mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	definition below all of the header #include lines, lib/Target/... edition. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206842 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			460 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			460 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARM64TargetTransformInfo.cpp - ARM64 specific TTI pass ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a TargetTransformInfo analysis pass specific to the
 | |
| /// ARM64 target machine. It uses the target's detailed information to provide
 | |
| /// more precise answers to certain TTI queries, while letting the target
 | |
| /// independent and default TTI implementations handle the rest.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM64.h"
 | |
| #include "ARM64TargetMachine.h"
 | |
| #include "MCTargetDesc/ARM64AddressingModes.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/CostTable.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "arm64tti"
 | |
| 
 | |
| // Declare the pass initialization routine locally as target-specific passes
 | |
| // don't havve a target-wide initialization entry point, and so we rely on the
 | |
| // pass constructor initialization.
 | |
| namespace llvm {
 | |
| void initializeARM64TTIPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ARM64TTI final : public ImmutablePass, public TargetTransformInfo {
 | |
|   const ARM64TargetMachine *TM;
 | |
|   const ARM64Subtarget *ST;
 | |
|   const ARM64TargetLowering *TLI;
 | |
| 
 | |
|   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | |
|   /// are set if the result needs to be inserted and/or extracted from vectors.
 | |
|   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | |
| 
 | |
| public:
 | |
|   ARM64TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
 | |
|     llvm_unreachable("This pass cannot be directly constructed");
 | |
|   }
 | |
| 
 | |
|   ARM64TTI(const ARM64TargetMachine *TM)
 | |
|       : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
 | |
|         TLI(TM->getTargetLowering()) {
 | |
|     initializeARM64TTIPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void initializePass() override { pushTTIStack(this); }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     TargetTransformInfo::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Pass identification.
 | |
|   static char ID;
 | |
| 
 | |
|   /// Provide necessary pointer adjustments for the two base classes.
 | |
|   void *getAdjustedAnalysisPointer(const void *ID) override {
 | |
|     if (ID == &TargetTransformInfo::ID)
 | |
|       return (TargetTransformInfo *)this;
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   /// \name Scalar TTI Implementations
 | |
|   /// @{
 | |
|   unsigned getIntImmCost(int64_t Val) const;
 | |
|   unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
 | |
|   unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | |
|                          Type *Ty) const override;
 | |
|   unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
 | |
|                          Type *Ty) const override;
 | |
|   PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
 | |
| 
 | |
|   /// @}
 | |
| 
 | |
|   /// \name Vector TTI Implementations
 | |
|   /// @{
 | |
| 
 | |
|   unsigned getNumberOfRegisters(bool Vector) const override {
 | |
|     if (Vector)
 | |
|       return 32;
 | |
| 
 | |
|     return 31;
 | |
|   }
 | |
| 
 | |
|   unsigned getRegisterBitWidth(bool Vector) const override {
 | |
|     if (Vector)
 | |
|       return 128;
 | |
| 
 | |
|     return 64;
 | |
|   }
 | |
| 
 | |
|   unsigned getMaximumUnrollFactor() const override { return 2; }
 | |
| 
 | |
|   unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
 | |
|       override;
 | |
| 
 | |
|   unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
 | |
|       override;
 | |
| 
 | |
|   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                   OperandValueKind Opd1Info = OK_AnyValue,
 | |
|                                   OperandValueKind Opd2Info = OK_AnyValue) const
 | |
|       override;
 | |
| 
 | |
|   unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
 | |
| 
 | |
|   unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
 | |
|       override;
 | |
| 
 | |
|   unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | |
|                            unsigned AddressSpace) const override;
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_AG_PASS(ARM64TTI, TargetTransformInfo, "arm64tti",
 | |
|                    "ARM64 Target Transform Info", true, true, false)
 | |
| char ARM64TTI::ID = 0;
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createARM64TargetTransformInfoPass(const ARM64TargetMachine *TM) {
 | |
|   return new ARM64TTI(TM);
 | |
| }
 | |
| 
 | |
| /// \brief Calculate the cost of materializing a 64-bit value. This helper
 | |
| /// method might only calculate a fraction of a larger immediate. Therefore it
 | |
| /// is valid to return a cost of ZERO.
 | |
| unsigned ARM64TTI::getIntImmCost(int64_t Val) const {
 | |
|   // Check if the immediate can be encoded within an instruction.
 | |
|   if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, 64))
 | |
|     return 0;
 | |
| 
 | |
|   if (Val < 0)
 | |
|     Val = ~Val;
 | |
| 
 | |
|   // Calculate how many moves we will need to materialize this constant.
 | |
|   unsigned LZ = countLeadingZeros((uint64_t)Val);
 | |
|   return (64 - LZ + 15) / 16;
 | |
| }
 | |
| 
 | |
| /// \brief Calculate the cost of materializing the given constant.
 | |
| unsigned ARM64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return ~0U;
 | |
| 
 | |
|   // Sign-extend all constants to a multiple of 64-bit.
 | |
|   APInt ImmVal = Imm;
 | |
|   if (BitSize & 0x3f)
 | |
|     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
 | |
| 
 | |
|   // Split the constant into 64-bit chunks and calculate the cost for each
 | |
|   // chunk.
 | |
|   unsigned Cost = 0;
 | |
|   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | |
|     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | |
|     int64_t Val = Tmp.getSExtValue();
 | |
|     Cost += getIntImmCost(Val);
 | |
|   }
 | |
|   // We need at least one instruction to materialze the constant.
 | |
|   return std::max(1U, Cost);
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
 | |
|                                  const APInt &Imm, Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TCC_Free;
 | |
| 
 | |
|   unsigned ImmIdx = ~0U;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return TCC_Free;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // Always hoist the base address of a GetElementPtr.
 | |
|     if (Idx == 0)
 | |
|       return 2 * TCC_Basic;
 | |
|     return TCC_Free;
 | |
|   case Instruction::Store:
 | |
|     ImmIdx = 0;
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::ICmp:
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   // Always return TCC_Free for the shift value of a shift instruction.
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     if (Idx == 1)
 | |
|       return TCC_Free;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::Load:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Idx == ImmIdx) {
 | |
|     unsigned NumConstants = (BitSize + 63) / 64;
 | |
|     unsigned Cost = ARM64TTI::getIntImmCost(Imm, Ty);
 | |
|     return (Cost <= NumConstants * TCC_Basic)
 | |
|       ? static_cast<unsigned>(TCC_Free) : Cost;
 | |
|   }
 | |
|   return ARM64TTI::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | |
|                                  const APInt &Imm, Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TCC_Free;
 | |
| 
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     return TCC_Free;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     if (Idx == 1) {
 | |
|       unsigned NumConstants = (BitSize + 63) / 64;
 | |
|       unsigned Cost = ARM64TTI::getIntImmCost(Imm, Ty);
 | |
|       return (Cost <= NumConstants * TCC_Basic)
 | |
|         ? static_cast<unsigned>(TCC_Free) : Cost;
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TCC_Free;
 | |
|     break;
 | |
|   }
 | |
|   return ARM64TTI::getIntImmCost(Imm, Ty);
 | |
| }
 | |
| 
 | |
| ARM64TTI::PopcntSupportKind ARM64TTI::getPopcntSupport(unsigned TyWidth) const {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   if (TyWidth == 32 || TyWidth == 64)
 | |
|     return PSK_FastHardware;
 | |
|   // TODO: ARM64TargetLowering::LowerCTPOP() supports 128bit popcount.
 | |
|   return PSK_Software;
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
 | |
|                                     Type *Src) const {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(Src);
 | |
|   EVT DstTy = TLI->getValueType(Dst);
 | |
| 
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| 
 | |
|   static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
 | |
|     // LowerVectorINT_TO_FP:
 | |
|     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
 | |
|     // LowerVectorFP_TO_INT
 | |
|     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 4 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 4 },
 | |
|     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 4 },
 | |
|     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 4 },
 | |
|     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 },
 | |
|     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 },
 | |
|   };
 | |
| 
 | |
|   int Idx = ConvertCostTableLookup<MVT>(
 | |
|       ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
 | |
|       SrcTy.getSimpleVT());
 | |
|   if (Idx != -1)
 | |
|     return ConversionTbl[Idx].Cost;
 | |
| 
 | |
|   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                       unsigned Index) const {
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
| 
 | |
|   if (Index != -1U) {
 | |
|     // Legalize the type.
 | |
|     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned Width = LT.second.getVectorNumElements();
 | |
|     Index = Index % Width;
 | |
| 
 | |
|     // The element at index zero is already inside the vector.
 | |
|     if (Index == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // All other insert/extracts cost this much.
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                           OperandValueKind Opd1Info,
 | |
|                                           OperandValueKind Opd2Info) const {
 | |
|   // Legalize the type.
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
| 
 | |
|   switch (ISD) {
 | |
|   default:
 | |
|     return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
 | |
|                                                        Opd2Info);
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::XOR:
 | |
|   case ISD::OR:
 | |
|   case ISD::AND:
 | |
|     // These nodes are marked as 'custom' for combining purposes only.
 | |
|     // We know that they are legal. See LowerAdd in ISelLowering.
 | |
|     return 1 * LT.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   if (Ty->isVectorTy() && IsComplex)
 | |
|     return NumVectorInstToHideOverhead;
 | |
| 
 | |
|   // In many cases the address computation is not merged into the instruction
 | |
|   // addressing mode.
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                       Type *CondTy) const {
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   // We don't lower vector selects well that are wider than the register width.
 | |
|   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
 | |
|     // We would need this many instructions to hide the scalarization happening.
 | |
|     unsigned AmortizationCost = 20;
 | |
|     static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | |
|     VectorSelectTbl[] = {
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
 | |
|       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
 | |
|     };
 | |
| 
 | |
|     EVT SelCondTy = TLI->getValueType(CondTy);
 | |
|     EVT SelValTy = TLI->getValueType(ValTy);
 | |
|     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
 | |
|       int Idx =
 | |
|           ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
 | |
|                                  SelValTy.getSimpleVT());
 | |
|       if (Idx != -1)
 | |
|         return VectorSelectTbl[Idx].Cost;
 | |
|     }
 | |
|   }
 | |
|   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | |
| }
 | |
| 
 | |
| unsigned ARM64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                    unsigned Alignment,
 | |
|                                    unsigned AddressSpace) const {
 | |
|   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | |
| 
 | |
|   if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
 | |
|       Src->getVectorElementType()->isIntegerTy(64)) {
 | |
|     // Unaligned stores are extremely inefficient. We don't split
 | |
|     // unaligned v2i64 stores because the negative impact that has shown in
 | |
|     // practice on inlined memcpy code.
 | |
|     // We make v2i64 stores expensive so that we will only vectorize if there
 | |
|     // are 6 other instructions getting vectorized.
 | |
|     unsigned AmortizationCost = 6;
 | |
| 
 | |
|     return LT.first * 2 * AmortizationCost;
 | |
|   }
 | |
| 
 | |
|   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
 | |
|       Src->getVectorNumElements() < 8) {
 | |
|     // We scalarize the loads/stores because there is not v.4b register and we
 | |
|     // have to promote the elements to v.4h.
 | |
|     unsigned NumVecElts = Src->getVectorNumElements();
 | |
|     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
 | |
|     // We generate 2 instructions per vector element.
 | |
|     return NumVectorizableInstsToAmortize * NumVecElts * 2;
 | |
|   }
 | |
| 
 | |
|   return LT.first;
 | |
| }
 |