mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	definition below all the header #include lines. This updates most of the miscellaneous other lib/... directories. A few left though. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206845 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2148 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2148 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Execution.cpp - Implement code to simulate the program ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file contains the actual instruction interpreter.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Interpreter.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/IntrinsicLowering.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "interpreter"
 | |
| 
 | |
| STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
 | |
| 
 | |
| static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
 | |
|           cl::desc("make the interpreter print every volatile load and store"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Various Helper Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
 | |
|   SF.Values[V] = Val;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    Binary Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
 | |
|    case Type::TY##TyID: \
 | |
|      Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
 | |
|      break
 | |
| 
 | |
| static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
 | |
|                             GenericValue Src2, Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_BINARY_OPERATOR(+, Float);
 | |
|     IMPLEMENT_BINARY_OPERATOR(+, Double);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
 | |
|                             GenericValue Src2, Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_BINARY_OPERATOR(-, Float);
 | |
|     IMPLEMENT_BINARY_OPERATOR(-, Double);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
 | |
|                             GenericValue Src2, Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_BINARY_OPERATOR(*, Float);
 | |
|     IMPLEMENT_BINARY_OPERATOR(*, Double);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void executeFDivInst(GenericValue &Dest, GenericValue Src1, 
 | |
|                             GenericValue Src2, Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_BINARY_OPERATOR(/, Float);
 | |
|     IMPLEMENT_BINARY_OPERATOR(/, Double);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void executeFRemInst(GenericValue &Dest, GenericValue Src1, 
 | |
|                             GenericValue Src2, Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::FloatTyID:
 | |
|     Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|     Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
 | |
|     break;
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
 | |
|    case Type::IntegerTyID:  \
 | |
|       Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
 | |
|       break;
 | |
| 
 | |
| #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)                        \
 | |
|   case Type::VectorTyID: {                                           \
 | |
|     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());    \
 | |
|     Dest.AggregateVal.resize( Src1.AggregateVal.size() );            \
 | |
|     for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)             \
 | |
|       Dest.AggregateVal[_i].IntVal = APInt(1,                        \
 | |
|       Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
 | |
|   } break;
 | |
| 
 | |
| // Handle pointers specially because they must be compared with only as much
 | |
| // width as the host has.  We _do not_ want to be comparing 64 bit values when
 | |
| // running on a 32-bit target, otherwise the upper 32 bits might mess up
 | |
| // comparisons if they contain garbage.
 | |
| #define IMPLEMENT_POINTER_ICMP(OP) \
 | |
|    case Type::PointerTyID: \
 | |
|       Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
 | |
|                             (void*)(intptr_t)Src2.PointerVal); \
 | |
|       break;
 | |
| 
 | |
| static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(eq,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(==);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(ne,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(!=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(ult,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(<);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(slt,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(<);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(ugt,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(>);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(sgt,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(>);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(ule,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(<=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(sle,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(<=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(uge,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(>=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_INTEGER_ICMP(sge,Ty);
 | |
|     IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
 | |
|     IMPLEMENT_POINTER_ICMP(>=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitICmpInst(ICmpInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Type *Ty    = I.getOperand(0)->getType();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue R;   // Result
 | |
|   
 | |
|   switch (I.getPredicate()) {
 | |
|   case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
 | |
|   case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
 | |
|   default:
 | |
|     dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|  
 | |
|   SetValue(&I, R, SF);
 | |
| }
 | |
| 
 | |
| #define IMPLEMENT_FCMP(OP, TY) \
 | |
|    case Type::TY##TyID: \
 | |
|      Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
 | |
|      break
 | |
| 
 | |
| #define IMPLEMENT_VECTOR_FCMP_T(OP, TY)                             \
 | |
|   assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());     \
 | |
|   Dest.AggregateVal.resize( Src1.AggregateVal.size() );             \
 | |
|   for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++)              \
 | |
|     Dest.AggregateVal[_i].IntVal = APInt(1,                         \
 | |
|     Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
 | |
|   break;
 | |
| 
 | |
| #define IMPLEMENT_VECTOR_FCMP(OP)                                   \
 | |
|   case Type::VectorTyID:                                            \
 | |
|     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {   \
 | |
|       IMPLEMENT_VECTOR_FCMP_T(OP, Float);                           \
 | |
|     } else {                                                        \
 | |
|         IMPLEMENT_VECTOR_FCMP_T(OP, Double);                        \
 | |
|     }
 | |
| 
 | |
| static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(==, Float);
 | |
|     IMPLEMENT_FCMP(==, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(==);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| #define IMPLEMENT_SCALAR_NANS(TY, X,Y)                                      \
 | |
|   if (TY->isFloatTy()) {                                                    \
 | |
|     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {             \
 | |
|       Dest.IntVal = APInt(1,false);                                         \
 | |
|       return Dest;                                                          \
 | |
|     }                                                                       \
 | |
|   } else {                                                                  \
 | |
|     if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) {         \
 | |
|       Dest.IntVal = APInt(1,false);                                         \
 | |
|       return Dest;                                                          \
 | |
|     }                                                                       \
 | |
|   }
 | |
| 
 | |
| #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG)                                   \
 | |
|   assert(X.AggregateVal.size() == Y.AggregateVal.size());                   \
 | |
|   Dest.AggregateVal.resize( X.AggregateVal.size() );                        \
 | |
|   for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) {                       \
 | |
|     if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val ||         \
 | |
|         Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val)           \
 | |
|       Dest.AggregateVal[_i].IntVal = APInt(1,FLAG);                         \
 | |
|     else  {                                                                 \
 | |
|       Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG);                        \
 | |
|     }                                                                       \
 | |
|   }
 | |
| 
 | |
| #define MASK_VECTOR_NANS(TY, X,Y, FLAG)                                     \
 | |
|   if (TY->isVectorTy()) {                                                   \
 | |
|     if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) {          \
 | |
|       MASK_VECTOR_NANS_T(X, Y, Float, FLAG)                                 \
 | |
|     } else {                                                                \
 | |
|       MASK_VECTOR_NANS_T(X, Y, Double, FLAG)                                \
 | |
|     }                                                                       \
 | |
|   }                                                                         \
 | |
| 
 | |
| 
 | |
| 
 | |
| static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
 | |
|                                     Type *Ty)
 | |
| {
 | |
|   GenericValue Dest;
 | |
|   // if input is scalar value and Src1 or Src2 is NaN return false
 | |
|   IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
 | |
|   // if vector input detect NaNs and fill mask
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, false)
 | |
|   GenericValue DestMask = Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(!=, Float);
 | |
|     IMPLEMENT_FCMP(!=, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(!=);
 | |
|     default:
 | |
|       dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
 | |
|       llvm_unreachable(0);
 | |
|   }
 | |
|   // in vector case mask out NaN elements
 | |
|   if (Ty->isVectorTy())
 | |
|     for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
 | |
|       if (DestMask.AggregateVal[_i].IntVal == false)
 | |
|         Dest.AggregateVal[_i].IntVal = APInt(1,false);
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(<=, Float);
 | |
|     IMPLEMENT_FCMP(<=, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(<=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(>=, Float);
 | |
|     IMPLEMENT_FCMP(>=, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(>=);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(<, Float);
 | |
|     IMPLEMENT_FCMP(<, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(<);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
 | |
|                                      Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   switch (Ty->getTypeID()) {
 | |
|     IMPLEMENT_FCMP(>, Float);
 | |
|     IMPLEMENT_FCMP(>, Double);
 | |
|     IMPLEMENT_VECTOR_FCMP(>);
 | |
|   default:
 | |
|     dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
 | |
|   if (TY->isFloatTy()) {                                                 \
 | |
|     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
 | |
|       Dest.IntVal = APInt(1,true);                                       \
 | |
|       return Dest;                                                       \
 | |
|     }                                                                    \
 | |
|   } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
 | |
|     Dest.IntVal = APInt(1,true);                                         \
 | |
|     return Dest;                                                         \
 | |
|   }
 | |
| 
 | |
| #define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC)                       \
 | |
|   if (TY->isVectorTy()) {                                                \
 | |
|     GenericValue DestMask = Dest;                                        \
 | |
|     Dest = _FUNC(Src1, Src2, Ty);                                        \
 | |
|       for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)               \
 | |
|         if (DestMask.AggregateVal[_i].IntVal == true)                    \
 | |
|           Dest.AggregateVal[_i].IntVal = APInt(1,true);                  \
 | |
|       return Dest;                                                       \
 | |
|   }
 | |
| 
 | |
| static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
 | |
|   return executeFCMP_OEQ(Src1, Src2, Ty);
 | |
| 
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
 | |
|   return executeFCMP_ONE(Src1, Src2, Ty);
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
 | |
|   return executeFCMP_OLE(Src1, Src2, Ty);
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
 | |
|   return executeFCMP_OGE(Src1, Src2, Ty);
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
 | |
|                                    Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
 | |
|   return executeFCMP_OLT(Src1, Src2, Ty);
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
 | |
|                                      Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
 | |
|   MASK_VECTOR_NANS(Ty, Src1, Src2, true)
 | |
|   IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
 | |
|   return executeFCMP_OGT(Src1, Src2, Ty);
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
 | |
|                                      Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   if(Ty->isVectorTy()) {
 | |
|     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
 | |
|     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
 | |
|     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
 | |
|       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
 | |
|         Dest.AggregateVal[_i].IntVal = APInt(1,
 | |
|         ( (Src1.AggregateVal[_i].FloatVal ==
 | |
|         Src1.AggregateVal[_i].FloatVal) &&
 | |
|         (Src2.AggregateVal[_i].FloatVal ==
 | |
|         Src2.AggregateVal[_i].FloatVal)));
 | |
|     } else {
 | |
|       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
 | |
|         Dest.AggregateVal[_i].IntVal = APInt(1,
 | |
|         ( (Src1.AggregateVal[_i].DoubleVal ==
 | |
|         Src1.AggregateVal[_i].DoubleVal) &&
 | |
|         (Src2.AggregateVal[_i].DoubleVal ==
 | |
|         Src2.AggregateVal[_i].DoubleVal)));
 | |
|     }
 | |
|   } else if (Ty->isFloatTy())
 | |
|     Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && 
 | |
|                            Src2.FloatVal == Src2.FloatVal));
 | |
|   else {
 | |
|     Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && 
 | |
|                            Src2.DoubleVal == Src2.DoubleVal));
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
 | |
|                                      Type *Ty) {
 | |
|   GenericValue Dest;
 | |
|   if(Ty->isVectorTy()) {
 | |
|     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
 | |
|     Dest.AggregateVal.resize( Src1.AggregateVal.size() );
 | |
|     if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
 | |
|       for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
 | |
|         Dest.AggregateVal[_i].IntVal = APInt(1,
 | |
|         ( (Src1.AggregateVal[_i].FloatVal !=
 | |
|            Src1.AggregateVal[_i].FloatVal) ||
 | |
|           (Src2.AggregateVal[_i].FloatVal !=
 | |
|            Src2.AggregateVal[_i].FloatVal)));
 | |
|       } else {
 | |
|         for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
 | |
|           Dest.AggregateVal[_i].IntVal = APInt(1,
 | |
|           ( (Src1.AggregateVal[_i].DoubleVal !=
 | |
|              Src1.AggregateVal[_i].DoubleVal) ||
 | |
|             (Src2.AggregateVal[_i].DoubleVal !=
 | |
|              Src2.AggregateVal[_i].DoubleVal)));
 | |
|       }
 | |
|   } else if (Ty->isFloatTy())
 | |
|     Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || 
 | |
|                            Src2.FloatVal != Src2.FloatVal));
 | |
|   else {
 | |
|     Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || 
 | |
|                            Src2.DoubleVal != Src2.DoubleVal));
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
 | |
|                                     const Type *Ty, const bool val) {
 | |
|   GenericValue Dest;
 | |
|     if(Ty->isVectorTy()) {
 | |
|       assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
 | |
|       Dest.AggregateVal.resize( Src1.AggregateVal.size() );
 | |
|       for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
 | |
|         Dest.AggregateVal[_i].IntVal = APInt(1,val);
 | |
|     } else {
 | |
|       Dest.IntVal = APInt(1, val);
 | |
|     }
 | |
| 
 | |
|     return Dest;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitFCmpInst(FCmpInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Type *Ty    = I.getOperand(0)->getType();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue R;   // Result
 | |
|   
 | |
|   switch (I.getPredicate()) {
 | |
|   default:
 | |
|     dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
 | |
|     llvm_unreachable(0);
 | |
|   break;
 | |
|   case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); 
 | |
|   break;
 | |
|   case FCmpInst::FCMP_TRUE:  R = executeFCMP_BOOL(Src1, Src2, Ty, true); 
 | |
|   break;
 | |
|   case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
 | |
|   case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
 | |
|   }
 | |
|  
 | |
|   SetValue(&I, R, SF);
 | |
| }
 | |
| 
 | |
| static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, 
 | |
|                                    GenericValue Src2, Type *Ty) {
 | |
|   GenericValue Result;
 | |
|   switch (predicate) {
 | |
|   case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
 | |
|   case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
 | |
|   case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
 | |
|   case FCmpInst::FCMP_TRUE:  return executeFCMP_BOOL(Src1, Src2, Ty, true);
 | |
|   default:
 | |
|     dbgs() << "Unhandled Cmp predicate\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Interpreter::visitBinaryOperator(BinaryOperator &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Type *Ty    = I.getOperand(0)->getType();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue R;   // Result
 | |
| 
 | |
|   // First process vector operation
 | |
|   if (Ty->isVectorTy()) {
 | |
|     assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
 | |
|     R.AggregateVal.resize(Src1.AggregateVal.size());
 | |
| 
 | |
|     // Macros to execute binary operation 'OP' over integer vectors
 | |
| #define INTEGER_VECTOR_OPERATION(OP)                               \
 | |
|     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
 | |
|       R.AggregateVal[i].IntVal =                                   \
 | |
|       Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
 | |
| 
 | |
|     // Additional macros to execute binary operations udiv/sdiv/urem/srem since
 | |
|     // they have different notation.
 | |
| #define INTEGER_VECTOR_FUNCTION(OP)                                \
 | |
|     for (unsigned i = 0; i < R.AggregateVal.size(); ++i)           \
 | |
|       R.AggregateVal[i].IntVal =                                   \
 | |
|       Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
 | |
| 
 | |
|     // Macros to execute binary operation 'OP' over floating point type TY
 | |
|     // (float or double) vectors
 | |
| #define FLOAT_VECTOR_FUNCTION(OP, TY)                               \
 | |
|       for (unsigned i = 0; i < R.AggregateVal.size(); ++i)          \
 | |
|         R.AggregateVal[i].TY =                                      \
 | |
|         Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
 | |
| 
 | |
|     // Macros to choose appropriate TY: float or double and run operation
 | |
|     // execution
 | |
| #define FLOAT_VECTOR_OP(OP) {                                         \
 | |
|   if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())        \
 | |
|     FLOAT_VECTOR_FUNCTION(OP, FloatVal)                               \
 | |
|   else {                                                              \
 | |
|     if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())     \
 | |
|       FLOAT_VECTOR_FUNCTION(OP, DoubleVal)                            \
 | |
|     else {                                                            \
 | |
|       dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
 | |
|       llvm_unreachable(0);                                            \
 | |
|     }                                                                 \
 | |
|   }                                                                   \
 | |
| }
 | |
| 
 | |
|     switch(I.getOpcode()){
 | |
|     default:
 | |
|       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
 | |
|       llvm_unreachable(0);
 | |
|       break;
 | |
|     case Instruction::Add:   INTEGER_VECTOR_OPERATION(+) break;
 | |
|     case Instruction::Sub:   INTEGER_VECTOR_OPERATION(-) break;
 | |
|     case Instruction::Mul:   INTEGER_VECTOR_OPERATION(*) break;
 | |
|     case Instruction::UDiv:  INTEGER_VECTOR_FUNCTION(udiv) break;
 | |
|     case Instruction::SDiv:  INTEGER_VECTOR_FUNCTION(sdiv) break;
 | |
|     case Instruction::URem:  INTEGER_VECTOR_FUNCTION(urem) break;
 | |
|     case Instruction::SRem:  INTEGER_VECTOR_FUNCTION(srem) break;
 | |
|     case Instruction::And:   INTEGER_VECTOR_OPERATION(&) break;
 | |
|     case Instruction::Or:    INTEGER_VECTOR_OPERATION(|) break;
 | |
|     case Instruction::Xor:   INTEGER_VECTOR_OPERATION(^) break;
 | |
|     case Instruction::FAdd:  FLOAT_VECTOR_OP(+) break;
 | |
|     case Instruction::FSub:  FLOAT_VECTOR_OP(-) break;
 | |
|     case Instruction::FMul:  FLOAT_VECTOR_OP(*) break;
 | |
|     case Instruction::FDiv:  FLOAT_VECTOR_OP(/) break;
 | |
|     case Instruction::FRem:
 | |
|       if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
 | |
|         for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
 | |
|           R.AggregateVal[i].FloatVal = 
 | |
|           fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
 | |
|       else {
 | |
|         if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
 | |
|           for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
 | |
|             R.AggregateVal[i].DoubleVal = 
 | |
|             fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
 | |
|         else {
 | |
|           dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
 | |
|           llvm_unreachable(0);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     switch (I.getOpcode()) {
 | |
|     default:
 | |
|       dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
 | |
|       llvm_unreachable(0);
 | |
|       break;
 | |
|     case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
 | |
|     case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
 | |
|     case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
 | |
|     case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
 | |
|     case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
 | |
|     case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
 | |
|     case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
 | |
|     case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
 | |
|     case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
 | |
|     case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
 | |
|     case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
 | |
|     case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
 | |
|     case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
 | |
|     case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
 | |
|     case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
 | |
|     }
 | |
|   }
 | |
|   SetValue(&I, R, SF);
 | |
| }
 | |
| 
 | |
| static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
 | |
|                                       GenericValue Src3, const Type *Ty) {
 | |
|     GenericValue Dest;
 | |
|     if(Ty->isVectorTy()) {
 | |
|       assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
 | |
|       assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
 | |
|       Dest.AggregateVal.resize( Src1.AggregateVal.size() );
 | |
|       for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
 | |
|         Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
 | |
|           Src3.AggregateVal[i] : Src2.AggregateVal[i];
 | |
|     } else {
 | |
|       Dest = (Src1.IntVal == 0) ? Src3 : Src2;
 | |
|     }
 | |
|     return Dest;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitSelectInst(SelectInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   const Type * Ty = I.getOperand(0)->getType();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
 | |
|   GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
 | |
|   SetValue(&I, R, SF);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Terminator Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Interpreter::exitCalled(GenericValue GV) {
 | |
|   // runAtExitHandlers() assumes there are no stack frames, but
 | |
|   // if exit() was called, then it had a stack frame. Blow away
 | |
|   // the stack before interpreting atexit handlers.
 | |
|   ECStack.clear();
 | |
|   runAtExitHandlers();
 | |
|   exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
 | |
| }
 | |
| 
 | |
| /// Pop the last stack frame off of ECStack and then copy the result
 | |
| /// back into the result variable if we are not returning void. The
 | |
| /// result variable may be the ExitValue, or the Value of the calling
 | |
| /// CallInst if there was a previous stack frame. This method may
 | |
| /// invalidate any ECStack iterators you have. This method also takes
 | |
| /// care of switching to the normal destination BB, if we are returning
 | |
| /// from an invoke.
 | |
| ///
 | |
| void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
 | |
|                                                  GenericValue Result) {
 | |
|   // Pop the current stack frame.
 | |
|   ECStack.pop_back();
 | |
| 
 | |
|   if (ECStack.empty()) {  // Finished main.  Put result into exit code...
 | |
|     if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
 | |
|       ExitValue = Result;   // Capture the exit value of the program
 | |
|     } else {
 | |
|       memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
 | |
|     }
 | |
|   } else {
 | |
|     // If we have a previous stack frame, and we have a previous call,
 | |
|     // fill in the return value...
 | |
|     ExecutionContext &CallingSF = ECStack.back();
 | |
|     if (Instruction *I = CallingSF.Caller.getInstruction()) {
 | |
|       // Save result...
 | |
|       if (!CallingSF.Caller.getType()->isVoidTy())
 | |
|         SetValue(I, Result, CallingSF);
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst> (I))
 | |
|         SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
 | |
|       CallingSF.Caller = CallSite();          // We returned from the call...
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Interpreter::visitReturnInst(ReturnInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Type *RetTy = Type::getVoidTy(I.getContext());
 | |
|   GenericValue Result;
 | |
| 
 | |
|   // Save away the return value... (if we are not 'ret void')
 | |
|   if (I.getNumOperands()) {
 | |
|     RetTy  = I.getReturnValue()->getType();
 | |
|     Result = getOperandValue(I.getReturnValue(), SF);
 | |
|   }
 | |
| 
 | |
|   popStackAndReturnValueToCaller(RetTy, Result);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitUnreachableInst(UnreachableInst &I) {
 | |
|   report_fatal_error("Program executed an 'unreachable' instruction!");
 | |
| }
 | |
| 
 | |
| void Interpreter::visitBranchInst(BranchInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   BasicBlock *Dest;
 | |
| 
 | |
|   Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
 | |
|   if (!I.isUnconditional()) {
 | |
|     Value *Cond = I.getCondition();
 | |
|     if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
 | |
|       Dest = I.getSuccessor(1);
 | |
|   }
 | |
|   SwitchToNewBasicBlock(Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitSwitchInst(SwitchInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Value* Cond = I.getCondition();
 | |
|   Type *ElTy = Cond->getType();
 | |
|   GenericValue CondVal = getOperandValue(Cond, SF);
 | |
| 
 | |
|   // Check to see if any of the cases match...
 | |
|   BasicBlock *Dest = 0;
 | |
|   for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
 | |
|     GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
 | |
|     if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
 | |
|       Dest = cast<BasicBlock>(i.getCaseSuccessor());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
 | |
|   SwitchToNewBasicBlock(Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
 | |
|   SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
 | |
| }
 | |
| 
 | |
| 
 | |
| // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
 | |
| // This function handles the actual updating of block and instruction iterators
 | |
| // as well as execution of all of the PHI nodes in the destination block.
 | |
| //
 | |
| // This method does this because all of the PHI nodes must be executed
 | |
| // atomically, reading their inputs before any of the results are updated.  Not
 | |
| // doing this can cause problems if the PHI nodes depend on other PHI nodes for
 | |
| // their inputs.  If the input PHI node is updated before it is read, incorrect
 | |
| // results can happen.  Thus we use a two phase approach.
 | |
| //
 | |
| void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
 | |
|   BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
 | |
|   SF.CurBB   = Dest;                  // Update CurBB to branch destination
 | |
|   SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
 | |
| 
 | |
|   if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
 | |
| 
 | |
|   // Loop over all of the PHI nodes in the current block, reading their inputs.
 | |
|   std::vector<GenericValue> ResultValues;
 | |
| 
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
 | |
|     // Search for the value corresponding to this previous bb...
 | |
|     int i = PN->getBasicBlockIndex(PrevBB);
 | |
|     assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
 | |
|     Value *IncomingValue = PN->getIncomingValue(i);
 | |
| 
 | |
|     // Save the incoming value for this PHI node...
 | |
|     ResultValues.push_back(getOperandValue(IncomingValue, SF));
 | |
|   }
 | |
| 
 | |
|   // Now loop over all of the PHI nodes setting their values...
 | |
|   SF.CurInst = SF.CurBB->begin();
 | |
|   for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
 | |
|     PHINode *PN = cast<PHINode>(SF.CurInst);
 | |
|     SetValue(PN, ResultValues[i], SF);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     Memory Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Interpreter::visitAllocaInst(AllocaInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
| 
 | |
|   Type *Ty = I.getType()->getElementType();  // Type to be allocated
 | |
| 
 | |
|   // Get the number of elements being allocated by the array...
 | |
|   unsigned NumElements = 
 | |
|     getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
 | |
| 
 | |
|   unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
 | |
| 
 | |
|   // Avoid malloc-ing zero bytes, use max()...
 | |
|   unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
 | |
| 
 | |
|   // Allocate enough memory to hold the type...
 | |
|   void *Memory = malloc(MemToAlloc);
 | |
| 
 | |
|   DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " 
 | |
|                << NumElements << " (Total: " << MemToAlloc << ") at "
 | |
|                << uintptr_t(Memory) << '\n');
 | |
| 
 | |
|   GenericValue Result = PTOGV(Memory);
 | |
|   assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
 | |
|   SetValue(&I, Result, SF);
 | |
| 
 | |
|   if (I.getOpcode() == Instruction::Alloca)
 | |
|     ECStack.back().Allocas.add(Memory);
 | |
| }
 | |
| 
 | |
| // getElementOffset - The workhorse for getelementptr.
 | |
| //
 | |
| GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
 | |
|                                               gep_type_iterator E,
 | |
|                                               ExecutionContext &SF) {
 | |
|   assert(Ptr->getType()->isPointerTy() &&
 | |
|          "Cannot getElementOffset of a nonpointer type!");
 | |
| 
 | |
|   uint64_t Total = 0;
 | |
| 
 | |
|   for (; I != E; ++I) {
 | |
|     if (StructType *STy = dyn_cast<StructType>(*I)) {
 | |
|       const StructLayout *SLO = TD.getStructLayout(STy);
 | |
| 
 | |
|       const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
 | |
|       unsigned Index = unsigned(CPU->getZExtValue());
 | |
| 
 | |
|       Total += SLO->getElementOffset(Index);
 | |
|     } else {
 | |
|       SequentialType *ST = cast<SequentialType>(*I);
 | |
|       // Get the index number for the array... which must be long type...
 | |
|       GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
 | |
| 
 | |
|       int64_t Idx;
 | |
|       unsigned BitWidth = 
 | |
|         cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
 | |
|       if (BitWidth == 32)
 | |
|         Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
 | |
|       else {
 | |
|         assert(BitWidth == 64 && "Invalid index type for getelementptr");
 | |
|         Idx = (int64_t)IdxGV.IntVal.getZExtValue();
 | |
|       }
 | |
|       Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   GenericValue Result;
 | |
|   Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
 | |
|   DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeGEPOperation(I.getPointerOperand(),
 | |
|                                    gep_type_begin(I), gep_type_end(I), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitLoadInst(LoadInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
 | |
|   GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
 | |
|   GenericValue Result;
 | |
|   LoadValueFromMemory(Result, Ptr, I.getType());
 | |
|   SetValue(&I, Result, SF);
 | |
|   if (I.isVolatile() && PrintVolatile)
 | |
|     dbgs() << "Volatile load " << I;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitStoreInst(StoreInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue Val = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
 | |
|   StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
 | |
|                      I.getOperand(0)->getType());
 | |
|   if (I.isVolatile() && PrintVolatile)
 | |
|     dbgs() << "Volatile store: " << I;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                 Miscellaneous Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Interpreter::visitCallSite(CallSite CS) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
| 
 | |
|   // Check to see if this is an intrinsic function call...
 | |
|   Function *F = CS.getCalledFunction();
 | |
|   if (F && F->isDeclaration())
 | |
|     switch (F->getIntrinsicID()) {
 | |
|     case Intrinsic::not_intrinsic:
 | |
|       break;
 | |
|     case Intrinsic::vastart: { // va_start
 | |
|       GenericValue ArgIndex;
 | |
|       ArgIndex.UIntPairVal.first = ECStack.size() - 1;
 | |
|       ArgIndex.UIntPairVal.second = 0;
 | |
|       SetValue(CS.getInstruction(), ArgIndex, SF);
 | |
|       return;
 | |
|     }
 | |
|     case Intrinsic::vaend:    // va_end is a noop for the interpreter
 | |
|       return;
 | |
|     case Intrinsic::vacopy:   // va_copy: dest = src
 | |
|       SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
 | |
|       return;
 | |
|     default:
 | |
|       // If it is an unknown intrinsic function, use the intrinsic lowering
 | |
|       // class to transform it into hopefully tasty LLVM code.
 | |
|       //
 | |
|       BasicBlock::iterator me(CS.getInstruction());
 | |
|       BasicBlock *Parent = CS.getInstruction()->getParent();
 | |
|       bool atBegin(Parent->begin() == me);
 | |
|       if (!atBegin)
 | |
|         --me;
 | |
|       IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
 | |
| 
 | |
|       // Restore the CurInst pointer to the first instruction newly inserted, if
 | |
|       // any.
 | |
|       if (atBegin) {
 | |
|         SF.CurInst = Parent->begin();
 | |
|       } else {
 | |
|         SF.CurInst = me;
 | |
|         ++SF.CurInst;
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
| 
 | |
|   SF.Caller = CS;
 | |
|   std::vector<GenericValue> ArgVals;
 | |
|   const unsigned NumArgs = SF.Caller.arg_size();
 | |
|   ArgVals.reserve(NumArgs);
 | |
|   uint16_t pNum = 1;
 | |
|   for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
 | |
|          e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
 | |
|     Value *V = *i;
 | |
|     ArgVals.push_back(getOperandValue(V, SF));
 | |
|   }
 | |
| 
 | |
|   // To handle indirect calls, we must get the pointer value from the argument
 | |
|   // and treat it as a function pointer.
 | |
|   GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
 | |
|   callFunction((Function*)GVTOP(SRC), ArgVals);
 | |
| }
 | |
| 
 | |
| // auxiliary function for shift operations
 | |
| static unsigned getShiftAmount(uint64_t orgShiftAmount,
 | |
|                                llvm::APInt valueToShift) {
 | |
|   unsigned valueWidth = valueToShift.getBitWidth();
 | |
|   if (orgShiftAmount < (uint64_t)valueWidth)
 | |
|     return orgShiftAmount;
 | |
|   // according to the llvm documentation, if orgShiftAmount > valueWidth,
 | |
|   // the result is undfeined. but we do shift by this rule:
 | |
|   return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
 | |
| }
 | |
| 
 | |
| 
 | |
| void Interpreter::visitShl(BinaryOperator &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Dest;
 | |
|   const Type *Ty = I.getType();
 | |
| 
 | |
|   if (Ty->isVectorTy()) {
 | |
|     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
 | |
|     assert(src1Size == Src2.AggregateVal.size());
 | |
|     for (unsigned i = 0; i < src1Size; i++) {
 | |
|       GenericValue Result;
 | |
|       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
 | |
|       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
 | |
|       Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
 | |
|       Dest.AggregateVal.push_back(Result);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
 | |
|     llvm::APInt valueToShift = Src1.IntVal;
 | |
|     Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitLShr(BinaryOperator &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Dest;
 | |
|   const Type *Ty = I.getType();
 | |
| 
 | |
|   if (Ty->isVectorTy()) {
 | |
|     uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
 | |
|     assert(src1Size == Src2.AggregateVal.size());
 | |
|     for (unsigned i = 0; i < src1Size; i++) {
 | |
|       GenericValue Result;
 | |
|       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
 | |
|       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
 | |
|       Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
 | |
|       Dest.AggregateVal.push_back(Result);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
 | |
|     llvm::APInt valueToShift = Src1.IntVal;
 | |
|     Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitAShr(BinaryOperator &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Dest;
 | |
|   const Type *Ty = I.getType();
 | |
| 
 | |
|   if (Ty->isVectorTy()) {
 | |
|     size_t src1Size = Src1.AggregateVal.size();
 | |
|     assert(src1Size == Src2.AggregateVal.size());
 | |
|     for (unsigned i = 0; i < src1Size; i++) {
 | |
|       GenericValue Result;
 | |
|       uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
 | |
|       llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
 | |
|       Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
 | |
|       Dest.AggregateVal.push_back(Result);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     uint64_t shiftAmount = Src2.IntVal.getZExtValue();
 | |
|     llvm::APInt valueToShift = Src1.IntVal;
 | |
|     Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
 | |
|                                            ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
|   Type *SrcTy = SrcVal->getType();
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     Type *DstVecTy = DstTy->getScalarType();
 | |
|     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
 | |
|     unsigned NumElts = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal
 | |
|     Dest.AggregateVal.resize(NumElts);
 | |
|     for (unsigned i = 0; i < NumElts; i++)
 | |
|       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
 | |
|   } else {
 | |
|     IntegerType *DITy = cast<IntegerType>(DstTy);
 | |
|     unsigned DBitWidth = DITy->getBitWidth();
 | |
|     Dest.IntVal = Src.IntVal.trunc(DBitWidth);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
 | |
|                                           ExecutionContext &SF) {
 | |
|   const Type *SrcTy = SrcVal->getType();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal.
 | |
|     Dest.AggregateVal.resize(size);
 | |
|     for (unsigned i = 0; i < size; i++)
 | |
|       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
 | |
|   } else {
 | |
|     const IntegerType *DITy = cast<IntegerType>(DstTy);
 | |
|     unsigned DBitWidth = DITy->getBitWidth();
 | |
|     Dest.IntVal = Src.IntVal.sext(DBitWidth);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
 | |
|                                           ExecutionContext &SF) {
 | |
|   const Type *SrcTy = SrcVal->getType();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
|   if (SrcTy->isVectorTy()) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
 | |
| 
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal.
 | |
|     Dest.AggregateVal.resize(size);
 | |
|     for (unsigned i = 0; i < size; i++)
 | |
|       Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
 | |
|   } else {
 | |
|     const IntegerType *DITy = cast<IntegerType>(DstTy);
 | |
|     unsigned DBitWidth = DITy->getBitWidth();
 | |
|     Dest.IntVal = Src.IntVal.zext(DBitWidth);
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
 | |
|                                              ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
 | |
|     assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
 | |
|            DstTy->getScalarType()->isFloatTy() &&
 | |
|            "Invalid FPTrunc instruction");
 | |
| 
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal.
 | |
|     Dest.AggregateVal.resize(size);
 | |
|     for (unsigned i = 0; i < size; i++)
 | |
|       Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
 | |
|   } else {
 | |
|     assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
 | |
|            "Invalid FPTrunc instruction");
 | |
|     Dest.FloatVal = (float)Src.DoubleVal;
 | |
|   }
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
 | |
|                                            ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
 | |
|     assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
 | |
|            DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
 | |
| 
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal.
 | |
|     Dest.AggregateVal.resize(size);
 | |
|     for (unsigned i = 0; i < size; i++)
 | |
|       Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
 | |
|   } else {
 | |
|     assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
 | |
|            "Invalid FPExt instruction");
 | |
|     Dest.DoubleVal = (double)Src.FloatVal;
 | |
|   }
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
 | |
|                                             ExecutionContext &SF) {
 | |
|   Type *SrcTy = SrcVal->getType();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcTy->getTypeID() == Type::VectorTyID) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     const Type *SrcVecTy = SrcTy->getScalarType();
 | |
|     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal.
 | |
|     Dest.AggregateVal.resize(size);
 | |
| 
 | |
|     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
 | |
|       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
 | |
|             Src.AggregateVal[i].FloatVal, DBitWidth);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
 | |
|             Src.AggregateVal[i].DoubleVal, DBitWidth);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
 | |
|     assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
 | |
| 
 | |
|     if (SrcTy->getTypeID() == Type::FloatTyID)
 | |
|       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
 | |
|     else {
 | |
|       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
 | |
|                                             ExecutionContext &SF) {
 | |
|   Type *SrcTy = SrcVal->getType();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcTy->getTypeID() == Type::VectorTyID) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     const Type *SrcVecTy = SrcTy->getScalarType();
 | |
|     uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal
 | |
|     Dest.AggregateVal.resize(size);
 | |
| 
 | |
|     if (SrcVecTy->getTypeID() == Type::FloatTyID) {
 | |
|       assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
 | |
|             Src.AggregateVal[i].FloatVal, DBitWidth);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
 | |
|             Src.AggregateVal[i].DoubleVal, DBitWidth);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
 | |
|     assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
 | |
| 
 | |
|     if (SrcTy->getTypeID() == Type::FloatTyID)
 | |
|       Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
 | |
|     else {
 | |
|       Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
 | |
|     }
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
 | |
|                                             ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal
 | |
|     Dest.AggregateVal.resize(size);
 | |
| 
 | |
|     if (DstVecTy->getTypeID() == Type::FloatTyID) {
 | |
|       assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].FloatVal =
 | |
|             APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].DoubleVal =
 | |
|             APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
 | |
|     if (DstTy->getTypeID() == Type::FloatTyID)
 | |
|       Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
 | |
|     else {
 | |
|       Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
 | |
|     }
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
 | |
|                                             ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
 | |
|     const Type *DstVecTy = DstTy->getScalarType();
 | |
|     unsigned size = Src.AggregateVal.size();
 | |
|     // the sizes of src and dst vectors must be equal
 | |
|     Dest.AggregateVal.resize(size);
 | |
| 
 | |
|     if (DstVecTy->getTypeID() == Type::FloatTyID) {
 | |
|       assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].FloatVal =
 | |
|             APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < size; i++)
 | |
|         Dest.AggregateVal[i].DoubleVal =
 | |
|             APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
 | |
|     }
 | |
|   } else {
 | |
|     // scalar
 | |
|     assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
 | |
| 
 | |
|     if (DstTy->getTypeID() == Type::FloatTyID)
 | |
|       Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
 | |
|     else {
 | |
|       Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
 | |
|                                               ExecutionContext &SF) {
 | |
|   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
|   assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
 | |
| 
 | |
|   Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
 | |
|                                               ExecutionContext &SF) {
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
|   assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
 | |
| 
 | |
|   uint32_t PtrSize = TD.getPointerSizeInBits();
 | |
|   if (PtrSize != Src.IntVal.getBitWidth())
 | |
|     Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
 | |
| 
 | |
|   Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
 | |
|                                              ExecutionContext &SF) {
 | |
| 
 | |
|   // This instruction supports bitwise conversion of vectors to integers and
 | |
|   // to vectors of other types (as long as they have the same size)
 | |
|   Type *SrcTy = SrcVal->getType();
 | |
|   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
 | |
| 
 | |
|   if ((SrcTy->getTypeID() == Type::VectorTyID) ||
 | |
|       (DstTy->getTypeID() == Type::VectorTyID)) {
 | |
|     // vector src bitcast to vector dst or vector src bitcast to scalar dst or
 | |
|     // scalar src bitcast to vector dst
 | |
|     bool isLittleEndian = TD.isLittleEndian();
 | |
|     GenericValue TempDst, TempSrc, SrcVec;
 | |
|     const Type *SrcElemTy;
 | |
|     const Type *DstElemTy;
 | |
|     unsigned SrcBitSize;
 | |
|     unsigned DstBitSize;
 | |
|     unsigned SrcNum;
 | |
|     unsigned DstNum;
 | |
| 
 | |
|     if (SrcTy->getTypeID() == Type::VectorTyID) {
 | |
|       SrcElemTy = SrcTy->getScalarType();
 | |
|       SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|       SrcNum = Src.AggregateVal.size();
 | |
|       SrcVec = Src;
 | |
|     } else {
 | |
|       // if src is scalar value, make it vector <1 x type>
 | |
|       SrcElemTy = SrcTy;
 | |
|       SrcBitSize = SrcTy->getPrimitiveSizeInBits();
 | |
|       SrcNum = 1;
 | |
|       SrcVec.AggregateVal.push_back(Src);
 | |
|     }
 | |
| 
 | |
|     if (DstTy->getTypeID() == Type::VectorTyID) {
 | |
|       DstElemTy = DstTy->getScalarType();
 | |
|       DstBitSize = DstTy->getScalarSizeInBits();
 | |
|       DstNum = (SrcNum * SrcBitSize) / DstBitSize;
 | |
|     } else {
 | |
|       DstElemTy = DstTy;
 | |
|       DstBitSize = DstTy->getPrimitiveSizeInBits();
 | |
|       DstNum = 1;
 | |
|     }
 | |
| 
 | |
|     if (SrcNum * SrcBitSize != DstNum * DstBitSize)
 | |
|       llvm_unreachable("Invalid BitCast");
 | |
| 
 | |
|     // If src is floating point, cast to integer first.
 | |
|     TempSrc.AggregateVal.resize(SrcNum);
 | |
|     if (SrcElemTy->isFloatTy()) {
 | |
|       for (unsigned i = 0; i < SrcNum; i++)
 | |
|         TempSrc.AggregateVal[i].IntVal =
 | |
|             APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
 | |
| 
 | |
|     } else if (SrcElemTy->isDoubleTy()) {
 | |
|       for (unsigned i = 0; i < SrcNum; i++)
 | |
|         TempSrc.AggregateVal[i].IntVal =
 | |
|             APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
 | |
|     } else if (SrcElemTy->isIntegerTy()) {
 | |
|       for (unsigned i = 0; i < SrcNum; i++)
 | |
|         TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
 | |
|     } else {
 | |
|       // Pointers are not allowed as the element type of vector.
 | |
|       llvm_unreachable("Invalid Bitcast");
 | |
|     }
 | |
| 
 | |
|     // now TempSrc is integer type vector
 | |
|     if (DstNum < SrcNum) {
 | |
|       // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
 | |
|       unsigned Ratio = SrcNum / DstNum;
 | |
|       unsigned SrcElt = 0;
 | |
|       for (unsigned i = 0; i < DstNum; i++) {
 | |
|         GenericValue Elt;
 | |
|         Elt.IntVal = 0;
 | |
|         Elt.IntVal = Elt.IntVal.zext(DstBitSize);
 | |
|         unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
 | |
|         for (unsigned j = 0; j < Ratio; j++) {
 | |
|           APInt Tmp;
 | |
|           Tmp = Tmp.zext(SrcBitSize);
 | |
|           Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
 | |
|           Tmp = Tmp.zext(DstBitSize);
 | |
|           Tmp = Tmp.shl(ShiftAmt);
 | |
|           ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | |
|           Elt.IntVal |= Tmp;
 | |
|         }
 | |
|         TempDst.AggregateVal.push_back(Elt);
 | |
|       }
 | |
|     } else {
 | |
|       // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
 | |
|       unsigned Ratio = DstNum / SrcNum;
 | |
|       for (unsigned i = 0; i < SrcNum; i++) {
 | |
|         unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
 | |
|         for (unsigned j = 0; j < Ratio; j++) {
 | |
|           GenericValue Elt;
 | |
|           Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
 | |
|           Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
 | |
|           Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
 | |
|           // it could be DstBitSize == SrcBitSize, so check it
 | |
|           if (DstBitSize < SrcBitSize)
 | |
|             Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
 | |
|           ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | |
|           TempDst.AggregateVal.push_back(Elt);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // convert result from integer to specified type
 | |
|     if (DstTy->getTypeID() == Type::VectorTyID) {
 | |
|       if (DstElemTy->isDoubleTy()) {
 | |
|         Dest.AggregateVal.resize(DstNum);
 | |
|         for (unsigned i = 0; i < DstNum; i++)
 | |
|           Dest.AggregateVal[i].DoubleVal =
 | |
|               TempDst.AggregateVal[i].IntVal.bitsToDouble();
 | |
|       } else if (DstElemTy->isFloatTy()) {
 | |
|         Dest.AggregateVal.resize(DstNum);
 | |
|         for (unsigned i = 0; i < DstNum; i++)
 | |
|           Dest.AggregateVal[i].FloatVal =
 | |
|               TempDst.AggregateVal[i].IntVal.bitsToFloat();
 | |
|       } else {
 | |
|         Dest = TempDst;
 | |
|       }
 | |
|     } else {
 | |
|       if (DstElemTy->isDoubleTy())
 | |
|         Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
 | |
|       else if (DstElemTy->isFloatTy()) {
 | |
|         Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
 | |
|       } else {
 | |
|         Dest.IntVal = TempDst.AggregateVal[0].IntVal;
 | |
|       }
 | |
|     }
 | |
|   } else { //  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
 | |
|            //     (DstTy->getTypeID() == Type::VectorTyID))
 | |
| 
 | |
|     // scalar src bitcast to scalar dst
 | |
|     if (DstTy->isPointerTy()) {
 | |
|       assert(SrcTy->isPointerTy() && "Invalid BitCast");
 | |
|       Dest.PointerVal = Src.PointerVal;
 | |
|     } else if (DstTy->isIntegerTy()) {
 | |
|       if (SrcTy->isFloatTy())
 | |
|         Dest.IntVal = APInt::floatToBits(Src.FloatVal);
 | |
|       else if (SrcTy->isDoubleTy()) {
 | |
|         Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
 | |
|       } else if (SrcTy->isIntegerTy()) {
 | |
|         Dest.IntVal = Src.IntVal;
 | |
|       } else {
 | |
|         llvm_unreachable("Invalid BitCast");
 | |
|       }
 | |
|     } else if (DstTy->isFloatTy()) {
 | |
|       if (SrcTy->isIntegerTy())
 | |
|         Dest.FloatVal = Src.IntVal.bitsToFloat();
 | |
|       else {
 | |
|         Dest.FloatVal = Src.FloatVal;
 | |
|       }
 | |
|     } else if (DstTy->isDoubleTy()) {
 | |
|       if (SrcTy->isIntegerTy())
 | |
|         Dest.DoubleVal = Src.IntVal.bitsToDouble();
 | |
|       else {
 | |
|         Dest.DoubleVal = Src.DoubleVal;
 | |
|       }
 | |
|     } else {
 | |
|       llvm_unreachable("Invalid Bitcast");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitTruncInst(TruncInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitSExtInst(SExtInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitZExtInst(ZExtInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitFPTruncInst(FPTruncInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitFPExtInst(FPExtInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitUIToFPInst(UIToFPInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitSIToFPInst(SIToFPInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitFPToUIInst(FPToUIInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitFPToSIInst(FPToSIInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitBitCastInst(BitCastInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
 | |
| }
 | |
| 
 | |
| #define IMPLEMENT_VAARG(TY) \
 | |
|    case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
 | |
| 
 | |
| void Interpreter::visitVAArgInst(VAArgInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
| 
 | |
|   // Get the incoming valist parameter.  LLI treats the valist as a
 | |
|   // (ec-stack-depth var-arg-index) pair.
 | |
|   GenericValue VAList = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Dest;
 | |
|   GenericValue Src = ECStack[VAList.UIntPairVal.first]
 | |
|                       .VarArgs[VAList.UIntPairVal.second];
 | |
|   Type *Ty = I.getType();
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::IntegerTyID:
 | |
|     Dest.IntVal = Src.IntVal;
 | |
|     break;
 | |
|   IMPLEMENT_VAARG(Pointer);
 | |
|   IMPLEMENT_VAARG(Float);
 | |
|   IMPLEMENT_VAARG(Double);
 | |
|   default:
 | |
|     dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| 
 | |
|   // Set the Value of this Instruction.
 | |
|   SetValue(&I, Dest, SF);
 | |
| 
 | |
|   // Move the pointer to the next vararg.
 | |
|   ++VAList.UIntPairVal.second;
 | |
| }
 | |
| 
 | |
| void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Dest;
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
 | |
| 
 | |
|   if(Src1.AggregateVal.size() > indx) {
 | |
|     switch (Ty->getTypeID()) {
 | |
|     default:
 | |
|       dbgs() << "Unhandled destination type for extractelement instruction: "
 | |
|       << *Ty << "\n";
 | |
|       llvm_unreachable(0);
 | |
|       break;
 | |
|     case Type::IntegerTyID:
 | |
|       Dest.IntVal = Src1.AggregateVal[indx].IntVal;
 | |
|       break;
 | |
|     case Type::FloatTyID:
 | |
|       Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
 | |
|       break;
 | |
|     case Type::DoubleTyID:
 | |
|       Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     dbgs() << "Invalid index in extractelement instruction\n";
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitInsertElementInst(InsertElementInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Type *Ty = I.getType();
 | |
| 
 | |
|   if(!(Ty->isVectorTy()) )
 | |
|     llvm_unreachable("Unhandled dest type for insertelement instruction");
 | |
| 
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
 | |
|   GenericValue Dest;
 | |
| 
 | |
|   Type *TyContained = Ty->getContainedType(0);
 | |
| 
 | |
|   const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
 | |
|   Dest.AggregateVal = Src1.AggregateVal;
 | |
| 
 | |
|   if(Src1.AggregateVal.size() <= indx)
 | |
|       llvm_unreachable("Invalid index in insertelement instruction");
 | |
|   switch (TyContained->getTypeID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unhandled dest type for insertelement instruction");
 | |
|     case Type::IntegerTyID:
 | |
|       Dest.AggregateVal[indx].IntVal = Src2.IntVal;
 | |
|       break;
 | |
|     case Type::FloatTyID:
 | |
|       Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
 | |
|       break;
 | |
|     case Type::DoubleTyID:
 | |
|       Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
 | |
|       break;
 | |
|   }
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   if(!(Ty->isVectorTy()))
 | |
|     llvm_unreachable("Unhandled dest type for shufflevector instruction");
 | |
| 
 | |
|   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
 | |
|   GenericValue Dest;
 | |
| 
 | |
|   // There is no need to check types of src1 and src2, because the compiled
 | |
|   // bytecode can't contain different types for src1 and src2 for a
 | |
|   // shufflevector instruction.
 | |
| 
 | |
|   Type *TyContained = Ty->getContainedType(0);
 | |
|   unsigned src1Size = (unsigned)Src1.AggregateVal.size();
 | |
|   unsigned src2Size = (unsigned)Src2.AggregateVal.size();
 | |
|   unsigned src3Size = (unsigned)Src3.AggregateVal.size();
 | |
| 
 | |
|   Dest.AggregateVal.resize(src3Size);
 | |
| 
 | |
|   switch (TyContained->getTypeID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unhandled dest type for insertelement instruction");
 | |
|       break;
 | |
|     case Type::IntegerTyID:
 | |
|       for( unsigned i=0; i<src3Size; i++) {
 | |
|         unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
 | |
|         if(j < src1Size)
 | |
|           Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
 | |
|         else if(j < src1Size + src2Size)
 | |
|           Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
 | |
|         else
 | |
|           // The selector may not be greater than sum of lengths of first and
 | |
|           // second operands and llasm should not allow situation like
 | |
|           // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
 | |
|           //                      <2 x i32> < i32 0, i32 5 >,
 | |
|           // where i32 5 is invalid, but let it be additional check here:
 | |
|           llvm_unreachable("Invalid mask in shufflevector instruction");
 | |
|       }
 | |
|       break;
 | |
|     case Type::FloatTyID:
 | |
|       for( unsigned i=0; i<src3Size; i++) {
 | |
|         unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
 | |
|         if(j < src1Size)
 | |
|           Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
 | |
|         else if(j < src1Size + src2Size)
 | |
|           Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
 | |
|         else
 | |
|           llvm_unreachable("Invalid mask in shufflevector instruction");
 | |
|         }
 | |
|       break;
 | |
|     case Type::DoubleTyID:
 | |
|       for( unsigned i=0; i<src3Size; i++) {
 | |
|         unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
 | |
|         if(j < src1Size)
 | |
|           Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
 | |
|         else if(j < src1Size + src2Size)
 | |
|           Dest.AggregateVal[i].DoubleVal =
 | |
|             Src2.AggregateVal[j-src1Size].DoubleVal;
 | |
|         else
 | |
|           llvm_unreachable("Invalid mask in shufflevector instruction");
 | |
|       }
 | |
|       break;
 | |
|   }
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Value *Agg = I.getAggregateOperand();
 | |
|   GenericValue Dest;
 | |
|   GenericValue Src = getOperandValue(Agg, SF);
 | |
| 
 | |
|   ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
 | |
|   unsigned Num = I.getNumIndices();
 | |
|   GenericValue *pSrc = &Src;
 | |
| 
 | |
|   for (unsigned i = 0 ; i < Num; ++i) {
 | |
|     pSrc = &pSrc->AggregateVal[*IdxBegin];
 | |
|     ++IdxBegin;
 | |
|   }
 | |
| 
 | |
|   Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
 | |
|   switch (IndexedType->getTypeID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unhandled dest type for extractelement instruction");
 | |
|     break;
 | |
|     case Type::IntegerTyID:
 | |
|       Dest.IntVal = pSrc->IntVal;
 | |
|     break;
 | |
|     case Type::FloatTyID:
 | |
|       Dest.FloatVal = pSrc->FloatVal;
 | |
|     break;
 | |
|     case Type::DoubleTyID:
 | |
|       Dest.DoubleVal = pSrc->DoubleVal;
 | |
|     break;
 | |
|     case Type::ArrayTyID:
 | |
|     case Type::StructTyID:
 | |
|     case Type::VectorTyID:
 | |
|       Dest.AggregateVal = pSrc->AggregateVal;
 | |
|     break;
 | |
|     case Type::PointerTyID:
 | |
|       Dest.PointerVal = pSrc->PointerVal;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| void Interpreter::visitInsertValueInst(InsertValueInst &I) {
 | |
| 
 | |
|   ExecutionContext &SF = ECStack.back();
 | |
|   Value *Agg = I.getAggregateOperand();
 | |
| 
 | |
|   GenericValue Src1 = getOperandValue(Agg, SF);
 | |
|   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
 | |
|   GenericValue Dest = Src1; // Dest is a slightly changed Src1
 | |
| 
 | |
|   ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
 | |
|   unsigned Num = I.getNumIndices();
 | |
| 
 | |
|   GenericValue *pDest = &Dest;
 | |
|   for (unsigned i = 0 ; i < Num; ++i) {
 | |
|     pDest = &pDest->AggregateVal[*IdxBegin];
 | |
|     ++IdxBegin;
 | |
|   }
 | |
|   // pDest points to the target value in the Dest now
 | |
| 
 | |
|   Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
 | |
| 
 | |
|   switch (IndexedType->getTypeID()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unhandled dest type for insertelement instruction");
 | |
|     break;
 | |
|     case Type::IntegerTyID:
 | |
|       pDest->IntVal = Src2.IntVal;
 | |
|     break;
 | |
|     case Type::FloatTyID:
 | |
|       pDest->FloatVal = Src2.FloatVal;
 | |
|     break;
 | |
|     case Type::DoubleTyID:
 | |
|       pDest->DoubleVal = Src2.DoubleVal;
 | |
|     break;
 | |
|     case Type::ArrayTyID:
 | |
|     case Type::StructTyID:
 | |
|     case Type::VectorTyID:
 | |
|       pDest->AggregateVal = Src2.AggregateVal;
 | |
|     break;
 | |
|     case Type::PointerTyID:
 | |
|       pDest->PointerVal = Src2.PointerVal;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SetValue(&I, Dest, SF);
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
 | |
|                                                 ExecutionContext &SF) {
 | |
|   switch (CE->getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|       return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::ZExt:
 | |
|       return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::SExt:
 | |
|       return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::FPTrunc:
 | |
|       return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::FPExt:
 | |
|       return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::UIToFP:
 | |
|       return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::SIToFP:
 | |
|       return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::FPToUI:
 | |
|       return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::FPToSI:
 | |
|       return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::PtrToInt:
 | |
|       return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::IntToPtr:
 | |
|       return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::BitCast:
 | |
|       return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
 | |
|   case Instruction::GetElementPtr:
 | |
|     return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
 | |
|                                gep_type_end(CE), SF);
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp:
 | |
|     return executeCmpInst(CE->getPredicate(),
 | |
|                           getOperandValue(CE->getOperand(0), SF),
 | |
|                           getOperandValue(CE->getOperand(1), SF),
 | |
|                           CE->getOperand(0)->getType());
 | |
|   case Instruction::Select:
 | |
|     return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
 | |
|                              getOperandValue(CE->getOperand(1), SF),
 | |
|                              getOperandValue(CE->getOperand(2), SF),
 | |
|                              CE->getOperand(0)->getType());
 | |
|   default :
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // The cases below here require a GenericValue parameter for the result
 | |
|   // so we initialize one, compute it and then return it.
 | |
|   GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
 | |
|   GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
 | |
|   GenericValue Dest;
 | |
|   Type * Ty = CE->getOperand(0)->getType();
 | |
|   switch (CE->getOpcode()) {
 | |
|   case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
 | |
|   case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
 | |
|   case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
 | |
|   case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
 | |
|   case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
 | |
|   case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
 | |
|   case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
 | |
|   case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
 | |
|   case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
 | |
|   case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
 | |
|   case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
 | |
|   case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
 | |
|   case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
 | |
|   case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
 | |
|   case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
 | |
|   case Instruction::Shl:  
 | |
|     Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
 | |
|     break;
 | |
|   case Instruction::LShr: 
 | |
|     Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
 | |
|     break;
 | |
|   case Instruction::AShr: 
 | |
|     Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
 | |
|     break;
 | |
|   default:
 | |
|     dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
 | |
|     llvm_unreachable("Unhandled ConstantExpr");
 | |
|   }
 | |
|   return Dest;
 | |
| }
 | |
| 
 | |
| GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     return getConstantExprValue(CE, SF);
 | |
|   } else if (Constant *CPV = dyn_cast<Constant>(V)) {
 | |
|     return getConstantValue(CPV);
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     return PTOGV(getPointerToGlobal(GV));
 | |
|   } else {
 | |
|     return SF.Values[V];
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Dispatch and Execution Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // callFunction - Execute the specified function...
 | |
| //
 | |
| void Interpreter::callFunction(Function *F,
 | |
|                                const std::vector<GenericValue> &ArgVals) {
 | |
|   assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
 | |
|           ECStack.back().Caller.arg_size() == ArgVals.size()) &&
 | |
|          "Incorrect number of arguments passed into function call!");
 | |
|   // Make a new stack frame... and fill it in.
 | |
|   ECStack.push_back(ExecutionContext());
 | |
|   ExecutionContext &StackFrame = ECStack.back();
 | |
|   StackFrame.CurFunction = F;
 | |
| 
 | |
|   // Special handling for external functions.
 | |
|   if (F->isDeclaration()) {
 | |
|     GenericValue Result = callExternalFunction (F, ArgVals);
 | |
|     // Simulate a 'ret' instruction of the appropriate type.
 | |
|     popStackAndReturnValueToCaller (F->getReturnType (), Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Get pointers to first LLVM BB & Instruction in function.
 | |
|   StackFrame.CurBB     = F->begin();
 | |
|   StackFrame.CurInst   = StackFrame.CurBB->begin();
 | |
| 
 | |
|   // Run through the function arguments and initialize their values...
 | |
|   assert((ArgVals.size() == F->arg_size() ||
 | |
|          (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
 | |
|          "Invalid number of values passed to function invocation!");
 | |
| 
 | |
|   // Handle non-varargs arguments...
 | |
|   unsigned i = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 
 | |
|        AI != E; ++AI, ++i)
 | |
|     SetValue(AI, ArgVals[i], StackFrame);
 | |
| 
 | |
|   // Handle varargs arguments...
 | |
|   StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| void Interpreter::run() {
 | |
|   while (!ECStack.empty()) {
 | |
|     // Interpret a single instruction & increment the "PC".
 | |
|     ExecutionContext &SF = ECStack.back();  // Current stack frame
 | |
|     Instruction &I = *SF.CurInst++;         // Increment before execute
 | |
| 
 | |
|     // Track the number of dynamic instructions executed.
 | |
|     ++NumDynamicInsts;
 | |
| 
 | |
|     DEBUG(dbgs() << "About to interpret: " << I);
 | |
|     visit(I);   // Dispatch to one of the visit* methods...
 | |
| #if 0
 | |
|     // This is not safe, as visiting the instruction could lower it and free I.
 | |
| DEBUG(
 | |
|     if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && 
 | |
|         I.getType() != Type::VoidTy) {
 | |
|       dbgs() << "  --> ";
 | |
|       const GenericValue &Val = SF.Values[&I];
 | |
|       switch (I.getType()->getTypeID()) {
 | |
|       default: llvm_unreachable("Invalid GenericValue Type");
 | |
|       case Type::VoidTyID:    dbgs() << "void"; break;
 | |
|       case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break;
 | |
|       case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break;
 | |
|       case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
 | |
|         break;
 | |
|       case Type::IntegerTyID: 
 | |
|         dbgs() << "i" << Val.IntVal.getBitWidth() << " "
 | |
|                << Val.IntVal.toStringUnsigned(10)
 | |
|                << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
 | |
|         break;
 | |
|       }
 | |
|     });
 | |
| #endif
 | |
|   }
 | |
| }
 |