmPieces[2], Words, " \t,");
 | |
|           if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
 | |
|               Words[2] == "%edx") {
 | |
|             return LowerToBSwap(CI);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| X86TargetLowering::ConstraintType
 | |
| X86TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'R':
 | |
|     case 'q':
 | |
|     case 'Q':
 | |
|     case 'f':
 | |
|     case 't':
 | |
|     case 'u':
 | |
|     case 'y':
 | |
|     case 'x':
 | |
|     case 'Y':
 | |
|       return C_RegisterClass;
 | |
|     case 'a':
 | |
|     case 'b':
 | |
|     case 'c':
 | |
|     case 'd':
 | |
|     case 'S':
 | |
|     case 'D':
 | |
|     case 'A':
 | |
|       return C_Register;
 | |
|     case 'I':
 | |
|     case 'J':
 | |
|     case 'K':
 | |
|     case 'L':
 | |
|     case 'M':
 | |
|     case 'N':
 | |
|     case 'G':
 | |
|     case 'C':
 | |
|     case 'e':
 | |
|     case 'Z':
 | |
|       return C_Other;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
|   X86TargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (CallOperandVal == NULL)
 | |
|     return CW_Default;
 | |
|   const Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|   case 'R':
 | |
|   case 'q':
 | |
|   case 'Q':
 | |
|   case 'a':
 | |
|   case 'b':
 | |
|   case 'c':
 | |
|   case 'd':
 | |
|   case 'S':
 | |
|   case 'D':
 | |
|   case 'A':
 | |
|     if (CallOperandVal->getType()->isIntegerTy())
 | |
|       weight = CW_SpecificReg;
 | |
|     break;
 | |
|   case 'f':
 | |
|   case 't':
 | |
|   case 'u':
 | |
|       if (type->isFloatingPointTy())
 | |
|         weight = CW_SpecificReg;
 | |
|       break;
 | |
|   case 'y':
 | |
|       if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
 | |
|         weight = CW_SpecificReg;
 | |
|       break;
 | |
|   case 'x':
 | |
|   case 'Y':
 | |
|     if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'I':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
 | |
|       if (C->getZExtValue() <= 31)
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'J':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() <= 63)
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'K':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'L':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'M':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() <= 3)
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'N':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() <= 0xff)
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'G':
 | |
|   case 'C':
 | |
|     if (dyn_cast<ConstantFP>(CallOperandVal)) {
 | |
|       weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'e':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if ((C->getSExtValue() >= -0x80000000LL) &&
 | |
|           (C->getSExtValue() <= 0x7fffffffLL))
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   case 'Z':
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
 | |
|       if (C->getZExtValue() <= 0xffffffff)
 | |
|         weight = CW_Constant;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
| /// with another that has more specific requirements based on the type of the
 | |
| /// corresponding operand.
 | |
| const char *X86TargetLowering::
 | |
| LowerXConstraint(EVT ConstraintVT) const {
 | |
|   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
 | |
|   // 'f' like normal targets.
 | |
|   if (ConstraintVT.isFloatingPoint()) {
 | |
|     if (Subtarget->hasSSE2())
 | |
|       return "Y";
 | |
|     if (Subtarget->hasSSE1())
 | |
|       return "x";
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::LowerXConstraint(ConstraintVT);
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      char Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0, 0);
 | |
| 
 | |
|   switch (Constraint) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 31) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'J':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 63) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'K':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'N':
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (C->getZExtValue() <= 255) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case 'e': {
 | |
|     // 32-bit signed value
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
 | |
|                                            C->getSExtValue())) {
 | |
|         // Widen to 64 bits here to get it sign extended.
 | |
|         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
 | |
|         break;
 | |
|       }
 | |
|     // FIXME gcc accepts some relocatable values here too, but only in certain
 | |
|     // memory models; it's complicated.
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case 'Z': {
 | |
|     // 32-bit unsigned value
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
 | |
|                                            C->getZExtValue())) {
 | |
|         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // FIXME gcc accepts some relocatable values here too, but only in certain
 | |
|     // memory models; it's complicated.
 | |
|     return;
 | |
|   }
 | |
|   case 'i': {
 | |
|     // Literal immediates are always ok.
 | |
|     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
 | |
|       // Widen to 64 bits here to get it sign extended.
 | |
|       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // In any sort of PIC mode addresses need to be computed at runtime by
 | |
|     // adding in a register or some sort of table lookup.  These can't
 | |
|     // be used as immediates.
 | |
|     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
 | |
|       return;
 | |
| 
 | |
|     // If we are in non-pic codegen mode, we allow the address of a global (with
 | |
|     // an optional displacement) to be used with 'i'.
 | |
|     GlobalAddressSDNode *GA = 0;
 | |
|     int64_t Offset = 0;
 | |
| 
 | |
|     // Match either (GA), (GA+C), (GA+C1+C2), etc.
 | |
|     while (1) {
 | |
|       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
 | |
|         Offset += GA->getOffset();
 | |
|         break;
 | |
|       } else if (Op.getOpcode() == ISD::ADD) {
 | |
|         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|           Offset += C->getZExtValue();
 | |
|           Op = Op.getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|       } else if (Op.getOpcode() == ISD::SUB) {
 | |
|         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|           Offset += -C->getZExtValue();
 | |
|           Op = Op.getOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this isn't something we can handle, reject it.
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const GlobalValue *GV = GA->getGlobal();
 | |
|     // If we require an extra load to get this address, as in PIC mode, we
 | |
|     // can't accept it.
 | |
|     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
 | |
|                                                         getTargetMachine())))
 | |
|       return;
 | |
| 
 | |
|     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
 | |
|                                         GA->getValueType(0), Offset);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
|   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> X86TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   EVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // FIXME: not handling fp-stack yet!
 | |
|     switch (Constraint[0]) {      // GCC X86 Constraint Letters
 | |
|     default: break;  // Unknown constraint letter
 | |
|     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
 | |
|       if (Subtarget->is64Bit()) {
 | |
|         if (VT == MVT::i32)
 | |
|           return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
 | |
|                                        X86::ESI, X86::EDI, X86::R8D, X86::R9D,
 | |
|                                        X86::R10D,X86::R11D,X86::R12D,
 | |
|                                        X86::R13D,X86::R14D,X86::R15D,
 | |
|                                        X86::EBP, X86::ESP, 0);
 | |
|         else if (VT == MVT::i16)
 | |
|           return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
 | |
|                                        X86::SI,  X86::DI,  X86::R8W,X86::R9W,
 | |
|                                        X86::R10W,X86::R11W,X86::R12W,
 | |
|                                        X86::R13W,X86::R14W,X86::R15W,
 | |
|                                        X86::BP,  X86::SP, 0);
 | |
|         else if (VT == MVT::i8)
 | |
|           return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
 | |
|                                        X86::SIL, X86::DIL, X86::R8B,X86::R9B,
 | |
|                                        X86::R10B,X86::R11B,X86::R12B,
 | |
|                                        X86::R13B,X86::R14B,X86::R15B,
 | |
|                                        X86::BPL, X86::SPL, 0);
 | |
| 
 | |
|         else if (VT == MVT::i64)
 | |
|           return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
 | |
|                                        X86::RSI, X86::RDI, X86::R8,  X86::R9,
 | |
|                                        X86::R10, X86::R11, X86::R12,
 | |
|                                        X86::R13, X86::R14, X86::R15,
 | |
|                                        X86::RBP, X86::RSP, 0);
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       // 32-bit fallthrough
 | |
|     case 'Q':   // Q_REGS
 | |
|       if (VT == MVT::i32)
 | |
|         return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
 | |
|       else if (VT == MVT::i16)
 | |
|         return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
 | |
|       else if (VT == MVT::i8)
 | |
|         return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
 | |
|       else if (VT == MVT::i64)
 | |
|         return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const {
 | |
|   // First, see if this is a constraint that directly corresponds to an LLVM
 | |
|   // register class.
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r':   // GENERAL_REGS
 | |
|     case 'l':   // INDEX_REGS
 | |
|       if (VT == MVT::i8)
 | |
|         return std::make_pair(0U, X86::GR8RegisterClass);
 | |
|       if (VT == MVT::i16)
 | |
|         return std::make_pair(0U, X86::GR16RegisterClass);
 | |
|       if (VT == MVT::i32 || !Subtarget->is64Bit())
 | |
|         return std::make_pair(0U, X86::GR32RegisterClass);
 | |
|       return std::make_pair(0U, X86::GR64RegisterClass);
 | |
|     case 'R':   // LEGACY_REGS
 | |
|       if (VT == MVT::i8)
 | |
|         return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
 | |
|       if (VT == MVT::i16)
 | |
|         return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
 | |
|       if (VT == MVT::i32 || !Subtarget->is64Bit())
 | |
|         return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
 | |
|       return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
 | |
|     case 'f':  // FP Stack registers.
 | |
|       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
 | |
|       // value to the correct fpstack register class.
 | |
|       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
 | |
|         return std::make_pair(0U, X86::RFP32RegisterClass);
 | |
|       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
 | |
|         return std::make_pair(0U, X86::RFP64RegisterClass);
 | |
|       return std::make_pair(0U, X86::RFP80RegisterClass);
 | |
|     case 'y':   // MMX_REGS if MMX allowed.
 | |
|       if (!Subtarget->hasMMX()) break;
 | |
|       return std::make_pair(0U, X86::VR64RegisterClass);
 | |
|     case 'Y':   // SSE_REGS if SSE2 allowed
 | |
|       if (!Subtarget->hasSSE2()) break;
 | |
|       // FALL THROUGH.
 | |
|     case 'x':   // SSE_REGS if SSE1 allowed
 | |
|       if (!Subtarget->hasSSE1()) break;
 | |
| 
 | |
|       switch (VT.getSimpleVT().SimpleTy) {
 | |
|       default: break;
 | |
|       // Scalar SSE types.
 | |
|       case MVT::f32:
 | |
|       case MVT::i32:
 | |
|         return std::make_pair(0U, X86::FR32RegisterClass);
 | |
|       case MVT::f64:
 | |
|       case MVT::i64:
 | |
|         return std::make_pair(0U, X86::FR64RegisterClass);
 | |
|       // Vector types.
 | |
|       case MVT::v16i8:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v2i64:
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v2f64:
 | |
|         return std::make_pair(0U, X86::VR128RegisterClass);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use the default implementation in TargetLowering to convert the register
 | |
|   // constraint into a member of a register class.
 | |
|   std::pair<unsigned, const TargetRegisterClass*> Res;
 | |
|   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| 
 | |
|   // Not found as a standard register?
 | |
|   if (Res.second == 0) {
 | |
|     // Map st(0) -> st(7) -> ST0
 | |
|     if (Constraint.size() == 7 && Constraint[0] == '{' &&
 | |
|         tolower(Constraint[1]) == 's' &&
 | |
|         tolower(Constraint[2]) == 't' &&
 | |
|         Constraint[3] == '(' &&
 | |
|         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
 | |
|         Constraint[5] == ')' &&
 | |
|         Constraint[6] == '}') {
 | |
| 
 | |
|       Res.first = X86::ST0+Constraint[4]-'0';
 | |
|       Res.second = X86::RFP80RegisterClass;
 | |
|       return Res;
 | |
|     }
 | |
| 
 | |
|     // GCC allows "st(0)" to be called just plain "st".
 | |
|     if (StringRef("{st}").equals_lower(Constraint)) {
 | |
|       Res.first = X86::ST0;
 | |
|       Res.second = X86::RFP80RegisterClass;
 | |
|       return Res;
 | |
|     }
 | |
| 
 | |
|     // flags -> EFLAGS
 | |
|     if (StringRef("{flags}").equals_lower(Constraint)) {
 | |
|       Res.first = X86::EFLAGS;
 | |
|       Res.second = X86::CCRRegisterClass;
 | |
|       return Res;
 | |
|     }
 | |
| 
 | |
|     // 'A' means EAX + EDX.
 | |
|     if (Constraint == "A") {
 | |
|       Res.first = X86::EAX;
 | |
|       Res.second = X86::GR32_ADRegisterClass;
 | |
|       return Res;
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, check to see if this is a register class of the wrong value
 | |
|   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
 | |
|   // turn into {ax},{dx}.
 | |
|   if (Res.second->hasType(VT))
 | |
|     return Res;   // Correct type already, nothing to do.
 | |
| 
 | |
|   // All of the single-register GCC register classes map their values onto
 | |
|   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
 | |
|   // really want an 8-bit or 32-bit register, map to the appropriate register
 | |
|   // class and return the appropriate register.
 | |
|   if (Res.second == X86::GR16RegisterClass) {
 | |
|     if (VT == MVT::i8) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::AL; break;
 | |
|       case X86::DX: DestReg = X86::DL; break;
 | |
|       case X86::CX: DestReg = X86::CL; break;
 | |
|       case X86::BX: DestReg = X86::BL; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR8RegisterClass;
 | |
|       }
 | |
|     } else if (VT == MVT::i32) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::EAX; break;
 | |
|       case X86::DX: DestReg = X86::EDX; break;
 | |
|       case X86::CX: DestReg = X86::ECX; break;
 | |
|       case X86::BX: DestReg = X86::EBX; break;
 | |
|       case X86::SI: DestReg = X86::ESI; break;
 | |
|       case X86::DI: DestReg = X86::EDI; break;
 | |
|       case X86::BP: DestReg = X86::EBP; break;
 | |
|       case X86::SP: DestReg = X86::ESP; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR32RegisterClass;
 | |
|       }
 | |
|     } else if (VT == MVT::i64) {
 | |
|       unsigned DestReg = 0;
 | |
|       switch (Res.first) {
 | |
|       default: break;
 | |
|       case X86::AX: DestReg = X86::RAX; break;
 | |
|       case X86::DX: DestReg = X86::RDX; break;
 | |
|       case X86::CX: DestReg = X86::RCX; break;
 | |
|       case X86::BX: DestReg = X86::RBX; break;
 | |
|       case X86::SI: DestReg = X86::RSI; break;
 | |
|       case X86::DI: DestReg = X86::RDI; break;
 | |
|       case X86::BP: DestReg = X86::RBP; break;
 | |
|       case X86::SP: DestReg = X86::RSP; break;
 | |
|       }
 | |
|       if (DestReg) {
 | |
|         Res.first = DestReg;
 | |
|         Res.second = X86::GR64RegisterClass;
 | |
|       }
 | |
|     }
 | |
|   } else if (Res.second == X86::FR32RegisterClass ||
 | |
|              Res.second == X86::FR64RegisterClass ||
 | |
|              Res.second == X86::VR128RegisterClass) {
 | |
|     // Handle references to XMM physical registers that got mapped into the
 | |
|     // wrong class.  This can happen with constraints like {xmm0} where the
 | |
|     // target independent register mapper will just pick the first match it can
 | |
|     // find, ignoring the required type.
 | |
|     if (VT == MVT::f32)
 | |
|       Res.second = X86::FR32RegisterClass;
 | |
|     else if (VT == MVT::f64)
 | |
|       Res.second = X86::FR64RegisterClass;
 | |
|     else if (X86::VR128RegisterClass->hasType(VT))
 | |
|       Res.second = X86::VR128RegisterClass;
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 |