mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	definition below all of the header #include lines, lib/Target/... edition. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206842 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2395 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2395 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARM64ISelDAGToDAG.cpp - A dag to dag inst selector for ARM64 ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines an instruction selector for the ARM64 target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM64TargetMachine.h"
 | |
| #include "MCTargetDesc/ARM64AddressingModes.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/Function.h" // To access function attributes.
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "arm64-isel"
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| /// ARM64DAGToDAGISel - ARM64 specific code to select ARM64 machine
 | |
| /// instructions for SelectionDAG operations.
 | |
| ///
 | |
| namespace {
 | |
| 
 | |
| class ARM64DAGToDAGISel : public SelectionDAGISel {
 | |
|   ARM64TargetMachine &TM;
 | |
| 
 | |
|   /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const ARM64Subtarget *Subtarget;
 | |
| 
 | |
|   bool ForCodeSize;
 | |
| 
 | |
| public:
 | |
|   explicit ARM64DAGToDAGISel(ARM64TargetMachine &tm, CodeGenOpt::Level OptLevel)
 | |
|       : SelectionDAGISel(tm, OptLevel), TM(tm),
 | |
|         Subtarget(&TM.getSubtarget<ARM64Subtarget>()), ForCodeSize(false) {}
 | |
| 
 | |
|   virtual const char *getPassName() const {
 | |
|     return "ARM64 Instruction Selection";
 | |
|   }
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|     AttributeSet FnAttrs = MF.getFunction()->getAttributes();
 | |
|     ForCodeSize =
 | |
|         FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
 | |
|                              Attribute::OptimizeForSize) ||
 | |
|         FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
 | |
|     return SelectionDAGISel::runOnMachineFunction(MF);
 | |
|   }
 | |
| 
 | |
|   SDNode *Select(SDNode *Node);
 | |
| 
 | |
|   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|   /// inline asm expressions.
 | |
|   virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                             char ConstraintCode,
 | |
|                                             std::vector<SDValue> &OutOps);
 | |
| 
 | |
|   SDNode *SelectMLAV64LaneV128(SDNode *N);
 | |
|   SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
 | |
|   bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
 | |
|   bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
 | |
|   bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
 | |
|   bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
 | |
|     return SelectShiftedRegister(N, false, Reg, Shift);
 | |
|   }
 | |
|   bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
 | |
|     return SelectShiftedRegister(N, true, Reg, Shift);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 1, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 2, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 4, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 8, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 16, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 1, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 2, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 4, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 8, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 16, Base, OffImm);
 | |
|   }
 | |
| 
 | |
|   bool SelectAddrModeRO8(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                          SDValue &Imm) {
 | |
|     return SelectAddrModeRO(N, 1, Base, Offset, Imm);
 | |
|   }
 | |
|   bool SelectAddrModeRO16(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                           SDValue &Imm) {
 | |
|     return SelectAddrModeRO(N, 2, Base, Offset, Imm);
 | |
|   }
 | |
|   bool SelectAddrModeRO32(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                           SDValue &Imm) {
 | |
|     return SelectAddrModeRO(N, 4, Base, Offset, Imm);
 | |
|   }
 | |
|   bool SelectAddrModeRO64(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                           SDValue &Imm) {
 | |
|     return SelectAddrModeRO(N, 8, Base, Offset, Imm);
 | |
|   }
 | |
|   bool SelectAddrModeRO128(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                            SDValue &Imm) {
 | |
|     return SelectAddrModeRO(N, 16, Base, Offset, Imm);
 | |
|   }
 | |
|   bool SelectAddrModeNoIndex(SDValue N, SDValue &Val);
 | |
| 
 | |
|   /// Form sequences of consecutive 64/128-bit registers for use in NEON
 | |
|   /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
 | |
|   /// between 1 and 4 elements. If it contains a single element that is returned
 | |
|   /// unchanged; otherwise a REG_SEQUENCE value is returned.
 | |
|   SDValue createDTuple(ArrayRef<SDValue> Vecs);
 | |
|   SDValue createQTuple(ArrayRef<SDValue> Vecs);
 | |
| 
 | |
|   /// Generic helper for the createDTuple/createQTuple
 | |
|   /// functions. Those should almost always be called instead.
 | |
|   SDValue createTuple(ArrayRef<SDValue> Vecs, unsigned RegClassIDs[],
 | |
|                       unsigned SubRegs[]);
 | |
| 
 | |
|   SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
 | |
| 
 | |
|   SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
 | |
| 
 | |
|   SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
 | |
|                      unsigned SubRegIdx);
 | |
|   SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
| 
 | |
|   SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
|   SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
| 
 | |
|   SDNode *SelectSIMDAddSubNarrowing(unsigned IntNo, SDNode *Node);
 | |
|   SDNode *SelectSIMDXtnNarrowing(unsigned IntNo, SDNode *Node);
 | |
| 
 | |
|   SDNode *SelectBitfieldExtractOp(SDNode *N);
 | |
|   SDNode *SelectBitfieldInsertOp(SDNode *N);
 | |
| 
 | |
|   SDNode *SelectLIBM(SDNode *N);
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "ARM64GenDAGISel.inc"
 | |
| 
 | |
| private:
 | |
|   bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
 | |
|                              SDValue &Shift);
 | |
|   bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
 | |
|                              SDValue &OffImm);
 | |
|   bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
 | |
|                               SDValue &OffImm);
 | |
|   bool SelectAddrModeRO(SDValue N, unsigned Size, SDValue &Base,
 | |
|                         SDValue &Offset, SDValue &Imm);
 | |
|   bool isWorthFolding(SDValue V) const;
 | |
|   bool SelectExtendedSHL(SDValue N, unsigned Size, SDValue &Offset,
 | |
|                          SDValue &Imm);
 | |
| 
 | |
|   template<unsigned RegWidth>
 | |
|   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
 | |
|     return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
 | |
|   }
 | |
| 
 | |
|   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// isIntImmediate - This method tests to see if the node is a constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
 | |
|   if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
 | |
|     Imm = C->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isIntImmediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the value.
 | |
| static bool isIntImmediate(SDValue N, uint64_t &Imm) {
 | |
|   return isIntImmediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
 | |
|                                   uint64_t &Imm) {
 | |
|   return N->getOpcode() == Opc &&
 | |
|          isIntImmediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| bool ARM64DAGToDAGISel::SelectAddrModeNoIndex(SDValue N, SDValue &Val) {
 | |
|   EVT ValTy = N.getValueType();
 | |
|   if (ValTy != MVT::i64)
 | |
|     return false;
 | |
|   Val = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ARM64DAGToDAGISel::SelectInlineAsmMemoryOperand(
 | |
|     const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
 | |
|   assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
 | |
|   // Require the address to be in a register.  That is safe for all ARM64
 | |
|   // variants and it is hard to do anything much smarter without knowing
 | |
|   // how the operand is used.
 | |
|   OutOps.push_back(Op);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectArithImmed - Select an immediate value that can be represented as
 | |
| /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
 | |
| /// Val set to the 12-bit value and Shift set to the shifter operand.
 | |
| bool ARM64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
 | |
|                                          SDValue &Shift) {
 | |
|   // This function is called from the addsub_shifted_imm ComplexPattern,
 | |
|   // which lists [imm] as the list of opcode it's interested in, however
 | |
|   // we still need to check whether the operand is actually an immediate
 | |
|   // here because the ComplexPattern opcode list is only used in
 | |
|   // root-level opcode matching.
 | |
|   if (!isa<ConstantSDNode>(N.getNode()))
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
 | |
|   unsigned ShiftAmt;
 | |
| 
 | |
|   if (Immed >> 12 == 0) {
 | |
|     ShiftAmt = 0;
 | |
|   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
 | |
|     ShiftAmt = 12;
 | |
|     Immed = Immed >> 12;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   unsigned ShVal = ARM64_AM::getShifterImm(ARM64_AM::LSL, ShiftAmt);
 | |
|   Val = CurDAG->getTargetConstant(Immed, MVT::i32);
 | |
|   Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectNegArithImmed - As above, but negates the value before trying to
 | |
| /// select it.
 | |
| bool ARM64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
 | |
|                                             SDValue &Shift) {
 | |
|   // This function is called from the addsub_shifted_imm ComplexPattern,
 | |
|   // which lists [imm] as the list of opcode it's interested in, however
 | |
|   // we still need to check whether the operand is actually an immediate
 | |
|   // here because the ComplexPattern opcode list is only used in
 | |
|   // root-level opcode matching.
 | |
|   if (!isa<ConstantSDNode>(N.getNode()))
 | |
|     return false;
 | |
| 
 | |
|   // The immediate operand must be a 24-bit zero-extended immediate.
 | |
|   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
 | |
| 
 | |
|   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
 | |
|   // have the opposite effect on the C flag, so this pattern mustn't match under
 | |
|   // those circumstances.
 | |
|   if (Immed == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (N.getValueType() == MVT::i32)
 | |
|     Immed = ~((uint32_t)Immed) + 1;
 | |
|   else
 | |
|     Immed = ~Immed + 1ULL;
 | |
|   if (Immed & 0xFFFFFFFFFF000000ULL)
 | |
|     return false;
 | |
| 
 | |
|   Immed &= 0xFFFFFFULL;
 | |
|   return SelectArithImmed(CurDAG->getConstant(Immed, MVT::i32), Val, Shift);
 | |
| }
 | |
| 
 | |
| /// getShiftTypeForNode - Translate a shift node to the corresponding
 | |
| /// ShiftType value.
 | |
| static ARM64_AM::ShiftType getShiftTypeForNode(SDValue N) {
 | |
|   switch (N.getOpcode()) {
 | |
|   default:
 | |
|     return ARM64_AM::InvalidShift;
 | |
|   case ISD::SHL:
 | |
|     return ARM64_AM::LSL;
 | |
|   case ISD::SRL:
 | |
|     return ARM64_AM::LSR;
 | |
|   case ISD::SRA:
 | |
|     return ARM64_AM::ASR;
 | |
|   case ISD::ROTR:
 | |
|     return ARM64_AM::ROR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine wether it is worth to fold V into an extended register.
 | |
| bool ARM64DAGToDAGISel::isWorthFolding(SDValue V) const {
 | |
|   // it hurts if the a value is used at least twice, unless we are optimizing
 | |
|   // for code size.
 | |
|   if (ForCodeSize || V.hasOneUse())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectShiftedRegister - Select a "shifted register" operand.  If the value
 | |
| /// is not shifted, set the Shift operand to default of "LSL 0".  The logical
 | |
| /// instructions allow the shifted register to be rotated, but the arithmetic
 | |
| /// instructions do not.  The AllowROR parameter specifies whether ROR is
 | |
| /// supported.
 | |
| bool ARM64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
 | |
|                                               SDValue &Reg, SDValue &Shift) {
 | |
|   ARM64_AM::ShiftType ShType = getShiftTypeForNode(N);
 | |
|   if (ShType == ARM64_AM::InvalidShift)
 | |
|     return false;
 | |
|   if (!AllowROR && ShType == ARM64_AM::ROR)
 | |
|     return false;
 | |
| 
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     unsigned BitSize = N.getValueType().getSizeInBits();
 | |
|     unsigned Val = RHS->getZExtValue() & (BitSize - 1);
 | |
|     unsigned ShVal = ARM64_AM::getShifterImm(ShType, Val);
 | |
| 
 | |
|     Reg = N.getOperand(0);
 | |
|     Shift = CurDAG->getTargetConstant(ShVal, MVT::i32);
 | |
|     return isWorthFolding(N);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getExtendTypeForNode - Translate an extend node to the corresponding
 | |
| /// ExtendType value.
 | |
| static ARM64_AM::ExtendType getExtendTypeForNode(SDValue N,
 | |
|                                                  bool IsLoadStore = false) {
 | |
|   if (N.getOpcode() == ISD::SIGN_EXTEND ||
 | |
|       N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
 | |
|     EVT SrcVT;
 | |
|     if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
 | |
|       SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
 | |
|     else
 | |
|       SrcVT = N.getOperand(0).getValueType();
 | |
| 
 | |
|     if (!IsLoadStore && SrcVT == MVT::i8)
 | |
|       return ARM64_AM::SXTB;
 | |
|     else if (!IsLoadStore && SrcVT == MVT::i16)
 | |
|       return ARM64_AM::SXTH;
 | |
|     else if (SrcVT == MVT::i32)
 | |
|       return ARM64_AM::SXTW;
 | |
|     else if (SrcVT == MVT::i64)
 | |
|       return ARM64_AM::SXTX;
 | |
| 
 | |
|     return ARM64_AM::InvalidExtend;
 | |
|   } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|              N.getOpcode() == ISD::ANY_EXTEND) {
 | |
|     EVT SrcVT = N.getOperand(0).getValueType();
 | |
|     if (!IsLoadStore && SrcVT == MVT::i8)
 | |
|       return ARM64_AM::UXTB;
 | |
|     else if (!IsLoadStore && SrcVT == MVT::i16)
 | |
|       return ARM64_AM::UXTH;
 | |
|     else if (SrcVT == MVT::i32)
 | |
|       return ARM64_AM::UXTW;
 | |
|     else if (SrcVT == MVT::i64)
 | |
|       return ARM64_AM::UXTX;
 | |
| 
 | |
|     return ARM64_AM::InvalidExtend;
 | |
|   } else if (N.getOpcode() == ISD::AND) {
 | |
|     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     if (!CSD)
 | |
|       return ARM64_AM::InvalidExtend;
 | |
|     uint64_t AndMask = CSD->getZExtValue();
 | |
| 
 | |
|     switch (AndMask) {
 | |
|     default:
 | |
|       return ARM64_AM::InvalidExtend;
 | |
|     case 0xFF:
 | |
|       return !IsLoadStore ? ARM64_AM::UXTB : ARM64_AM::InvalidExtend;
 | |
|     case 0xFFFF:
 | |
|       return !IsLoadStore ? ARM64_AM::UXTH : ARM64_AM::InvalidExtend;
 | |
|     case 0xFFFFFFFF:
 | |
|       return ARM64_AM::UXTW;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ARM64_AM::InvalidExtend;
 | |
| }
 | |
| 
 | |
| // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
 | |
| static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
 | |
|   if (DL->getOpcode() != ARM64ISD::DUPLANE16 &&
 | |
|       DL->getOpcode() != ARM64ISD::DUPLANE32)
 | |
|     return false;
 | |
| 
 | |
|   SDValue SV = DL->getOperand(0);
 | |
|   if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDValue EV = SV.getOperand(1);
 | |
|   if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
 | |
|     return false;
 | |
| 
 | |
|   ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
 | |
|   ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
 | |
|   LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
 | |
|   LaneOp = EV.getOperand(0);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper for SelectOpcV64LaneV128 - Recogzine operatinos where one operand is a
 | |
| // high lane extract.
 | |
| static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
 | |
|                              SDValue &LaneOp, int &LaneIdx) {
 | |
| 
 | |
|   if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
 | |
|     std::swap(Op0, Op1);
 | |
|     if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
 | |
|       return false;
 | |
|   }
 | |
|   StdOp = Op1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectMLAV64LaneV128 - ARM64 supports vector MLAs where one multiplicand is
 | |
| /// a lane in the upper half of a 128-bit vector.  Recognize and select this so
 | |
| /// that we don't emit unnecessary lane extracts.
 | |
| SDNode *ARM64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
 | |
|   SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
 | |
|   int LaneIdx = -1; // Will hold the lane index.
 | |
| 
 | |
|   if (Op1.getOpcode() != ISD::MUL ||
 | |
|       !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
 | |
|                         LaneIdx)) {
 | |
|     std::swap(Op0, Op1);
 | |
|     if (Op1.getOpcode() != ISD::MUL ||
 | |
|         !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
 | |
|                           LaneIdx))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
 | |
| 
 | |
|   SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
 | |
| 
 | |
|   unsigned MLAOpc = ~0U;
 | |
| 
 | |
|   switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|   default:
 | |
|     llvm_unreachable("Unrecognized MLA.");
 | |
|   case MVT::v4i16:
 | |
|     MLAOpc = ARM64::MLAv4i16_indexed;
 | |
|     break;
 | |
|   case MVT::v8i16:
 | |
|     MLAOpc = ARM64::MLAv8i16_indexed;
 | |
|     break;
 | |
|   case MVT::v2i32:
 | |
|     MLAOpc = ARM64::MLAv2i32_indexed;
 | |
|     break;
 | |
|   case MVT::v4i32:
 | |
|     MLAOpc = ARM64::MLAv4i32_indexed;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return CurDAG->getMachineNode(MLAOpc, SDLoc(N), N->getValueType(0), Ops);
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
 | |
|   SDValue SMULLOp0;
 | |
|   SDValue SMULLOp1;
 | |
|   int LaneIdx;
 | |
| 
 | |
|   if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
 | |
|                         LaneIdx))
 | |
|     return 0;
 | |
| 
 | |
|   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, MVT::i64);
 | |
| 
 | |
|   SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
 | |
| 
 | |
|   unsigned SMULLOpc = ~0U;
 | |
| 
 | |
|   if (IntNo == Intrinsic::arm64_neon_smull) {
 | |
|     switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|     default:
 | |
|       llvm_unreachable("Unrecognized SMULL.");
 | |
|     case MVT::v4i32:
 | |
|       SMULLOpc = ARM64::SMULLv4i16_indexed;
 | |
|       break;
 | |
|     case MVT::v2i64:
 | |
|       SMULLOpc = ARM64::SMULLv2i32_indexed;
 | |
|       break;
 | |
|     }
 | |
|   } else if (IntNo == Intrinsic::arm64_neon_umull) {
 | |
|     switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|     default:
 | |
|       llvm_unreachable("Unrecognized SMULL.");
 | |
|     case MVT::v4i32:
 | |
|       SMULLOpc = ARM64::UMULLv4i16_indexed;
 | |
|       break;
 | |
|     case MVT::v2i64:
 | |
|       SMULLOpc = ARM64::UMULLv2i32_indexed;
 | |
|       break;
 | |
|     }
 | |
|   } else
 | |
|     llvm_unreachable("Unrecognized intrinsic.");
 | |
| 
 | |
|   return CurDAG->getMachineNode(SMULLOpc, SDLoc(N), N->getValueType(0), Ops);
 | |
| }
 | |
| 
 | |
| /// SelectArithExtendedRegister - Select a "extended register" operand.  This
 | |
| /// operand folds in an extend followed by an optional left shift.
 | |
| bool ARM64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
 | |
|                                                     SDValue &Shift) {
 | |
|   unsigned ShiftVal = 0;
 | |
|   ARM64_AM::ExtendType Ext;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::SHL) {
 | |
|     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     if (!CSD)
 | |
|       return false;
 | |
|     ShiftVal = CSD->getZExtValue();
 | |
|     if (ShiftVal > 4)
 | |
|       return false;
 | |
| 
 | |
|     Ext = getExtendTypeForNode(N.getOperand(0));
 | |
|     if (Ext == ARM64_AM::InvalidExtend)
 | |
|       return false;
 | |
| 
 | |
|     Reg = N.getOperand(0).getOperand(0);
 | |
|   } else {
 | |
|     Ext = getExtendTypeForNode(N);
 | |
|     if (Ext == ARM64_AM::InvalidExtend)
 | |
|       return false;
 | |
| 
 | |
|     Reg = N.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // ARM64 mandates that the RHS of the operation must use the smallest
 | |
|   // register classs that could contain the size being extended from.  Thus,
 | |
|   // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
 | |
|   // there might not be an actual 32-bit value in the program.  We can
 | |
|   // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
 | |
|   if (Reg.getValueType() == MVT::i64 && Ext != ARM64_AM::UXTX &&
 | |
|       Ext != ARM64_AM::SXTX) {
 | |
|     SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
 | |
|     MachineSDNode *Node = CurDAG->getMachineNode(
 | |
|         TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32, Reg, SubReg);
 | |
|     Reg = SDValue(Node, 0);
 | |
|   }
 | |
| 
 | |
|   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), MVT::i32);
 | |
|   return isWorthFolding(N);
 | |
| }
 | |
| 
 | |
| /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
 | |
| /// immediate" address.  The "Size" argument is the size in bytes of the memory
 | |
| /// reference, which determines the scale.
 | |
| bool ARM64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
 | |
|                                               SDValue &Base, SDValue &OffImm) {
 | |
|   const TargetLowering *TLI = getTargetLowering();
 | |
|   if (N.getOpcode() == ISD::FrameIndex) {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
 | |
|     OffImm = CurDAG->getTargetConstant(0, MVT::i64);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (N.getOpcode() == ARM64ISD::ADDlow) {
 | |
|     GlobalAddressSDNode *GAN =
 | |
|         dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
 | |
|     Base = N.getOperand(0);
 | |
|     OffImm = N.getOperand(1);
 | |
|     if (!GAN)
 | |
|       return true;
 | |
| 
 | |
|     const GlobalValue *GV = GAN->getGlobal();
 | |
|     unsigned Alignment = GV->getAlignment();
 | |
|     const DataLayout *DL = TLI->getDataLayout();
 | |
|     if (Alignment == 0 && !Subtarget->isTargetDarwin())
 | |
|       Alignment = DL->getABITypeAlignment(GV->getType()->getElementType());
 | |
| 
 | |
|     if (Alignment >= Size)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       int64_t RHSC = (int64_t)RHS->getZExtValue();
 | |
|       unsigned Scale = Log2_32(Size);
 | |
|       if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
 | |
|         Base = N.getOperand(0);
 | |
|         if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
 | |
|         }
 | |
|         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, MVT::i64);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Before falling back to our general case, check if the unscaled
 | |
|   // instructions can handle this. If so, that's preferable.
 | |
|   if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
 | |
|     return false;
 | |
| 
 | |
|   // Base only. The address will be materialized into a register before
 | |
|   // the memory is accessed.
 | |
|   //    add x0, Xbase, #offset
 | |
|   //    ldr x0, [x0]
 | |
|   Base = N;
 | |
|   OffImm = CurDAG->getTargetConstant(0, MVT::i64);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
 | |
| /// immediate" address.  This should only match when there is an offset that
 | |
| /// is not valid for a scaled immediate addressing mode.  The "Size" argument
 | |
| /// is the size in bytes of the memory reference, which is needed here to know
 | |
| /// what is valid for a scaled immediate.
 | |
| bool ARM64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
 | |
|                                                SDValue &Base, SDValue &OffImm) {
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     int64_t RHSC = RHS->getSExtValue();
 | |
|     // If the offset is valid as a scaled immediate, don't match here.
 | |
|     if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
 | |
|         RHSC < (0x1000 << Log2_32(Size)))
 | |
|       return false;
 | |
|     if (RHSC >= -256 && RHSC < 256) {
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         const TargetLowering *TLI = getTargetLowering();
 | |
|         Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, MVT::i64);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
 | |
|   SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
 | |
|   SDValue ImpDef = SDValue(
 | |
|       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SDLoc(N), MVT::i64),
 | |
|       0);
 | |
|   MachineSDNode *Node = CurDAG->getMachineNode(
 | |
|       TargetOpcode::INSERT_SUBREG, SDLoc(N), MVT::i64, ImpDef, N, SubReg);
 | |
|   return SDValue(Node, 0);
 | |
| }
 | |
| 
 | |
| static SDValue WidenIfNeeded(SelectionDAG *CurDAG, SDValue N) {
 | |
|   if (N.getValueType() == MVT::i32) {
 | |
|     return Widen(CurDAG, N);
 | |
|   }
 | |
| 
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// \brief Check if the given SHL node (\p N), can be used to form an
 | |
| /// extended register for an addressing mode.
 | |
| bool ARM64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
 | |
|                                           SDValue &Offset, SDValue &Imm) {
 | |
|   assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
 | |
|   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (CSD && (CSD->getZExtValue() & 0x7) == CSD->getZExtValue()) {
 | |
| 
 | |
|     ARM64_AM::ExtendType Ext = getExtendTypeForNode(N.getOperand(0), true);
 | |
|     if (Ext == ARM64_AM::InvalidExtend) {
 | |
|       Ext = ARM64_AM::UXTX;
 | |
|       Offset = WidenIfNeeded(CurDAG, N.getOperand(0));
 | |
|     } else {
 | |
|       Offset = WidenIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
 | |
|     }
 | |
| 
 | |
|     unsigned LegalShiftVal = Log2_32(Size);
 | |
|     unsigned ShiftVal = CSD->getZExtValue();
 | |
| 
 | |
|     if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
 | |
|       return false;
 | |
| 
 | |
|     Imm = CurDAG->getTargetConstant(
 | |
|         ARM64_AM::getMemExtendImm(Ext, ShiftVal != 0), MVT::i32);
 | |
|     if (isWorthFolding(N))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARM64DAGToDAGISel::SelectAddrModeRO(SDValue N, unsigned Size,
 | |
|                                          SDValue &Base, SDValue &Offset,
 | |
|                                          SDValue &Imm) {
 | |
|   if (N.getOpcode() != ISD::ADD)
 | |
|     return false;
 | |
|   SDValue LHS = N.getOperand(0);
 | |
|   SDValue RHS = N.getOperand(1);
 | |
| 
 | |
|   // We don't want to match immediate adds here, because they are better lowered
 | |
|   // to the register-immediate addressing modes.
 | |
|   if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
 | |
|     return false;
 | |
| 
 | |
|   // Check if this particular node is reused in any non-memory related
 | |
|   // operation.  If yes, do not try to fold this node into the address
 | |
|   // computation, since the computation will be kept.
 | |
|   const SDNode *Node = N.getNode();
 | |
|   for (SDNode *UI : Node->uses()) {
 | |
|     if (!isa<MemSDNode>(*UI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Remember if it is worth folding N when it produces extended register.
 | |
|   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
 | |
| 
 | |
|   // Try to match a shifted extend on the RHS.
 | |
|   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(RHS, Size, Offset, Imm)) {
 | |
|     Base = LHS;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to match a shifted extend on the LHS.
 | |
|   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(LHS, Size, Offset, Imm)) {
 | |
|     Base = RHS;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   ARM64_AM::ExtendType Ext = ARM64_AM::UXTX;
 | |
|   // Try to match an unshifted extend on the LHS.
 | |
|   if (IsExtendedRegisterWorthFolding &&
 | |
|       (Ext = getExtendTypeForNode(LHS, true)) != ARM64_AM::InvalidExtend) {
 | |
|     Base = RHS;
 | |
|     Offset = WidenIfNeeded(CurDAG, LHS.getOperand(0));
 | |
|     Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
 | |
|                                     MVT::i32);
 | |
|     if (isWorthFolding(LHS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Try to match an unshifted extend on the RHS.
 | |
|   if (IsExtendedRegisterWorthFolding &&
 | |
|       (Ext = getExtendTypeForNode(RHS, true)) != ARM64_AM::InvalidExtend) {
 | |
|     Base = LHS;
 | |
|     Offset = WidenIfNeeded(CurDAG, RHS.getOperand(0));
 | |
|     Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
 | |
|                                     MVT::i32);
 | |
|     if (isWorthFolding(RHS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Match any non-shifted, non-extend, non-immediate add expression.
 | |
|   Base = LHS;
 | |
|   Offset = WidenIfNeeded(CurDAG, RHS);
 | |
|   Ext = ARM64_AM::UXTX;
 | |
|   Imm = CurDAG->getTargetConstant(ARM64_AM::getMemExtendImm(Ext, false),
 | |
|                                   MVT::i32);
 | |
|   // Reg1 + Reg2 is free: no check needed.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue ARM64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
 | |
|   static unsigned RegClassIDs[] = { ARM64::DDRegClassID, ARM64::DDDRegClassID,
 | |
|                                     ARM64::DDDDRegClassID };
 | |
|   static unsigned SubRegs[] = { ARM64::dsub0, ARM64::dsub1,
 | |
|                                 ARM64::dsub2, ARM64::dsub3 };
 | |
| 
 | |
|   return createTuple(Regs, RegClassIDs, SubRegs);
 | |
| }
 | |
| 
 | |
| SDValue ARM64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
 | |
|   static unsigned RegClassIDs[] = { ARM64::QQRegClassID, ARM64::QQQRegClassID,
 | |
|                                     ARM64::QQQQRegClassID };
 | |
|   static unsigned SubRegs[] = { ARM64::qsub0, ARM64::qsub1,
 | |
|                                 ARM64::qsub2, ARM64::qsub3 };
 | |
| 
 | |
|   return createTuple(Regs, RegClassIDs, SubRegs);
 | |
| }
 | |
| 
 | |
| SDValue ARM64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
 | |
|                                        unsigned RegClassIDs[],
 | |
|                                        unsigned SubRegs[]) {
 | |
|   // There's no special register-class for a vector-list of 1 element: it's just
 | |
|   // a vector.
 | |
|   if (Regs.size() == 1)
 | |
|     return Regs[0];
 | |
| 
 | |
|   assert(Regs.size() >= 2 && Regs.size() <= 4);
 | |
| 
 | |
|   SDLoc DL(Regs[0].getNode());
 | |
| 
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
| 
 | |
|   // First operand of REG_SEQUENCE is the desired RegClass.
 | |
|   Ops.push_back(
 | |
|       CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], MVT::i32));
 | |
| 
 | |
|   // Then we get pairs of source & subregister-position for the components.
 | |
|   for (unsigned i = 0; i < Regs.size(); ++i) {
 | |
|     Ops.push_back(Regs[i]);
 | |
|     Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDNode *N =
 | |
|       CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
 | |
|                                        unsigned Opc, bool isExt) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   unsigned ExtOff = isExt;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   unsigned Vec0Off = ExtOff + 1;
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
 | |
|                                N->op_begin() + Vec0Off + NumVecs);
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   if (isExt)
 | |
|     Ops.push_back(N->getOperand(1));
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
 | |
|   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|   if (LD->isUnindexed())
 | |
|     return NULL;
 | |
|   EVT VT = LD->getMemoryVT();
 | |
|   EVT DstVT = N->getValueType(0);
 | |
|   ISD::MemIndexedMode AM = LD->getAddressingMode();
 | |
|   bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
 | |
| 
 | |
|   // We're not doing validity checking here. That was done when checking
 | |
|   // if we should mark the load as indexed or not. We're just selecting
 | |
|   // the right instruction.
 | |
|   unsigned Opcode = 0;
 | |
| 
 | |
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
|   bool InsertTo64 = false;
 | |
|   if (VT == MVT::i64)
 | |
|     Opcode = IsPre ? ARM64::LDRXpre_isel : ARM64::LDRXpost_isel;
 | |
|   else if (VT == MVT::i32) {
 | |
|     if (ExtType == ISD::NON_EXTLOAD)
 | |
|       Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
 | |
|     else if (ExtType == ISD::SEXTLOAD)
 | |
|       Opcode = IsPre ? ARM64::LDRSWpre_isel : ARM64::LDRSWpost_isel;
 | |
|     else {
 | |
|       Opcode = IsPre ? ARM64::LDRWpre_isel : ARM64::LDRWpost_isel;
 | |
|       InsertTo64 = true;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::i16) {
 | |
|     if (ExtType == ISD::SEXTLOAD) {
 | |
|       if (DstVT == MVT::i64)
 | |
|         Opcode = IsPre ? ARM64::LDRSHXpre_isel : ARM64::LDRSHXpost_isel;
 | |
|       else
 | |
|         Opcode = IsPre ? ARM64::LDRSHWpre_isel : ARM64::LDRSHWpost_isel;
 | |
|     } else {
 | |
|       Opcode = IsPre ? ARM64::LDRHHpre_isel : ARM64::LDRHHpost_isel;
 | |
|       InsertTo64 = DstVT == MVT::i64;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::i8) {
 | |
|     if (ExtType == ISD::SEXTLOAD) {
 | |
|       if (DstVT == MVT::i64)
 | |
|         Opcode = IsPre ? ARM64::LDRSBXpre_isel : ARM64::LDRSBXpost_isel;
 | |
|       else
 | |
|         Opcode = IsPre ? ARM64::LDRSBWpre_isel : ARM64::LDRSBWpost_isel;
 | |
|     } else {
 | |
|       Opcode = IsPre ? ARM64::LDRBBpre_isel : ARM64::LDRBBpost_isel;
 | |
|       InsertTo64 = DstVT == MVT::i64;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::f32) {
 | |
|     Opcode = IsPre ? ARM64::LDRSpre_isel : ARM64::LDRSpost_isel;
 | |
|   } else if (VT == MVT::f64) {
 | |
|     Opcode = IsPre ? ARM64::LDRDpre_isel : ARM64::LDRDpost_isel;
 | |
|   } else
 | |
|     return NULL;
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue Base = LD->getBasePtr();
 | |
|   ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
 | |
|   int OffsetVal = (int)OffsetOp->getZExtValue();
 | |
|   SDValue Offset = CurDAG->getTargetConstant(OffsetVal, MVT::i64);
 | |
|   SDValue Ops[] = { Base, Offset, Chain };
 | |
|   SDNode *Res = CurDAG->getMachineNode(Opcode, SDLoc(N), DstVT, MVT::i64,
 | |
|                                        MVT::Other, Ops);
 | |
|   // Either way, we're replacing the node, so tell the caller that.
 | |
|   Done = true;
 | |
|   if (InsertTo64) {
 | |
|     SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
 | |
|     SDNode *Sub = CurDAG->getMachineNode(
 | |
|         ARM64::SUBREG_TO_REG, SDLoc(N), MVT::i64,
 | |
|         CurDAG->getTargetConstant(0, MVT::i64), SDValue(Res, 0), SubReg);
 | |
|     ReplaceUses(SDValue(N, 0), SDValue(Sub, 0));
 | |
|     ReplaceUses(SDValue(N, 1), SDValue(Res, 1));
 | |
|     ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
 | |
|     return 0;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
 | |
|                                       unsigned SubRegIdx) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Chain = N->getOperand(0);
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(N->getOperand(2)); // Mem operand;
 | |
|   Ops.push_back(Chain);
 | |
| 
 | |
|   std::vector<EVT> ResTys;
 | |
|   ResTys.push_back(MVT::Untyped);
 | |
|   ResTys.push_back(MVT::Other);
 | |
| 
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   SDValue SuperReg = SDValue(Ld, 0);
 | |
| 
 | |
|   // MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   // MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|   // cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   switch (NumVecs) {
 | |
|   case 4:
 | |
|     ReplaceUses(SDValue(N, 3), CurDAG->getTargetExtractSubreg(SubRegIdx + 3, dl,
 | |
|                                                               VT, SuperReg));
 | |
|   // FALLTHROUGH
 | |
|   case 3:
 | |
|     ReplaceUses(SDValue(N, 2), CurDAG->getTargetExtractSubreg(SubRegIdx + 2, dl,
 | |
|                                                               VT, SuperReg));
 | |
|   // FALLTHROUGH
 | |
|   case 2:
 | |
|     ReplaceUses(SDValue(N, 1), CurDAG->getTargetExtractSubreg(SubRegIdx + 1, dl,
 | |
|                                                               VT, SuperReg));
 | |
|     ReplaceUses(SDValue(N, 0),
 | |
|                 CurDAG->getTargetExtractSubreg(SubRegIdx, dl, VT, SuperReg));
 | |
|     break;
 | |
|   case 1:
 | |
|     ReplaceUses(SDValue(N, 0), SuperReg);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
 | |
|                                        unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   bool Is128Bit = VT.getSizeInBits() == 128;
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
|   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(N->getOperand(NumVecs + 2));
 | |
|   Ops.push_back(N->getOperand(0));
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| /// WidenVector - Given a value in the V64 register class, produce the
 | |
| /// equivalent value in the V128 register class.
 | |
| class WidenVector {
 | |
|   SelectionDAG &DAG;
 | |
| 
 | |
| public:
 | |
|   WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
 | |
| 
 | |
|   SDValue operator()(SDValue V64Reg) {
 | |
|     EVT VT = V64Reg.getValueType();
 | |
|     unsigned NarrowSize = VT.getVectorNumElements();
 | |
|     MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|     MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
 | |
|     SDLoc DL(V64Reg);
 | |
| 
 | |
|     SDValue Undef =
 | |
|         SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
 | |
|     return DAG.getTargetInsertSubreg(ARM64::dsub, DL, WideTy, Undef, V64Reg);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// NarrowVector - Given a value in the V128 register class, produce the
 | |
| /// equivalent value in the V64 register class.
 | |
| static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
 | |
|   EVT VT = V128Reg.getValueType();
 | |
|   unsigned WideSize = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
 | |
| 
 | |
|   return DAG.getTargetExtractSubreg(ARM64::dsub, SDLoc(V128Reg), NarrowTy,
 | |
|                                     V128Reg);
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
 | |
|                                           unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   std::vector<EVT> ResTys;
 | |
|   ResTys.push_back(MVT::Untyped);
 | |
|   ResTys.push_back(MVT::Other);
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
 | |
|   Ops.push_back(N->getOperand(NumVecs + 3));
 | |
|   Ops.push_back(N->getOperand(0));
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   SDValue SuperReg = SDValue(Ld, 0);
 | |
| 
 | |
|   EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
 | |
|   switch (NumVecs) {
 | |
|   case 4: {
 | |
|     SDValue NV3 =
 | |
|         CurDAG->getTargetExtractSubreg(ARM64::qsub3, dl, WideVT, SuperReg);
 | |
|     if (Narrow)
 | |
|       ReplaceUses(SDValue(N, 3), NarrowVector(NV3, *CurDAG));
 | |
|     else
 | |
|       ReplaceUses(SDValue(N, 3), NV3);
 | |
|   }
 | |
|   // FALLTHROUGH
 | |
|   case 3: {
 | |
|     SDValue NV2 =
 | |
|         CurDAG->getTargetExtractSubreg(ARM64::qsub2, dl, WideVT, SuperReg);
 | |
|     if (Narrow)
 | |
|       ReplaceUses(SDValue(N, 2), NarrowVector(NV2, *CurDAG));
 | |
|     else
 | |
|       ReplaceUses(SDValue(N, 2), NV2);
 | |
|   }
 | |
|   // FALLTHROUGH
 | |
|   case 2: {
 | |
|     SDValue NV1 =
 | |
|         CurDAG->getTargetExtractSubreg(ARM64::qsub1, dl, WideVT, SuperReg);
 | |
|     SDValue NV0 =
 | |
|         CurDAG->getTargetExtractSubreg(ARM64::qsub0, dl, WideVT, SuperReg);
 | |
|     if (Narrow) {
 | |
|       ReplaceUses(SDValue(N, 1), NarrowVector(NV1, *CurDAG));
 | |
|       ReplaceUses(SDValue(N, 0), NarrowVector(NV0, *CurDAG));
 | |
|     } else {
 | |
|       ReplaceUses(SDValue(N, 1), NV1);
 | |
|       ReplaceUses(SDValue(N, 0), NV0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
 | |
| 
 | |
|   return Ld;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
 | |
|                                            unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(CurDAG->getTargetConstant(LaneNo, MVT::i64));
 | |
|   Ops.push_back(N->getOperand(NumVecs + 3));
 | |
|   Ops.push_back(N->getOperand(0));
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | |
| 
 | |
|   // Transfer memoperands.
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
 | |
|                                        unsigned &Opc, SDValue &Opd0,
 | |
|                                        unsigned &LSB, unsigned &MSB,
 | |
|                                        unsigned NumberOfIgnoredLowBits,
 | |
|                                        bool BiggerPattern) {
 | |
|   assert(N->getOpcode() == ISD::AND &&
 | |
|          "N must be a AND operation to call this function");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Here we can test the type of VT and return false when the type does not
 | |
|   // match, but since it is done prior to that call in the current context
 | |
|   // we turned that into an assert to avoid redundant code.
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "Type checking must have been done before calling this function");
 | |
| 
 | |
|   // FIXME: simplify-demanded-bits in DAGCombine will probably have
 | |
|   // changed the AND node to a 32-bit mask operation. We'll have to
 | |
|   // undo that as part of the transform here if we want to catch all
 | |
|   // the opportunities.
 | |
|   // Currently the NumberOfIgnoredLowBits argument helps to recover
 | |
|   // form these situations when matching bigger pattern (bitfield insert).
 | |
| 
 | |
|   // For unsigned extracts, check for a shift right and mask
 | |
|   uint64_t And_imm = 0;
 | |
|   if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
 | |
|     return false;
 | |
| 
 | |
|   const SDNode *Op0 = N->getOperand(0).getNode();
 | |
| 
 | |
|   // Because of simplify-demanded-bits in DAGCombine, the mask may have been
 | |
|   // simplified. Try to undo that
 | |
|   And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
 | |
| 
 | |
|   // The immediate is a mask of the low bits iff imm & (imm+1) == 0
 | |
|   if (And_imm & (And_imm + 1))
 | |
|     return false;
 | |
| 
 | |
|   bool ClampMSB = false;
 | |
|   uint64_t Srl_imm = 0;
 | |
|   // Handle the SRL + ANY_EXTEND case.
 | |
|   if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
 | |
|       isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
 | |
|     // Extend the incoming operand of the SRL to 64-bit.
 | |
|     Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
 | |
|     // Make sure to clamp the MSB so that we preserve the semantics of the
 | |
|     // original operations.
 | |
|     ClampMSB = true;
 | |
|   } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
 | |
|              isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
 | |
|                                    Srl_imm)) {
 | |
|     // If the shift result was truncated, we can still combine them.
 | |
|     Opd0 = Op0->getOperand(0).getOperand(0);
 | |
| 
 | |
|     // Use the type of SRL node.
 | |
|     VT = Opd0->getValueType(0);
 | |
|   } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
 | |
|     Opd0 = Op0->getOperand(0);
 | |
|   } else if (BiggerPattern) {
 | |
|     // Let's pretend a 0 shift right has been performed.
 | |
|     // The resulting code will be at least as good as the original one
 | |
|     // plus it may expose more opportunities for bitfield insert pattern.
 | |
|     // FIXME: Currently we limit this to the bigger pattern, because
 | |
|     // some optimizations expect AND and not UBFM
 | |
|     Opd0 = N->getOperand(0);
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert((BiggerPattern || (Srl_imm > 0 && Srl_imm < VT.getSizeInBits())) &&
 | |
|          "bad amount in shift node!");
 | |
| 
 | |
|   LSB = Srl_imm;
 | |
|   MSB = Srl_imm + (VT == MVT::i32 ? CountTrailingOnes_32(And_imm)
 | |
|                                   : CountTrailingOnes_64(And_imm)) -
 | |
|         1;
 | |
|   if (ClampMSB)
 | |
|     // Since we're moving the extend before the right shift operation, we need
 | |
|     // to clamp the MSB to make sure we don't shift in undefined bits instead of
 | |
|     // the zeros which would get shifted in with the original right shift
 | |
|     // operation.
 | |
|     MSB = MSB > 31 ? 31 : MSB;
 | |
| 
 | |
|   Opc = VT == MVT::i32 ? ARM64::UBFMWri : ARM64::UBFMXri;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isOneBitExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
 | |
|                                      unsigned &LSB, unsigned &MSB) {
 | |
|   // We are looking for the following pattern which basically extracts a single
 | |
|   // bit from the source value and places it in the LSB of the destination
 | |
|   // value, all other bits of the destination value or set to zero:
 | |
|   //
 | |
|   // Value2 = AND Value, MaskImm
 | |
|   // SRL Value2, ShiftImm
 | |
|   //
 | |
|   // with MaskImm >> ShiftImm == 1.
 | |
|   //
 | |
|   // This gets selected into a single UBFM:
 | |
|   //
 | |
|   // UBFM Value, ShiftImm, ShiftImm
 | |
|   //
 | |
| 
 | |
|   if (N->getOpcode() != ISD::SRL)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t And_mask = 0;
 | |
|   if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
 | |
|     return false;
 | |
| 
 | |
|   Opd0 = N->getOperand(0).getOperand(0);
 | |
| 
 | |
|   uint64_t Srl_imm = 0;
 | |
|   if (!isIntImmediate(N->getOperand(1), Srl_imm))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether we really have a one bit extract here.
 | |
|   if (And_mask >> Srl_imm == 0x1) {
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       Opc = ARM64::UBFMWri;
 | |
|     else
 | |
|       Opc = ARM64::UBFMXri;
 | |
| 
 | |
|     LSB = MSB = Srl_imm;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
 | |
|                                        unsigned &LSB, unsigned &MSB,
 | |
|                                        bool BiggerPattern) {
 | |
|   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
 | |
|          "N must be a SHR/SRA operation to call this function");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Here we can test the type of VT and return false when the type does not
 | |
|   // match, but since it is done prior to that call in the current context
 | |
|   // we turned that into an assert to avoid redundant code.
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "Type checking must have been done before calling this function");
 | |
| 
 | |
|   // Check for AND + SRL doing a one bit extract.
 | |
|   if (isOneBitExtractOpFromShr(N, Opc, Opd0, LSB, MSB))
 | |
|     return true;
 | |
| 
 | |
|   // we're looking for a shift of a shift
 | |
|   uint64_t Shl_imm = 0;
 | |
|   uint64_t Trunc_bits = 0;
 | |
|   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
 | |
|     Opd0 = N->getOperand(0).getOperand(0);
 | |
|   } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
 | |
|              N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
 | |
|     // We are looking for a shift of truncate. Truncate from i64 to i32 could
 | |
|     // be considered as setting high 32 bits as zero. Our strategy here is to
 | |
|     // always generate 64bit UBFM. This consistency will help the CSE pass
 | |
|     // later find more redundancy.
 | |
|     Opd0 = N->getOperand(0).getOperand(0);
 | |
|     Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
 | |
|     VT = Opd0->getValueType(0);
 | |
|     assert(VT == MVT::i64 && "the promoted type should be i64");
 | |
|   } else if (BiggerPattern) {
 | |
|     // Let's pretend a 0 shift left has been performed.
 | |
|     // FIXME: Currently we limit this to the bigger pattern case,
 | |
|     // because some optimizations expect AND and not UBFM
 | |
|     Opd0 = N->getOperand(0);
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   assert(Shl_imm < VT.getSizeInBits() && "bad amount in shift node!");
 | |
|   uint64_t Srl_imm = 0;
 | |
|   if (!isIntImmediate(N->getOperand(1), Srl_imm))
 | |
|     return false;
 | |
| 
 | |
|   assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
 | |
|          "bad amount in shift node!");
 | |
|   // Note: The width operand is encoded as width-1.
 | |
|   unsigned Width = VT.getSizeInBits() - Trunc_bits - Srl_imm - 1;
 | |
|   int sLSB = Srl_imm - Shl_imm;
 | |
|   if (sLSB < 0)
 | |
|     return false;
 | |
|   LSB = sLSB;
 | |
|   MSB = LSB + Width;
 | |
|   // SRA requires a signed extraction
 | |
|   if (VT == MVT::i32)
 | |
|     Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMWri : ARM64::UBFMWri;
 | |
|   else
 | |
|     Opc = N->getOpcode() == ISD::SRA ? ARM64::SBFMXri : ARM64::UBFMXri;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
 | |
|                                 SDValue &Opd0, unsigned &LSB, unsigned &MSB,
 | |
|                                 unsigned NumberOfIgnoredLowBits = 0,
 | |
|                                 bool BiggerPattern = false) {
 | |
|   if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     if (!N->isMachineOpcode())
 | |
|       return false;
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, LSB, MSB,
 | |
|                                       NumberOfIgnoredLowBits, BiggerPattern);
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:
 | |
|     return isBitfieldExtractOpFromShr(N, Opc, Opd0, LSB, MSB, BiggerPattern);
 | |
|   }
 | |
| 
 | |
|   unsigned NOpc = N->getMachineOpcode();
 | |
|   switch (NOpc) {
 | |
|   default:
 | |
|     return false;
 | |
|   case ARM64::SBFMWri:
 | |
|   case ARM64::UBFMWri:
 | |
|   case ARM64::SBFMXri:
 | |
|   case ARM64::UBFMXri:
 | |
|     Opc = NOpc;
 | |
|     Opd0 = N->getOperand(0);
 | |
|     LSB = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
 | |
|     MSB = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   // Unreachable
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
 | |
|   unsigned Opc, LSB, MSB;
 | |
|   SDValue Opd0;
 | |
|   if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, LSB, MSB))
 | |
|     return NULL;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // If the bit extract operation is 64bit but the original type is 32bit, we
 | |
|   // need to add one EXTRACT_SUBREG.
 | |
|   if ((Opc == ARM64::SBFMXri || Opc == ARM64::UBFMXri) && VT == MVT::i32) {
 | |
|     SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(LSB, MVT::i64),
 | |
|                        CurDAG->getTargetConstant(MSB, MVT::i64)};
 | |
| 
 | |
|     SDNode *BFM = CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i64, Ops64);
 | |
|     SDValue SubReg = CurDAG->getTargetConstant(ARM64::sub_32, MVT::i32);
 | |
|     MachineSDNode *Node =
 | |
|         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SDLoc(N), MVT::i32,
 | |
|                                SDValue(BFM, 0), SubReg);
 | |
|     return Node;
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(LSB, VT),
 | |
|                    CurDAG->getTargetConstant(MSB, VT)};
 | |
|   return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 3);
 | |
| }
 | |
| 
 | |
| // Is mask a i32 or i64 binary sequence 1..10..0 and
 | |
| // CountTrailingZeros(mask) == ExpectedTrailingZeros
 | |
| static bool isHighMask(uint64_t Mask, unsigned ExpectedTrailingZeros,
 | |
|                        unsigned NumberOfIgnoredHighBits, EVT VT) {
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "i32 or i64 mask type expected!");
 | |
| 
 | |
|   uint64_t ExpectedMask;
 | |
|   if (VT == MVT::i32) {
 | |
|     uint32_t ExpectedMaski32 = ~0 << ExpectedTrailingZeros;
 | |
|     ExpectedMask = ExpectedMaski32;
 | |
|     if (NumberOfIgnoredHighBits) {
 | |
|       uint32_t highMask = ~0 << (32 - NumberOfIgnoredHighBits);
 | |
|       Mask |= highMask;
 | |
|     }
 | |
|   } else {
 | |
|     ExpectedMask = ((uint64_t) ~0) << ExpectedTrailingZeros;
 | |
|     if (NumberOfIgnoredHighBits)
 | |
|       Mask |= ((uint64_t) ~0) << (64 - NumberOfIgnoredHighBits);
 | |
|   }
 | |
| 
 | |
|   return Mask == ExpectedMask;
 | |
| }
 | |
| 
 | |
| // Look for bits that will be useful for later uses.
 | |
| // A bit is consider useless as soon as it is dropped and never used
 | |
| // before it as been dropped.
 | |
| // E.g., looking for useful bit of x
 | |
| // 1. y = x & 0x7
 | |
| // 2. z = y >> 2
 | |
| // After #1, x useful bits are 0x7, then the useful bits of x, live through
 | |
| // y.
 | |
| // After #2, the useful bits of x are 0x4.
 | |
| // However, if x is used on an unpredicatable instruction, then all its bits
 | |
| // are useful.
 | |
| // E.g.
 | |
| // 1. y = x & 0x7
 | |
| // 2. z = y >> 2
 | |
| // 3. str x, [@x]
 | |
| static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
 | |
| 
 | |
| static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
 | |
|                                               unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
 | |
|   Imm = ARM64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
 | |
|   UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
 | |
|   getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
 | |
|                                              uint64_t Imm, uint64_t MSB,
 | |
|                                              unsigned Depth) {
 | |
|   // inherit the bitwidth value
 | |
|   APInt OpUsefulBits(UsefulBits);
 | |
|   OpUsefulBits = 1;
 | |
| 
 | |
|   if (MSB >= Imm) {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
 | |
|     --OpUsefulBits;
 | |
|     // The interesting part will be in the lower part of the result
 | |
|     getUsefulBits(Op, OpUsefulBits, Depth + 1);
 | |
|     // The interesting part was starting at Imm in the argument
 | |
|     OpUsefulBits = OpUsefulBits.shl(Imm);
 | |
|   } else {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
 | |
|     --OpUsefulBits;
 | |
|     // The interesting part will be shifted in the result
 | |
|     OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
 | |
|     getUsefulBits(Op, OpUsefulBits, Depth + 1);
 | |
|     // The interesting part was at zero in the argument
 | |
|     OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
 | |
|   }
 | |
| 
 | |
|   UsefulBits &= OpUsefulBits;
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
 | |
|                                   unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
 | |
|   uint64_t MSB =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
| 
 | |
|   getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
 | |
|                                               unsigned Depth) {
 | |
|   uint64_t ShiftTypeAndValue =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
|   APInt Mask(UsefulBits);
 | |
|   Mask.clearAllBits();
 | |
|   Mask.flipAllBits();
 | |
| 
 | |
|   if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSL) {
 | |
|     // Shift Left
 | |
|     uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
 | |
|     Mask = Mask.shl(ShiftAmt);
 | |
|     getUsefulBits(Op, Mask, Depth + 1);
 | |
|     Mask = Mask.lshr(ShiftAmt);
 | |
|   } else if (ARM64_AM::getShiftType(ShiftTypeAndValue) == ARM64_AM::LSR) {
 | |
|     // Shift Right
 | |
|     // We do not handle ARM64_AM::ASR, because the sign will change the
 | |
|     // number of useful bits
 | |
|     uint64_t ShiftAmt = ARM64_AM::getShiftValue(ShiftTypeAndValue);
 | |
|     Mask = Mask.lshr(ShiftAmt);
 | |
|     getUsefulBits(Op, Mask, Depth + 1);
 | |
|     Mask = Mask.shl(ShiftAmt);
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   UsefulBits &= Mask;
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
 | |
|                                  unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
|   uint64_t MSB =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
 | |
| 
 | |
|   if (Op.getOperand(1) == Orig)
 | |
|     return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
 | |
| 
 | |
|   APInt OpUsefulBits(UsefulBits);
 | |
|   OpUsefulBits = 1;
 | |
| 
 | |
|   if (MSB >= Imm) {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
 | |
|     --OpUsefulBits;
 | |
|     UsefulBits &= ~OpUsefulBits;
 | |
|     getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
|   } else {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
 | |
|     --OpUsefulBits;
 | |
|     UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
 | |
|     getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
 | |
|                                 SDValue Orig, unsigned Depth) {
 | |
| 
 | |
|   // Users of this node should have already been instruction selected
 | |
|   // FIXME: Can we turn that into an assert?
 | |
|   if (!UserNode->isMachineOpcode())
 | |
|     return;
 | |
| 
 | |
|   switch (UserNode->getMachineOpcode()) {
 | |
|   default:
 | |
|     return;
 | |
|   case ARM64::ANDSWri:
 | |
|   case ARM64::ANDSXri:
 | |
|   case ARM64::ANDWri:
 | |
|   case ARM64::ANDXri:
 | |
|     // We increment Depth only when we call the getUsefulBits
 | |
|     return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
 | |
|                                              Depth);
 | |
|   case ARM64::UBFMWri:
 | |
|   case ARM64::UBFMXri:
 | |
|     return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
 | |
| 
 | |
|   case ARM64::ORRWrs:
 | |
|   case ARM64::ORRXrs:
 | |
|     if (UserNode->getOperand(1) != Orig)
 | |
|       return;
 | |
|     return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
 | |
|                                              Depth);
 | |
|   case ARM64::BFMWri:
 | |
|   case ARM64::BFMXri:
 | |
|     return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
 | |
|   if (Depth >= 6)
 | |
|     return;
 | |
|   // Initialize UsefulBits
 | |
|   if (!Depth) {
 | |
|     unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
 | |
|     // At the beginning, assume every produced bits is useful
 | |
|     UsefulBits = APInt(Bitwidth, 0);
 | |
|     UsefulBits.flipAllBits();
 | |
|   }
 | |
|   APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
 | |
| 
 | |
|   for (SDNode *Node : Op.getNode()->uses()) {
 | |
|     // A use cannot produce useful bits
 | |
|     APInt UsefulBitsForUse = APInt(UsefulBits);
 | |
|     getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
 | |
|     UsersUsefulBits |= UsefulBitsForUse;
 | |
|   }
 | |
|   // UsefulBits contains the produced bits that are meaningful for the
 | |
|   // current definition, thus a user cannot make a bit meaningful at
 | |
|   // this point
 | |
|   UsefulBits &= UsersUsefulBits;
 | |
| }
 | |
| 
 | |
| // Given a OR operation, check if we have the following pattern
 | |
| // ubfm c, b, imm, imm2 (or something that does the same jobs, see
 | |
| //                       isBitfieldExtractOp)
 | |
| // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
 | |
| //                 countTrailingZeros(mask2) == imm2 - imm + 1
 | |
| // f = d | c
 | |
| // if yes, given reference arguments will be update so that one can replace
 | |
| // the OR instruction with:
 | |
| // f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
 | |
| static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Opd0,
 | |
|                                      SDValue &Opd1, unsigned &LSB,
 | |
|                                      unsigned &MSB, SelectionDAG *CurDAG) {
 | |
|   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
 | |
| 
 | |
|   // Set Opc
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT == MVT::i32)
 | |
|     Opc = ARM64::BFMWri;
 | |
|   else if (VT == MVT::i64)
 | |
|     Opc = ARM64::BFMXri;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // Because of simplify-demanded-bits in DAGCombine, involved masks may not
 | |
|   // have the expected shape. Try to undo that.
 | |
|   APInt UsefulBits;
 | |
|   getUsefulBits(SDValue(N, 0), UsefulBits);
 | |
| 
 | |
|   unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
 | |
|   unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
 | |
| 
 | |
|   // OR is commutative, check both possibilities (does llvm provide a
 | |
|   // way to do that directely, e.g., via code matcher?)
 | |
|   SDValue OrOpd1Val = N->getOperand(1);
 | |
|   SDNode *OrOpd0 = N->getOperand(0).getNode();
 | |
|   SDNode *OrOpd1 = N->getOperand(1).getNode();
 | |
|   for (int i = 0; i < 2;
 | |
|        ++i, std::swap(OrOpd0, OrOpd1), OrOpd1Val = N->getOperand(0)) {
 | |
|     unsigned BFXOpc;
 | |
|     // Set Opd1, LSB and MSB arguments by looking for
 | |
|     // c = ubfm b, imm, imm2
 | |
|     if (!isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Opd1, LSB, MSB,
 | |
|                              NumberOfIgnoredLowBits, true))
 | |
|       continue;
 | |
| 
 | |
|     // Check that the returned opcode is compatible with the pattern,
 | |
|     // i.e., same type and zero extended (U and not S)
 | |
|     if ((BFXOpc != ARM64::UBFMXri && VT == MVT::i64) ||
 | |
|         (BFXOpc != ARM64::UBFMWri && VT == MVT::i32))
 | |
|       continue;
 | |
| 
 | |
|     // Compute the width of the bitfield insertion
 | |
|     int sMSB = MSB - LSB + 1;
 | |
|     // FIXME: This constraints is to catch bitfield insertion we may
 | |
|     // want to widen the pattern if we want to grab general bitfied
 | |
|     // move case
 | |
|     if (sMSB <= 0)
 | |
|       continue;
 | |
| 
 | |
|     // Check the second part of the pattern
 | |
|     EVT VT = OrOpd1->getValueType(0);
 | |
|     if (VT != MVT::i32 && VT != MVT::i64)
 | |
|       continue;
 | |
| 
 | |
|     // Compute the Known Zero for the candidate of the first operand.
 | |
|     // This allows to catch more general case than just looking for
 | |
|     // AND with imm. Indeed, simplify-demanded-bits may have removed
 | |
|     // the AND instruction because it proves it was useless.
 | |
|     APInt KnownZero, KnownOne;
 | |
|     CurDAG->ComputeMaskedBits(OrOpd1Val, KnownZero, KnownOne);
 | |
| 
 | |
|     // Check if there is enough room for the second operand to appear
 | |
|     // in the first one
 | |
|     if (KnownZero.countTrailingOnes() < (unsigned)sMSB)
 | |
|       continue;
 | |
| 
 | |
|     // Set the first operand
 | |
|     uint64_t Imm;
 | |
|     if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
 | |
|         isHighMask(Imm, sMSB, NumberOfIgnoredHighBits, VT))
 | |
|       // In that case, we can eliminate the AND
 | |
|       Opd0 = OrOpd1->getOperand(0);
 | |
|     else
 | |
|       // Maybe the AND has been removed by simplify-demanded-bits
 | |
|       // or is useful because it discards more bits
 | |
|       Opd0 = OrOpd1Val;
 | |
| 
 | |
|     // both parts match
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::OR)
 | |
|     return NULL;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   unsigned LSB, MSB;
 | |
|   SDValue Opd0, Opd1;
 | |
| 
 | |
|   if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
 | |
|     return NULL;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Ops[] = { Opd0,
 | |
|                     Opd1,
 | |
|                     CurDAG->getTargetConstant(LSB, VT),
 | |
|                     CurDAG->getTargetConstant(MSB, VT) };
 | |
|   return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::SelectLIBM(SDNode *N) {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned Variant;
 | |
|   unsigned Opc;
 | |
|   unsigned FRINTXOpcs[] = { ARM64::FRINTXSr, ARM64::FRINTXDr };
 | |
| 
 | |
|   if (VT == MVT::f32) {
 | |
|     Variant = 0;
 | |
|   } else if (VT == MVT::f64) {
 | |
|     Variant = 1;
 | |
|   } else
 | |
|     return 0; // Unrecognized argument type. Fall back on default codegen.
 | |
| 
 | |
|   // Pick the FRINTX variant needed to set the flags.
 | |
|   unsigned FRINTXOpc = FRINTXOpcs[Variant];
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     return 0; // Unrecognized libm ISD node. Fall back on default codegen.
 | |
|   case ISD::FCEIL: {
 | |
|     unsigned FRINTPOpcs[] = { ARM64::FRINTPSr, ARM64::FRINTPDr };
 | |
|     Opc = FRINTPOpcs[Variant];
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FFLOOR: {
 | |
|     unsigned FRINTMOpcs[] = { ARM64::FRINTMSr, ARM64::FRINTMDr };
 | |
|     Opc = FRINTMOpcs[Variant];
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FTRUNC: {
 | |
|     unsigned FRINTZOpcs[] = { ARM64::FRINTZSr, ARM64::FRINTZDr };
 | |
|     Opc = FRINTZOpcs[Variant];
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FROUND: {
 | |
|     unsigned FRINTAOpcs[] = { ARM64::FRINTASr, ARM64::FRINTADr };
 | |
|     Opc = FRINTAOpcs[Variant];
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue In = N->getOperand(0);
 | |
|   SmallVector<SDValue, 2> Ops;
 | |
|   Ops.push_back(In);
 | |
| 
 | |
|   if (!TM.Options.UnsafeFPMath) {
 | |
|     SDNode *FRINTX = CurDAG->getMachineNode(FRINTXOpc, dl, VT, MVT::Glue, In);
 | |
|     Ops.push_back(SDValue(FRINTX, 1));
 | |
|   }
 | |
| 
 | |
|   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ARM64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
 | |
|                                               unsigned RegWidth) {
 | |
|   APFloat FVal(0.0);
 | |
|   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
 | |
|     FVal = CN->getValueAPF();
 | |
|   else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
 | |
|     // Some otherwise illegal constants are allowed in this case.
 | |
|     if (LN->getOperand(1).getOpcode() != ARM64ISD::ADDlow ||
 | |
|         !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
 | |
|       return false;
 | |
| 
 | |
|     ConstantPoolSDNode *CN =
 | |
|         dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
 | |
|     FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
 | |
|   // is between 1 and 32 for a destination w-register, or 1 and 64 for an
 | |
|   // x-register.
 | |
|   //
 | |
|   // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
 | |
|   // want THIS_NODE to be 2^fbits. This is much easier to deal with using
 | |
|   // integers.
 | |
|   bool IsExact;
 | |
| 
 | |
|   // fbits is between 1 and 64 in the worst-case, which means the fmul
 | |
|   // could have 2^64 as an actual operand. Need 65 bits of precision.
 | |
|   APSInt IntVal(65, true);
 | |
|   FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
 | |
| 
 | |
|   // N.b. isPowerOf2 also checks for > 0.
 | |
|   if (!IsExact || !IntVal.isPowerOf2()) return false;
 | |
|   unsigned FBits = IntVal.logBase2();
 | |
| 
 | |
|   // Checks above should have guaranteed that we haven't lost information in
 | |
|   // finding FBits, but it must still be in range.
 | |
|   if (FBits == 0 || FBits > RegWidth) return false;
 | |
| 
 | |
|   FixedPos = CurDAG->getTargetConstant(FBits, MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDNode *ARM64DAGToDAGISel::Select(SDNode *Node) {
 | |
|   // Dump information about the Node being selected
 | |
|   DEBUG(errs() << "Selecting: ");
 | |
|   DEBUG(Node->dump(CurDAG));
 | |
|   DEBUG(errs() << "\n");
 | |
| 
 | |
|   // If we have a custom node, we already have selected!
 | |
|   if (Node->isMachineOpcode()) {
 | |
|     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
 | |
|     Node->setNodeId(-1);
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   // Few custom selection stuff.
 | |
|   SDNode *ResNode = 0;
 | |
|   EVT VT = Node->getValueType(0);
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
| 
 | |
|   case ISD::ADD:
 | |
|     if (SDNode *I = SelectMLAV64LaneV128(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::LOAD: {
 | |
|     // Try to select as an indexed load. Fall through to normal processing
 | |
|     // if we can't.
 | |
|     bool Done = false;
 | |
|     SDNode *I = SelectIndexedLoad(Node, Done);
 | |
|     if (Done)
 | |
|       return I;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SRL:
 | |
|   case ISD::AND:
 | |
|   case ISD::SRA:
 | |
|     if (SDNode *I = SelectBitfieldExtractOp(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::OR:
 | |
|     if (SDNode *I = SelectBitfieldInsertOp(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::EXTRACT_VECTOR_ELT: {
 | |
|     // Extracting lane zero is a special case where we can just use a plain
 | |
|     // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
 | |
|     // the rest of the compiler, especially the register allocator and copyi
 | |
|     // propagation, to reason about, so is preferred when it's possible to
 | |
|     // use it.
 | |
|     ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
 | |
|     // Bail and use the default Select() for non-zero lanes.
 | |
|     if (LaneNode->getZExtValue() != 0)
 | |
|       break;
 | |
|     // If the element type is not the same as the result type, likewise
 | |
|     // bail and use the default Select(), as there's more to do than just
 | |
|     // a cross-class COPY. This catches extracts of i8 and i16 elements
 | |
|     // since they will need an explicit zext.
 | |
|     if (VT != Node->getOperand(0).getValueType().getVectorElementType())
 | |
|       break;
 | |
|     unsigned SubReg;
 | |
|     switch (Node->getOperand(0)
 | |
|                 .getValueType()
 | |
|                 .getVectorElementType()
 | |
|                 .getSizeInBits()) {
 | |
|     default:
 | |
|       assert(0 && "Unexpected vector element type!");
 | |
|     case 64:
 | |
|       SubReg = ARM64::dsub;
 | |
|       break;
 | |
|     case 32:
 | |
|       SubReg = ARM64::ssub;
 | |
|       break;
 | |
|     case 16: // FALLTHROUGH
 | |
|     case 8:
 | |
|       llvm_unreachable("unexpected zext-requiring extract element!");
 | |
|     }
 | |
|     SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
 | |
|                                                      Node->getOperand(0));
 | |
|     DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
 | |
|     DEBUG(Extract->dumpr(CurDAG));
 | |
|     DEBUG(dbgs() << "\n");
 | |
|     return Extract.getNode();
 | |
|   }
 | |
|   case ISD::Constant: {
 | |
|     // Materialize zero constants as copies from WZR/XZR.  This allows
 | |
|     // the coalescer to propagate these into other instructions.
 | |
|     ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
 | |
|     if (ConstNode->isNullValue()) {
 | |
|       if (VT == MVT::i32)
 | |
|         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
 | |
|                                       ARM64::WZR, MVT::i32).getNode();
 | |
|       else if (VT == MVT::i64)
 | |
|         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
 | |
|                                       ARM64::XZR, MVT::i64).getNode();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::FrameIndex: {
 | |
|     // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
 | |
|     int FI = cast<FrameIndexSDNode>(Node)->getIndex();
 | |
|     unsigned Shifter = ARM64_AM::getShifterImm(ARM64_AM::LSL, 0);
 | |
|     const TargetLowering *TLI = getTargetLowering();
 | |
|     SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy());
 | |
|     SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
 | |
|                       CurDAG->getTargetConstant(Shifter, MVT::i32) };
 | |
|     return CurDAG->SelectNodeTo(Node, ARM64::ADDXri, MVT::i64, Ops, 3);
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::arm64_ldaxp:
 | |
|     case Intrinsic::arm64_ldxp: {
 | |
|       unsigned Op =
 | |
|           IntNo == Intrinsic::arm64_ldaxp ? ARM64::LDAXPX : ARM64::LDXPX;
 | |
|       SDValue MemAddr = Node->getOperand(2);
 | |
|       SDLoc DL(Node);
 | |
|       SDValue Chain = Node->getOperand(0);
 | |
| 
 | |
|       SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
 | |
|                                           MVT::Other, MemAddr, Chain);
 | |
| 
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
 | |
|       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
 | |
|       return Ld;
 | |
|     }
 | |
|     case Intrinsic::arm64_stlxp:
 | |
|     case Intrinsic::arm64_stxp: {
 | |
|       unsigned Op =
 | |
|           IntNo == Intrinsic::arm64_stlxp ? ARM64::STLXPX : ARM64::STXPX;
 | |
|       SDLoc DL(Node);
 | |
|       SDValue Chain = Node->getOperand(0);
 | |
|       SDValue ValLo = Node->getOperand(2);
 | |
|       SDValue ValHi = Node->getOperand(3);
 | |
|       SDValue MemAddr = Node->getOperand(4);
 | |
| 
 | |
|       // Place arguments in the right order.
 | |
|       SmallVector<SDValue, 7> Ops;
 | |
|       Ops.push_back(ValLo);
 | |
|       Ops.push_back(ValHi);
 | |
|       Ops.push_back(MemAddr);
 | |
|       Ops.push_back(Chain);
 | |
| 
 | |
|       SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
 | |
|       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|       return St;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_ld1x2:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld1x3:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld1x4:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld2:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD1Twov1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Twov2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld3:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD1Threev1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Threev2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld4:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD1Fourv1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Fourv2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld2r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, ARM64::LD2Rv2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld3r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, ARM64::LD3Rv2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld4r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv8b, ARM64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv16b, ARM64::qsub0);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv4h, ARM64::dsub0);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv8h, ARM64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv2s, ARM64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv4s, ARM64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv1d, ARM64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, ARM64::LD4Rv2d, ARM64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld2lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 2, ARM64::LD2i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectLoadLane(Node, 2, ARM64::LD2i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 2, ARM64::LD2i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 2, ARM64::LD2i64);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld3lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 3, ARM64::LD3i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectLoadLane(Node, 3, ARM64::LD3i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 3, ARM64::LD3i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 3, ARM64::LD3i64);
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_ld4lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 4, ARM64::LD4i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectLoadLane(Node, 4, ARM64::LD4i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 4, ARM64::LD4i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 4, ARM64::LD4i64);
 | |
|       break;
 | |
|     }
 | |
|   } break;
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_tbl2:
 | |
|       return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBLv8i8Two
 | |
|                                                   : ARM64::TBLv16i8Two,
 | |
|                          false);
 | |
|     case Intrinsic::arm64_neon_tbl3:
 | |
|       return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBLv8i8Three
 | |
|                                                   : ARM64::TBLv16i8Three,
 | |
|                          false);
 | |
|     case Intrinsic::arm64_neon_tbl4:
 | |
|       return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBLv8i8Four
 | |
|                                                   : ARM64::TBLv16i8Four,
 | |
|                          false);
 | |
|     case Intrinsic::arm64_neon_tbx2:
 | |
|       return SelectTable(Node, 2, VT == MVT::v8i8 ? ARM64::TBXv8i8Two
 | |
|                                                   : ARM64::TBXv16i8Two,
 | |
|                          true);
 | |
|     case Intrinsic::arm64_neon_tbx3:
 | |
|       return SelectTable(Node, 3, VT == MVT::v8i8 ? ARM64::TBXv8i8Three
 | |
|                                                   : ARM64::TBXv16i8Three,
 | |
|                          true);
 | |
|     case Intrinsic::arm64_neon_tbx4:
 | |
|       return SelectTable(Node, 4, VT == MVT::v8i8 ? ARM64::TBXv8i8Four
 | |
|                                                   : ARM64::TBXv16i8Four,
 | |
|                          true);
 | |
|     case Intrinsic::arm64_neon_smull:
 | |
|     case Intrinsic::arm64_neon_umull:
 | |
|       if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
 | |
|         return N;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|     if (Node->getNumOperands() >= 3)
 | |
|       VT = Node->getOperand(2)->getValueType(0);
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::arm64_neon_st1x2: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st1x3: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st1x4: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st2: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 2, ARM64::ST2Twov2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 2, ARM64::ST1Twov1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st3: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 3, ARM64::ST3Threev2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 3, ARM64::ST1Threev1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st4: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv16b);
 | |
|       else if (VT == MVT::v4i16)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv4h);
 | |
|       else if (VT == MVT::v8i16)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 4, ARM64::ST4Fourv2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 4, ARM64::ST1Fourv1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st2lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 2, ARM64::ST2i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectStoreLane(Node, 2, ARM64::ST2i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 2, ARM64::ST2i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 2, ARM64::ST2i64);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st3lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 3, ARM64::ST3i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectStoreLane(Node, 3, ARM64::ST3i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 3, ARM64::ST3i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 3, ARM64::ST3i64);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::arm64_neon_st4lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 4, ARM64::ST4i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16)
 | |
|         return SelectStoreLane(Node, 4, ARM64::ST4i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 4, ARM64::ST4i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 4, ARM64::ST4i64);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   case ISD::FCEIL:
 | |
|   case ISD::FFLOOR:
 | |
|   case ISD::FTRUNC:
 | |
|   case ISD::FROUND:
 | |
|     if (SDNode *I = SelectLIBM(Node))
 | |
|       return I;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Select the default instruction
 | |
|   ResNode = SelectCode(Node);
 | |
| 
 | |
|   DEBUG(errs() << "=> ");
 | |
|   if (ResNode == NULL || ResNode == Node)
 | |
|     DEBUG(Node->dump(CurDAG));
 | |
|   else
 | |
|     DEBUG(ResNode->dump(CurDAG));
 | |
|   DEBUG(errs() << "\n");
 | |
| 
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| /// createARM64ISelDag - This pass converts a legalized DAG into a
 | |
| /// ARM64-specific DAG, ready for instruction scheduling.
 | |
| FunctionPass *llvm::createARM64ISelDag(ARM64TargetMachine &TM,
 | |
|                                        CodeGenOpt::Level OptLevel) {
 | |
|   return new ARM64DAGToDAGISel(TM, OptLevel);
 | |
| }
 |