mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	No functional change intended. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205441 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			738 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARM64ExpandPseudoInsts.cpp - Expand pseudo instructions ---*- C++ -*-=//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a pass that expands pseudo instructions into target
 | |
| // instructions to allow proper scheduling and other late optimizations.  This
 | |
| // pass should be run after register allocation but before the post-regalloc
 | |
| // scheduling pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/ARM64AddressingModes.h"
 | |
| #include "ARM64InstrInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| class ARM64ExpandPseudo : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
|   ARM64ExpandPseudo() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|   const ARM64InstrInfo *TII;
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction &Fn);
 | |
| 
 | |
|   virtual const char *getPassName() const {
 | |
|     return "ARM64 pseudo instruction expansion pass";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool expandMBB(MachineBasicBlock &MBB);
 | |
|   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
 | |
|   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
 | |
|                     unsigned BitSize);
 | |
| };
 | |
| char ARM64ExpandPseudo::ID = 0;
 | |
| }
 | |
| 
 | |
| /// \brief Transfer implicit operands on the pseudo instruction to the
 | |
| /// instructions created from the expansion.
 | |
| static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
 | |
|                            MachineInstrBuilder &DefMI) {
 | |
|   const MCInstrDesc &Desc = OldMI.getDesc();
 | |
|   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
 | |
|        ++i) {
 | |
|     const MachineOperand &MO = OldMI.getOperand(i);
 | |
|     assert(MO.isReg() && MO.getReg());
 | |
|     if (MO.isUse())
 | |
|       UseMI.addOperand(MO);
 | |
|     else
 | |
|       DefMI.addOperand(MO);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Helper function which extracts the specified 16-bit chunk from a
 | |
| /// 64-bit value.
 | |
| static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
 | |
|   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
 | |
| 
 | |
|   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
 | |
| }
 | |
| 
 | |
| /// \brief Helper function which replicates a 16-bit chunk within a 64-bit
 | |
| /// value. Indices correspond to element numbers in a v4i16.
 | |
| static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
 | |
|   assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
 | |
|   const unsigned ShiftAmt = ToIdx * 16;
 | |
| 
 | |
|   // Replicate the source chunk to the destination position.
 | |
|   const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
 | |
|   // Clear the destination chunk.
 | |
|   Imm &= ~(0xFFFFLL << ShiftAmt);
 | |
|   // Insert the replicated chunk.
 | |
|   return Imm | Chunk;
 | |
| }
 | |
| 
 | |
| /// \brief Helper function which tries to materialize a 64-bit value with an
 | |
| /// ORR + MOVK instruction sequence.
 | |
| static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
 | |
|                        MachineBasicBlock &MBB,
 | |
|                        MachineBasicBlock::iterator &MBBI,
 | |
|                        const ARM64InstrInfo *TII, unsigned ChunkIdx) {
 | |
|   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
 | |
|   const unsigned ShiftAmt = ChunkIdx * 16;
 | |
| 
 | |
|   uint64_t Encoding;
 | |
|   if (ARM64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
 | |
|     // Create the ORR-immediate instruction.
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ORRXri))
 | |
|             .addOperand(MI.getOperand(0))
 | |
|             .addReg(ARM64::XZR)
 | |
|             .addImm(Encoding);
 | |
| 
 | |
|     // Create the MOVK instruction.
 | |
|     const unsigned Imm16 = getChunk(UImm, ChunkIdx);
 | |
|     const unsigned DstReg = MI.getOperand(0).getReg();
 | |
|     const bool DstIsDead = MI.getOperand(0).isDead();
 | |
|     MachineInstrBuilder MIB1 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::MOVKXi))
 | |
|             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
 | |
|             .addReg(DstReg)
 | |
|             .addImm(Imm16)
 | |
|             .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt));
 | |
| 
 | |
|     transferImpOps(MI, MIB, MIB1);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
 | |
| /// can be materialized with an ORR instruction.
 | |
| static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
 | |
|   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
 | |
| 
 | |
|   return ARM64_AM::processLogicalImmediate(Chunk, 64, Encoding);
 | |
| }
 | |
| 
 | |
| /// \brief Check for identical 16-bit chunks within the constant and if so
 | |
| /// materialize them with a single ORR instruction. The remaining one or two
 | |
| /// 16-bit chunks will be materialized with MOVK instructions.
 | |
| ///
 | |
| /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
 | |
| /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
 | |
| /// an ORR instruction.
 | |
| ///
 | |
| static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
 | |
|                                  MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator &MBBI,
 | |
|                                  const ARM64InstrInfo *TII) {
 | |
|   typedef DenseMap<uint64_t, unsigned> CountMap;
 | |
|   CountMap Counts;
 | |
| 
 | |
|   // Scan the constant and count how often every chunk occurs.
 | |
|   for (unsigned Idx = 0; Idx < 4; ++Idx)
 | |
|     ++Counts[getChunk(UImm, Idx)];
 | |
| 
 | |
|   // Traverse the chunks to find one which occurs more than once.
 | |
|   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
 | |
|        Chunk != End; ++Chunk) {
 | |
|     const uint64_t ChunkVal = Chunk->first;
 | |
|     const unsigned Count = Chunk->second;
 | |
| 
 | |
|     uint64_t Encoding = 0;
 | |
| 
 | |
|     // We are looking for chunks which have two or three instances and can be
 | |
|     // materialized with an ORR instruction.
 | |
|     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
 | |
|       continue;
 | |
| 
 | |
|     const bool CountThree = Count == 3;
 | |
|     // Create the ORR-immediate instruction.
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ORRXri))
 | |
|             .addOperand(MI.getOperand(0))
 | |
|             .addReg(ARM64::XZR)
 | |
|             .addImm(Encoding);
 | |
| 
 | |
|     const unsigned DstReg = MI.getOperand(0).getReg();
 | |
|     const bool DstIsDead = MI.getOperand(0).isDead();
 | |
| 
 | |
|     unsigned ShiftAmt = 0;
 | |
|     uint64_t Imm16 = 0;
 | |
|     // Find the first chunk not materialized with the ORR instruction.
 | |
|     for (; ShiftAmt < 64; ShiftAmt += 16) {
 | |
|       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
 | |
| 
 | |
|       if (Imm16 != ChunkVal)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Create the first MOVK instruction.
 | |
|     MachineInstrBuilder MIB1 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::MOVKXi))
 | |
|             .addReg(DstReg,
 | |
|                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
 | |
|             .addReg(DstReg)
 | |
|             .addImm(Imm16)
 | |
|             .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt));
 | |
| 
 | |
|     // In case we have three instances the whole constant is now materialized
 | |
|     // and we can exit.
 | |
|     if (CountThree) {
 | |
|       transferImpOps(MI, MIB, MIB1);
 | |
|       MI.eraseFromParent();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Find the remaining chunk which needs to be materialized.
 | |
|     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
 | |
|       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
 | |
| 
 | |
|       if (Imm16 != ChunkVal)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Create the second MOVK instruction.
 | |
|     MachineInstrBuilder MIB2 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::MOVKXi))
 | |
|             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
 | |
|             .addReg(DstReg)
 | |
|             .addImm(Imm16)
 | |
|             .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt));
 | |
| 
 | |
|     transferImpOps(MI, MIB, MIB2);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
 | |
| /// starts a contiguous sequence of ones if we look at the bits from the LSB
 | |
| /// towards the MSB.
 | |
| static bool isStartChunk(uint64_t Chunk) {
 | |
|   if (Chunk == 0 || Chunk == UINT64_MAX)
 | |
|     return false;
 | |
| 
 | |
|   return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether this chunk matches the pattern '0...1...' This pattern
 | |
| /// ends a contiguous sequence of ones if we look at the bits from the LSB
 | |
| /// towards the MSB.
 | |
| static bool isEndChunk(uint64_t Chunk) {
 | |
|   if (Chunk == 0 || Chunk == UINT64_MAX)
 | |
|     return false;
 | |
| 
 | |
|   return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64;
 | |
| }
 | |
| 
 | |
| /// \brief Clear or set all bits in the chunk at the given index.
 | |
| static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
 | |
|   const uint64_t Mask = 0xFFFF;
 | |
| 
 | |
|   if (Clear)
 | |
|     // Clear chunk in the immediate.
 | |
|     Imm &= ~(Mask << (Idx * 16));
 | |
|   else
 | |
|     // Set all bits in the immediate for the particular chunk.
 | |
|     Imm |= Mask << (Idx * 16);
 | |
| 
 | |
|   return Imm;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the constant contains a sequence of contiguous ones,
 | |
| /// which might be interrupted by one or two chunks. If so, materialize the
 | |
| /// sequence of contiguous ones with an ORR instruction.
 | |
| /// Materialize the chunks which are either interrupting the sequence or outside
 | |
| /// of the sequence with a MOVK instruction.
 | |
| ///
 | |
| /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
 | |
| /// which ends the sequence (0...1...). Then we are looking for constants which
 | |
| /// contain at least one S and E chunk.
 | |
| /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
 | |
| ///
 | |
| /// We are also looking for constants like |S|A|B|E| where the contiguous
 | |
| /// sequence of ones wraps around the MSB into the LSB.
 | |
| ///
 | |
| static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
 | |
|                               MachineBasicBlock &MBB,
 | |
|                               MachineBasicBlock::iterator &MBBI,
 | |
|                               const ARM64InstrInfo *TII) {
 | |
|   const int NotSet = -1;
 | |
|   const uint64_t Mask = 0xFFFF;
 | |
| 
 | |
|   int StartIdx = NotSet;
 | |
|   int EndIdx = NotSet;
 | |
|   // Try to find the chunks which start/end a contiguous sequence of ones.
 | |
|   for (int Idx = 0; Idx < 4; ++Idx) {
 | |
|     int64_t Chunk = getChunk(UImm, Idx);
 | |
|     // Sign extend the 16-bit chunk to 64-bit.
 | |
|     Chunk = (Chunk << 48) >> 48;
 | |
| 
 | |
|     if (isStartChunk(Chunk))
 | |
|       StartIdx = Idx;
 | |
|     else if (isEndChunk(Chunk))
 | |
|       EndIdx = Idx;
 | |
|   }
 | |
| 
 | |
|   // Early exit in case we can't find a start/end chunk.
 | |
|   if (StartIdx == NotSet || EndIdx == NotSet)
 | |
|     return false;
 | |
| 
 | |
|   // Outside of the contiguous sequence of ones everything needs to be zero.
 | |
|   uint64_t Outside = 0;
 | |
|   // Chunks between the start and end chunk need to have all their bits set.
 | |
|   uint64_t Inside = Mask;
 | |
| 
 | |
|   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
 | |
|   // just swap indices and pretend we are materializing a contiguous sequence
 | |
|   // of zeros surrounded by a contiguous sequence of ones.
 | |
|   if (StartIdx > EndIdx) {
 | |
|     std::swap(StartIdx, EndIdx);
 | |
|     std::swap(Outside, Inside);
 | |
|   }
 | |
| 
 | |
|   uint64_t OrrImm = UImm;
 | |
|   int FirstMovkIdx = NotSet;
 | |
|   int SecondMovkIdx = NotSet;
 | |
| 
 | |
|   // Find out which chunks we need to patch up to obtain a contiguous sequence
 | |
|   // of ones.
 | |
|   for (int Idx = 0; Idx < 4; ++Idx) {
 | |
|     const uint64_t Chunk = getChunk(UImm, Idx);
 | |
| 
 | |
|     // Check whether we are looking at a chunk which is not part of the
 | |
|     // contiguous sequence of ones.
 | |
|     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
 | |
|       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
 | |
| 
 | |
|       // Remember the index we need to patch.
 | |
|       if (FirstMovkIdx == NotSet)
 | |
|         FirstMovkIdx = Idx;
 | |
|       else
 | |
|         SecondMovkIdx = Idx;
 | |
| 
 | |
|       // Check whether we are looking a chunk which is part of the contiguous
 | |
|       // sequence of ones.
 | |
|     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
 | |
|       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
 | |
| 
 | |
|       // Remember the index we need to patch.
 | |
|       if (FirstMovkIdx == NotSet)
 | |
|         FirstMovkIdx = Idx;
 | |
|       else
 | |
|         SecondMovkIdx = Idx;
 | |
|     }
 | |
|   }
 | |
|   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
 | |
| 
 | |
|   // Create the ORR-immediate instruction.
 | |
|   uint64_t Encoding = 0;
 | |
|   ARM64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ORRXri))
 | |
|           .addOperand(MI.getOperand(0))
 | |
|           .addReg(ARM64::XZR)
 | |
|           .addImm(Encoding);
 | |
| 
 | |
|   const unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   const bool DstIsDead = MI.getOperand(0).isDead();
 | |
| 
 | |
|   const bool SingleMovk = SecondMovkIdx == NotSet;
 | |
|   // Create the first MOVK instruction.
 | |
|   MachineInstrBuilder MIB1 =
 | |
|       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::MOVKXi))
 | |
|           .addReg(DstReg,
 | |
|                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
 | |
|           .addReg(DstReg)
 | |
|           .addImm(getChunk(UImm, FirstMovkIdx))
 | |
|           .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, FirstMovkIdx * 16));
 | |
| 
 | |
|   // Early exit in case we only need to emit a single MOVK instruction.
 | |
|   if (SingleMovk) {
 | |
|     transferImpOps(MI, MIB, MIB1);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Create the second MOVK instruction.
 | |
|   MachineInstrBuilder MIB2 =
 | |
|       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::MOVKXi))
 | |
|           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
 | |
|           .addReg(DstReg)
 | |
|           .addImm(getChunk(UImm, SecondMovkIdx))
 | |
|           .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, SecondMovkIdx * 16));
 | |
| 
 | |
|   transferImpOps(MI, MIB, MIB2);
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
 | |
| /// real move-immediate instructions to synthesize the immediate.
 | |
| bool ARM64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock::iterator MBBI,
 | |
|                                      unsigned BitSize) {
 | |
|   MachineInstr &MI = *MBBI;
 | |
|   uint64_t Imm = MI.getOperand(1).getImm();
 | |
|   const unsigned Mask = 0xFFFF;
 | |
| 
 | |
|   // Try a MOVI instruction (aka ORR-immediate with the zero register).
 | |
|   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
 | |
|   uint64_t Encoding;
 | |
|   if (ARM64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
 | |
|     unsigned Opc = (BitSize == 32 ? ARM64::ORRWri : ARM64::ORRXri);
 | |
|     MachineInstrBuilder MIB =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
 | |
|             .addOperand(MI.getOperand(0))
 | |
|             .addReg(BitSize == 32 ? ARM64::WZR : ARM64::XZR)
 | |
|             .addImm(Encoding);
 | |
|     transferImpOps(MI, MIB, MIB);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Scan the immediate and count the number of 16-bit chunks which are either
 | |
|   // all ones or all zeros.
 | |
|   unsigned OneChunks = 0;
 | |
|   unsigned ZeroChunks = 0;
 | |
|   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
 | |
|     const unsigned Chunk = (Imm >> Shift) & Mask;
 | |
|     if (Chunk == Mask)
 | |
|       OneChunks++;
 | |
|     else if (Chunk == 0)
 | |
|       ZeroChunks++;
 | |
|   }
 | |
| 
 | |
|   // Since we can't materialize the constant with a single ORR instruction,
 | |
|   // let's see whether we can materialize 3/4 of the constant with an ORR
 | |
|   // instruction and use an additional MOVK instruction to materialize the
 | |
|   // remaining 1/4.
 | |
|   //
 | |
|   // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
 | |
|   //
 | |
|   // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
 | |
|   // we would create the following instruction sequence:
 | |
|   //
 | |
|   // ORR x0, xzr, |A|X|A|X|
 | |
|   // MOVK x0, |B|, LSL #16
 | |
|   //
 | |
|   // Only look at 64-bit constants which can't be materialized with a single
 | |
|   // instruction e.g. which have less than either three all zero or all one
 | |
|   // chunks.
 | |
|   //
 | |
|   // Ignore 32-bit constants here, they always can be materialized with a
 | |
|   // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
 | |
|   // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
 | |
|   // Thus we fall back to the default code below which in the best case creates
 | |
|   // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
 | |
|   //
 | |
|   if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
 | |
|     // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
 | |
|     // identical?
 | |
|     if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
 | |
|       // See if we can come up with a constant which can be materialized with
 | |
|       // ORR-immediate by replicating element 3 into element 1.
 | |
|       uint64_t OrrImm = replicateChunk(UImm, 3, 1);
 | |
|       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
 | |
|         return true;
 | |
| 
 | |
|       // See if we can come up with a constant which can be materialized with
 | |
|       // ORR-immediate by replicating element 1 into element 3.
 | |
|       OrrImm = replicateChunk(UImm, 1, 3);
 | |
|       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
 | |
|         return true;
 | |
| 
 | |
|       // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
 | |
|       // identical?
 | |
|     } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
 | |
|       // See if we can come up with a constant which can be materialized with
 | |
|       // ORR-immediate by replicating element 2 into element 0.
 | |
|       uint64_t OrrImm = replicateChunk(UImm, 2, 0);
 | |
|       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
 | |
|         return true;
 | |
| 
 | |
|       // See if we can come up with a constant which can be materialized with
 | |
|       // ORR-immediate by replicating element 1 into element 3.
 | |
|       OrrImm = replicateChunk(UImm, 0, 2);
 | |
|       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for identical 16-bit chunks within the constant and if so materialize
 | |
|   // them with a single ORR instruction. The remaining one or two 16-bit chunks
 | |
|   // will be materialized with MOVK instructions.
 | |
|   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
 | |
|     return true;
 | |
| 
 | |
|   // Check whether the constant contains a sequence of contiguous ones, which
 | |
|   // might be interrupted by one or two chunks. If so, materialize the sequence
 | |
|   // of contiguous ones with an ORR instruction. Materialize the chunks which
 | |
|   // are either interrupting the sequence or outside of the sequence with a
 | |
|   // MOVK instruction.
 | |
|   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
 | |
|     return true;
 | |
| 
 | |
|   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
 | |
|   // more MOVK instructions to insert additional 16-bit portions into the
 | |
|   // lower bits.
 | |
|   bool isNeg = false;
 | |
| 
 | |
|   // Use MOVN to materialize the high bits if we have more all one chunks
 | |
|   // than all zero chunks.
 | |
|   if (OneChunks > ZeroChunks) {
 | |
|     isNeg = true;
 | |
|     Imm = ~Imm;
 | |
|   }
 | |
| 
 | |
|   unsigned FirstOpc;
 | |
|   if (BitSize == 32) {
 | |
|     Imm &= (1LL << 32) - 1;
 | |
|     FirstOpc = (isNeg ? ARM64::MOVNWi : ARM64::MOVZWi);
 | |
|   } else {
 | |
|     FirstOpc = (isNeg ? ARM64::MOVNXi : ARM64::MOVZXi);
 | |
|   }
 | |
|   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
 | |
|   unsigned LastShift = 0; // LSL amount for last MOVK
 | |
|   if (Imm != 0) {
 | |
|     unsigned LZ = countLeadingZeros(Imm);
 | |
|     unsigned TZ = countTrailingZeros(Imm);
 | |
|     Shift = ((63 - LZ) / 16) * 16;
 | |
|     LastShift = (TZ / 16) * 16;
 | |
|   }
 | |
|   unsigned Imm16 = (Imm >> Shift) & Mask;
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   bool DstIsDead = MI.getOperand(0).isDead();
 | |
|   MachineInstrBuilder MIB1 =
 | |
|       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
 | |
|           .addReg(DstReg, RegState::Define |
 | |
|                               getDeadRegState(DstIsDead && Shift == LastShift))
 | |
|           .addImm(Imm16)
 | |
|           .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, Shift));
 | |
| 
 | |
|   // If a MOVN was used for the high bits of a negative value, flip the rest
 | |
|   // of the bits back for use with MOVK.
 | |
|   if (isNeg)
 | |
|     Imm = ~Imm;
 | |
| 
 | |
|   if (Shift == LastShift) {
 | |
|     transferImpOps(MI, MIB1, MIB1);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MachineInstrBuilder MIB2;
 | |
|   unsigned Opc = (BitSize == 32 ? ARM64::MOVKWi : ARM64::MOVKXi);
 | |
|   while (Shift != LastShift) {
 | |
|     Shift -= 16;
 | |
|     Imm16 = (Imm >> Shift) & Mask;
 | |
|     if (Imm16 == (isNeg ? Mask : 0))
 | |
|       continue; // This 16-bit portion is already set correctly.
 | |
|     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
 | |
|                .addReg(DstReg,
 | |
|                        RegState::Define |
 | |
|                            getDeadRegState(DstIsDead && Shift == LastShift))
 | |
|                .addReg(DstReg)
 | |
|                .addImm(Imm16)
 | |
|                .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, Shift));
 | |
|   }
 | |
| 
 | |
|   transferImpOps(MI, MIB1, MIB2);
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief If MBBI references a pseudo instruction that should be expanded here,
 | |
| /// do the expansion and return true.  Otherwise return false.
 | |
| bool ARM64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator MBBI) {
 | |
|   MachineInstr &MI = *MBBI;
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     break;
 | |
| 
 | |
|   case ARM64::ADDWrr:
 | |
|   case ARM64::SUBWrr:
 | |
|   case ARM64::ADDXrr:
 | |
|   case ARM64::SUBXrr:
 | |
|   case ARM64::ADDSWrr:
 | |
|   case ARM64::SUBSWrr:
 | |
|   case ARM64::ADDSXrr:
 | |
|   case ARM64::SUBSXrr:
 | |
|   case ARM64::ANDWrr:
 | |
|   case ARM64::ANDXrr:
 | |
|   case ARM64::BICWrr:
 | |
|   case ARM64::BICXrr:
 | |
|   case ARM64::EONWrr:
 | |
|   case ARM64::EONXrr:
 | |
|   case ARM64::EORWrr:
 | |
|   case ARM64::EORXrr:
 | |
|   case ARM64::ORNWrr:
 | |
|   case ARM64::ORNXrr:
 | |
|   case ARM64::ORRWrr:
 | |
|   case ARM64::ORRXrr: {
 | |
|     unsigned Opcode;
 | |
|     switch (MI.getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case ARM64::ADDWrr:      Opcode = ARM64::ADDWrs; break;
 | |
|     case ARM64::SUBWrr:      Opcode = ARM64::SUBWrs; break;
 | |
|     case ARM64::ADDXrr:      Opcode = ARM64::ADDXrs; break;
 | |
|     case ARM64::SUBXrr:      Opcode = ARM64::SUBXrs; break;
 | |
|     case ARM64::ADDSWrr:     Opcode = ARM64::ADDSWrs; break;
 | |
|     case ARM64::SUBSWrr:     Opcode = ARM64::SUBSWrs; break;
 | |
|     case ARM64::ADDSXrr:     Opcode = ARM64::ADDSXrs; break;
 | |
|     case ARM64::SUBSXrr:     Opcode = ARM64::SUBSXrs; break;
 | |
|     case ARM64::ANDWrr:      Opcode = ARM64::ANDWrs; break;
 | |
|     case ARM64::ANDXrr:      Opcode = ARM64::ANDXrs; break;
 | |
|     case ARM64::BICWrr:      Opcode = ARM64::BICWrs; break;
 | |
|     case ARM64::BICXrr:      Opcode = ARM64::BICXrs; break;
 | |
|     case ARM64::EONWrr:      Opcode = ARM64::EONWrs; break;
 | |
|     case ARM64::EONXrr:      Opcode = ARM64::EONXrs; break;
 | |
|     case ARM64::EORWrr:      Opcode = ARM64::EORWrs; break;
 | |
|     case ARM64::EORXrr:      Opcode = ARM64::EORXrs; break;
 | |
|     case ARM64::ORNWrr:      Opcode = ARM64::ORNWrs; break;
 | |
|     case ARM64::ORNXrr:      Opcode = ARM64::ORNXrs; break;
 | |
|     case ARM64::ORRWrr:      Opcode = ARM64::ORRWrs; break;
 | |
|     case ARM64::ORRXrr:      Opcode = ARM64::ORRXrs; break;
 | |
|     }
 | |
|     MachineInstrBuilder MIB1 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
 | |
|                 MI.getOperand(0).getReg())
 | |
|             .addOperand(MI.getOperand(1))
 | |
|             .addOperand(MI.getOperand(2))
 | |
|             .addImm(ARM64_AM::getShifterImm(ARM64_AM::LSL, 0));
 | |
|     transferImpOps(MI, MIB1, MIB1);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ARM64::FCVTSHpseudo: {
 | |
|     MachineOperand Src = MI.getOperand(1);
 | |
|     Src.setImplicit();
 | |
|     unsigned SrcH = TII->getRegisterInfo().getSubReg(Src.getReg(), ARM64::hsub);
 | |
|     auto MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::FCVTSHr))
 | |
|                    .addOperand(MI.getOperand(0))
 | |
|                    .addReg(SrcH, RegState::Undef)
 | |
|                    .addOperand(Src);
 | |
|     transferImpOps(MI, MIB, MIB);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   case ARM64::LOADgot: {
 | |
|     // Expand into ADRP + LDR.
 | |
|     unsigned DstReg = MI.getOperand(0).getReg();
 | |
|     const MachineOperand &MO1 = MI.getOperand(1);
 | |
|     unsigned Flags = MO1.getTargetFlags();
 | |
|     MachineInstrBuilder MIB1 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ADRP), DstReg);
 | |
|     MachineInstrBuilder MIB2 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::LDRXui))
 | |
|             .addOperand(MI.getOperand(0))
 | |
|             .addReg(DstReg);
 | |
| 
 | |
|     if (MO1.isGlobal()) {
 | |
|       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | ARM64II::MO_PAGE);
 | |
|       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
 | |
|                             Flags | ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
 | |
|     } else if (MO1.isSymbol()) {
 | |
|       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | ARM64II::MO_PAGE);
 | |
|       MIB2.addExternalSymbol(MO1.getSymbolName(),
 | |
|                              Flags | ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
 | |
|     } else {
 | |
|       assert(MO1.isCPI() &&
 | |
|              "Only expect globals, externalsymbols, or constant pools");
 | |
|       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
 | |
|                                 Flags | ARM64II::MO_PAGE);
 | |
|       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
 | |
|                                 Flags | ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
 | |
|     }
 | |
| 
 | |
|     transferImpOps(MI, MIB1, MIB2);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ARM64::MOVaddr:
 | |
|   case ARM64::MOVaddrJT:
 | |
|   case ARM64::MOVaddrCP:
 | |
|   case ARM64::MOVaddrBA:
 | |
|   case ARM64::MOVaddrTLS:
 | |
|   case ARM64::MOVaddrEXT: {
 | |
|     // Expand into ADRP + ADD.
 | |
|     unsigned DstReg = MI.getOperand(0).getReg();
 | |
|     MachineInstrBuilder MIB1 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ADRP), DstReg)
 | |
|             .addOperand(MI.getOperand(1));
 | |
| 
 | |
|     MachineInstrBuilder MIB2 =
 | |
|         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::ADDXri))
 | |
|             .addOperand(MI.getOperand(0))
 | |
|             .addReg(DstReg)
 | |
|             .addOperand(MI.getOperand(2))
 | |
|             .addImm(0);
 | |
| 
 | |
|     transferImpOps(MI, MIB1, MIB2);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case ARM64::MOVi32imm:
 | |
|     return expandMOVImm(MBB, MBBI, 32);
 | |
|   case ARM64::MOVi64imm:
 | |
|     return expandMOVImm(MBB, MBBI, 64);
 | |
|   case ARM64::RET_ReallyLR:
 | |
|     BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM64::RET))
 | |
|         .addReg(ARM64::LR);
 | |
|     MI.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Iterate over the instructions in basic block MBB and expand any
 | |
| /// pseudo instructions.  Return true if anything was modified.
 | |
| bool ARM64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
 | |
|   bool Modified = false;
 | |
| 
 | |
|   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
 | |
|   while (MBBI != E) {
 | |
|     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
 | |
|     Modified |= expandMI(MBB, MBBI);
 | |
|     MBBI = NMBBI;
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| bool ARM64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
 | |
|   TII = static_cast<const ARM64InstrInfo *>(MF.getTarget().getInstrInfo());
 | |
| 
 | |
|   bool Modified = false;
 | |
|   for (auto &MBB : MF)
 | |
|     Modified |= expandMBB(MBB);
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| /// \brief Returns an instance of the pseudo instruction expansion pass.
 | |
| FunctionPass *llvm::createARM64ExpandPseudoPass() {
 | |
|   return new ARM64ExpandPseudo();
 | |
| }
 |