mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206255 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			8906 lines
		
	
	
		
			356 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			8906 lines
		
	
	
		
			356 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the PPCISelLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCISelLowering.h"
 | |
| #include "MCTargetDesc/PPCPredicates.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCPerfectShuffle.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCTargetObjectFile.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
 | |
| cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
 | |
| cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
 | |
| cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
 | |
| 
 | |
| // FIXME: Remove this once the bug has been fixed!
 | |
| extern cl::opt<bool> ANDIGlueBug;
 | |
| 
 | |
| static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
 | |
|   if (TM.getSubtargetImpl()->isDarwin())
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
| 
 | |
|   if (TM.getSubtargetImpl()->isSVR4ABI())
 | |
|     return new PPC64LinuxTargetObjectFile();
 | |
| 
 | |
|   return new TargetLoweringObjectFileELF();
 | |
| }
 | |
| 
 | |
| PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
 | |
|   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
 | |
|   const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
 | |
| 
 | |
|   setPow2DivIsCheap();
 | |
| 
 | |
|   // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|   setUseUnderscoreSetJmp(true);
 | |
|   setUseUnderscoreLongJmp(true);
 | |
| 
 | |
|   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
 | |
|   // arguments are at least 4/8 bytes aligned.
 | |
|   bool isPPC64 = Subtarget->isPPC64();
 | |
|   setMinStackArgumentAlignment(isPPC64 ? 8:4);
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
 | |
|   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
 | |
|   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
 | |
| 
 | |
|   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | |
| 
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|   // PowerPC has pre-inc load and store's.
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
| 
 | |
|   if (Subtarget->useCRBits()) {
 | |
|     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|     if (isPPC64 || Subtarget->hasFPCVT()) {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | |
|       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
 | |
|                          isPPC64 ? MVT::i64 : MVT::i32);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | |
|       AddPromotedToType (ISD::UINT_TO_FP, MVT::i1, 
 | |
|                          isPPC64 ? MVT::i64 : MVT::i32);
 | |
|     } else {
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
 | |
|     }
 | |
| 
 | |
|     // PowerPC does not support direct load / store of condition registers
 | |
|     setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | |
|     setOperationAction(ISD::STORE, MVT::i1, Custom);
 | |
| 
 | |
|     // FIXME: Remove this once the ANDI glue bug is fixed:
 | |
|     if (ANDIGlueBug)
 | |
|       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
 | |
| 
 | |
|     setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
 | |
|     setTruncStoreAction(MVT::i64, MVT::i1, Expand);
 | |
|     setTruncStoreAction(MVT::i32, MVT::i1, Expand);
 | |
|     setTruncStoreAction(MVT::i16, MVT::i1, Expand);
 | |
|     setTruncStoreAction(MVT::i8, MVT::i1, Expand);
 | |
| 
 | |
|     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
 | |
|   }
 | |
| 
 | |
|   // This is used in the ppcf128->int sequence.  Note it has different semantics
 | |
|   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
 | |
|   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
 | |
| 
 | |
|   // We do not currently implement these libm ops for PowerPC.
 | |
|   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
 | |
|   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
 | |
| 
 | |
|   // PowerPC has no SREM/UREM instructions
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
| 
 | |
|   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
| 
 | |
|   // We don't support sin/cos/sqrt/fmod/pow
 | |
|   setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FMA  , MVT::f64, Legal);
 | |
|   setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FMA  , MVT::f32, Legal);
 | |
| 
 | |
|   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | |
| 
 | |
|   // If we're enabling GP optimizations, use hardware square root
 | |
|   if (!Subtarget->hasFSQRT() &&
 | |
|       !(TM.Options.UnsafeFPMath &&
 | |
|         Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
 | |
|     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
| 
 | |
|   if (!Subtarget->hasFSQRT() &&
 | |
|       !(TM.Options.UnsafeFPMath &&
 | |
|         Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
 | |
|     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
| 
 | |
|   if (Subtarget->hasFCPSGN()) {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasFPRND()) {
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | |
| 
 | |
|     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | |
|   }
 | |
| 
 | |
|   // PowerPC does not have BSWAP, CTPOP or CTTZ
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | |
|   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
 | |
| 
 | |
|   if (Subtarget->hasPOPCNTD()) {
 | |
|     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
 | |
|   } else {
 | |
|     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | |
|     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | |
|   }
 | |
| 
 | |
|   // PowerPC does not have ROTR
 | |
|   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | |
| 
 | |
|   if (!Subtarget->useCRBits()) {
 | |
|     // PowerPC does not have Select
 | |
|     setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|     setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   // PowerPC wants to turn select_cc of FP into fsel when possible.
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   // PowerPC wants to optimize integer setcc a bit
 | |
|   if (!Subtarget->useCRBits())
 | |
|     setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have BRCOND which requires SetCC
 | |
|   if (!Subtarget->useCRBits())
 | |
|     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | |
| 
 | |
|   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have [U|S]INT_TO_FP
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
 | |
| 
 | |
|   // We cannot sextinreg(i1).  Expand to shifts.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
 | |
|   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
 | |
|   // support continuation, user-level threading, and etc.. As a result, no
 | |
|   // other SjLj exception interfaces are implemented and please don't build
 | |
|   // your own exception handling based on them.
 | |
|   // LLVM/Clang supports zero-cost DWARF exception handling.
 | |
|   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | |
| 
 | |
|   // We want to legalize GlobalAddress and ConstantPool nodes into the
 | |
|   // appropriate instructions to materialize the address.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | |
| 
 | |
|   // TRAP is legal.
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // TRAMPOLINE is custom lowered.
 | |
|   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
| 
 | |
|   if (Subtarget->isSVR4ABI()) {
 | |
|     if (isPPC64) {
 | |
|       // VAARG always uses double-word chunks, so promote anything smaller.
 | |
|       setOperationAction(ISD::VAARG, MVT::i1, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i8, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i16, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::i32, Promote);
 | |
|       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
 | |
|       setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
|     } else {
 | |
|       // VAARG is custom lowered with the 32-bit SVR4 ABI.
 | |
|       setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | |
|       setOperationAction(ISD::VAARG, MVT::i64, Custom);
 | |
|     }
 | |
|   } else
 | |
|     setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
| 
 | |
|   if (Subtarget->isSVR4ABI() && !isPPC64)
 | |
|     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
 | |
|     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // To handle counter-based loop conditions.
 | |
|   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
 | |
| 
 | |
|   // Comparisons that require checking two conditions.
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
 | |
| 
 | |
|   if (Subtarget->has64BitSupport()) {
 | |
|     // They also have instructions for converting between i64 and fp.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
|     // This is just the low 32 bits of a (signed) fp->i64 conversion.
 | |
|     // We cannot do this with Promote because i64 is not a legal type.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
| 
 | |
|     if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|   } else {
 | |
|     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   // With the instructions enabled under FPCVT, we can do everything.
 | |
|   if (PPCSubTarget.hasFPCVT()) {
 | |
|     if (Subtarget->has64BitSupport()) {
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->use64BitRegs()) {
 | |
|     // 64-bit PowerPC implementations can support i64 types directly
 | |
|     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
 | |
|     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | |
|     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
|     // 64-bit PowerPC wants to expand i128 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | |
|   } else {
 | |
|     // 32-bit PowerPC wants to expand i64 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->hasAltivec()) {
 | |
|     // First set operation action for all vector types to expand. Then we
 | |
|     // will selectively turn on ones that can be effectively codegen'd.
 | |
|     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       // add/sub are legal for all supported vector VT's.
 | |
|       setOperationAction(ISD::ADD , VT, Legal);
 | |
|       setOperationAction(ISD::SUB , VT, Legal);
 | |
| 
 | |
|       // We promote all shuffles to v16i8.
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | |
|       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | |
| 
 | |
|       // We promote all non-typed operations to v4i32.
 | |
|       setOperationAction(ISD::AND   , VT, Promote);
 | |
|       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::OR    , VT, Promote);
 | |
|       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::XOR   , VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::LOAD  , VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::SELECT, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::STORE, VT, Promote);
 | |
|       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | |
| 
 | |
|       // No other operations are legal.
 | |
|       setOperationAction(ISD::MUL , VT, Expand);
 | |
|       setOperationAction(ISD::SDIV, VT, Expand);
 | |
|       setOperationAction(ISD::SREM, VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, VT, Expand);
 | |
|       setOperationAction(ISD::UREM, VT, Expand);
 | |
|       setOperationAction(ISD::FDIV, VT, Expand);
 | |
|       setOperationAction(ISD::FREM, VT, Expand);
 | |
|       setOperationAction(ISD::FNEG, VT, Expand);
 | |
|       setOperationAction(ISD::FSQRT, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG10, VT, Expand);
 | |
|       setOperationAction(ISD::FLOG2, VT, Expand);
 | |
|       setOperationAction(ISD::FEXP, VT, Expand);
 | |
|       setOperationAction(ISD::FEXP2, VT, Expand);
 | |
|       setOperationAction(ISD::FSIN, VT, Expand);
 | |
|       setOperationAction(ISD::FCOS, VT, Expand);
 | |
|       setOperationAction(ISD::FABS, VT, Expand);
 | |
|       setOperationAction(ISD::FPOWI, VT, Expand);
 | |
|       setOperationAction(ISD::FFLOOR, VT, Expand);
 | |
|       setOperationAction(ISD::FCEIL,  VT, Expand);
 | |
|       setOperationAction(ISD::FTRUNC, VT, Expand);
 | |
|       setOperationAction(ISD::FRINT,  VT, Expand);
 | |
|       setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::UDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::FPOW, VT, Expand);
 | |
|       setOperationAction(ISD::CTPOP, VT, Expand);
 | |
|       setOperationAction(ISD::CTLZ, VT, Expand);
 | |
|       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
 | |
|       setOperationAction(ISD::CTTZ, VT, Expand);
 | |
|       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
 | |
|       setOperationAction(ISD::VSELECT, VT, Expand);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | |
| 
 | |
|       for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|            j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
 | |
|         MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
 | |
|         setTruncStoreAction(VT, InnerVT, Expand);
 | |
|       }
 | |
|       setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
 | |
|       setLoadExtAction(ISD::EXTLOAD, VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | |
|     // with merges, splats, etc.
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::v4i32,
 | |
|                        Subtarget->useCRBits() ? Legal : Expand);
 | |
|     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 | |
| 
 | |
|     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
 | |
|     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
 | |
| 
 | |
|     if (TM.Options.UnsafeFPMath || Subtarget->hasVSX()) {
 | |
|       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | |
|     }
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | |
| 
 | |
|     // Altivec does not contain unordered floating-point compare instructions
 | |
|     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
 | |
| 
 | |
|     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
 | |
|     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
 | |
| 
 | |
|     if (Subtarget->hasVSX()) {
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
 | |
|       setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
 | |
| 
 | |
|       // Share the Altivec comparison restrictions.
 | |
|       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand);
 | |
| 
 | |
|       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
 | |
|       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
 | |
|       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
 | |
| 
 | |
|       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
 | |
| 
 | |
|       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
 | |
|       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
 | |
| 
 | |
|       // VSX v2i64 only supports non-arithmetic operations.
 | |
|       setOperationAction(ISD::ADD, MVT::v2i64, Expand);
 | |
|       setOperationAction(ISD::SUB, MVT::v2i64, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::SHL, MVT::v2i64, Expand);
 | |
|       setOperationAction(ISD::SRA, MVT::v2i64, Expand);
 | |
|       setOperationAction(ISD::SRL, MVT::v2i64, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
 | |
| 
 | |
|       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
 | |
|       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
 | |
|       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
 | |
|       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
 | |
| 
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
 | |
| 
 | |
|       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
 | |
| 
 | |
|       // Vector operation legalization checks the result type of
 | |
|       // SIGN_EXTEND_INREG, overall legalization checks the inner type.
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
 | |
|       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
 | |
| 
 | |
|       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget->has64BitSupport()) {
 | |
|     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
 | |
|     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
 | |
|   setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   // Altivec instructions set fields to all zeros or all ones.
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   if (isPPC64) {
 | |
|     setStackPointerRegisterToSaveRestore(PPC::X1);
 | |
|     setExceptionPointerRegister(PPC::X3);
 | |
|     setExceptionSelectorRegister(PPC::X4);
 | |
|   } else {
 | |
|     setStackPointerRegisterToSaveRestore(PPC::R1);
 | |
|     setExceptionPointerRegister(PPC::R3);
 | |
|     setExceptionSelectorRegister(PPC::R4);
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::SINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::LOAD);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::BR_CC);
 | |
|   if (Subtarget->useCRBits())
 | |
|     setTargetDAGCombine(ISD::BRCOND);
 | |
|   setTargetDAGCombine(ISD::BSWAP);
 | |
|   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | |
| 
 | |
|   setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ZERO_EXTEND);
 | |
|   setTargetDAGCombine(ISD::ANY_EXTEND);
 | |
| 
 | |
|   if (Subtarget->useCRBits()) {
 | |
|     setTargetDAGCombine(ISD::TRUNCATE);
 | |
|     setTargetDAGCombine(ISD::SETCC);
 | |
|     setTargetDAGCombine(ISD::SELECT_CC);
 | |
|   }
 | |
| 
 | |
|   // Use reciprocal estimates.
 | |
|   if (TM.Options.UnsafeFPMath) {
 | |
|     setTargetDAGCombine(ISD::FDIV);
 | |
|     setTargetDAGCombine(ISD::FSQRT);
 | |
|   }
 | |
| 
 | |
|   // Darwin long double math library functions have $LDBL128 appended.
 | |
|   if (Subtarget->isDarwin()) {
 | |
|     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
 | |
|     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
 | |
|     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
 | |
|     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
 | |
|     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
 | |
|   }
 | |
| 
 | |
|   // With 32 condition bits, we don't need to sink (and duplicate) compares
 | |
|   // aggressively in CodeGenPrep.
 | |
|   if (Subtarget->useCRBits())
 | |
|     setHasMultipleConditionRegisters();
 | |
| 
 | |
|   setMinFunctionAlignment(2);
 | |
|   if (PPCSubTarget.isDarwin())
 | |
|     setPrefFunctionAlignment(4);
 | |
| 
 | |
|   if (isPPC64 && Subtarget->isJITCodeModel())
 | |
|     // Temporary workaround for the inability of PPC64 JIT to handle jump
 | |
|     // tables.
 | |
|     setSupportJumpTables(false);
 | |
| 
 | |
|   setInsertFencesForAtomic(true);
 | |
| 
 | |
|   if (Subtarget->enableMachineScheduler())
 | |
|     setSchedulingPreference(Sched::Source);
 | |
|   else
 | |
|     setSchedulingPreference(Sched::Hybrid);
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| 
 | |
|   // The Freescale cores does better with aggressive inlining of memcpy and
 | |
|   // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
 | |
|   if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
 | |
|       Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
 | |
|     MaxStoresPerMemset = 32;
 | |
|     MaxStoresPerMemsetOptSize = 16;
 | |
|     MaxStoresPerMemcpy = 32;
 | |
|     MaxStoresPerMemcpyOptSize = 8;
 | |
|     MaxStoresPerMemmove = 32;
 | |
|     MaxStoresPerMemmoveOptSize = 8;
 | |
| 
 | |
|     setPrefFunctionAlignment(4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | |
| /// the desired ByVal argument alignment.
 | |
| static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
 | |
|                              unsigned MaxMaxAlign) {
 | |
|   if (MaxAlign == MaxMaxAlign)
 | |
|     return;
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
 | |
|       MaxAlign = 32;
 | |
|     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
 | |
|       MaxAlign = 16;
 | |
|   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     unsigned EltAlign = 0;
 | |
|     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
 | |
|     if (EltAlign > MaxAlign)
 | |
|       MaxAlign = EltAlign;
 | |
|   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       unsigned EltAlign = 0;
 | |
|       getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
 | |
|       if (EltAlign > MaxAlign)
 | |
|         MaxAlign = EltAlign;
 | |
|       if (MaxAlign == MaxMaxAlign)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.
 | |
| unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
 | |
|   // Darwin passes everything on 4 byte boundary.
 | |
|   if (PPCSubTarget.isDarwin())
 | |
|     return 4;
 | |
| 
 | |
|   // 16byte and wider vectors are passed on 16byte boundary.
 | |
|   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
 | |
|   unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4;
 | |
|   if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX())
 | |
|     getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16);
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case PPCISD::FSEL:            return "PPCISD::FSEL";
 | |
|   case PPCISD::FCFID:           return "PPCISD::FCFID";
 | |
|   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | |
|   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | |
|   case PPCISD::FRE:             return "PPCISD::FRE";
 | |
|   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
 | |
|   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | |
|   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
 | |
|   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
 | |
|   case PPCISD::VPERM:           return "PPCISD::VPERM";
 | |
|   case PPCISD::Hi:              return "PPCISD::Hi";
 | |
|   case PPCISD::Lo:              return "PPCISD::Lo";
 | |
|   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
 | |
|   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
 | |
|   case PPCISD::LOAD:            return "PPCISD::LOAD";
 | |
|   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
 | |
|   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | |
|   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | |
|   case PPCISD::SRL:             return "PPCISD::SRL";
 | |
|   case PPCISD::SRA:             return "PPCISD::SRA";
 | |
|   case PPCISD::SHL:             return "PPCISD::SHL";
 | |
|   case PPCISD::CALL:            return "PPCISD::CALL";
 | |
|   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
 | |
|   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | |
|   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
 | |
|   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | |
|   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
 | |
|   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
 | |
|   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
 | |
|   case PPCISD::VCMP:            return "PPCISD::VCMP";
 | |
|   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
 | |
|   case PPCISD::LBRX:            return "PPCISD::LBRX";
 | |
|   case PPCISD::STBRX:           return "PPCISD::STBRX";
 | |
|   case PPCISD::LARX:            return "PPCISD::LARX";
 | |
|   case PPCISD::STCX:            return "PPCISD::STCX";
 | |
|   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | |
|   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
 | |
|   case PPCISD::BDZ:             return "PPCISD::BDZ";
 | |
|   case PPCISD::MFFS:            return "PPCISD::MFFS";
 | |
|   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | |
|   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | |
|   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
 | |
|   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
 | |
|   case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
 | |
|   case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
 | |
|   case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
 | |
|   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
 | |
|   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
 | |
|   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
 | |
|   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
 | |
|   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
 | |
|   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
 | |
|   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
 | |
|   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
 | |
|   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
 | |
|   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
 | |
|   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
 | |
|   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
 | |
|   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
 | |
|   case PPCISD::SC:              return "PPCISD::SC";
 | |
|   }
 | |
| }
 | |
| 
 | |
| EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return PPCSubTarget.useCRBits() ? MVT::i1 : MVT::i32;
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node matching predicates, for use by the tblgen matching code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | |
|       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|         return CFP->getValueAPF().isZero();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if it matches the specified value.
 | |
| static bool isConstantOrUndef(int Op, int Val) {
 | |
|   return Op < 0 || Op == Val;
 | |
| }
 | |
| 
 | |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUHUM instruction.
 | |
| bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUWUM instruction.
 | |
| bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMerge - Common function, used to match vmrg* shuffles.
 | |
| ///
 | |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                      unsigned LHSStart, unsigned RHSStart) {
 | |
|   if (N->getValueType(0) != MVT::v16i8)
 | |
|     return false;
 | |
|   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | |
|          "Unsupported merge size!");
 | |
| 
 | |
|   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | |
|     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
 | |
|                              LHSStart+j+i*UnitSize) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
 | |
|                              RHSStart+j+i*UnitSize))
 | |
|         return false;
 | |
|     }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                              bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 8, 24);
 | |
|   return isVMerge(N, UnitSize, 8, 8);
 | |
| }
 | |
| 
 | |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                              bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 0, 16);
 | |
|   return isVMerge(N, UnitSize, 0, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | |
| /// amount, otherwise return -1.
 | |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
 | |
|   if (N->getValueType(0) != MVT::v16i8)
 | |
|     return -1;
 | |
| 
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
| 
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
 | |
|     /*search*/;
 | |
| 
 | |
|   if (i == 16) return -1;  // all undef.
 | |
| 
 | |
|   // Otherwise, check to see if the rest of the elements are consecutively
 | |
|   // numbered from this value.
 | |
|   unsigned ShiftAmt = SVOp->getMaskElt(i);
 | |
|   if (ShiftAmt < i) return -1;
 | |
|   ShiftAmt -= i;
 | |
| 
 | |
|   if (!isUnary) {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | |
|         return -1;
 | |
|   } else {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
 | |
|         return -1;
 | |
|   }
 | |
|   return ShiftAmt;
 | |
| }
 | |
| 
 | |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a splat of a single element that is suitable for input to
 | |
| /// VSPLTB/VSPLTH/VSPLTW.
 | |
| bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 &&
 | |
|          (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | |
| 
 | |
|   // This is a splat operation if each element of the permute is the same, and
 | |
|   // if the value doesn't reference the second vector.
 | |
|   unsigned ElementBase = N->getMaskElt(0);
 | |
| 
 | |
|   // FIXME: Handle UNDEF elements too!
 | |
|   if (ElementBase >= 16)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the indices are consecutive, in the case of a multi-byte element
 | |
|   // splatted with a v16i8 mask.
 | |
|   for (unsigned i = 1; i != EltSize; ++i)
 | |
|     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | |
|     if (N->getMaskElt(i) < 0) continue;
 | |
|     for (unsigned j = 0; j != EltSize; ++j)
 | |
|       if (N->getMaskElt(i+j) != N->getMaskElt(j))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isAllNegativeZeroVector - Returns true if all elements of build_vector
 | |
| /// are -0.0.
 | |
| bool PPC::isAllNegativeZeroVector(SDNode *N) {
 | |
|   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
 | |
| 
 | |
|   APInt APVal, APUndef;
 | |
|   unsigned BitSize;
 | |
|   bool HasAnyUndefs;
 | |
| 
 | |
|   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
 | |
|     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|       return CFP->getValueAPF().isNegZero();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   assert(isSplatShuffleMask(SVOp, EltSize));
 | |
|   return SVOp->getMaskElt(0) / EltSize;
 | |
| }
 | |
| 
 | |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | |
| /// by using a vspltis[bhw] instruction of the specified element size, return
 | |
| /// the constant being splatted.  The ByteSize field indicates the number of
 | |
| /// bytes of each element [124] -> [bhw].
 | |
| SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | |
|   SDValue OpVal(0, 0);
 | |
| 
 | |
|   // If ByteSize of the splat is bigger than the element size of the
 | |
|   // build_vector, then we have a case where we are checking for a splat where
 | |
|   // multiple elements of the buildvector are folded together into a single
 | |
|   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | |
|   unsigned EltSize = 16/N->getNumOperands();
 | |
|   if (EltSize < ByteSize) {
 | |
|     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | |
|     SDValue UniquedVals[4];
 | |
|     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | |
| 
 | |
|     // See if all of the elements in the buildvector agree across.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|       // If the element isn't a constant, bail fully out.
 | |
|       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | |
| 
 | |
| 
 | |
|       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
 | |
|         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | |
|       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | |
|         return SDValue();  // no match.
 | |
|     }
 | |
| 
 | |
|     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | |
|     // either constant or undef values that are identical for each chunk.  See
 | |
|     // if these chunks can form into a larger vspltis*.
 | |
| 
 | |
|     // Check to see if all of the leading entries are either 0 or -1.  If
 | |
|     // neither, then this won't fit into the immediate field.
 | |
|     bool LeadingZero = true;
 | |
|     bool LeadingOnes = true;
 | |
|     for (unsigned i = 0; i != Multiple-1; ++i) {
 | |
|       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
 | |
| 
 | |
|       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
 | |
|       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
 | |
|     }
 | |
|     // Finally, check the least significant entry.
 | |
|     if (LeadingZero) {
 | |
|       if (UniquedVals[Multiple-1].getNode() == 0)
 | |
|         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
 | |
|       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
 | |
|       if (Val < 16)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
 | |
|     }
 | |
|     if (LeadingOnes) {
 | |
|       if (UniquedVals[Multiple-1].getNode() == 0)
 | |
|         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
 | |
|       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
 | |
|       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Check to see if this buildvec has a single non-undef value in its elements.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     if (OpVal.getNode() == 0)
 | |
|       OpVal = N->getOperand(i);
 | |
|     else if (OpVal != N->getOperand(i))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
 | |
| 
 | |
|   unsigned ValSizeInBytes = EltSize;
 | |
|   uint64_t Value = 0;
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|     Value = CN->getZExtValue();
 | |
|   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | |
|     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | |
|     Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | |
|   }
 | |
| 
 | |
|   // If the splat value is larger than the element value, then we can never do
 | |
|   // this splat.  The only case that we could fit the replicated bits into our
 | |
|   // immediate field for would be zero, and we prefer to use vxor for it.
 | |
|   if (ValSizeInBytes < ByteSize) return SDValue();
 | |
| 
 | |
|   // If the element value is larger than the splat value, cut it in half and
 | |
|   // check to see if the two halves are equal.  Continue doing this until we
 | |
|   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
 | |
|   while (ValSizeInBytes > ByteSize) {
 | |
|     ValSizeInBytes >>= 1;
 | |
| 
 | |
|     // If the top half equals the bottom half, we're still ok.
 | |
|     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
 | |
|          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Properly sign extend the value.
 | |
|   int MaskVal = SignExtend32(Value, ByteSize * 8);
 | |
| 
 | |
|   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | |
|   if (MaskVal == 0) return SDValue();
 | |
| 
 | |
|   // Finally, if this value fits in a 5 bit sext field, return it
 | |
|   if (SignExtend32<5>(MaskVal) == MaskVal)
 | |
|     return DAG.getTargetConstant(MaskVal, MVT::i32);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Addressing Mode Selection
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | |
|   if (N->getOpcode() != ISD::Constant)
 | |
|     return false;
 | |
| 
 | |
|   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it
 | |
| /// can be represented as an indexed [r+r] operation.  Returns false if it
 | |
| /// can be more efficiently represented with [r+imm].
 | |
| bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
 | |
|                                             SDValue &Index,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   short imm = 0;
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i
 | |
|     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|       return false;    // r+i
 | |
| 
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i can fold it if we can.
 | |
| 
 | |
|     // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|     // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | |
|     // disjoint.
 | |
|     APInt LHSKnownZero, LHSKnownOne;
 | |
|     APInt RHSKnownZero, RHSKnownOne;
 | |
|     DAG.ComputeMaskedBits(N.getOperand(0),
 | |
|                           LHSKnownZero, LHSKnownOne);
 | |
| 
 | |
|     if (LHSKnownZero.getBoolValue()) {
 | |
|       DAG.ComputeMaskedBits(N.getOperand(1),
 | |
|                             RHSKnownZero, RHSKnownOne);
 | |
|       // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|       // carry.
 | |
|       if (~(LHSKnownZero | RHSKnownZero) == 0) {
 | |
|         Base = N.getOperand(0);
 | |
|         Index = N.getOperand(1);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If we happen to be doing an i64 load or store into a stack slot that has
 | |
| // less than a 4-byte alignment, then the frame-index elimination may need to
 | |
| // use an indexed load or store instruction (because the offset may not be a
 | |
| // multiple of 4). The extra register needed to hold the offset comes from the
 | |
| // register scavenger, and it is possible that the scavenger will need to use
 | |
| // an emergency spill slot. As a result, we need to make sure that a spill slot
 | |
| // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
 | |
| // stack slot.
 | |
| static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
 | |
|   // FIXME: This does not handle the LWA case.
 | |
|   if (VT != MVT::i64)
 | |
|     return;
 | |
| 
 | |
|   // NOTE: We'll exclude negative FIs here, which come from argument
 | |
|   // lowering, because there are no known test cases triggering this problem
 | |
|   // using packed structures (or similar). We can remove this exclusion if
 | |
|   // we find such a test case. The reason why this is so test-case driven is
 | |
|   // because this entire 'fixup' is only to prevent crashes (from the
 | |
|   // register scavenger) on not-really-valid inputs. For example, if we have:
 | |
|   //   %a = alloca i1
 | |
|   //   %b = bitcast i1* %a to i64*
 | |
|   //   store i64* a, i64 b
 | |
|   // then the store should really be marked as 'align 1', but is not. If it
 | |
|   // were marked as 'align 1' then the indexed form would have been
 | |
|   // instruction-selected initially, and the problem this 'fixup' is preventing
 | |
|   // won't happen regardless.
 | |
|   if (FrameIdx < 0)
 | |
|     return;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   unsigned Align = MFI->getObjectAlignment(FrameIdx);
 | |
|   if (Align >= 4)
 | |
|     return;
 | |
| 
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setHasNonRISpills();
 | |
| }
 | |
| 
 | |
| /// Returns true if the address N can be represented by a base register plus
 | |
| /// a signed 16-bit displacement [r+imm], and if it is not better
 | |
| /// represented as reg+reg.  If Aligned is true, only accept displacements
 | |
| /// suitable for STD and friends, i.e. multiples of 4.
 | |
| bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
 | |
|                                             SDValue &Base,
 | |
|                                             SelectionDAG &DAG,
 | |
|                                             bool Aligned) const {
 | |
|   // FIXME dl should come from parent load or store, not from address
 | |
|   SDLoc dl(N);
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddressRegReg(N, Disp, Base, DAG))
 | |
|     return false;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) &&
 | |
|         (!Aligned || (imm & 3) == 0)) {
 | |
|       Disp = DAG.getTargetConstant(imm, N.getValueType());
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) &&
 | |
|         (!Aligned || (imm & 3) == 0)) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       APInt LHSKnownZero, LHSKnownOne;
 | |
|       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
 | |
| 
 | |
|       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         Base = N.getOperand(0);
 | |
|         Disp = DAG.getTargetConstant(imm, N.getValueType());
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.
 | |
| 
 | |
|     // If this address fits entirely in a 16-bit sext immediate field, codegen
 | |
|     // this as "d, 0"
 | |
|     short Imm;
 | |
|     if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
 | |
|       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
 | |
|       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | |
|                              CN->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Handle 32-bit sext immediates with LIS + addr mode.
 | |
|     if ((CN->getValueType(0) == MVT::i32 ||
 | |
|          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
 | |
|         (!Aligned || (CN->getZExtValue() & 3) == 0)) {
 | |
|       int Addr = (int)CN->getZExtValue();
 | |
| 
 | |
|       // Otherwise, break this down into an LIS + disp.
 | |
|       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
 | |
| 
 | |
|       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
 | |
|       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | |
|       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Disp = DAG.getTargetConstant(0, getPointerTy());
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
 | |
|     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | |
|   } else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | |
| /// represented as an indexed [r+r] operation.
 | |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | |
|                                                 SDValue &Index,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // Check to see if we can easily represent this as an [r+r] address.  This
 | |
|   // will fail if it thinks that the address is more profitably represented as
 | |
|   // reg+imm, e.g. where imm = 0.
 | |
|   if (SelectAddressRegReg(N, Base, Index, DAG))
 | |
|     return true;
 | |
| 
 | |
|   // If the operand is an addition, always emit this as [r+r], since this is
 | |
|   // better (for code size, and execution, as the memop does the add for free)
 | |
|   // than emitting an explicit add.
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, do it the hard way, using R0 as the base register.
 | |
|   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | |
|                          N.getValueType());
 | |
|   Index = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                                   SDValue &Offset,
 | |
|                                                   ISD::MemIndexedMode &AM,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   if (DisablePPCPreinc) return false;
 | |
| 
 | |
|   bool isLoad = true;
 | |
|   SDValue Ptr;
 | |
|   EVT VT;
 | |
|   unsigned Alignment;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT = LD->getMemoryVT();
 | |
|     Alignment = LD->getAlignment();
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|     Alignment = ST->getAlignment();
 | |
|     isLoad = false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // PowerPC doesn't have preinc load/store instructions for vectors.
 | |
|   if (VT.isVector())
 | |
|     return false;
 | |
| 
 | |
|   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
 | |
| 
 | |
|     // Common code will reject creating a pre-inc form if the base pointer
 | |
|     // is a frame index, or if N is a store and the base pointer is either
 | |
|     // the same as or a predecessor of the value being stored.  Check for
 | |
|     // those situations here, and try with swapped Base/Offset instead.
 | |
|     bool Swap = false;
 | |
| 
 | |
|     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
 | |
|       Swap = true;
 | |
|     else if (!isLoad) {
 | |
|       SDValue Val = cast<StoreSDNode>(N)->getValue();
 | |
|       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
 | |
|         Swap = true;
 | |
|     }
 | |
| 
 | |
|     if (Swap)
 | |
|       std::swap(Base, Offset);
 | |
| 
 | |
|     AM = ISD::PRE_INC;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // LDU/STU can only handle immediates that are a multiple of 4.
 | |
|   if (VT != MVT::i64) {
 | |
|     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
 | |
|       return false;
 | |
|   } else {
 | |
|     // LDU/STU need an address with at least 4-byte alignment.
 | |
|     if (Alignment < 4)
 | |
|       return false;
 | |
| 
 | |
|     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | |
|     // sext i32 to i64 when addr mode is r+i.
 | |
|     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | |
|         LD->getExtensionType() == ISD::SEXTLOAD &&
 | |
|         isa<ConstantSDNode>(Offset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = ISD::PRE_INC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LowerOperation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// GetLabelAccessInfo - Return true if we should reference labels using a
 | |
| /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
 | |
| static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
 | |
|                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
 | |
|   HiOpFlags = PPCII::MO_HA;
 | |
|   LoOpFlags = PPCII::MO_LO;
 | |
| 
 | |
|   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
 | |
|   // non-darwin platform.  We don't support PIC on other platforms yet.
 | |
|   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
 | |
|                TM.getSubtarget<PPCSubtarget>().isDarwin();
 | |
|   if (isPIC) {
 | |
|     HiOpFlags |= PPCII::MO_PIC_FLAG;
 | |
|     LoOpFlags |= PPCII::MO_PIC_FLAG;
 | |
|   }
 | |
| 
 | |
|   // If this is a reference to a global value that requires a non-lazy-ptr, make
 | |
|   // sure that instruction lowering adds it.
 | |
|   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
 | |
|     HiOpFlags |= PPCII::MO_NLP_FLAG;
 | |
|     LoOpFlags |= PPCII::MO_NLP_FLAG;
 | |
| 
 | |
|     if (GV->hasHiddenVisibility()) {
 | |
|       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | |
|       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return isPIC;
 | |
| }
 | |
| 
 | |
| static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
 | |
|                              SelectionDAG &DAG) {
 | |
|   EVT PtrVT = HiPart.getValueType();
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   SDLoc DL(HiPart);
 | |
| 
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
 | |
| 
 | |
|   // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|   if (isPIC)
 | |
|     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
 | |
| 
 | |
|   // Generate non-pic code that has direct accesses to the constant pool.
 | |
|   // The address of the global is just (hi(&g)+lo(&g)).
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   const Constant *C = CP->getConstVal();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
 | |
|     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
 | |
|     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
 | |
|                        DAG.getRegister(PPC::X2, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
 | |
|   SDValue CPIHi =
 | |
|     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
 | |
|   SDValue CPILo =
 | |
|     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
 | |
|   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
 | |
|     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
|     return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
 | |
|                        DAG.getRegister(PPC::X2, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
 | |
|   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
 | |
|   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
 | |
|   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
| 
 | |
|   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
 | |
|   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
 | |
|   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
 | |
|   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
| 
 | |
|   // FIXME: TLS addresses currently use medium model code sequences,
 | |
|   // which is the most useful form.  Eventually support for small and
 | |
|   // large models could be added if users need it, at the cost of
 | |
|   // additional complexity.
 | |
|   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | |
|   SDLoc dl(GA);
 | |
|   const GlobalValue *GV = GA->getGlobal();
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   bool is64bit = PPCSubTarget.isPPC64();
 | |
| 
 | |
|   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
 | |
| 
 | |
|   if (Model == TLSModel::LocalExec) {
 | |
|     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                PPCII::MO_TPREL_HA);
 | |
|     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                PPCII::MO_TPREL_LO);
 | |
|     SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
 | |
|                                      is64bit ? MVT::i64 : MVT::i32);
 | |
|     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
 | |
|     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::InitialExec) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | |
|                                                 PPCII::MO_TLS);
 | |
|     SDValue GOTPtr;
 | |
|     if (is64bit) {
 | |
|       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
 | |
|                            PtrVT, GOTReg, TGA);
 | |
|     } else
 | |
|       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
 | |
|     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
 | |
|                                    PtrVT, TGA, GOTPtr);
 | |
|     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::GeneralDynamic) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
 | |
|                                      GOTReg, TGA);
 | |
|     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
 | |
|                                    GOTEntryHi, TGA);
 | |
| 
 | |
|     // We need a chain node, and don't have one handy.  The underlying
 | |
|     // call has no side effects, so using the function entry node
 | |
|     // suffices.
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
 | |
|     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
 | |
|     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
 | |
|                                   PtrVT, ParmReg, TGA);
 | |
|     // The return value from GET_TLS_ADDR really is in X3 already, but
 | |
|     // some hacks are needed here to tie everything together.  The extra
 | |
|     // copies dissolve during subsequent transforms.
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
 | |
|     return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
 | |
|   }
 | |
| 
 | |
|   if (Model == TLSModel::LocalDynamic) {
 | |
|     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | |
|     SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | |
|     SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
 | |
|                                      GOTReg, TGA);
 | |
|     SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
 | |
|                                    GOTEntryHi, TGA);
 | |
| 
 | |
|     // We need a chain node, and don't have one handy.  The underlying
 | |
|     // call has no side effects, so using the function entry node
 | |
|     // suffices.
 | |
|     SDValue Chain = DAG.getEntryNode();
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
 | |
|     SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
 | |
|     SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
 | |
|                                   PtrVT, ParmReg, TGA);
 | |
|     // The return value from GET_TLSLD_ADDR really is in X3 already, but
 | |
|     // some hacks are needed here to tie everything together.  The extra
 | |
|     // copies dissolve during subsequent transforms.
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
 | |
|     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
 | |
|                                       Chain, ParmReg, TGA);
 | |
|     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown TLS model!");
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | |
|   SDLoc DL(GSDN);
 | |
|   const GlobalValue *GV = GSDN->getGlobal();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
 | |
|     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
 | |
|     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
 | |
|                        DAG.getRegister(PPC::X2, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   unsigned MOHiFlag, MOLoFlag;
 | |
|   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
 | |
| 
 | |
|   SDValue GAHi =
 | |
|     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
 | |
|   SDValue GALo =
 | |
|     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
 | |
| 
 | |
|   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
 | |
| 
 | |
|   // If the global reference is actually to a non-lazy-pointer, we have to do an
 | |
|   // extra load to get the address of the global.
 | |
|   if (MOHiFlag & PPCII::MO_NLP_FLAG)
 | |
|     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
 | |
|                       false, false, false, 0);
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Op.getValueType() == MVT::v2i64) {
 | |
|     // When the operands themselves are v2i64 values, we need to do something
 | |
|     // special because VSX has no underlying comparison operations for these.
 | |
|     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
 | |
|       // Equality can be handled by casting to the legal type for Altivec
 | |
|       // comparisons, everything else needs to be expanded.
 | |
|       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | |
|         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
 | |
|                  DAG.getSetCC(dl, MVT::v4i32,
 | |
|                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
 | |
|                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
 | |
|                    CC));
 | |
|       }
 | |
| 
 | |
|       return SDValue();
 | |
|     }
 | |
| 
 | |
|     // We handle most of these in the usual way.
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // If we're comparing for equality to zero, expose the fact that this is
 | |
|   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
 | |
|   // fold the new nodes.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|     if (C->isNullValue() && CC == ISD::SETEQ) {
 | |
|       EVT VT = Op.getOperand(0).getValueType();
 | |
|       SDValue Zext = Op.getOperand(0);
 | |
|       if (VT.bitsLT(MVT::i32)) {
 | |
|         VT = MVT::i32;
 | |
|         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
 | |
|       }
 | |
|       unsigned Log2b = Log2_32(VT.getSizeInBits());
 | |
|       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
 | |
|       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
 | |
|                                 DAG.getConstant(Log2b, MVT::i32));
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
 | |
|     }
 | |
|     // Leave comparisons against 0 and -1 alone for now, since they're usually
 | |
|     // optimized.  FIXME: revisit this when we can custom lower all setcc
 | |
|     // optimizations.
 | |
|     if (C->isAllOnesValue() || C->isNullValue())
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // If we have an integer seteq/setne, turn it into a compare against zero
 | |
|   // by xor'ing the rhs with the lhs, which is faster than setting a
 | |
|   // condition register, reading it back out, and masking the correct bit.  The
 | |
|   // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | |
|   // the result to other bit-twiddling opportunities.
 | |
|   EVT LHSVT = Op.getOperand(0).getValueType();
 | |
|   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     EVT VT = Op.getValueType();
 | |
|     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
 | |
|                                 Op.getOperand(1));
 | |
|     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
 | |
|                                       const PPCSubtarget &Subtarget) const {
 | |
|   SDNode *Node = Op.getNode();
 | |
|   EVT VT = Node->getValueType(0);
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue InChain = Node->getOperand(0);
 | |
|   SDValue VAListPtr = Node->getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | |
|   SDLoc dl(Node);
 | |
| 
 | |
|   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
 | |
| 
 | |
|   // gpr_index
 | |
|   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | |
|                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
 | |
|                                     false, false, 0);
 | |
|   InChain = GprIndex.getValue(1);
 | |
| 
 | |
|   if (VT == MVT::i64) {
 | |
|     // Check if GprIndex is even
 | |
|     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
 | |
|                                  DAG.getConstant(1, MVT::i32));
 | |
|     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
 | |
|                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
 | |
|     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
 | |
|                                           DAG.getConstant(1, MVT::i32));
 | |
|     // Align GprIndex to be even if it isn't
 | |
|     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
 | |
|                            GprIndex);
 | |
|   }
 | |
| 
 | |
|   // fpr index is 1 byte after gpr
 | |
|   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   // fpr
 | |
|   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | |
|                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
 | |
|                                     false, false, 0);
 | |
|   InChain = FprIndex.getValue(1);
 | |
| 
 | |
|   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                        DAG.getConstant(8, MVT::i32));
 | |
| 
 | |
|   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | |
|                                         DAG.getConstant(4, MVT::i32));
 | |
| 
 | |
|   // areas
 | |
|   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
 | |
|                                      MachinePointerInfo(), false, false,
 | |
|                                      false, 0);
 | |
|   InChain = OverflowArea.getValue(1);
 | |
| 
 | |
|   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
 | |
|                                     MachinePointerInfo(), false, false,
 | |
|                                     false, 0);
 | |
|   InChain = RegSaveArea.getValue(1);
 | |
| 
 | |
|   // select overflow_area if index > 8
 | |
|   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
 | |
|                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
 | |
| 
 | |
|   // adjustment constant gpr_index * 4/8
 | |
|   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
 | |
|                                     VT.isInteger() ? GprIndex : FprIndex,
 | |
|                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
 | |
|                                                     MVT::i32));
 | |
| 
 | |
|   // OurReg = RegSaveArea + RegConstant
 | |
|   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
 | |
|                                RegConstant);
 | |
| 
 | |
|   // Floating types are 32 bytes into RegSaveArea
 | |
|   if (VT.isFloatingPoint())
 | |
|     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
 | |
|                          DAG.getConstant(32, MVT::i32));
 | |
| 
 | |
|   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
 | |
|   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | |
|                                    VT.isInteger() ? GprIndex : FprIndex,
 | |
|                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
 | |
|                                                    MVT::i32));
 | |
| 
 | |
|   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
 | |
|                               VT.isInteger() ? VAListPtr : FprPtr,
 | |
|                               MachinePointerInfo(SV),
 | |
|                               MVT::i8, false, false, 0);
 | |
| 
 | |
|   // determine if we should load from reg_save_area or overflow_area
 | |
|   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
 | |
| 
 | |
|   // increase overflow_area by 4/8 if gpr/fpr > 8
 | |
|   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
 | |
|                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
 | |
|                                           MVT::i32));
 | |
| 
 | |
|   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
 | |
|                              OverflowAreaPlusN);
 | |
| 
 | |
|   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
 | |
|                               OverflowAreaPtr,
 | |
|                               MachinePointerInfo(),
 | |
|                               MVT::i32, false, false, 0);
 | |
| 
 | |
|   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
 | |
|                      false, false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
 | |
|                                        const PPCSubtarget &Subtarget) const {
 | |
|   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
 | |
| 
 | |
|   // We have to copy the entire va_list struct:
 | |
|   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
 | |
|   return DAG.getMemcpy(Op.getOperand(0), Op,
 | |
|                        Op.getOperand(1), Op.getOperand(2),
 | |
|                        DAG.getConstant(12, MVT::i32), 8, false, true,
 | |
|                        MachinePointerInfo(), MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   return Op.getOperand(0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Trmp = Op.getOperand(1); // trampoline
 | |
|   SDValue FPtr = Op.getOperand(2); // nested function
 | |
|   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = (PtrVT == MVT::i64);
 | |
|   Type *IntPtrTy =
 | |
|     DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
 | |
|                                                              *DAG.getContext());
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
| 
 | |
|   Entry.Ty = IntPtrTy;
 | |
|   Entry.Node = Trmp; Args.push_back(Entry);
 | |
| 
 | |
|   // TrampSize == (isPPC64 ? 48 : 40);
 | |
|   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
 | |
|                                isPPC64 ? MVT::i64 : MVT::i32);
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   Entry.Node = FPtr; Args.push_back(Entry);
 | |
|   Entry.Node = Nest; Args.push_back(Entry);
 | |
| 
 | |
|   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
 | |
|   TargetLowering::CallLoweringInfo CLI(Chain,
 | |
|                                        Type::getVoidTy(*DAG.getContext()),
 | |
|                                        false, false, false, false, 0,
 | |
|                                        CallingConv::C,
 | |
|                 /*isTailCall=*/false,
 | |
|                                        /*doesNotRet=*/false,
 | |
|                                        /*isReturnValueUsed=*/true,
 | |
|                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
 | |
|                 Args, DAG, dl);
 | |
|   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | |
| 
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
 | |
|                                         const PPCSubtarget &Subtarget) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
|     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | |
|                         MachinePointerInfo(SV),
 | |
|                         false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
 | |
|   // We suppose the given va_list is already allocated.
 | |
|   //
 | |
|   // typedef struct {
 | |
|   //  char gpr;     /* index into the array of 8 GPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * gpr=0 corresponds to r3,
 | |
|   //                 * gpr=1 to r4, etc.
 | |
|   //                 */
 | |
|   //  char fpr;     /* index into the array of 8 FPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * fpr=0 corresponds to f1,
 | |
|   //                 * fpr=1 to f2, etc.
 | |
|   //                 */
 | |
|   //  char *overflow_arg_area;
 | |
|   //                /* location on stack that holds
 | |
|   //                 * the next overflow argument
 | |
|   //                 */
 | |
|   //  char *reg_save_area;
 | |
|   //               /* where r3:r10 and f1:f8 (if saved)
 | |
|   //                * are stored
 | |
|   //                */
 | |
|   // } va_list[1];
 | |
| 
 | |
| 
 | |
|   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
 | |
|   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
 | |
| 
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
 | |
|                                             PtrVT);
 | |
|   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | |
|                                  PtrVT);
 | |
| 
 | |
|   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | |
|   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
 | |
| 
 | |
|   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | |
|   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
 | |
| 
 | |
|   uint64_t FPROffset = 1;
 | |
|   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
 | |
| 
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
| 
 | |
|   // Store first byte : number of int regs
 | |
|   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
 | |
|                                          Op.getOperand(1),
 | |
|                                          MachinePointerInfo(SV),
 | |
|                                          MVT::i8, false, false, 0);
 | |
|   uint64_t nextOffset = FPROffset;
 | |
|   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
 | |
|                                   ConstFPROffset);
 | |
| 
 | |
|   // Store second byte : number of float regs
 | |
|   SDValue secondStore =
 | |
|     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
 | |
|                       MachinePointerInfo(SV, nextOffset), MVT::i8,
 | |
|                       false, false, 0);
 | |
|   nextOffset += StackOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
 | |
| 
 | |
|   // Store second word : arguments given on stack
 | |
|   SDValue thirdStore =
 | |
|     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
 | |
|                  MachinePointerInfo(SV, nextOffset),
 | |
|                  false, false, 0);
 | |
|   nextOffset += FrameOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
 | |
| 
 | |
|   // Store third word : arguments given in registers
 | |
|   return DAG.getStore(thirdStore, dl, FR, nextPtr,
 | |
|                       MachinePointerInfo(SV, nextOffset),
 | |
|                       false, false, 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| #include "PPCGenCallingConv.inc"
 | |
| 
 | |
| // Function whose sole purpose is to kill compiler warnings 
 | |
| // stemming from unused functions included from PPCGenCallingConv.inc.
 | |
| CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
 | |
|   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | |
|                                       CCValAssign::LocInfo &LocInfo,
 | |
|                                       ISD::ArgFlagsTy &ArgFlags,
 | |
|                                       CCState &State) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
 | |
|                                              MVT &LocVT,
 | |
|                                              CCValAssign::LocInfo &LocInfo,
 | |
|                                              ISD::ArgFlagsTy &ArgFlags,
 | |
|                                              CCState &State) {
 | |
|   static const MCPhysReg ArgRegs[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
| 
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
 | |
| 
 | |
|   // Skip one register if the first unallocated register has an even register
 | |
|   // number and there are still argument registers available which have not been
 | |
|   // allocated yet. RegNum is actually an index into ArgRegs, which means we
 | |
|   // need to skip a register if RegNum is odd.
 | |
|   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
| 
 | |
|   // Always return false here, as this function only makes sure that the first
 | |
|   // unallocated register has an odd register number and does not actually
 | |
|   // allocate a register for the current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
 | |
|                                                MVT &LocVT,
 | |
|                                                CCValAssign::LocInfo &LocInfo,
 | |
|                                                ISD::ArgFlagsTy &ArgFlags,
 | |
|                                                CCState &State) {
 | |
|   static const MCPhysReg ArgRegs[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8
 | |
|   };
 | |
| 
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
| 
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
 | |
| 
 | |
|   // If there is only one Floating-point register left we need to put both f64
 | |
|   // values of a split ppc_fp128 value on the stack.
 | |
|   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
| 
 | |
|   // Always return false here, as this function only makes sure that the two f64
 | |
|   // values a ppc_fp128 value is split into are both passed in registers or both
 | |
|   // passed on the stack and does not actually allocate a register for the
 | |
|   // current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// GetFPR - Get the set of FP registers that should be allocated for arguments,
 | |
| /// on Darwin.
 | |
| static const MCPhysReg *GetFPR() {
 | |
|   static const MCPhysReg FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
| 
 | |
|   return FPR;
 | |
| }
 | |
| 
 | |
| /// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | |
| /// the stack.
 | |
| static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
 | |
|                                        unsigned PtrByteSize) {
 | |
|   unsigned ArgSize = ArgVT.getStoreSize();
 | |
|   if (Flags.isByVal())
 | |
|     ArgSize = Flags.getByValSize();
 | |
|   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
| 
 | |
|   return ArgSize;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv, bool isVarArg,
 | |
|                                         const SmallVectorImpl<ISD::InputArg>
 | |
|                                           &Ins,
 | |
|                                         SDLoc dl, SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals)
 | |
|                                           const {
 | |
|   if (PPCSubTarget.isSVR4ABI()) {
 | |
|     if (PPCSubTarget.isPPC64())
 | |
|       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
 | |
|                                          dl, DAG, InVals);
 | |
|     else
 | |
|       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
 | |
|                                          dl, DAG, InVals);
 | |
|   } else {
 | |
|     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
 | |
|                                        dl, DAG, InVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments_32SVR4(
 | |
|                                       SDValue Chain,
 | |
|                                       CallingConv::ID CallConv, bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg>
 | |
|                                         &Ins,
 | |
|                                       SDLoc dl, SelectionDAG &DAG,
 | |
|                                       SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   // 32-bit SVR4 ABI Stack Frame Layout:
 | |
|   //              +-----------------------------------+
 | |
|   //        +-->  |            Back chain             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     | Floating-point register save area |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |    General register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |          CR save word             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         VRSAVE save word          |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         Alignment padding         |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |     Vector register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |       Local variable space        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |        Parameter list area        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |           LR save word            |
 | |
|   //        |     +-----------------------------------+
 | |
|   // SP-->  +---  |            Back chain             |
 | |
|   //              +-----------------------------------+
 | |
|   //
 | |
|   // Specifications:
 | |
|   //   System V Application Binary Interface PowerPC Processor Supplement
 | |
|   //   AltiVec Technology Programming Interface Manual
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
 | |
| 
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
 | |
| 
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
| 
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       const TargetRegisterClass *RC;
 | |
|       EVT ValVT = VA.getValVT();
 | |
| 
 | |
|       switch (ValVT.getSimpleVT().SimpleTy) {
 | |
|         default:
 | |
|           llvm_unreachable("ValVT not supported by formal arguments Lowering");
 | |
|         case MVT::i1:
 | |
|         case MVT::i32:
 | |
|           RC = &PPC::GPRCRegClass;
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|           RC = &PPC::F4RCRegClass;
 | |
|           break;
 | |
|         case MVT::f64:
 | |
|           if (PPCSubTarget.hasVSX())
 | |
|             RC = &PPC::VSFRCRegClass;
 | |
|           else
 | |
|             RC = &PPC::F8RCRegClass;
 | |
|           break;
 | |
|         case MVT::v16i8:
 | |
|         case MVT::v8i16:
 | |
|         case MVT::v4i32:
 | |
|         case MVT::v4f32:
 | |
|           RC = &PPC::VRRCRegClass;
 | |
|           break;
 | |
|         case MVT::v2f64:
 | |
|         case MVT::v2i64:
 | |
|           RC = &PPC::VSHRCRegClass;
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Transform the arguments stored in physical registers into virtual ones.
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
 | |
|                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
 | |
| 
 | |
|       if (ValVT == MVT::i1)
 | |
|         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     } else {
 | |
|       // Argument stored in memory.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       unsigned ArgSize = VA.getLocVT().getStoreSize();
 | |
|       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
 | |
|                                       isImmutable);
 | |
| 
 | |
|       // Create load nodes to retrieve arguments from the stack.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
 | |
|                                    MachinePointerInfo(),
 | |
|                                    false, false, false, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assign locations to all of the incoming aggregate by value arguments.
 | |
|   // Aggregates passed by value are stored in the local variable space of the
 | |
|   // caller's stack frame, right above the parameter list area.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
 | |
| 
 | |
|   // Area that is at least reserved in the caller of this function.
 | |
|   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized function's reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   MinReservedArea =
 | |
|     std::max(MinReservedArea,
 | |
|              PPCFrameLowering::getMinCallFrameSize(false, false));
 | |
| 
 | |
|   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
 | |
|     getStackAlignment();
 | |
|   unsigned AlignMask = TargetAlign-1;
 | |
|   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
 | |
| 
 | |
|   FI->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     static const MCPhysReg GPArgRegs[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
 | |
| 
 | |
|     static const MCPhysReg FPArgRegs[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|       PPC::F8
 | |
|     };
 | |
|     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
 | |
| 
 | |
|     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
 | |
|                                                           NumGPArgRegs));
 | |
|     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
 | |
|                                                           NumFPArgRegs));
 | |
| 
 | |
|     // Make room for NumGPArgRegs and NumFPArgRegs.
 | |
|     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
 | |
|                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
 | |
| 
 | |
|     FuncInfo->setVarArgsStackOffset(
 | |
|       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                              CCInfo.getNextStackOffset(), true));
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // The fixed integer arguments of a variadic function are stored to the
 | |
|     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
 | |
|     // the result of va_next.
 | |
|     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
 | |
|       // Get an existing live-in vreg, or add a new one.
 | |
|       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
 | |
|       if (!VReg)
 | |
|         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                    MachinePointerInfo(), false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
| 
 | |
|     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
 | |
|     // is set.
 | |
|     // The double arguments are stored to the VarArgsFrameIndex
 | |
|     // on the stack.
 | |
|     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
 | |
|       // Get an existing live-in vreg, or add a new one.
 | |
|       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
 | |
|       if (!VReg)
 | |
|         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                    MachinePointerInfo(), false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by eight for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
 | |
|                                          PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl,
 | |
|                         MVT::Other, &MemOps[0], MemOps.size());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
| // value to MVT::i64 and then truncate to the correct register size.
 | |
| SDValue
 | |
| PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
 | |
|                                      SelectionDAG &DAG, SDValue ArgVal,
 | |
|                                      SDLoc dl) const {
 | |
|   if (Flags.isSExt())
 | |
|     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
 | |
|                          DAG.getValueType(ObjectVT));
 | |
|   else if (Flags.isZExt())
 | |
|     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
 | |
|                          DAG.getValueType(ObjectVT));
 | |
| 
 | |
|   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
 | |
| }
 | |
| 
 | |
| // Set the size that is at least reserved in caller of this function.  Tail
 | |
| // call optimized functions' reserved stack space needs to be aligned so that
 | |
| // taking the difference between two stack areas will result in an aligned
 | |
| // stack.
 | |
| void
 | |
| PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
 | |
|                                       unsigned nAltivecParamsAtEnd,
 | |
|                                       unsigned MinReservedArea,
 | |
|                                       bool isPPC64) const {
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   // Add the Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|     MinReservedArea += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
|   MinReservedArea =
 | |
|     std::max(MinReservedArea,
 | |
|              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
 | |
|   unsigned TargetAlign
 | |
|     = DAG.getMachineFunction().getTarget().getFrameLowering()->
 | |
|         getStackAlignment();
 | |
|   unsigned AlignMask = TargetAlign-1;
 | |
|   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
 | |
|   FI->setMinReservedArea(MinReservedArea);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments_64SVR4(
 | |
|                                       SDValue Chain,
 | |
|                                       CallingConv::ID CallConv, bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg>
 | |
|                                         &Ins,
 | |
|                                       SDLoc dl, SelectionDAG &DAG,
 | |
|                                       SmallVectorImpl<SDValue> &InVals) const {
 | |
|   // TODO: add description of PPC stack frame format, or at least some docs.
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = 8;
 | |
| 
 | |
|   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
 | |
|   // Area that is at least reserved in caller of this function.
 | |
|   unsigned MinReservedArea = ArgOffset;
 | |
| 
 | |
|   static const MCPhysReg GPR[] = {
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
| 
 | |
|   static const MCPhysReg *FPR = GetFPR();
 | |
| 
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
|   static const MCPhysReg VSRH[] = {
 | |
|     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
 | |
|     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
 | |
|   };
 | |
| 
 | |
|   const unsigned Num_GPR_Regs = array_lengthof(GPR);
 | |
|   const unsigned Num_FPR_Regs = 13;
 | |
|   const unsigned Num_VR_Regs  = array_lengthof(VR);
 | |
| 
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.  On
 | |
|   // entry to a function on PPC, the arguments start after the linkage area,
 | |
|   // although the first ones are often in registers.
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
|   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     SDValue ArgVal;
 | |
|     bool needsLoad = false;
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     unsigned ObjSize = ObjectVT.getStoreSize();
 | |
|     unsigned ArgSize = ObjSize;
 | |
|     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
|     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
 | |
|     CurArgIdx = Ins[ArgNo].OrigArgIndex;
 | |
| 
 | |
|     unsigned CurArgOffset = ArgOffset;
 | |
| 
 | |
|     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | |
|         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8 ||
 | |
|         ObjectVT==MVT::v2f64 || ObjectVT==MVT::v2i64) {
 | |
|       if (isVarArg) {
 | |
|         MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|         MinReservedArea += CalculateStackSlotSize(ObjectVT,
 | |
|                                                   Flags,
 | |
|                                                   PtrByteSize);
 | |
|       } else
 | |
|         nAltivecParamsAtEnd++;
 | |
|     } else
 | |
|       // Calculate min reserved area.
 | |
|       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
 | |
|                                                 Flags,
 | |
|                                                 PtrByteSize);
 | |
| 
 | |
|     // FIXME the codegen can be much improved in some cases.
 | |
|     // We do not have to keep everything in memory.
 | |
|     if (Flags.isByVal()) {
 | |
|       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | |
|       ObjSize = Flags.getByValSize();
 | |
|       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       // Empty aggregate parameters do not take up registers.  Examples:
 | |
|       //   struct { } a;
 | |
|       //   union  { } b;
 | |
|       //   int c[0];
 | |
|       // etc.  However, we have to provide a place-holder in InVals, so
 | |
|       // pretend we have an 8-byte item at the current address for that
 | |
|       // purpose.
 | |
|       if (!ObjSize) {
 | |
|         int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|         InVals.push_back(FIN);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       unsigned BVAlign = Flags.getByValAlign();
 | |
|       if (BVAlign > 8) {
 | |
|         ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
 | |
|         CurArgOffset = ArgOffset;
 | |
|       }
 | |
| 
 | |
|       // All aggregates smaller than 8 bytes must be passed right-justified.
 | |
|       if (ObjSize < PtrByteSize)
 | |
|         CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
 | |
|       // The value of the object is its address.
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(FIN);
 | |
| 
 | |
|       if (ObjSize < 8) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store;
 | |
| 
 | |
|           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
 | |
|             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
 | |
|                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
 | |
|             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                       MachinePointerInfo(FuncArg),
 | |
|                                       ObjType, false, false, 0);
 | |
|           } else {
 | |
|             // For sizes that don't fit a truncating store (3, 5, 6, 7),
 | |
|             // store the whole register as-is to the parameter save area
 | |
|             // slot.  The address of the parameter was already calculated
 | |
|             // above (InVals.push_back(FIN)) to be the right-justified
 | |
|             // offset within the slot.  For this store, we need a new
 | |
|             // frame index that points at the beginning of the slot.
 | |
|             int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                  MachinePointerInfo(FuncArg),
 | |
|                                  false, false, 0);
 | |
|           }
 | |
| 
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|         }
 | |
|         // Whether we copied from a register or not, advance the offset
 | |
|         // into the parameter save area by a full doubleword.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | |
|         // Store whatever pieces of the object are in registers
 | |
|         // to memory.  ArgOffset will be the address of the beginning
 | |
|         // of the object.
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg;
 | |
|           VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                        MachinePointerInfo(FuncArg, j),
 | |
|                                        false, false, 0);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ArgSize - j;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | |
|           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
|           // value to MVT::i64 and then truncate to the correct register size.
 | |
|           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | |
| 
 | |
|         ++GPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
| 
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // Every 8 bytes of argument space consumes one of the GPRs available for
 | |
|       // argument passing.
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         ++GPR_idx;
 | |
|       }
 | |
|       if (FPR_idx != Num_FPR_Regs) {
 | |
|         unsigned VReg;
 | |
| 
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], PPCSubTarget.hasVSX() ?
 | |
|                                             &PPC::VSFRCRegClass :
 | |
|                                             &PPC::F8RCRegClass);
 | |
| 
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
| 
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|     case MVT::v2f64:
 | |
|     case MVT::v2i64:
 | |
|       // Note that vector arguments in registers don't reserve stack space,
 | |
|       // except in varargs functions.
 | |
|       if (VR_idx != Num_VR_Regs) {
 | |
|         unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
 | |
|                         MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
 | |
|                         MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         if (isVarArg) {
 | |
|           while ((ArgOffset % 16) != 0) {
 | |
|             ArgOffset += PtrByteSize;
 | |
|             if (GPR_idx != Num_GPR_Regs)
 | |
|               GPR_idx++;
 | |
|           }
 | |
|           ArgOffset += 16;
 | |
|           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
 | |
|         }
 | |
|         ++VR_idx;
 | |
|       } else {
 | |
|         // Vectors are aligned.
 | |
|         ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|         CurArgOffset = ArgOffset;
 | |
|         ArgOffset += 16;
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined
 | |
|     // above that we ran out of physical registers of the appropriate type.
 | |
|     if (needsLoad) {
 | |
|       int FI = MFI->CreateFixedObject(ObjSize,
 | |
|                                       CurArgOffset + (ArgSize - ObjSize),
 | |
|                                       isImmutable);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
 | |
|                            false, false, false, 0);
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|   }
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized functions' reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     int Depth = ArgOffset;
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(
 | |
|       MFI->CreateFixedObject(PtrByteSize, Depth, true));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | |
|       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                    MachinePointerInfo(), false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl,
 | |
|                         MVT::Other, &MemOps[0], MemOps.size());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments_Darwin(
 | |
|                                       SDValue Chain,
 | |
|                                       CallingConv::ID CallConv, bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg>
 | |
|                                         &Ins,
 | |
|                                       SDLoc dl, SelectionDAG &DAG,
 | |
|                                       SmallVectorImpl<SDValue> &InVals) const {
 | |
|   // TODO: add description of PPC stack frame format, or at least some docs.
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|                        (CallConv == CallingConv::Fast));
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
 | |
|   // Area that is at least reserved in caller of this function.
 | |
|   unsigned MinReservedArea = ArgOffset;
 | |
| 
 | |
|   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
| 
 | |
|   static const MCPhysReg *FPR = GetFPR();
 | |
| 
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
 | |
|   const unsigned Num_FPR_Regs = 13;
 | |
|   const unsigned Num_VR_Regs  = array_lengthof( VR);
 | |
| 
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   // In 32-bit non-varargs functions, the stack space for vectors is after the
 | |
|   // stack space for non-vectors.  We do not use this space unless we have
 | |
|   // too many vectors to fit in registers, something that only occurs in
 | |
|   // constructed examples:), but we have to walk the arglist to figure
 | |
|   // that out...for the pathological case, compute VecArgOffset as the
 | |
|   // start of the vector parameter area.  Computing VecArgOffset is the
 | |
|   // entire point of the following loop.
 | |
|   unsigned VecArgOffset = ArgOffset;
 | |
|   if (!isVarArg && !isPPC64) {
 | |
|     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
 | |
|          ++ArgNo) {
 | |
|       EVT ObjectVT = Ins[ArgNo].VT;
 | |
|       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
 | |
|         unsigned ObjSize = Flags.getByValSize();
 | |
|         unsigned ArgSize =
 | |
|                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|         VecArgOffset += ArgSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       switch(ObjectVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unhandled argument type!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i32:
 | |
|       case MVT::f32:
 | |
|         VecArgOffset += 4;
 | |
|         break;
 | |
|       case MVT::i64:  // PPC64
 | |
|       case MVT::f64:
 | |
|         // FIXME: We are guaranteed to be !isPPC64 at this point.
 | |
|         // Does MVT::i64 apply?
 | |
|         VecArgOffset += 8;
 | |
|         break;
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v16i8:
 | |
|         // Nothing to do, we're only looking at Nonvector args here.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // We've found where the vector parameter area in memory is.  Skip the
 | |
|   // first 12 parameters; these don't use that memory.
 | |
|   VecArgOffset = ((VecArgOffset+15)/16)*16;
 | |
|   VecArgOffset += 12*16;
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.  On
 | |
|   // entry to a function on PPC, the arguments start after the linkage area,
 | |
|   // although the first ones are often in registers.
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
|   Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
 | |
|   unsigned CurArgIdx = 0;
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     SDValue ArgVal;
 | |
|     bool needsLoad = false;
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | |
|     unsigned ArgSize = ObjSize;
 | |
|     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
|     std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
 | |
|     CurArgIdx = Ins[ArgNo].OrigArgIndex;
 | |
| 
 | |
|     unsigned CurArgOffset = ArgOffset;
 | |
| 
 | |
|     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | |
|         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
 | |
|       if (isVarArg || isPPC64) {
 | |
|         MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|         MinReservedArea += CalculateStackSlotSize(ObjectVT,
 | |
|                                                   Flags,
 | |
|                                                   PtrByteSize);
 | |
|       } else  nAltivecParamsAtEnd++;
 | |
|     } else
 | |
|       // Calculate min reserved area.
 | |
|       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
 | |
|                                                 Flags,
 | |
|                                                 PtrByteSize);
 | |
| 
 | |
|     // FIXME the codegen can be much improved in some cases.
 | |
|     // We do not have to keep everything in memory.
 | |
|     if (Flags.isByVal()) {
 | |
|       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | |
|       ObjSize = Flags.getByValSize();
 | |
|       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       // Objects of size 1 and 2 are right justified, everything else is
 | |
|       // left justified.  This means the memory address is adjusted forwards.
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         CurArgOffset = CurArgOffset + (4 - ObjSize);
 | |
|       }
 | |
|       // The value of the object is its address.
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(FIN);
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg;
 | |
|           if (isPPC64)
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           else
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
 | |
|           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                             MachinePointerInfo(FuncArg),
 | |
|                                             ObjType, false, false, 0);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|         }
 | |
| 
 | |
|         ArgOffset += PtrByteSize;
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
|       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | |
|         // Store whatever pieces of the object are in registers
 | |
|         // to memory.  ArgOffset will be the address of the beginning
 | |
|         // of the object.
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg;
 | |
|           if (isPPC64)
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|           else
 | |
|             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
 | |
|           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                        MachinePointerInfo(FuncArg, j),
 | |
|                                        false, false, 0);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|       if (!isPPC64) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
| 
 | |
|           if (ObjectVT == MVT::i1)
 | |
|             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
 | |
| 
 | |
|           ++GPR_idx;
 | |
|         } else {
 | |
|           needsLoad = true;
 | |
|           ArgSize = PtrByteSize;
 | |
|         }
 | |
|         // All int arguments reserve stack space in the Darwin ABI.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         break;
 | |
|       }
 | |
|       // FALLTHROUGH
 | |
|     case MVT::i64:  // PPC64
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | |
|           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
|           // value to MVT::i64 and then truncate to the correct register size.
 | |
|           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | |
| 
 | |
|         ++GPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
|       // All int arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
| 
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // Every 4 bytes of argument space consumes one of the GPRs available for
 | |
|       // argument passing.
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         ++GPR_idx;
 | |
|         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
 | |
|           ++GPR_idx;
 | |
|       }
 | |
|       if (FPR_idx != Num_FPR_Regs) {
 | |
|         unsigned VReg;
 | |
| 
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
 | |
| 
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
| 
 | |
|       // All FP arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += isPPC64 ? 8 : ObjSize;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       // Note that vector arguments in registers don't reserve stack space,
 | |
|       // except in varargs functions.
 | |
|       if (VR_idx != Num_VR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         if (isVarArg) {
 | |
|           while ((ArgOffset % 16) != 0) {
 | |
|             ArgOffset += PtrByteSize;
 | |
|             if (GPR_idx != Num_GPR_Regs)
 | |
|               GPR_idx++;
 | |
|           }
 | |
|           ArgOffset += 16;
 | |
|           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
 | |
|         }
 | |
|         ++VR_idx;
 | |
|       } else {
 | |
|         if (!isVarArg && !isPPC64) {
 | |
|           // Vectors go after all the nonvectors.
 | |
|           CurArgOffset = VecArgOffset;
 | |
|           VecArgOffset += 16;
 | |
|         } else {
 | |
|           // Vectors are aligned.
 | |
|           ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|           CurArgOffset = ArgOffset;
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined above
 | |
|     // that we ran out of physical registers of the appropriate type.
 | |
|     if (needsLoad) {
 | |
|       int FI = MFI->CreateFixedObject(ObjSize,
 | |
|                                       CurArgOffset + (ArgSize - ObjSize),
 | |
|                                       isImmutable);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
 | |
|                            false, false, false, 0);
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|   }
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized functions' reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     int Depth = ArgOffset;
 | |
| 
 | |
|     FuncInfo->setVarArgsFrameIndex(
 | |
|       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                              Depth, true));
 | |
|     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | |
|       unsigned VReg;
 | |
| 
 | |
|       if (isPPC64)
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|       else
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                    MachinePointerInfo(), false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl,
 | |
|                         MVT::Other, &MemOps[0], MemOps.size());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
 | |
| /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
 | |
| static unsigned
 | |
| CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
 | |
|                                      bool isPPC64,
 | |
|                                      bool isVarArg,
 | |
|                                      unsigned CC,
 | |
|                                      const SmallVectorImpl<ISD::OutputArg>
 | |
|                                        &Outs,
 | |
|                                      const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                      unsigned &nAltivecParamsAtEnd) {
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with 24/48 bytes, which is
 | |
|   // prereserved space for [SP][CR][LR][3 x unused].
 | |
|   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
 | |
|   unsigned NumOps = Outs.size();
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   // Add up all the space actually used.
 | |
|   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
 | |
|   // they all go in registers, but we must reserve stack space for them for
 | |
|   // possible use by the caller.  In varargs or 64-bit calls, parameters are
 | |
|   // assigned stack space in order, with padding so Altivec parameters are
 | |
|   // 16-byte aligned.
 | |
|   nAltivecParamsAtEnd = 0;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     EVT ArgVT = Outs[i].VT;
 | |
|     // Varargs Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
 | |
|         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8 ||
 | |
|         ArgVT==MVT::v2f64 || ArgVT==MVT::v2i64) {
 | |
|       if (!isVarArg && !isPPC64) {
 | |
|         // Non-varargs Altivec parameters go after all the non-Altivec
 | |
|         // parameters; handle those later so we know how much padding we need.
 | |
|         nAltivecParamsAtEnd++;
 | |
|         continue;
 | |
|       }
 | |
|       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
 | |
|       NumBytes = ((NumBytes+15)/16)*16;
 | |
|     }
 | |
|     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | |
|   }
 | |
| 
 | |
|    // Allow for Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     NumBytes = ((NumBytes+15)/16)*16;
 | |
|     NumBytes += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
| 
 | |
|   // The prolog code of the callee may store up to 8 GPR argument registers to
 | |
|   // the stack, allowing va_start to index over them in memory if its varargs.
 | |
|   // Because we cannot tell if this is needed on the caller side, we have to
 | |
|   // conservatively assume that it is needed.  As such, make sure we have at
 | |
|   // least enough stack space for the caller to store the 8 GPRs.
 | |
|   NumBytes = std::max(NumBytes,
 | |
|                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
 | |
| 
 | |
|   // Tail call needs the stack to be aligned.
 | |
|   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
 | |
|     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
 | |
|       getFrameLowering()->getStackAlignment();
 | |
|     unsigned AlignMask = TargetAlign-1;
 | |
|     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
 | |
|   }
 | |
| 
 | |
|   return NumBytes;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | |
| /// adjusted to accommodate the arguments for the tailcall.
 | |
| static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
 | |
|                                    unsigned ParamSize) {
 | |
| 
 | |
|   if (!isTailCall) return 0;
 | |
| 
 | |
|   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | |
|   unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | |
|   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | |
|   // Remember only if the new adjustement is bigger.
 | |
|   if (SPDiff < FI->getTailCallSPDelta())
 | |
|     FI->setTailCallSPDelta(SPDiff);
 | |
| 
 | |
|   return SPDiff;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Variable argument functions are not supported.
 | |
|   if (isVarArg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
 | |
|   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | |
|     // Functions containing by val parameters are not supported.
 | |
|     for (unsigned i = 0; i != Ins.size(); i++) {
 | |
|        ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|        if (Flags.isByVal()) return false;
 | |
|     }
 | |
| 
 | |
|     // Non-PIC/GOT tail calls are supported.
 | |
|     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | |
|       return true;
 | |
| 
 | |
|     // At the moment we can only do local tail calls (in same module, hidden
 | |
|     // or protected) if we are generating PIC.
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|       return G->getGlobal()->hasHiddenVisibility()
 | |
|           || G->getGlobal()->hasProtectedVisibility();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCallCompatibleAddress - Return the immediate to use if the specified
 | |
| /// 32-bit value is representable in the immediate field of a BxA instruction.
 | |
| static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|   if (!C) return 0;
 | |
| 
 | |
|   int Addr = C->getZExtValue();
 | |
|   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | |
|       SignExtend32<26>(Addr) != Addr)
 | |
|     return 0;  // Top 6 bits have to be sext of immediate.
 | |
| 
 | |
|   return DAG.getConstant((int)C->getZExtValue() >> 2,
 | |
|                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct TailCallArgumentInfo {
 | |
|   SDValue Arg;
 | |
|   SDValue FrameIdxOp;
 | |
|   int       FrameIdx;
 | |
| 
 | |
|   TailCallArgumentInfo() : FrameIdx(0) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | |
| static void
 | |
| StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
 | |
|                                            SDValue Chain,
 | |
|                    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
 | |
|                    SmallVectorImpl<SDValue> &MemOpChains,
 | |
|                    SDLoc dl) {
 | |
|   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | |
|     SDValue Arg = TailCallArgs[i].Arg;
 | |
|     SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | |
|     int FI = TailCallArgs[i].FrameIdx;
 | |
|     // Store relative to framepointer.
 | |
|     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
 | |
|                                        MachinePointerInfo::getFixedStack(FI),
 | |
|                                        false, false, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | |
| /// the appropriate stack slot for the tail call optimized function call.
 | |
| static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
 | |
|                                                MachineFunction &MF,
 | |
|                                                SDValue Chain,
 | |
|                                                SDValue OldRetAddr,
 | |
|                                                SDValue OldFP,
 | |
|                                                int SPDiff,
 | |
|                                                bool isPPC64,
 | |
|                                                bool isDarwinABI,
 | |
|                                                SDLoc dl) {
 | |
|   if (SPDiff) {
 | |
|     // Calculate the new stack slot for the return address.
 | |
|     int SlotSize = isPPC64 ? 8 : 4;
 | |
|     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
 | |
|                                                                    isDarwinABI);
 | |
|     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
 | |
|                                                           NewRetAddrLoc, true);
 | |
|     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | |
|     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
 | |
|                          MachinePointerInfo::getFixedStack(NewRetAddr),
 | |
|                          false, false, 0);
 | |
| 
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (isDarwinABI) {
 | |
|       int NewFPLoc =
 | |
|         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
 | |
|       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
 | |
|                                                           true);
 | |
|       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
 | |
|       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
 | |
|                            MachinePointerInfo::getFixedStack(NewFPIdx),
 | |
|                            false, false, 0);
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | |
| /// the position of the argument.
 | |
| static void
 | |
| CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | |
|                          SDValue Arg, int SPDiff, unsigned ArgOffset,
 | |
|                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
 | |
|   int Offset = ArgOffset + SPDiff;
 | |
|   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
 | |
|   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
 | |
|   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|   SDValue FIN = DAG.getFrameIndex(FI, VT);
 | |
|   TailCallArgumentInfo Info;
 | |
|   Info.Arg = Arg;
 | |
|   Info.FrameIdxOp = FIN;
 | |
|   Info.FrameIdx = FI;
 | |
|   TailCallArguments.push_back(Info);
 | |
| }
 | |
| 
 | |
| /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | |
| /// stack slot. Returns the chain as result and the loaded frame pointers in
 | |
| /// LROpOut/FPOpout. Used when tail calling.
 | |
| SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
 | |
|                                                         int SPDiff,
 | |
|                                                         SDValue Chain,
 | |
|                                                         SDValue &LROpOut,
 | |
|                                                         SDValue &FPOpOut,
 | |
|                                                         bool isDarwinABI,
 | |
|                                                         SDLoc dl) const {
 | |
|   if (SPDiff) {
 | |
|     // Load the LR and FP stack slot for later adjusting.
 | |
|     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
 | |
|     LROpOut = getReturnAddrFrameIndex(DAG);
 | |
|     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
 | |
|                           false, false, false, 0);
 | |
|     Chain = SDValue(LROpOut.getNode(), 1);
 | |
| 
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (isDarwinABI) {
 | |
|       FPOpOut = getFramePointerFrameIndex(DAG);
 | |
|       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
 | |
|                             false, false, false, 0);
 | |
|       Chain = SDValue(FPOpOut.getNode(), 1);
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute. The copy will be passed as
 | |
| /// a byval function parameter.
 | |
| /// Sometimes what we are copying is the end of a larger object, the part that
 | |
| /// does not fit in registers.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           SDLoc dl) {
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        false, false, MachinePointerInfo(),
 | |
|                        MachinePointerInfo());
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | |
| /// tail calls.
 | |
| static void
 | |
| LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
 | |
|                  SDValue Arg, SDValue PtrOff, int SPDiff,
 | |
|                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
 | |
|                  bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
 | |
|                  SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
 | |
|                  SDLoc dl) {
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   if (!isTailCall) {
 | |
|     if (isVector) {
 | |
|       SDValue StackPtr;
 | |
|       if (isPPC64)
 | |
|         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|       else
 | |
|         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                            DAG.getConstant(ArgOffset, PtrVT));
 | |
|     }
 | |
|     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                        MachinePointerInfo(), false, false, 0));
 | |
|   // Calculate and remember argument location.
 | |
|   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | |
|                                   TailCallArguments);
 | |
| }
 | |
| 
 | |
| static
 | |
| void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
 | |
|                      SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
 | |
|                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
 | |
|                      SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | |
|   // might overwrite each other in case of tail call optimization.
 | |
|   SmallVector<SDValue, 8> MemOpChains2;
 | |
|   // Do not flag preceding copytoreg stuff together with the following stuff.
 | |
|   InFlag = SDValue();
 | |
|   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | |
|                                     MemOpChains2, dl);
 | |
|   if (!MemOpChains2.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains2[0], MemOpChains2.size());
 | |
| 
 | |
|   // Store the return address to the appropriate stack slot.
 | |
|   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
 | |
|                                         isPPC64, isDarwinABI, dl);
 | |
| 
 | |
|   // Emit callseq_end just before tailcall node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag, dl);
 | |
|   InFlag = Chain.getValue(1);
 | |
| }
 | |
| 
 | |
| static
 | |
| unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
 | |
|                      SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
 | |
|                      SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
 | |
|                      SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
 | |
|                      const PPCSubtarget &PPCSubTarget) {
 | |
| 
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   NodeTys.push_back(MVT::Other);   // Returns a chain
 | |
|   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
 | |
| 
 | |
|   unsigned CallOpc = PPCISD::CALL;
 | |
| 
 | |
|   bool needIndirectCall = true;
 | |
|   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
 | |
|     // If this is an absolute destination address, use the munged value.
 | |
|     Callee = SDValue(Dest, 0);
 | |
|     needIndirectCall = false;
 | |
|   }
 | |
| 
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
 | |
|     // Use indirect calls for ALL functions calls in JIT mode, since the
 | |
|     // far-call stubs may be outside relocation limits for a BL instruction.
 | |
|     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
 | |
|       unsigned OpFlags = 0;
 | |
|       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
 | |
|           (PPCSubTarget.getTargetTriple().isMacOSX() &&
 | |
|            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
 | |
|           (G->getGlobal()->isDeclaration() ||
 | |
|            G->getGlobal()->isWeakForLinker())) {
 | |
|         // PC-relative references to external symbols should go through $stub,
 | |
|         // unless we're building with the leopard linker or later, which
 | |
|         // automatically synthesizes these stubs.
 | |
|         OpFlags = PPCII::MO_DARWIN_STUB;
 | |
|       }
 | |
| 
 | |
|       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
 | |
|       // every direct call is) turn it into a TargetGlobalAddress /
 | |
|       // TargetExternalSymbol node so that legalize doesn't hack it.
 | |
|       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
 | |
|                                           Callee.getValueType(),
 | |
|                                           0, OpFlags);
 | |
|       needIndirectCall = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     unsigned char OpFlags = 0;
 | |
| 
 | |
|     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
 | |
|         (PPCSubTarget.getTargetTriple().isMacOSX() &&
 | |
|          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
 | |
|       // PC-relative references to external symbols should go through $stub,
 | |
|       // unless we're building with the leopard linker or later, which
 | |
|       // automatically synthesizes these stubs.
 | |
|       OpFlags = PPCII::MO_DARWIN_STUB;
 | |
|     }
 | |
| 
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
 | |
|                                          OpFlags);
 | |
|     needIndirectCall = false;
 | |
|   }
 | |
| 
 | |
|   if (needIndirectCall) {
 | |
|     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
 | |
|     // to do the call, we can't use PPCISD::CALL.
 | |
|     SDValue MTCTROps[] = {Chain, Callee, InFlag};
 | |
| 
 | |
|     if (isSVR4ABI && isPPC64) {
 | |
|       // Function pointers in the 64-bit SVR4 ABI do not point to the function
 | |
|       // entry point, but to the function descriptor (the function entry point
 | |
|       // address is part of the function descriptor though).
 | |
|       // The function descriptor is a three doubleword structure with the
 | |
|       // following fields: function entry point, TOC base address and
 | |
|       // environment pointer.
 | |
|       // Thus for a call through a function pointer, the following actions need
 | |
|       // to be performed:
 | |
|       //   1. Save the TOC of the caller in the TOC save area of its stack
 | |
|       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
 | |
|       //   2. Load the address of the function entry point from the function
 | |
|       //      descriptor.
 | |
|       //   3. Load the TOC of the callee from the function descriptor into r2.
 | |
|       //   4. Load the environment pointer from the function descriptor into
 | |
|       //      r11.
 | |
|       //   5. Branch to the function entry point address.
 | |
|       //   6. On return of the callee, the TOC of the caller needs to be
 | |
|       //      restored (this is done in FinishCall()).
 | |
|       //
 | |
|       // All those operations are flagged together to ensure that no other
 | |
|       // operations can be scheduled in between. E.g. without flagging the
 | |
|       // operations together, a TOC access in the caller could be scheduled
 | |
|       // between the load of the callee TOC and the branch to the callee, which
 | |
|       // results in the TOC access going through the TOC of the callee instead
 | |
|       // of going through the TOC of the caller, which leads to incorrect code.
 | |
| 
 | |
|       // Load the address of the function entry point from the function
 | |
|       // descriptor.
 | |
|       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
 | |
|       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
 | |
|                                         InFlag.getNode() ? 3 : 2);
 | |
|       Chain = LoadFuncPtr.getValue(1);
 | |
|       InFlag = LoadFuncPtr.getValue(2);
 | |
| 
 | |
|       // Load environment pointer into r11.
 | |
|       // Offset of the environment pointer within the function descriptor.
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(16);
 | |
| 
 | |
|       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
 | |
|       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
 | |
|                                        InFlag);
 | |
|       Chain = LoadEnvPtr.getValue(1);
 | |
|       InFlag = LoadEnvPtr.getValue(2);
 | |
| 
 | |
|       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
 | |
|                                         InFlag);
 | |
|       Chain = EnvVal.getValue(0);
 | |
|       InFlag = EnvVal.getValue(1);
 | |
| 
 | |
|       // Load TOC of the callee into r2. We are using a target-specific load
 | |
|       // with r2 hard coded, because the result of a target-independent load
 | |
|       // would never go directly into r2, since r2 is a reserved register (which
 | |
|       // prevents the register allocator from allocating it), resulting in an
 | |
|       // additional register being allocated and an unnecessary move instruction
 | |
|       // being generated.
 | |
|       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
 | |
|                                        Callee, InFlag);
 | |
|       Chain = LoadTOCPtr.getValue(0);
 | |
|       InFlag = LoadTOCPtr.getValue(1);
 | |
| 
 | |
|       MTCTROps[0] = Chain;
 | |
|       MTCTROps[1] = LoadFuncPtr;
 | |
|       MTCTROps[2] = InFlag;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
 | |
|                         2 + (InFlag.getNode() != 0));
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::Other);
 | |
|     NodeTys.push_back(MVT::Glue);
 | |
|     Ops.push_back(Chain);
 | |
|     CallOpc = PPCISD::BCTRL;
 | |
|     Callee.setNode(0);
 | |
|     // Add use of X11 (holding environment pointer)
 | |
|     if (isSVR4ABI && isPPC64)
 | |
|       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
 | |
|     // Add CTR register as callee so a bctr can be emitted later.
 | |
|     if (isTailCall)
 | |
|       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
 | |
|   }
 | |
| 
 | |
|   // If this is a direct call, pass the chain and the callee.
 | |
|   if (Callee.getNode()) {
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(Callee);
 | |
|   }
 | |
|   // If this is a tail call add stack pointer delta.
 | |
|   if (isTailCall)
 | |
|     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   return CallOpc;
 | |
| }
 | |
| 
 | |
| static
 | |
| bool isLocalCall(const SDValue &Callee)
 | |
| {
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     return !G->getGlobal()->isDeclaration() &&
 | |
|            !G->getGlobal()->isWeakForLinker();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    SDLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                     getTargetMachine(), RVLocs, *DAG.getContext());
 | |
|   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl,
 | |
|                                      VA.getLocReg(), VA.getLocVT(), InFlag);
 | |
|     Chain = Val.getValue(1);
 | |
|     InFlag = Val.getValue(2);
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::AExt:
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(Val);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
 | |
|                               bool isTailCall, bool isVarArg,
 | |
|                               SelectionDAG &DAG,
 | |
|                               SmallVector<std::pair<unsigned, SDValue>, 8>
 | |
|                                 &RegsToPass,
 | |
|                               SDValue InFlag, SDValue Chain,
 | |
|                               SDValue &Callee,
 | |
|                               int SPDiff, unsigned NumBytes,
 | |
|                               const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                               SmallVectorImpl<SDValue> &InVals) const {
 | |
|   std::vector<EVT> NodeTys;
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
 | |
|                                  isTailCall, RegsToPass, Ops, NodeTys,
 | |
|                                  PPCSubTarget);
 | |
| 
 | |
|   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
 | |
|   if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
 | |
|     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
 | |
| 
 | |
|   // When performing tail call optimization the callee pops its arguments off
 | |
|   // the stack. Account for this here so these bytes can be pushed back on in
 | |
|   // PPCFrameLowering::eliminateCallFramePseudoInstr.
 | |
|   int BytesCalleePops =
 | |
|     (CallConv == CallingConv::Fast &&
 | |
|      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   // Emit tail call.
 | |
|   if (isTailCall) {
 | |
|     assert(((Callee.getOpcode() == ISD::Register &&
 | |
|              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
 | |
|             Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | |
|             Callee.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|             isa<ConstantSDNode>(Callee)) &&
 | |
|     "Expecting an global address, external symbol, absolute value or register");
 | |
| 
 | |
|     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
 | |
|   }
 | |
| 
 | |
|   // Add a NOP immediately after the branch instruction when using the 64-bit
 | |
|   // SVR4 ABI. At link time, if caller and callee are in a different module and
 | |
|   // thus have a different TOC, the call will be replaced with a call to a stub
 | |
|   // function which saves the current TOC, loads the TOC of the callee and
 | |
|   // branches to the callee. The NOP will be replaced with a load instruction
 | |
|   // which restores the TOC of the caller from the TOC save slot of the current
 | |
|   // stack frame. If caller and callee belong to the same module (and have the
 | |
|   // same TOC), the NOP will remain unchanged.
 | |
| 
 | |
|   bool needsTOCRestore = false;
 | |
|   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
 | |
|     if (CallOpc == PPCISD::BCTRL) {
 | |
|       // This is a call through a function pointer.
 | |
|       // Restore the caller TOC from the save area into R2.
 | |
|       // See PrepareCall() for more information about calls through function
 | |
|       // pointers in the 64-bit SVR4 ABI.
 | |
|       // We are using a target-specific load with r2 hard coded, because the
 | |
|       // result of a target-independent load would never go directly into r2,
 | |
|       // since r2 is a reserved register (which prevents the register allocator
 | |
|       // from allocating it), resulting in an additional register being
 | |
|       // allocated and an unnecessary move instruction being generated.
 | |
|       needsTOCRestore = true;
 | |
|     } else if ((CallOpc == PPCISD::CALL) &&
 | |
|                (!isLocalCall(Callee) ||
 | |
|                 DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
 | |
|       // Otherwise insert NOP for non-local calls.
 | |
|       CallOpc = PPCISD::CALL_NOP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   if (needsTOCRestore) {
 | |
|     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(BytesCalleePops, true),
 | |
|                              InFlag, dl);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | |
|                          Ins, dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | |
|                              SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG                     = CLI.DAG;
 | |
|   SDLoc &dl                             = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | |
|   SDValue Chain                         = CLI.Chain;
 | |
|   SDValue Callee                        = CLI.Callee;
 | |
|   bool &isTailCall                      = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv              = CLI.CallConv;
 | |
|   bool isVarArg                         = CLI.IsVarArg;
 | |
| 
 | |
|   if (isTailCall)
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
 | |
|                                                    Ins, DAG);
 | |
| 
 | |
|   if (PPCSubTarget.isSVR4ABI()) {
 | |
|     if (PPCSubTarget.isPPC64())
 | |
|       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
 | |
|                               isTailCall, Outs, OutVals, Ins,
 | |
|                               dl, DAG, InVals);
 | |
|     else
 | |
|       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
 | |
|                               isTailCall, Outs, OutVals, Ins,
 | |
|                               dl, DAG, InVals);
 | |
|   }
 | |
| 
 | |
|   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
 | |
|                           isTailCall, Outs, OutVals, Ins,
 | |
|                           dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
 | |
|                                     CallingConv::ID CallConv, bool isVarArg,
 | |
|                                     bool isTailCall,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     SDLoc dl, SelectionDAG &DAG,
 | |
|                                     SmallVectorImpl<SDValue> &InVals) const {
 | |
|   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
 | |
|   // of the 32-bit SVR4 ABI stack frame layout.
 | |
| 
 | |
|   assert((CallConv == CallingConv::C ||
 | |
|           CallConv == CallingConv::Fast) && "Unknown calling convention!");
 | |
| 
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, parameter list area and the part of the local variable space which
 | |
|   // contains copies of aggregates which are passed by value.
 | |
| 
 | |
|   // Assign locations to all of the outgoing arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // Handle fixed and variable vector arguments differently.
 | |
|     // Fixed vector arguments go into registers as long as registers are
 | |
|     // available. Variable vector arguments always go into memory.
 | |
|     unsigned NumArgs = Outs.size();
 | |
| 
 | |
|     for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|       MVT ArgVT = Outs[i].VT;
 | |
|       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|       bool Result;
 | |
| 
 | |
|       if (Outs[i].IsFixed) {
 | |
|         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
 | |
|                                CCInfo);
 | |
|       } else {
 | |
|         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
 | |
|                                       ArgFlags, CCInfo);
 | |
|       }
 | |
| 
 | |
|       if (Result) {
 | |
| #ifndef NDEBUG
 | |
|         errs() << "Call operand #" << i << " has unhandled type "
 | |
|              << EVT(ArgVT).getEVTString() << "\n";
 | |
| #endif
 | |
|         llvm_unreachable(0);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // All arguments are treated the same.
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
 | |
|   }
 | |
| 
 | |
|   // Assign locations to all of the outgoing aggregate by value arguments.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
 | |
| 
 | |
|   // Size of the linkage area, parameter list area and the part of the local
 | |
|   // space variable where copies of aggregates which are passed by value are
 | |
|   // stored.
 | |
|   unsigned NumBytes = CCByValInfo.getNextStackOffset();
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                                dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be moved somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
 | |
|                                        dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   bool seenFloatArg = false;
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, j = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     if (Flags.isByVal()) {
 | |
|       // Argument is an aggregate which is passed by value, thus we need to
 | |
|       // create a copy of it in the local variable space of the current stack
 | |
|       // frame (which is the stack frame of the caller) and pass the address of
 | |
|       // this copy to the callee.
 | |
|       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
 | |
|       CCValAssign &ByValVA = ByValArgLocs[j++];
 | |
|       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 | |
| 
 | |
|       // Memory reserved in the local variable space of the callers stack frame.
 | |
|       unsigned LocMemOffset = ByValVA.getLocMemOffset();
 | |
| 
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
| 
 | |
|       // Create a copy of the argument in the local area of the current
 | |
|       // stack frame.
 | |
|       SDValue MemcpyCall =
 | |
|         CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                                   CallSeqStart.getNode()->getOperand(0),
 | |
|                                   Flags, DAG, dl);
 | |
| 
 | |
|       // This must go outside the CALLSEQ_START..END.
 | |
|       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | |
|                            CallSeqStart.getNode()->getOperand(1),
 | |
|                            SDLoc(MemcpyCall));
 | |
|       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                              NewCallSeqStart.getNode());
 | |
|       Chain = CallSeqStart = NewCallSeqStart;
 | |
| 
 | |
|       // Pass the address of the aggregate copy on the stack either in a
 | |
|       // physical register or in the parameter list area of the current stack
 | |
|       // frame to the callee.
 | |
|       Arg = PtrOff;
 | |
|     }
 | |
| 
 | |
|     if (VA.isRegLoc()) {
 | |
|       if (Arg.getValueType() == MVT::i1)
 | |
|         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
 | |
| 
 | |
|       seenFloatArg |= VA.getLocVT().isFloatingPoint();
 | |
|       // Put argument in a physical register.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       // Put argument in the parameter list area of the current stack frame.
 | |
|       assert(VA.isMemLoc());
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
| 
 | |
|       if (!isTailCall) {
 | |
|         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
| 
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                            MachinePointerInfo(),
 | |
|                                            false, false, 0));
 | |
|       } else {
 | |
|         // Calculate and remember argument location.
 | |
|         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
 | |
|                                  TailCallArguments);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // Set CR bit 6 to true if this is a vararg call with floating args passed in
 | |
|   // registers.
 | |
|   if (isVarArg) {
 | |
|     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|     SDValue Ops[] = { Chain, InFlag };
 | |
| 
 | |
|     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
 | |
|                         dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
 | |
| 
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
 | |
|                     false, TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
 | |
|                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
 | |
|                     Ins, InVals);
 | |
| }
 | |
| 
 | |
| // Copy an argument into memory, being careful to do this outside the
 | |
| // call sequence for the call to which the argument belongs.
 | |
| SDValue
 | |
| PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
 | |
|                                               SDValue CallSeqStart,
 | |
|                                               ISD::ArgFlagsTy Flags,
 | |
|                                               SelectionDAG &DAG,
 | |
|                                               SDLoc dl) const {
 | |
|   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                         CallSeqStart.getNode()->getOperand(0),
 | |
|                         Flags, DAG, dl);
 | |
|   // The MEMCPY must go outside the CALLSEQ_START..END.
 | |
|   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | |
|                              CallSeqStart.getNode()->getOperand(1),
 | |
|                              SDLoc(MemcpyCall));
 | |
|   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                          NewCallSeqStart.getNode());
 | |
|   return NewCallSeqStart;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
 | |
|                                     CallingConv::ID CallConv, bool isVarArg,
 | |
|                                     bool isTailCall,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     SDLoc dl, SelectionDAG &DAG,
 | |
|                                     SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   unsigned NumOps = Outs.size();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   unsigned PtrByteSize = 8;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with at least 48 bytes, which
 | |
|   // is reserved space for [SP][CR][LR][3 x unused].
 | |
|   // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
 | |
|   // of this call.
 | |
|   unsigned NumBytes =
 | |
|     CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
 | |
|                                          Outs, OutVals, nAltivecParamsAtEnd);
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // To protect arguments on the stack from being clobbered in a tail call,
 | |
|   // force all the loads to happen before doing any other lowering.
 | |
|   if (isTailCall)
 | |
|     Chain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                                dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be move somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
 | |
|                                        dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.  Also, if this is a vararg function, floating point operations
 | |
|   // must be stored to our stack, and loaded into integer regs as well, if
 | |
|   // any integer regs are available for argument passing.
 | |
|   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   static const MCPhysReg GPR[] = {
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg *FPR = GetFPR();
 | |
| 
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
|   static const MCPhysReg VSRH[] = {
 | |
|     PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
 | |
|     PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
 | |
|   };
 | |
| 
 | |
|   const unsigned NumGPRs = array_lengthof(GPR);
 | |
|   const unsigned NumFPRs = 13;
 | |
|   const unsigned NumVRs  = array_lengthof(VR);
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff;
 | |
| 
 | |
|     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
 | |
| 
 | |
|     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
| 
 | |
|     // Promote integers to 64-bit values.
 | |
|     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
 | |
|       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | |
|       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | |
|     }
 | |
| 
 | |
|     // FIXME memcpy is used way more than necessary.  Correctness first.
 | |
|     // Note: "by value" is code for passing a structure by value, not
 | |
|     // basic types.
 | |
|     if (Flags.isByVal()) {
 | |
|       // Note: Size includes alignment padding, so
 | |
|       //   struct x { short a; char b; }
 | |
|       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
 | |
|       // These are the proper values we need for right-justifying the
 | |
|       // aggregate in a parameter register.
 | |
|       unsigned Size = Flags.getByValSize();
 | |
| 
 | |
|       // An empty aggregate parameter takes up no storage and no
 | |
|       // registers.
 | |
|       if (Size == 0)
 | |
|         continue;
 | |
| 
 | |
|       unsigned BVAlign = Flags.getByValAlign();
 | |
|       if (BVAlign > 8) {
 | |
|         if (BVAlign % PtrByteSize != 0)
 | |
|           llvm_unreachable(
 | |
|             "ByVal alignment is not a multiple of the pointer size");
 | |
| 
 | |
|         ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
 | |
|       }
 | |
| 
 | |
|       // All aggregates smaller than 8 bytes must be passed right-justified.
 | |
|       if (Size==1 || Size==2 || Size==4) {
 | |
|         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | |
|                                         MachinePointerInfo(), VT,
 | |
|                                         false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|           ArgOffset += PtrByteSize;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (GPR_idx == NumGPRs && Size < 8) {
 | |
|         SDValue Const = DAG.getConstant(PtrByteSize - Size,
 | |
|                                         PtrOff.getValueType());
 | |
|         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
|       // Copy entire object into memory.  There are cases where gcc-generated
 | |
|       // code assumes it is there, even if it could be put entirely into
 | |
|       // registers.  (This is not what the doc says.)
 | |
| 
 | |
|       // FIXME: The above statement is likely due to a misunderstanding of the
 | |
|       // documents.  All arguments must be copied into the parameter area BY
 | |
|       // THE CALLEE in the event that the callee takes the address of any
 | |
|       // formal argument.  That has not yet been implemented.  However, it is
 | |
|       // reasonable to use the stack area as a staging area for the register
 | |
|       // load.
 | |
| 
 | |
|       // Skip this for small aggregates, as we will use the same slot for a
 | |
|       // right-justified copy, below.
 | |
|       if (Size >= 8)
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
| 
 | |
|       // When a register is available, pass a small aggregate right-justified.
 | |
|       if (Size < 8 && GPR_idx != NumGPRs) {
 | |
|         // The easiest way to get this right-justified in a register
 | |
|         // is to copy the structure into the rightmost portion of a
 | |
|         // local variable slot, then load the whole slot into the
 | |
|         // register.
 | |
|         // FIXME: The memcpy seems to produce pretty awful code for
 | |
|         // small aggregates, particularly for packed ones.
 | |
|         // FIXME: It would be preferable to use the slot in the
 | |
|         // parameter save area instead of a new local variable.
 | |
|         SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
 | |
|         SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                           CallSeqStart,
 | |
|                                                           Flags, DAG, dl);
 | |
| 
 | |
|         // Load the slot into the register.
 | |
|         SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
 | |
|                                    MachinePointerInfo(),
 | |
|                                    false, false, false, 0);
 | |
|         MemOpChains.push_back(Load.getValue(1));
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|         // Done with this argument.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For aggregates larger than PtrByteSize, copy the pieces of the
 | |
|       // object that fit into registers from the parameter save area.
 | |
|       for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | |
|         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
 | |
|         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getSimpleValueType().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (GPR_idx != NumGPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       ArgOffset += PtrByteSize;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (FPR_idx != NumFPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | |
| 
 | |
|         if (isVarArg) {
 | |
|           // A single float or an aggregate containing only a single float
 | |
|           // must be passed right-justified in the stack doubleword, and
 | |
|           // in the GPR, if one is available.
 | |
|           SDValue StoreOff;
 | |
|           if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
 | |
|             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
 | |
|             StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|           } else
 | |
|             StoreOff = PtrOff;
 | |
| 
 | |
|           SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
 | |
|                                        MachinePointerInfo(), false, false, 0);
 | |
|           MemOpChains.push_back(Store);
 | |
| 
 | |
|           // Float varargs are always shadowed in available integer registers
 | |
|           if (GPR_idx != NumGPRs) {
 | |
|             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
 | |
|                                        MachinePointerInfo(), false, false,
 | |
|                                        false, 0);
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|         } else if (GPR_idx != NumGPRs)
 | |
|           // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|           ++GPR_idx;
 | |
|       } else {
 | |
|         // Single-precision floating-point values are mapped to the
 | |
|         // second (rightmost) word of the stack doubleword.
 | |
|         if (Arg.getValueType() == MVT::f32) {
 | |
|           SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
 | |
|           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|         }
 | |
| 
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|     case MVT::v2f64:
 | |
|     case MVT::v2i64:
 | |
|       if (isVarArg) {
 | |
|         // These go aligned on the stack, or in the corresponding R registers
 | |
|         // when within range.  The Darwin PPC ABI doc claims they also go in
 | |
|         // V registers; in fact gcc does this only for arguments that are
 | |
|         // prototyped, not for those that match the ...  We do it for all
 | |
|         // arguments, seems to work.
 | |
|         while (ArgOffset % 16 !=0) {
 | |
|           ArgOffset += PtrByteSize;
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             GPR_idx++;
 | |
|         }
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                             DAG.getConstant(ArgOffset, PtrVT));
 | |
|         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                      MachinePointerInfo(), false, false, 0);
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (VR_idx != NumVRs) {
 | |
|           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
| 
 | |
|           unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
 | |
|                            Arg.getSimpleValueType() == MVT::v2i64) ?
 | |
|                           VSRH[VR_idx] : VR[VR_idx];
 | |
|           ++VR_idx;
 | |
| 
 | |
|           RegsToPass.push_back(std::make_pair(VReg, Load));
 | |
|         }
 | |
|         ArgOffset += 16;
 | |
|         for (unsigned i=0; i<16; i+=PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                   DAG.getConstant(i, PtrVT));
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs Altivec params generally go in registers, but have
 | |
|       // stack space allocated at the end.
 | |
|       if (VR_idx != NumVRs) {
 | |
|         // Doesn't have GPR space allocated.
 | |
|         unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
 | |
|                          Arg.getSimpleValueType() == MVT::v2i64) ?
 | |
|                         VSRH[VR_idx] : VR[VR_idx];
 | |
|         ++VR_idx;
 | |
| 
 | |
|         RegsToPass.push_back(std::make_pair(VReg, Arg));
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          true, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         ArgOffset += 16;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Check if this is an indirect call (MTCTR/BCTRL).
 | |
|   // See PrepareCall() for more information about calls through function
 | |
|   // pointers in the 64-bit SVR4 ABI.
 | |
|   if (!isTailCall &&
 | |
|       !dyn_cast<GlobalAddressSDNode>(Callee) &&
 | |
|       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
 | |
|       !isBLACompatibleAddress(Callee, DAG)) {
 | |
|     // Load r2 into a virtual register and store it to the TOC save area.
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
 | |
|     // TOC save area offset.
 | |
|     SDValue PtrOff = DAG.getIntPtrConstant(40);
 | |
|     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
|     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
 | |
|                          false, false, 0);
 | |
|     // R12 must contain the address of an indirect callee.  This does not
 | |
|     // mean the MTCTR instruction must use R12; it's easier to model this
 | |
|     // as an extra parameter, so do that.
 | |
|     RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
 | |
|                     FPOp, true, TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
 | |
|                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
 | |
|                     Ins, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
 | |
|                                     CallingConv::ID CallConv, bool isVarArg,
 | |
|                                     bool isTailCall,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     SDLoc dl, SelectionDAG &DAG,
 | |
|                                     SmallVectorImpl<SDValue> &InVals) const {
 | |
| 
 | |
|   unsigned NumOps = Outs.size();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | |
|       CallConv == CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with 24/48 bytes, which is
 | |
|   // prereserved space for [SP][CR][LR][3 x unused].
 | |
|   unsigned NumBytes =
 | |
|     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
 | |
|                                          Outs, OutVals,
 | |
|                                          nAltivecParamsAtEnd);
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // To protect arguments on the stack from being clobbered in a tail call,
 | |
|   // force all the loads to happen before doing any other lowering.
 | |
|   if (isTailCall)
 | |
|     Chain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                                dl);
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be move somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
 | |
|                                        dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr;
 | |
|   if (isPPC64)
 | |
|     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|   else
 | |
|     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.  Also, if this is a vararg function, floating point operations
 | |
|   // must be stored to our stack, and loaded into integer regs as well, if
 | |
|   // any integer regs are available for argument passing.
 | |
|   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const MCPhysReg *FPR = GetFPR();
 | |
| 
 | |
|   static const MCPhysReg VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
|   const unsigned NumGPRs = array_lengthof(GPR_32);
 | |
|   const unsigned NumFPRs = 13;
 | |
|   const unsigned NumVRs  = array_lengthof(VR);
 | |
| 
 | |
|   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = OutVals[i];
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff;
 | |
| 
 | |
|     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
 | |
| 
 | |
|     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
| 
 | |
|     // On PPC64, promote integers to 64-bit values.
 | |
|     if (isPPC64 && Arg.getValueType() == MVT::i32) {
 | |
|       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | |
|       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | |
|     }
 | |
| 
 | |
|     // FIXME memcpy is used way more than necessary.  Correctness first.
 | |
|     // Note: "by value" is code for passing a structure by value, not
 | |
|     // basic types.
 | |
|     if (Flags.isByVal()) {
 | |
|       unsigned Size = Flags.getByValSize();
 | |
|       // Very small objects are passed right-justified.  Everything else is
 | |
|       // passed left-justified.
 | |
|       if (Size==1 || Size==2) {
 | |
|         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | |
|                                         MachinePointerInfo(), VT,
 | |
|                                         false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           SDValue Const = DAG.getConstant(PtrByteSize - Size,
 | |
|                                           PtrOff.getValueType());
 | |
|           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | |
|                                                             CallSeqStart,
 | |
|                                                             Flags, DAG, dl);
 | |
|           ArgOffset += PtrByteSize;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       // Copy entire object into memory.  There are cases where gcc-generated
 | |
|       // code assumes it is there, even if it could be put entirely into
 | |
|       // registers.  (This is not what the doc says.)
 | |
|       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | |
|                                                         CallSeqStart,
 | |
|                                                         Flags, DAG, dl);
 | |
| 
 | |
|       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
 | |
|       // copy the pieces of the object that fit into registers from the
 | |
|       // parameter save area.
 | |
|       for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | |
|         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
 | |
|         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getSimpleValueType().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (GPR_idx != NumGPRs) {
 | |
|         if (Arg.getValueType() == MVT::i1)
 | |
|           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
 | |
| 
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       ArgOffset += PtrByteSize;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (FPR_idx != NumFPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | |
| 
 | |
|         if (isVarArg) {
 | |
|           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                        MachinePointerInfo(), false, false, 0);
 | |
|           MemOpChains.push_back(Store);
 | |
| 
 | |
|           // Float varargs are always shadowed in available integer registers
 | |
|           if (GPR_idx != NumGPRs) {
 | |
|             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
 | |
|                                        MachinePointerInfo(), false, false,
 | |
|                                        false, 0);
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
 | |
|             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
 | |
|             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
 | |
|                                        MachinePointerInfo(),
 | |
|                                        false, false, false, 0);
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|         } else {
 | |
|           // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | |
|           // GPRs.
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             ++GPR_idx;
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
 | |
|               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
 | |
|             ++GPR_idx;
 | |
|         }
 | |
|       } else
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       if (isPPC64)
 | |
|         ArgOffset += 8;
 | |
|       else
 | |
|         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       if (isVarArg) {
 | |
|         // These go aligned on the stack, or in the corresponding R registers
 | |
|         // when within range.  The Darwin PPC ABI doc claims they also go in
 | |
|         // V registers; in fact gcc does this only for arguments that are
 | |
|         // prototyped, not for those that match the ...  We do it for all
 | |
|         // arguments, seems to work.
 | |
|         while (ArgOffset % 16 !=0) {
 | |
|           ArgOffset += PtrByteSize;
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             GPR_idx++;
 | |
|         }
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                             DAG.getConstant(ArgOffset, PtrVT));
 | |
|         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                      MachinePointerInfo(), false, false, 0);
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (VR_idx != NumVRs) {
 | |
|           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
 | |
|                                      MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | |
|         }
 | |
|         ArgOffset += 16;
 | |
|         for (unsigned i=0; i<16; i+=PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                   DAG.getConstant(i, PtrVT));
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
 | |
|                                      false, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs Altivec params generally go in registers, but have
 | |
|       // stack space allocated at the end.
 | |
|       if (VR_idx != NumVRs) {
 | |
|         // Doesn't have GPR space allocated.
 | |
|         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | |
|       } else if (nAltivecParamsAtEnd==0) {
 | |
|         // We are emitting Altivec params in order.
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         ArgOffset += 16;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // If all Altivec parameters fit in registers, as they usually do,
 | |
|   // they get stack space following the non-Altivec parameters.  We
 | |
|   // don't track this here because nobody below needs it.
 | |
|   // If there are more Altivec parameters than fit in registers emit
 | |
|   // the stores here.
 | |
|   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
 | |
|     unsigned j = 0;
 | |
|     // Offset is aligned; skip 1st 12 params which go in V registers.
 | |
|     ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|     ArgOffset += 12*16;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       SDValue Arg = OutVals[i];
 | |
|       EVT ArgType = Outs[i].VT;
 | |
|       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
 | |
|           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
 | |
|         if (++j > NumVRs) {
 | |
|           SDValue PtrOff;
 | |
|           // We are emitting Altivec params in order.
 | |
|           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                            isPPC64, isTailCall, true, MemOpChains,
 | |
|                            TailCallArguments, dl);
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // On Darwin, R12 must contain the address of an indirect callee.  This does
 | |
|   // not mean the MTCTR instruction must use R12; it's easier to model this as
 | |
|   // an extra parameter, so do that.
 | |
|   if (!isTailCall &&
 | |
|       !dyn_cast<GlobalAddressSDNode>(Callee) &&
 | |
|       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
 | |
|       !isBLACompatibleAddress(Callee, DAG))
 | |
|     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
 | |
|                                                    PPC::R12), Callee));
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall)
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
 | |
|                     FPOp, true, TailCallArguments);
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
 | |
|                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
 | |
|                     Ins, InVals);
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | |
|                                   MachineFunction &MF, bool isVarArg,
 | |
|                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                   LLVMContext &Context) const {
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
 | |
|                  RVLocs, Context);
 | |
|   return CCInfo.CheckReturn(Outs, RetCC_PPC);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                SDLoc dl, SelectionDAG &DAG) const {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | |
|                  getTargetMachine(), RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
 | |
| 
 | |
|   SDValue Flag;
 | |
|   SmallVector<SDValue, 4> RetOps(1, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     SDValue Arg = OutVals[i];
 | |
| 
 | |
|     switch (VA.getLocInfo()) {
 | |
|     default: llvm_unreachable("Unknown loc info!");
 | |
|     case CCValAssign::Full: break;
 | |
|     case CCValAssign::AExt:
 | |
|       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::ZExt:
 | |
|       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     case CCValAssign::SExt:
 | |
|       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   RetOps[0] = Chain;  // Update chain.
 | |
| 
 | |
|   // Add the flag if we have it.
 | |
|   if (Flag.getNode())
 | |
|     RetOps.push_back(Flag);
 | |
| 
 | |
|   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
 | |
|                      &RetOps[0], RetOps.size());
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
 | |
|                                    const PPCSubtarget &Subtarget) const {
 | |
|   // When we pop the dynamic allocation we need to restore the SP link.
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Get the corect type for pointers.
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Construct the stack pointer operand.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
 | |
|   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | |
| 
 | |
|   // Get the operands for the STACKRESTORE.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue SaveSP = Op.getOperand(1);
 | |
| 
 | |
|   // Load the old link SP.
 | |
|   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
 | |
|                                    MachinePointerInfo(),
 | |
|                                    false, false, false, 0);
 | |
| 
 | |
|   // Restore the stack pointer.
 | |
|   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
 | |
| 
 | |
|   // Store the old link SP.
 | |
|   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isDarwinABI = PPCSubTarget.isDarwinABI();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int RASI = FI->getReturnAddrSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!RASI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
 | |
|     // Save the result.
 | |
|     FI->setReturnAddrSaveIndex(RASI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(RASI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isDarwinABI = PPCSubTarget.isDarwinABI();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int FPSI = FI->getFramePointerSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!FPSI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
 | |
|                                                            isDarwinABI);
 | |
| 
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
 | |
|     // Save the result.
 | |
|     FI->setFramePointerSaveIndex(FPSI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(FPSI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                          SelectionDAG &DAG,
 | |
|                                          const PPCSubtarget &Subtarget) const {
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Get the corect type for pointers.
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Negate the size.
 | |
|   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
 | |
|                                   DAG.getConstant(0, PtrVT), Size);
 | |
|   // Construct a node for the frame pointer save index.
 | |
|   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | |
|   // Build a DYNALLOC node.
 | |
|   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | |
|   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | |
|   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
 | |
|                      DAG.getVTList(MVT::i32, MVT::Other),
 | |
|                      Op.getOperand(0), Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
 | |
|                      Op.getOperand(0), Op.getOperand(1));
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 loads");
 | |
| 
 | |
|   // First, load 8 bits into 32 bits, then truncate to 1 bit.
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
| 
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue BasePtr = LD->getBasePtr();
 | |
|   MachineMemOperand *MMO = LD->getMemOperand();
 | |
| 
 | |
|   SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
 | |
|                                  BasePtr, MVT::i8, MMO);
 | |
|   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
 | |
| 
 | |
|   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 stores");
 | |
| 
 | |
|   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(Op);
 | |
| 
 | |
|   SDValue Chain = ST->getChain();
 | |
|   SDValue BasePtr = ST->getBasePtr();
 | |
|   SDValue Value = ST->getValue();
 | |
|   MachineMemOperand *MMO = ST->getMemOperand();
 | |
| 
 | |
|   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
 | |
|   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
 | |
| }
 | |
| 
 | |
| // FIXME: Remove this once the ANDI glue bug is fixed:
 | |
| SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i1 &&
 | |
|          "Custom lowering only for i1 results");
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
 | |
|                      Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | |
| /// possible.
 | |
| SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   // Not FP? Not a fsel.
 | |
|   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
 | |
|       !Op.getOperand(2).getValueType().isFloatingPoint())
 | |
|     return Op;
 | |
| 
 | |
|   // We might be able to do better than this under some circumstances, but in
 | |
|   // general, fsel-based lowering of select is a finite-math-only optimization.
 | |
|   // For more information, see section F.3 of the 2.06 ISA specification.
 | |
|   if (!DAG.getTarget().Options.NoInfsFPMath ||
 | |
|       !DAG.getTarget().Options.NoNaNsFPMath)
 | |
|     return Op;
 | |
| 
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
| 
 | |
|   EVT ResVT = Op.getValueType();
 | |
|   EVT CmpVT = Op.getOperand(0).getValueType();
 | |
|   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // If the RHS of the comparison is a 0.0, we don't need to do the
 | |
|   // subtraction at all.
 | |
|   SDValue Sel1;
 | |
|   if (isFloatingPointZero(RHS))
 | |
|     switch (CC) {
 | |
|     default: break;       // SETUO etc aren't handled by fsel.
 | |
|     case ISD::SETNE:
 | |
|       std::swap(TV, FV);
 | |
|     case ISD::SETEQ:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | |
|       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETLT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | |
|     case ISD::SETUGT:
 | |
|     case ISD::SETGT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
 | |
|     }
 | |
| 
 | |
|   SDValue Cmp;
 | |
|   switch (CC) {
 | |
|   default: break;       // SETUO etc aren't handled by fsel.
 | |
|   case ISD::SETNE:
 | |
|     std::swap(TV, FV);
 | |
|   case ISD::SETEQ:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETLE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // FIXME: Split this code up when LegalizeDAGTypes lands.
 | |
| SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | |
|                                            SDLoc dl) const {
 | |
|   assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | |
|   SDValue Src = Op.getOperand(0);
 | |
|   if (Src.getValueType() == MVT::f32)
 | |
|     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | |
| 
 | |
|   SDValue Tmp;
 | |
|   switch (Op.getSimpleValueType().SimpleTy) {
 | |
|   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | |
|   case MVT::i32:
 | |
|     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
 | |
|                         (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
 | |
|                                                    PPCISD::FCTIDZ),
 | |
|                       dl, MVT::f64, Src);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
 | |
|            "i64 FP_TO_UINT is supported only with FPCVT");
 | |
|     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | |
|                                                         PPCISD::FCTIDUZ,
 | |
|                       dl, MVT::f64, Src);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Convert the FP value to an int value through memory.
 | |
|   bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
 | |
|     (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
 | |
|   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
 | |
|   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
 | |
|   MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
 | |
| 
 | |
|   // Emit a store to the stack slot.
 | |
|   SDValue Chain;
 | |
|   if (i32Stack) {
 | |
|     MachineFunction &MF = DAG.getMachineFunction();
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
 | |
|     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
 | |
|     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
 | |
|               DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
 | |
|               MVT::i32, MMO);
 | |
|   } else
 | |
|     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
 | |
|                          MPI, false, false, 0);
 | |
| 
 | |
|   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | |
|   // add in a bias.
 | |
|   if (Op.getValueType() == MVT::i32 && !i32Stack) {
 | |
|     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
 | |
|                         DAG.getConstant(4, FIPtr.getValueType()));
 | |
|     MPI = MachinePointerInfo();
 | |
|   }
 | |
| 
 | |
|   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
 | |
|                      false, false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | |
|   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i1)
 | |
|     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
 | |
|                        DAG.getConstantFP(1.0, Op.getValueType()),
 | |
|                        DAG.getConstantFP(0.0, Op.getValueType()));
 | |
| 
 | |
|   assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
 | |
|          "UINT_TO_FP is supported only with FPCVT");
 | |
| 
 | |
|   // If we have FCFIDS, then use it when converting to single-precision.
 | |
|   // Otherwise, convert to double-precision and then round.
 | |
|   unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
 | |
|                    (Op.getOpcode() == ISD::UINT_TO_FP ?
 | |
|                     PPCISD::FCFIDUS : PPCISD::FCFIDS) :
 | |
|                    (Op.getOpcode() == ISD::UINT_TO_FP ?
 | |
|                     PPCISD::FCFIDU : PPCISD::FCFID);
 | |
|   MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
 | |
|                    MVT::f32 : MVT::f64;
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i64) {
 | |
|     SDValue SINT = Op.getOperand(0);
 | |
|     // When converting to single-precision, we actually need to convert
 | |
|     // to double-precision first and then round to single-precision.
 | |
|     // To avoid double-rounding effects during that operation, we have
 | |
|     // to prepare the input operand.  Bits that might be truncated when
 | |
|     // converting to double-precision are replaced by a bit that won't
 | |
|     // be lost at this stage, but is below the single-precision rounding
 | |
|     // position.
 | |
|     //
 | |
|     // However, if -enable-unsafe-fp-math is in effect, accept double
 | |
|     // rounding to avoid the extra overhead.
 | |
|     if (Op.getValueType() == MVT::f32 &&
 | |
|         !PPCSubTarget.hasFPCVT() &&
 | |
|         !DAG.getTarget().Options.UnsafeFPMath) {
 | |
| 
 | |
|       // Twiddle input to make sure the low 11 bits are zero.  (If this
 | |
|       // is the case, we are guaranteed the value will fit into the 53 bit
 | |
|       // mantissa of an IEEE double-precision value without rounding.)
 | |
|       // If any of those low 11 bits were not zero originally, make sure
 | |
|       // bit 12 (value 2048) is set instead, so that the final rounding
 | |
|       // to single-precision gets the correct result.
 | |
|       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | |
|                                   SINT, DAG.getConstant(2047, MVT::i64));
 | |
|       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | |
|                           Round, DAG.getConstant(2047, MVT::i64));
 | |
|       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
 | |
|       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | |
|                           Round, DAG.getConstant(-2048, MVT::i64));
 | |
| 
 | |
|       // However, we cannot use that value unconditionally: if the magnitude
 | |
|       // of the input value is small, the bit-twiddling we did above might
 | |
|       // end up visibly changing the output.  Fortunately, in that case, we
 | |
|       // don't need to twiddle bits since the original input will convert
 | |
|       // exactly to double-precision floating-point already.  Therefore,
 | |
|       // construct a conditional to use the original value if the top 11
 | |
|       // bits are all sign-bit copies, and use the rounded value computed
 | |
|       // above otherwise.
 | |
|       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
 | |
|                                  SINT, DAG.getConstant(53, MVT::i32));
 | |
|       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | |
|                          Cond, DAG.getConstant(1, MVT::i64));
 | |
|       Cond = DAG.getSetCC(dl, MVT::i32,
 | |
|                           Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
 | |
| 
 | |
|       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
 | |
|     }
 | |
| 
 | |
|     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
 | |
|     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
 | |
| 
 | |
|     if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
 | |
|       FP = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                        MVT::f32, FP, DAG.getIntPtrConstant(0));
 | |
|     return FP;
 | |
|   }
 | |
| 
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | |
|          "Unhandled INT_TO_FP type in custom expander!");
 | |
|   // Since we only generate this in 64-bit mode, we can take advantage of
 | |
|   // 64-bit registers.  In particular, sign extend the input value into the
 | |
|   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | |
|   // then lfd it and fcfid it.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   SDValue Ld;
 | |
|   if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
 | |
|     int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
 | |
|     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | |
|                                  MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                                  false, false, 0);
 | |
| 
 | |
|     assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | |
|            "Expected an i32 store");
 | |
|     MachineMemOperand *MMO =
 | |
|       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                               MachineMemOperand::MOLoad, 4, 4);
 | |
|     SDValue Ops[] = { Store, FIdx };
 | |
|     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
 | |
|                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
 | |
|                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
 | |
|                                  Ops, 2, MVT::i32, MMO);
 | |
|   } else {
 | |
|     assert(PPCSubTarget.isPPC64() &&
 | |
|            "i32->FP without LFIWAX supported only on PPC64");
 | |
| 
 | |
|     int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
 | |
|     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
 | |
|                                 Op.getOperand(0));
 | |
| 
 | |
|     // STD the extended value into the stack slot.
 | |
|     SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
 | |
|                                  MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                                  false, false, 0);
 | |
| 
 | |
|     // Load the value as a double.
 | |
|     Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
 | |
|                      MachinePointerInfo::getFixedStack(FrameIdx),
 | |
|                      false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // FCFID it and return it.
 | |
|   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
 | |
|   if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
 | |
|     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
 | |
|   return FP;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   /*
 | |
|    The rounding mode is in bits 30:31 of FPSR, and has the following
 | |
|    settings:
 | |
|      00 Round to nearest
 | |
|      01 Round to 0
 | |
|      10 Round to +inf
 | |
|      11 Round to -inf
 | |
| 
 | |
|   FLT_ROUNDS, on the other hand, expects the following:
 | |
|     -1 Undefined
 | |
|      0 Round to 0
 | |
|      1 Round to nearest
 | |
|      2 Round to +inf
 | |
|      3 Round to -inf
 | |
| 
 | |
|   To perform the conversion, we do:
 | |
|     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | |
|   */
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue MFFSreg, InFlag;
 | |
| 
 | |
|   // Save FP Control Word to register
 | |
|   EVT NodeTys[] = {
 | |
|     MVT::f64,    // return register
 | |
|     MVT::Glue    // unused in this context
 | |
|   };
 | |
|   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
 | |
| 
 | |
|   // Save FP register to stack slot
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
 | |
|                                StackSlot, MachinePointerInfo(), false, false,0);
 | |
| 
 | |
|   // Load FP Control Word from low 32 bits of stack slot.
 | |
|   SDValue Four = DAG.getConstant(4, PtrVT);
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
 | |
|   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
 | |
|                             false, false, false, 0);
 | |
| 
 | |
|   // Transform as necessary
 | |
|   SDValue CWD1 =
 | |
|     DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                 CWD, DAG.getConstant(3, MVT::i32));
 | |
|   SDValue CWD2 =
 | |
|     DAG.getNode(ISD::SRL, dl, MVT::i32,
 | |
|                 DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                             DAG.getNode(ISD::XOR, dl, MVT::i32,
 | |
|                                         CWD, DAG.getConstant(3, MVT::i32)),
 | |
|                             DAG.getConstant(3, MVT::i32)),
 | |
|                 DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   SDValue RetVal =
 | |
|     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
 | |
| 
 | |
|   return DAG.getNode((VT.getSizeInBits() < 16 ?
 | |
|                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   SDLoc dl(Op);
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SHL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRA!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops, followed by a select_cc.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
 | |
|   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
 | |
|                                   Tmp4, Tmp6, ISD::SETLE);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector related lowering.
 | |
| //
 | |
| 
 | |
| /// BuildSplatI - Build a canonical splati of Val with an element size of
 | |
| /// SplatSize.  Cast the result to VT.
 | |
| static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
 | |
|                              SelectionDAG &DAG, SDLoc dl) {
 | |
|   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | |
| 
 | |
|   static const EVT VTys[] = { // canonical VT to use for each size.
 | |
|     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | |
|   };
 | |
| 
 | |
|   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | |
| 
 | |
|   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
 | |
|   if (Val == -1)
 | |
|     SplatSize = 1;
 | |
| 
 | |
|   EVT CanonicalVT = VTys[SplatSize-1];
 | |
| 
 | |
|   // Build a canonical splat for this value.
 | |
|   SDValue Elt = DAG.getConstant(Val, MVT::i32);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
 | |
|   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
 | |
|                               &Ops[0], Ops.size());
 | |
|   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
 | |
|                                 SelectionDAG &DAG, SDLoc dl,
 | |
|                                 EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), Op);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | |
|                                 SelectionDAG &DAG, SDLoc dl,
 | |
|                                 EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | |
|                                 SDValue Op2, SelectionDAG &DAG,
 | |
|                                 SDLoc dl, EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | |
| /// amount.  The result has the specified value type.
 | |
| static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
 | |
|                              EVT VT, SelectionDAG &DAG, SDLoc dl) {
 | |
|   // Force LHS/RHS to be the right type.
 | |
|   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
 | |
|   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
 | |
| 
 | |
|   int Ops[16];
 | |
|   for (unsigned i = 0; i != 16; ++i)
 | |
|     Ops[i] = i + Amt;
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.  If we CAN select this case, and if it
 | |
| // selects to a single instruction, return Op.  Otherwise, if we can codegen
 | |
| // this case more efficiently than a constant pool load, lower it to the
 | |
| // sequence of ops that should be used.
 | |
| SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
 | |
| 
 | |
|   // Check if this is a splat of a constant value.
 | |
|   APInt APSplatBits, APSplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned SplatBits = APSplatBits.getZExtValue();
 | |
|   unsigned SplatUndef = APSplatUndef.getZExtValue();
 | |
|   unsigned SplatSize = SplatBitSize / 8;
 | |
| 
 | |
|   // First, handle single instruction cases.
 | |
| 
 | |
|   // All zeros?
 | |
|   if (SplatBits == 0) {
 | |
|     // Canonicalize all zero vectors to be v4i32.
 | |
|     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | |
|       SDValue Z = DAG.getConstant(0, MVT::i32);
 | |
|       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
 | |
|       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | |
|   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
 | |
|                     (32-SplatBitSize));
 | |
|   if (SextVal >= -16 && SextVal <= 15)
 | |
|     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
 | |
| 
 | |
| 
 | |
|   // Two instruction sequences.
 | |
| 
 | |
|   // If this value is in the range [-32,30] and is even, use:
 | |
|   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
 | |
|   // If this value is in the range [17,31] and is odd, use:
 | |
|   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
 | |
|   // If this value is in the range [-31,-17] and is odd, use:
 | |
|   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
 | |
|   // Note the last two are three-instruction sequences.
 | |
|   if (SextVal >= -32 && SextVal <= 31) {
 | |
|     // To avoid having these optimizations undone by constant folding,
 | |
|     // we convert to a pseudo that will be expanded later into one of
 | |
|     // the above forms.
 | |
|     SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
 | |
|     EVT VT = Op.getValueType();
 | |
|     int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
 | |
|     SDValue EltSize = DAG.getConstant(Size, MVT::i32);
 | |
|     return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
 | |
|   }
 | |
| 
 | |
|   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
 | |
|   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | |
|   // for fneg/fabs.
 | |
|   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | |
|     // Make -1 and vspltisw -1:
 | |
|     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
 | |
| 
 | |
|     // Make the VSLW intrinsic, computing 0x8000_0000.
 | |
|     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
 | |
|                                    OnesV, DAG, dl);
 | |
| 
 | |
|     // xor by OnesV to invert it.
 | |
|     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
 | |
|     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a wide variety of vsplti*, binop self cases.
 | |
|   static const signed char SplatCsts[] = {
 | |
|     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | |
|     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | |
|   };
 | |
| 
 | |
|   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | |
|     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | |
|     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | |
|     int i = SplatCsts[idx];
 | |
| 
 | |
|     // Figure out what shift amount will be used by altivec if shifted by i in
 | |
|     // this splat size.
 | |
|     unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | |
| 
 | |
|     // vsplti + shl self.
 | |
|     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | |
|         Intrinsic::ppc_altivec_vslw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + srl self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | |
|         Intrinsic::ppc_altivec_vsrw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + sra self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | |
|         Intrinsic::ppc_altivec_vsraw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + rol self.
 | |
|     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | |
|                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | |
|         Intrinsic::ppc_altivec_vrlw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // t = vsplti c, result = vsldoi t, t, 1
 | |
|     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 2
 | |
|     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 3
 | |
|     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       SDLoc dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VMRGHW,
 | |
|     OP_VMRGLW,
 | |
|     OP_VSPLTISW0,
 | |
|     OP_VSPLTISW1,
 | |
|     OP_VSPLTISW2,
 | |
|     OP_VSPLTISW3,
 | |
|     OP_VSLDOI4,
 | |
|     OP_VSLDOI8,
 | |
|     OP_VSLDOI12
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
| 
 | |
|   int ShufIdxs[16];
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown i32 permute!");
 | |
|   case OP_VMRGHW:
 | |
|     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | |
|     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | |
|     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | |
|     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | |
|     break;
 | |
|   case OP_VMRGLW:
 | |
|     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | |
|     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | |
|     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | |
|     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | |
|     break;
 | |
|   case OP_VSPLTISW0:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+0;
 | |
|     break;
 | |
|   case OP_VSPLTISW1:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+4;
 | |
|     break;
 | |
|   case OP_VSPLTISW2:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+8;
 | |
|     break;
 | |
|   case OP_VSPLTISW3:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+12;
 | |
|     break;
 | |
|   case OP_VSLDOI4:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI8:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI12:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
 | |
|   }
 | |
|   EVT VT = OpLHS.getValueType();
 | |
|   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
 | |
|   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
 | |
|   return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | |
| /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | |
| /// return the code it can be lowered into.  Worst case, it can always be
 | |
| /// lowered into a vperm.
 | |
| SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Cases that are handled by instructions that take permute immediates
 | |
|   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | |
|   // selected by the instruction selector.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) {
 | |
|     if (PPC::isSplatShuffleMask(SVOp, 1) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 2) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 4) ||
 | |
|         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
 | |
|         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
 | |
|         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
 | |
|       return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | |
|   // and produce a fixed permutation.  If any of these match, do not lower to
 | |
|   // VPERM.
 | |
|   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
 | |
|       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
 | |
|       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 4, false))
 | |
|     return Op;
 | |
| 
 | |
|   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | |
|   // perfect shuffle table to emit an optimal matching sequence.
 | |
|   ArrayRef<int> PermMask = SVOp->getMask();
 | |
| 
 | |
|   unsigned PFIndexes[4];
 | |
|   bool isFourElementShuffle = true;
 | |
|   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | |
|     unsigned EltNo = 8;   // Start out undef.
 | |
|     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | |
|       if (PermMask[i*4+j] < 0)
 | |
|         continue;   // Undef, ignore it.
 | |
| 
 | |
|       unsigned ByteSource = PermMask[i*4+j];
 | |
|       if ((ByteSource & 3) != j) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (EltNo == 8) {
 | |
|         EltNo = ByteSource/4;
 | |
|       } else if (EltNo != ByteSource/4) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     PFIndexes[i] = EltNo;
 | |
|   }
 | |
| 
 | |
|   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
 | |
|   // perfect shuffle vector to determine if it is cost effective to do this as
 | |
|   // discrete instructions, or whether we should use a vperm.
 | |
|   if (isFourElementShuffle) {
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
| 
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost  = (PFEntry >> 30);
 | |
| 
 | |
|     // Determining when to avoid vperm is tricky.  Many things affect the cost
 | |
|     // of vperm, particularly how many times the perm mask needs to be computed.
 | |
|     // For example, if the perm mask can be hoisted out of a loop or is already
 | |
|     // used (perhaps because there are multiple permutes with the same shuffle
 | |
|     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | |
|     // the loop requires an extra register.
 | |
|     //
 | |
|     // As a compromise, we only emit discrete instructions if the shuffle can be
 | |
|     // generated in 3 or fewer operations.  When we have loop information
 | |
|     // available, if this block is within a loop, we should avoid using vperm
 | |
|     // for 3-operation perms and use a constant pool load instead.
 | |
|     if (Cost < 3)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | |
|   // vector that will get spilled to the constant pool.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | |
| 
 | |
|   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | |
|   // that it is in input element units, not in bytes.  Convert now.
 | |
|   EVT EltVT = V1.getValueType().getVectorElementType();
 | |
|   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | |
| 
 | |
|   SmallVector<SDValue, 16> ResultMask;
 | |
|   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | |
|     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
 | |
| 
 | |
|     for (unsigned j = 0; j != BytesPerElement; ++j)
 | |
|       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
 | |
|                                            MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
 | |
|                                     &ResultMask[0], ResultMask.size());
 | |
|   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
 | |
| }
 | |
| 
 | |
| /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
 | |
| /// altivec comparison.  If it is, return true and fill in Opc/isDot with
 | |
| /// information about the intrinsic.
 | |
| static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
 | |
|                                   bool &isDot) {
 | |
|   unsigned IntrinsicID =
 | |
|     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
 | |
|   CompareOpc = -1;
 | |
|   isDot = false;
 | |
|   switch (IntrinsicID) {
 | |
|   default: return false;
 | |
|     // Comparison predicates.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
 | |
| 
 | |
|     // Normal Comparisons.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | |
| /// lower, do it, otherwise return null.
 | |
| SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | |
|   // opcode number of the comparison.
 | |
|   SDLoc dl(Op);
 | |
|   int CompareOpc;
 | |
|   bool isDot;
 | |
|   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
 | |
|     return SDValue();    // Don't custom lower most intrinsics.
 | |
| 
 | |
|   // If this is a non-dot comparison, make the VCMP node and we are done.
 | |
|   if (!isDot) {
 | |
|     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
 | |
|                               Op.getOperand(1), Op.getOperand(2),
 | |
|                               DAG.getConstant(CompareOpc, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
 | |
|   }
 | |
| 
 | |
|   // Create the PPCISD altivec 'dot' comparison node.
 | |
|   SDValue Ops[] = {
 | |
|     Op.getOperand(2),  // LHS
 | |
|     Op.getOperand(3),  // RHS
 | |
|     DAG.getConstant(CompareOpc, MVT::i32)
 | |
|   };
 | |
|   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
 | |
|   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 | |
| 
 | |
|   // Now that we have the comparison, emit a copy from the CR to a GPR.
 | |
|   // This is flagged to the above dot comparison.
 | |
|   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
 | |
|                                 DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                                 CompNode.getValue(1));
 | |
| 
 | |
|   // Unpack the result based on how the target uses it.
 | |
|   unsigned BitNo;   // Bit # of CR6.
 | |
|   bool InvertBit;   // Invert result?
 | |
|   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | |
|   default:  // Can't happen, don't crash on invalid number though.
 | |
|   case 0:   // Return the value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = false;
 | |
|     break;
 | |
|   case 1:   // Return the inverted value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = true;
 | |
|     break;
 | |
|   case 2:   // Return the value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = false;
 | |
|     break;
 | |
|   case 3:   // Return the inverted value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Shift the bit into the low position.
 | |
|   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(8-(3-BitNo), MVT::i32));
 | |
|   // Isolate the bit.
 | |
|   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   // If we are supposed to, toggle the bit.
 | |
|   if (InvertBit)
 | |
|     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
 | |
|                         DAG.getConstant(1, MVT::i32));
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
 | |
|   // instructions), but for smaller types, we need to first extend up to v2i32
 | |
|   // before doing going farther.
 | |
|   if (Op.getValueType() == MVT::v2i64) {
 | |
|     EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     if (ExtVT != MVT::v2i32) {
 | |
|       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
 | |
|       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
 | |
|                        DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
 | |
|                                         ExtVT.getVectorElementType(), 4)));
 | |
|       Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
 | |
|       Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
 | |
|                        DAG.getValueType(MVT::v2i32));
 | |
|     }
 | |
| 
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   // Create a stack slot that is 16-byte aligned.
 | |
|   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
 | |
|   EVT PtrVT = getPointerTy();
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   // Store the input value into Value#0 of the stack slot.
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
 | |
|                                Op.getOperand(0), FIdx, MachinePointerInfo(),
 | |
|                                false, false, 0);
 | |
|   // Load it out.
 | |
|   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
 | |
|                      false, false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   if (Op.getValueType() == MVT::v4i32) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
 | |
|     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
 | |
| 
 | |
|     SDValue RHSSwap =   // = vrlw RHS, 16
 | |
|       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
 | |
| 
 | |
|     // Shrinkify inputs to v8i16.
 | |
|     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
 | |
|     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
 | |
|     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
 | |
| 
 | |
|     // Low parts multiplied together, generating 32-bit results (we ignore the
 | |
|     // top parts).
 | |
|     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | |
|                                         LHS, RHS, DAG, dl, MVT::v4i32);
 | |
| 
 | |
|     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | |
|                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
 | |
|     // Shift the high parts up 16 bits.
 | |
|     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
 | |
|                               Neg16, DAG, dl);
 | |
|     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
 | |
|   } else if (Op.getValueType() == MVT::v8i16) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
 | |
| 
 | |
|     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | |
|                             LHS, RHS, Zero, DAG, dl);
 | |
|   } else if (Op.getValueType() == MVT::v16i8) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     // Multiply the even 8-bit parts, producing 16-bit sums.
 | |
|     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | |
|                                            LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
 | |
| 
 | |
|     // Multiply the odd 8-bit parts, producing 16-bit sums.
 | |
|     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | |
|                                           LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
 | |
| 
 | |
|     // Merge the results together.
 | |
|     int Ops[16];
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       Ops[i*2  ] = 2*i+1;
 | |
|       Ops[i*2+1] = 2*i+1+16;
 | |
|     }
 | |
|     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown mul to lower!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
 | |
|   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return LowerVASTART(Op, DAG, PPCSubTarget);
 | |
| 
 | |
|   case ISD::VAARG:
 | |
|     return LowerVAARG(Op, DAG, PPCSubTarget);
 | |
| 
 | |
|   case ISD::VACOPY:
 | |
|     return LowerVACOPY(Op, DAG, PPCSubTarget);
 | |
| 
 | |
|   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
 | |
| 
 | |
|   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
 | |
|   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
 | |
| 
 | |
|   case ISD::LOAD:               return LowerLOAD(Op, DAG);
 | |
|   case ISD::STORE:              return LowerSTORE(Op, DAG);
 | |
|   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
 | |
|   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
 | |
|                                                        SDLoc(Op));
 | |
|   case ISD::UINT_TO_FP:
 | |
|   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | |
| 
 | |
|   // Lower 64-bit shifts.
 | |
|   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | |
|   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | |
|   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | |
| 
 | |
|   // Vector-related lowering.
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL(Op, DAG);
 | |
| 
 | |
|   // For counter-based loop handling.
 | |
|   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
 | |
| 
 | |
|   // Frame & Return address.
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   SDLoc dl(N);
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     llvm_unreachable("Do not know how to custom type legalize this operation!");
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
 | |
|         Intrinsic::ppc_is_decremented_ctr_nonzero)
 | |
|       break;
 | |
| 
 | |
|     assert(N->getValueType(0) == MVT::i1 &&
 | |
|            "Unexpected result type for CTR decrement intrinsic");
 | |
|     EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
 | |
|     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
 | |
|     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
 | |
|                                  N->getOperand(1)); 
 | |
| 
 | |
|     Results.push_back(NewInt);
 | |
|     Results.push_back(NewInt.getValue(1));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VAARG: {
 | |
|     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
 | |
|         || TM.getSubtarget<PPCSubtarget>().isPPC64())
 | |
|       return;
 | |
| 
 | |
|     EVT VT = N->getValueType(0);
 | |
| 
 | |
|     if (VT == MVT::i64) {
 | |
|       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
 | |
| 
 | |
|       Results.push_back(NewNode);
 | |
|       Results.push_back(NewNode.getValue(1));
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     assert(N->getValueType(0) == MVT::ppcf128);
 | |
|     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
 | |
|     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                              MVT::f64, N->getOperand(0),
 | |
|                              DAG.getIntPtrConstant(0));
 | |
|     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                              MVT::f64, N->getOperand(0),
 | |
|                              DAG.getIntPtrConstant(1));
 | |
| 
 | |
|     // Add the two halves of the long double in round-to-zero mode.
 | |
|     SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
 | |
| 
 | |
|     // We know the low half is about to be thrown away, so just use something
 | |
|     // convenient.
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
 | |
|                                 FPreg, FPreg));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FP_TO_SINT:
 | |
|     // LowerFP_TO_INT() can only handle f32 and f64.
 | |
|     if (N->getOperand(0).getValueType() == MVT::ppcf128)
 | |
|       return;
 | |
|     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Other Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                                     bool is64bit, unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptrA = MI->getOperand(1).getReg();
 | |
|   unsigned ptrB = MI->getOperand(2).getReg();
 | |
|   unsigned incr = MI->getOperand(3).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   unsigned TmpReg = (!BinOpcode) ? incr :
 | |
|     RegInfo.createVirtualRegister(
 | |
|        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   l[wd]arx dest, ptr
 | |
|   //   add r0, dest, incr
 | |
|   //   st[wd]cx. r0, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | |
|     .addReg(ptrA).addReg(ptrB);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
 | |
|                                             MachineBasicBlock *BB,
 | |
|                                             bool is8bit,    // operation
 | |
|                                             unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   // In 64 bit mode we have to use 64 bits for addresses, even though the
 | |
|   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | |
|   // registers without caring whether they're 32 or 64, but here we're
 | |
|   // doing actual arithmetic on the addresses.
 | |
|   bool is64bit = PPCSubTarget.isPPC64();
 | |
|   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptrA = MI->getOperand(1).getReg();
 | |
|   unsigned ptrB = MI->getOperand(2).getReg();
 | |
|   unsigned incr = MI->getOperand(3).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->splice(exitMBB->begin(), BB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|               (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | |
|   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Ptr1Reg;
 | |
|   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   // The 4-byte load must be aligned, while a char or short may be
 | |
|   // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|   //   xori shift, shift1, 24 [16]
 | |
|   //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|   //   slw incr2, incr, shift
 | |
|   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|   //   slw mask, mask2, shift
 | |
|   //  loopMBB:
 | |
|   //   lwarx tmpDest, ptr
 | |
|   //   add tmp, tmpDest, incr2
 | |
|   //   andc tmp2, tmpDest, mask
 | |
|   //   and tmp3, tmp, mask
 | |
|   //   or tmp4, tmp3, tmp2
 | |
|   //   stwcx. tmp4, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   //   srw dest, tmpDest, shift
 | |
|   if (ptrA != ZeroReg) {
 | |
|     Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|   } else {
 | |
|     Ptr1Reg = ptrB;
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|   if (is64bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|   else
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
 | |
|       .addReg(incr).addReg(ShiftReg);
 | |
|   if (is8bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|   else {
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|       .addReg(Mask2Reg).addReg(ShiftReg);
 | |
| 
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|     .addReg(ZeroReg).addReg(PtrReg);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
 | |
|       .addReg(Incr2Reg).addReg(TmpDestReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
 | |
|     .addReg(TmpDestReg).addReg(MaskReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
 | |
|     .addReg(TmpReg).addReg(MaskReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
 | |
|     .addReg(Tmp3Reg).addReg(Tmp2Reg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::STWCX))
 | |
|     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
 | |
|     .addReg(ShiftReg);
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| llvm::MachineBasicBlock*
 | |
| PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
 | |
|                                     MachineBasicBlock *MBB) const {
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
|   MachineFunction::iterator I = MBB;
 | |
|   ++I;
 | |
| 
 | |
|   // Memory Reference
 | |
|   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
 | |
|   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
 | |
| 
 | |
|   unsigned DstReg = MI->getOperand(0).getReg();
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | |
|   assert(RC->hasType(MVT::i32) && "Invalid destination!");
 | |
|   unsigned mainDstReg = MRI.createVirtualRegister(RC);
 | |
|   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   MVT PVT = getPointerTy();
 | |
|   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | |
|          "Invalid Pointer Size!");
 | |
|   // For v = setjmp(buf), we generate
 | |
|   //
 | |
|   // thisMBB:
 | |
|   //  SjLjSetup mainMBB
 | |
|   //  bl mainMBB
 | |
|   //  v_restore = 1
 | |
|   //  b sinkMBB
 | |
|   //
 | |
|   // mainMBB:
 | |
|   //  buf[LabelOffset] = LR
 | |
|   //  v_main = 0
 | |
|   //
 | |
|   // sinkMBB:
 | |
|   //  v = phi(main, restore)
 | |
|   //
 | |
| 
 | |
|   MachineBasicBlock *thisMBB = MBB;
 | |
|   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | |
|   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | |
|   MF->insert(I, mainMBB);
 | |
|   MF->insert(I, sinkMBB);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|   sinkMBB->splice(sinkMBB->begin(), MBB,
 | |
|                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | |
|   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   // Note that the structure of the jmp_buf used here is not compatible
 | |
|   // with that used by libc, and is not designed to be. Specifically, it
 | |
|   // stores only those 'reserved' registers that LLVM does not otherwise
 | |
|   // understand how to spill. Also, by convention, by the time this
 | |
|   // intrinsic is called, Clang has already stored the frame address in the
 | |
|   // first slot of the buffer and stack address in the third. Following the
 | |
|   // X86 target code, we'll store the jump address in the second slot. We also
 | |
|   // need to save the TOC pointer (R2) to handle jumps between shared
 | |
|   // libraries, and that will be stored in the fourth slot. The thread
 | |
|   // identifier (R13) is not affected.
 | |
| 
 | |
|   // thisMBB:
 | |
|   const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | |
|   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | |
|   const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | |
| 
 | |
|   // Prepare IP either in reg.
 | |
|   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
 | |
|   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
 | |
|   unsigned BufReg = MI->getOperand(1).getReg();
 | |
| 
 | |
|   if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
 | |
|     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
 | |
|             .addReg(PPC::X2)
 | |
|             .addImm(TOCOffset)
 | |
|             .addReg(BufReg);
 | |
|     MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
|   }
 | |
| 
 | |
|   // Naked functions never have a base pointer, and so we use r1. For all
 | |
|   // other functions, this decision must be delayed until during PEI.
 | |
|   unsigned BaseReg;
 | |
|   if (MF->getFunction()->getAttributes().hasAttribute(
 | |
|           AttributeSet::FunctionIndex, Attribute::Naked))
 | |
|     BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
 | |
|   else
 | |
|     BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
 | |
| 
 | |
|   MIB = BuildMI(*thisMBB, MI, DL,
 | |
|                 TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
 | |
|           .addReg(BaseReg)
 | |
|           .addImm(BPOffset)
 | |
|           .addReg(BufReg);
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // Setup
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
 | |
|   const PPCRegisterInfo *TRI =
 | |
|     static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
 | |
|   MIB.addRegMask(TRI->getNoPreservedMask());
 | |
| 
 | |
|   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
 | |
| 
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
 | |
|           .addMBB(mainMBB);
 | |
|   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
 | |
| 
 | |
|   thisMBB->addSuccessor(mainMBB, /* weight */ 0);
 | |
|   thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
 | |
| 
 | |
|   // mainMBB:
 | |
|   //  mainDstReg = 0
 | |
|   MIB = BuildMI(mainMBB, DL,
 | |
|     TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
 | |
| 
 | |
|   // Store IP
 | |
|   if (PPCSubTarget.isPPC64()) {
 | |
|     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
 | |
|             .addReg(LabelReg)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
 | |
|             .addReg(LabelReg)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
| 
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
 | |
|   mainMBB->addSuccessor(sinkMBB);
 | |
| 
 | |
|   // sinkMBB:
 | |
|   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | |
|           TII->get(PPC::PHI), DstReg)
 | |
|     .addReg(mainDstReg).addMBB(mainMBB)
 | |
|     .addReg(restoreDstReg).addMBB(thisMBB);
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return sinkMBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
 | |
|                                      MachineBasicBlock *MBB) const {
 | |
|   DebugLoc DL = MI->getDebugLoc();
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|   // Memory Reference
 | |
|   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
 | |
|   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
 | |
| 
 | |
|   MVT PVT = getPointerTy();
 | |
|   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | |
|          "Invalid Pointer Size!");
 | |
| 
 | |
|   const TargetRegisterClass *RC =
 | |
|     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | |
|   unsigned Tmp = MRI.createVirtualRegister(RC);
 | |
|   // Since FP is only updated here but NOT referenced, it's treated as GPR.
 | |
|   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
 | |
|   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
 | |
|   unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
| 
 | |
|   const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | |
|   const int64_t SPOffset    = 2 * PVT.getStoreSize();
 | |
|   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | |
|   const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | |
| 
 | |
|   unsigned BufReg = MI->getOperand(0).getReg();
 | |
| 
 | |
|   // Reload FP (the jumped-to function may not have had a
 | |
|   // frame pointer, and if so, then its r31 will be restored
 | |
|   // as necessary).
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
 | |
|             .addImm(0)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
 | |
|             .addImm(0)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // Reload IP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
 | |
|             .addImm(LabelOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // Reload SP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
 | |
|             .addImm(SPOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
 | |
|             .addImm(SPOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // Reload BP
 | |
|   if (PVT == MVT::i64) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
 | |
|             .addImm(BPOffset)
 | |
|             .addReg(BufReg);
 | |
|   } else {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
 | |
|             .addImm(BPOffset)
 | |
|             .addReg(BufReg);
 | |
|   }
 | |
|   MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|   // Reload TOC
 | |
|   if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
 | |
|     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
 | |
|             .addImm(TOCOffset)
 | |
|             .addReg(BufReg);
 | |
| 
 | |
|     MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
|   }
 | |
| 
 | |
|   // Jump
 | |
|   BuildMI(*MBB, MI, DL,
 | |
|           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
 | |
|   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB) const {
 | |
|   if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
 | |
|       MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
 | |
|     return emitEHSjLjSetJmp(MI, BB);
 | |
|   } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
 | |
|              MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
 | |
|     return emitEHSjLjLongJmp(MI, BB);
 | |
|   }
 | |
| 
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   // To "insert" these instructions we actually have to insert their
 | |
|   // control-flow patterns.
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   MachineFunction *F = BB->getParent();
 | |
| 
 | |
|   if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|                                  MI->getOpcode() == PPC::SELECT_CC_I8 ||
 | |
|                                  MI->getOpcode() == PPC::SELECT_I4 ||
 | |
|                                  MI->getOpcode() == PPC::SELECT_I8)) {
 | |
|     SmallVector<MachineOperand, 2> Cond;
 | |
|     if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|         MI->getOpcode() == PPC::SELECT_CC_I8)
 | |
|       Cond.push_back(MI->getOperand(4));
 | |
|     else
 | |
|       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | |
|     Cond.push_back(MI->getOperand(1));
 | |
| 
 | |
|     DebugLoc dl = MI->getDebugLoc();
 | |
|     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|     TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
 | |
|                       Cond, MI->getOperand(2).getReg(),
 | |
|                       MI->getOperand(3).getReg());
 | |
|   } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|              MI->getOpcode() == PPC::SELECT_CC_I8 ||
 | |
|              MI->getOpcode() == PPC::SELECT_CC_F4 ||
 | |
|              MI->getOpcode() == PPC::SELECT_CC_F8 ||
 | |
|              MI->getOpcode() == PPC::SELECT_CC_VRRC ||
 | |
|              MI->getOpcode() == PPC::SELECT_I4 ||
 | |
|              MI->getOpcode() == PPC::SELECT_I8 ||
 | |
|              MI->getOpcode() == PPC::SELECT_F4 ||
 | |
|              MI->getOpcode() == PPC::SELECT_F8 ||
 | |
|              MI->getOpcode() == PPC::SELECT_VRRC) {
 | |
|     // The incoming instruction knows the destination vreg to set, the
 | |
|     // condition code register to branch on, the true/false values to
 | |
|     // select between, and a branch opcode to use.
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     DebugLoc dl = MI->getDebugLoc();
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
| 
 | |
|     // Transfer the remainder of BB and its successor edges to sinkMBB.
 | |
|     sinkMBB->splice(sinkMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     // Next, add the true and fallthrough blocks as its successors.
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     if (MI->getOpcode() == PPC::SELECT_I4 ||
 | |
|         MI->getOpcode() == PPC::SELECT_I8 ||
 | |
|         MI->getOpcode() == PPC::SELECT_F4 ||
 | |
|         MI->getOpcode() == PPC::SELECT_F8 ||
 | |
|         MI->getOpcode() == PPC::SELECT_VRRC) {
 | |
|       BuildMI(BB, dl, TII->get(PPC::BC))
 | |
|         .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | |
|     } else {
 | |
|       unsigned SelectPred = MI->getOperand(4).getImm();
 | |
|       BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|         .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | |
|     }
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl,
 | |
|             TII->get(PPC::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
|   }
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, 0);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | |
|            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
 | |
|     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | |
| 
 | |
|     unsigned dest   = MI->getOperand(0).getReg();
 | |
|     unsigned ptrA   = MI->getOperand(1).getReg();
 | |
|     unsigned ptrB   = MI->getOperand(2).getReg();
 | |
|     unsigned oldval = MI->getOperand(3).getReg();
 | |
|     unsigned newval = MI->getOperand(4).getReg();
 | |
|     DebugLoc dl     = MI->getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->splice(exitMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // loop1MBB:
 | |
|     //   l[wd]arx dest, ptr
 | |
|     //   cmp[wd] dest, oldval
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   st[wd]cx. newval, ptr
 | |
|     //   bne- loopMBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   st[wd]cx. dest, ptr
 | |
|     // exitBB:
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | |
|       .addReg(oldval).addReg(dest);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|       .addReg(newval).addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|       .addReg(dest).addReg(ptrA).addReg(ptrB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | |
|              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | |
|     // We must use 64-bit registers for addresses when targeting 64-bit,
 | |
|     // since we're actually doing arithmetic on them.  Other registers
 | |
|     // can be 32-bit.
 | |
|     bool is64bit = PPCSubTarget.isPPC64();
 | |
|     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | |
| 
 | |
|     unsigned dest   = MI->getOperand(0).getReg();
 | |
|     unsigned ptrA   = MI->getOperand(1).getReg();
 | |
|     unsigned ptrB   = MI->getOperand(2).getReg();
 | |
|     unsigned oldval = MI->getOperand(3).getReg();
 | |
|     unsigned newval = MI->getOperand(4).getReg();
 | |
|     DebugLoc dl     = MI->getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->splice(exitMBB->begin(), BB,
 | |
|                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | |
|     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     const TargetRegisterClass *RC =
 | |
|       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | |
|     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Ptr1Reg;
 | |
|     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // The 4-byte load must be aligned, while a char or short may be
 | |
|     // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|     //   xori shift, shift1, 24 [16]
 | |
|     //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|     //   slw newval2, newval, shift
 | |
|     //   slw oldval2, oldval,shift
 | |
|     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|     //   slw mask, mask2, shift
 | |
|     //   and newval3, newval2, mask
 | |
|     //   and oldval3, oldval2, mask
 | |
|     // loop1MBB:
 | |
|     //   lwarx tmpDest, ptr
 | |
|     //   and tmp, tmpDest, mask
 | |
|     //   cmpw tmp, oldval3
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   andc tmp2, tmpDest, mask
 | |
|     //   or tmp4, tmp2, newval3
 | |
|     //   stwcx. tmp4, ptr
 | |
|     //   bne- loop1MBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   stwcx. tmpDest, ptr
 | |
|     // exitBB:
 | |
|     //   srw dest, tmpDest, shift
 | |
|     if (ptrA != ZeroReg) {
 | |
|       Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|         .addReg(ptrA).addReg(ptrB);
 | |
|     } else {
 | |
|       Ptr1Reg = ptrB;
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|     if (is64bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|     else
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
 | |
|         .addReg(newval).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
 | |
|         .addReg(oldval).addReg(ShiftReg);
 | |
|     if (is8bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|     else {
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | |
|         .addReg(Mask3Reg).addImm(65535);
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|         .addReg(Mask2Reg).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
 | |
|         .addReg(NewVal2Reg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
 | |
|         .addReg(OldVal2Reg).addReg(MaskReg);
 | |
| 
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|         .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
 | |
|         .addReg(TmpReg).addReg(OldVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
 | |
|         .addReg(Tmp2Reg).addReg(NewVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
 | |
|         .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
 | |
|       .addReg(ZeroReg).addReg(PtrReg);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
 | |
|       .addReg(ShiftReg);
 | |
|   } else if (MI->getOpcode() == PPC::FADDrtz) {
 | |
|     // This pseudo performs an FADD with rounding mode temporarily forced
 | |
|     // to round-to-zero.  We emit this via custom inserter since the FPSCR
 | |
|     // is not modeled at the SelectionDAG level.
 | |
|     unsigned Dest = MI->getOperand(0).getReg();
 | |
|     unsigned Src1 = MI->getOperand(1).getReg();
 | |
|     unsigned Src2 = MI->getOperand(2).getReg();
 | |
|     DebugLoc dl   = MI->getDebugLoc();
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | |
| 
 | |
|     // Save FPSCR value.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
 | |
| 
 | |
|     // Set rounding mode to round-to-zero.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
 | |
| 
 | |
|     // Perform addition.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
 | |
| 
 | |
|     // Restore FPSCR value.
 | |
|     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
 | |
|   } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | |
|              MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
 | |
|              MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | |
|              MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
 | |
|     unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | |
|                        MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
 | |
|                       PPC::ANDIo8 : PPC::ANDIo;
 | |
|     bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | |
|                  MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
 | |
|                                                   &PPC::GPRCRegClass :
 | |
|                                                   &PPC::G8RCRegClass);
 | |
| 
 | |
|     DebugLoc dl   = MI->getDebugLoc();
 | |
|     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
 | |
|       .addReg(MI->getOperand(1).getReg()).addImm(1);
 | |
|     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
 | |
|             MI->getOperand(0).getReg())
 | |
|       .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
 | |
|   } else {
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| 
 | |
|   MI->eraseFromParent();   // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   if (DCI.isAfterLegalizeVectorOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
 | |
|       (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
 | |
|       (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
 | |
|       (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
 | |
| 
 | |
|     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
 | |
|     // For the reciprocal, we need to find the zero of the function:
 | |
|     //   F(X) = A X - 1 [which has a zero at X = 1/A]
 | |
|     //     =>
 | |
|     //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
 | |
|     //     does not require additional intermediate precision]
 | |
| 
 | |
|     // Convergence is quadratic, so we essentially double the number of digits
 | |
|     // correct after every iteration. The minimum architected relative
 | |
|     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
 | |
|     // 23 digits and double has 52 digits.
 | |
|     int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
 | |
|     if (VT.getScalarType() == MVT::f64)
 | |
|       ++Iterations;
 | |
| 
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDLoc dl(Op);
 | |
| 
 | |
|     SDValue FPOne =
 | |
|       DAG.getConstantFP(1.0, VT.getScalarType());
 | |
|     if (VT.isVector()) {
 | |
|       assert(VT.getVectorNumElements() == 4 &&
 | |
|              "Unknown vector type");
 | |
|       FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
 | |
|                           FPOne, FPOne, FPOne, FPOne);
 | |
|     }
 | |
| 
 | |
|     SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
 | |
|     DCI.AddToWorklist(Est.getNode());
 | |
| 
 | |
|     // Newton iterations: Est = Est + Est (1 - Arg * Est)
 | |
|     for (int i = 0; i < Iterations; ++i) {
 | |
|       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
 | |
|       DCI.AddToWorklist(Est.getNode());
 | |
|     }
 | |
| 
 | |
|     return Est;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   if (DCI.isAfterLegalizeVectorOps())
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
 | |
|       (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
 | |
|       (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
 | |
|       (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
 | |
| 
 | |
|     // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
 | |
|     // For the reciprocal sqrt, we need to find the zero of the function:
 | |
|     //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
 | |
|     //     =>
 | |
|     //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
 | |
|     // As a result, we precompute A/2 prior to the iteration loop.
 | |
| 
 | |
|     // Convergence is quadratic, so we essentially double the number of digits
 | |
|     // correct after every iteration. The minimum architected relative
 | |
|     // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
 | |
|     // 23 digits and double has 52 digits.
 | |
|     int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
 | |
|     if (VT.getScalarType() == MVT::f64)
 | |
|       ++Iterations;
 | |
| 
 | |
|     SelectionDAG &DAG = DCI.DAG;
 | |
|     SDLoc dl(Op);
 | |
| 
 | |
|     SDValue FPThreeHalves =
 | |
|       DAG.getConstantFP(1.5, VT.getScalarType());
 | |
|     if (VT.isVector()) {
 | |
|       assert(VT.getVectorNumElements() == 4 &&
 | |
|              "Unknown vector type");
 | |
|       FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
 | |
|                                   FPThreeHalves, FPThreeHalves,
 | |
|                                   FPThreeHalves, FPThreeHalves);
 | |
|     }
 | |
| 
 | |
|     SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
 | |
|     DCI.AddToWorklist(Est.getNode());
 | |
| 
 | |
|     // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
 | |
|     // this entire sequence requires only one FP constant.
 | |
|     SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
 | |
|     DCI.AddToWorklist(HalfArg.getNode());
 | |
| 
 | |
|     HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
 | |
|     DCI.AddToWorklist(HalfArg.getNode());
 | |
| 
 | |
|     // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
 | |
|     for (int i = 0; i < Iterations; ++i) {
 | |
|       SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
 | |
|       DCI.AddToWorklist(NewEst.getNode());
 | |
| 
 | |
|       Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
 | |
|       DCI.AddToWorklist(Est.getNode());
 | |
|     }
 | |
| 
 | |
|     return Est;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
 | |
| // not enforce equality of the chain operands.
 | |
| static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
 | |
|                             unsigned Bytes, int Dist,
 | |
|                             SelectionDAG &DAG) {
 | |
|   EVT VT = LS->getMemoryVT();
 | |
|   if (VT.getSizeInBits() / 8 != Bytes)
 | |
|     return false;
 | |
| 
 | |
|   SDValue Loc = LS->getBasePtr();
 | |
|   SDValue BaseLoc = Base->getBasePtr();
 | |
|   if (Loc.getOpcode() == ISD::FrameIndex) {
 | |
|     if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | |
|       return false;
 | |
|     const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | |
|     int FS  = MFI->getObjectSize(FI);
 | |
|     int BFS = MFI->getObjectSize(BFI);
 | |
|     if (FS != BFS || FS != (int)Bytes) return false;
 | |
|     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
 | |
|   }
 | |
| 
 | |
|   // Handle X+C
 | |
|   if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
 | |
|       cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
 | |
|     return true;
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   const GlobalValue *GV1 = NULL;
 | |
|   const GlobalValue *GV2 = NULL;
 | |
|   int64_t Offset1 = 0;
 | |
|   int64_t Offset2 = 0;
 | |
|   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
 | |
|   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
 | |
|   if (isGA1 && isGA2 && GV1 == GV2)
 | |
|     return Offset1 == (Offset2 + Dist*Bytes);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true is there is a nearyby consecutive load to the one provided
 | |
| // (regardless of alignment). We search up and down the chain, looking though
 | |
| // token factors and other loads (but nothing else). As a result, a true
 | |
| // results indicates that it is safe to create a new consecutive load adjacent
 | |
| // to the load provided.
 | |
| static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
 | |
|   SDValue Chain = LD->getChain();
 | |
|   EVT VT = LD->getMemoryVT();
 | |
| 
 | |
|   SmallSet<SDNode *, 16> LoadRoots;
 | |
|   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
 | |
|   SmallSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   // First, search up the chain, branching to follow all token-factor operands.
 | |
|   // If we find a consecutive load, then we're done, otherwise, record all
 | |
|   // nodes just above the top-level loads and token factors.
 | |
|   while (!Queue.empty()) {
 | |
|     SDNode *ChainNext = Queue.pop_back_val();
 | |
|     if (!Visited.insert(ChainNext))
 | |
|       continue;
 | |
| 
 | |
|     if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
 | |
|       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | |
|         return true;
 | |
| 
 | |
|       if (!Visited.count(ChainLD->getChain().getNode()))
 | |
|         Queue.push_back(ChainLD->getChain().getNode());
 | |
|     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
 | |
|       for (SDNode::op_iterator O = ChainNext->op_begin(),
 | |
|            OE = ChainNext->op_end(); O != OE; ++O)
 | |
|         if (!Visited.count(O->getNode()))
 | |
|           Queue.push_back(O->getNode());
 | |
|     } else
 | |
|       LoadRoots.insert(ChainNext);
 | |
|   }
 | |
| 
 | |
|   // Second, search down the chain, starting from the top-level nodes recorded
 | |
|   // in the first phase. These top-level nodes are the nodes just above all
 | |
|   // loads and token factors. Starting with their uses, recursively look though
 | |
|   // all loads (just the chain uses) and token factors to find a consecutive
 | |
|   // load.
 | |
|   Visited.clear();
 | |
|   Queue.clear();
 | |
| 
 | |
|   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
 | |
|        IE = LoadRoots.end(); I != IE; ++I) {
 | |
|     Queue.push_back(*I);
 | |
|        
 | |
|     while (!Queue.empty()) {
 | |
|       SDNode *LoadRoot = Queue.pop_back_val();
 | |
|       if (!Visited.insert(LoadRoot))
 | |
|         continue;
 | |
| 
 | |
|       if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
 | |
|         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | |
|           return true;
 | |
| 
 | |
|       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
 | |
|            UE = LoadRoot->use_end(); UI != UE; ++UI)
 | |
|         if (((isa<LoadSDNode>(*UI) &&
 | |
|             cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
 | |
|             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
 | |
|           Queue.push_back(*UI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
 | |
|                                                   DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   assert(PPCSubTarget.useCRBits() &&
 | |
|          "Expecting to be tracking CR bits");
 | |
|   // If we're tracking CR bits, we need to be careful that we don't have:
 | |
|   //   trunc(binary-ops(zext(x), zext(y)))
 | |
|   // or
 | |
|   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
 | |
|   // such that we're unnecessarily moving things into GPRs when it would be
 | |
|   // better to keep them in CR bits.
 | |
| 
 | |
|   // Note that trunc here can be an actual i1 trunc, or can be the effective
 | |
|   // truncation that comes from a setcc or select_cc.
 | |
|   if (N->getOpcode() == ISD::TRUNCATE &&
 | |
|       N->getValueType(0) != MVT::i1)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOperand(0).getValueType() != MVT::i32 &&
 | |
|       N->getOperand(0).getValueType() != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOpcode() == ISD::SETCC ||
 | |
|       N->getOpcode() == ISD::SELECT_CC) {
 | |
|     // If we're looking at a comparison, then we need to make sure that the
 | |
|     // high bits (all except for the first) don't matter the result.
 | |
|     ISD::CondCode CC =
 | |
|       cast<CondCodeSDNode>(N->getOperand(
 | |
|         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
 | |
|     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
 | |
| 
 | |
|     if (ISD::isSignedIntSetCC(CC)) {
 | |
|       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
 | |
|           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
 | |
|         return SDValue();
 | |
|     } else if (ISD::isUnsignedIntSetCC(CC)) {
 | |
|       if (!DAG.MaskedValueIsZero(N->getOperand(0),
 | |
|                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
 | |
|           !DAG.MaskedValueIsZero(N->getOperand(1),
 | |
|                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
 | |
|         return SDValue();
 | |
|     } else {
 | |
|       // This is neither a signed nor an unsigned comparison, just make sure
 | |
|       // that the high bits are equal.
 | |
|       APInt Op1Zero, Op1One;
 | |
|       APInt Op2Zero, Op2One;
 | |
|       DAG.ComputeMaskedBits(N->getOperand(0), Op1Zero, Op1One);
 | |
|       DAG.ComputeMaskedBits(N->getOperand(1), Op2Zero, Op2One);
 | |
| 
 | |
|       // We don't really care about what is known about the first bit (if
 | |
|       // anything), so clear it in all masks prior to comparing them.
 | |
|       Op1Zero.clearBit(0); Op1One.clearBit(0);
 | |
|       Op2Zero.clearBit(0); Op2One.clearBit(0);
 | |
| 
 | |
|       if (Op1Zero != Op2Zero || Op1One != Op2One)
 | |
|         return SDValue();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We now know that the higher-order bits are irrelevant, we just need to
 | |
|   // make sure that all of the intermediate operations are bit operations, and
 | |
|   // all inputs are extensions.
 | |
|   if (N->getOperand(0).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(0).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
 | |
|       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
 | |
|     return SDValue();
 | |
| 
 | |
|   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
 | |
|       N->getOperand(1).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(1).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
 | |
|       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
 | |
|       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
 | |
|       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 4> Inputs;
 | |
|   SmallVector<SDValue, 8> BinOps, PromOps;
 | |
|   SmallPtrSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   for (unsigned i = 0; i < 2; ++i) {
 | |
|     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | |
|           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | |
|         isa<ConstantSDNode>(N->getOperand(i)))
 | |
|       Inputs.push_back(N->getOperand(i));
 | |
|     else
 | |
|       BinOps.push_back(N->getOperand(i));
 | |
| 
 | |
|     if (N->getOpcode() == ISD::TRUNCATE)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Visit all inputs, collect all binary operations (and, or, xor and
 | |
|   // select) that are all fed by extensions. 
 | |
|   while (!BinOps.empty()) {
 | |
|     SDValue BinOp = BinOps.back();
 | |
|     BinOps.pop_back();
 | |
| 
 | |
|     if (!Visited.insert(BinOp.getNode()))
 | |
|       continue;
 | |
| 
 | |
|     PromOps.push_back(BinOp);
 | |
| 
 | |
|     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | |
|       // The condition of the select is not promoted.
 | |
|       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | |
|         continue;
 | |
|       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | |
|         continue;
 | |
| 
 | |
|       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | |
|            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | |
|           isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | |
|         Inputs.push_back(BinOp.getOperand(i)); 
 | |
|       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
 | |
|         BinOps.push_back(BinOp.getOperand(i));
 | |
|       } else {
 | |
|         // We have an input that is not an extension or another binary
 | |
|         // operation; we'll abort this transformation.
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that this is a self-contained cluster of operations (which
 | |
|   // is not quite the same thing as saying that everything has only one
 | |
|   // use).
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | |
|                               UE = Inputs[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == Inputs[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == Inputs[i] ||
 | |
|             User->getOperand(1) == Inputs[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | |
|     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | |
|                               UE = PromOps[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == PromOps[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == PromOps[i] ||
 | |
|             User->getOperand(1) == PromOps[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace all inputs with the extension operand.
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     // Constants may have users outside the cluster of to-be-promoted nodes,
 | |
|     // and so we need to replace those as we do the promotions.
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
|     else
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 
 | |
|   }
 | |
| 
 | |
|   // Replace all operations (these are all the same, but have a different
 | |
|   // (i1) return type). DAG.getNode will validate that the types of
 | |
|   // a binary operator match, so go through the list in reverse so that
 | |
|   // we've likely promoted both operands first. Any intermediate truncations or
 | |
|   // extensions disappear.
 | |
|   while (!PromOps.empty()) {
 | |
|     SDValue PromOp = PromOps.back();
 | |
|     PromOps.pop_back();
 | |
| 
 | |
|     if (PromOp.getOpcode() == ISD::TRUNCATE ||
 | |
|         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
 | |
|         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|         PromOp.getOpcode() == ISD::ANY_EXTEND) {
 | |
|       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
 | |
|           PromOp.getOperand(0).getValueType() != MVT::i1) {
 | |
|         // The operand is not yet ready (see comment below).
 | |
|         PromOps.insert(PromOps.begin(), PromOp);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       SDValue RepValue = PromOp.getOperand(0);
 | |
|       if (isa<ConstantSDNode>(RepValue))
 | |
|         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
 | |
| 
 | |
|       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned C;
 | |
|     switch (PromOp.getOpcode()) {
 | |
|     default:             C = 0; break;
 | |
|     case ISD::SELECT:    C = 1; break;
 | |
|     case ISD::SELECT_CC: C = 2; break;
 | |
|     }
 | |
| 
 | |
|     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | |
|          PromOp.getOperand(C).getValueType() != MVT::i1) ||
 | |
|         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | |
|          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
 | |
|       // The to-be-promoted operands of this node have not yet been
 | |
|       // promoted (this should be rare because we're going through the
 | |
|       // list backward, but if one of the operands has several users in
 | |
|       // this cluster of to-be-promoted nodes, it is possible).
 | |
|       PromOps.insert(PromOps.begin(), PromOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | |
|                                 PromOp.getNode()->op_end());
 | |
| 
 | |
|     // If there are any constant inputs, make sure they're replaced now.
 | |
|     for (unsigned i = 0; i < 2; ++i)
 | |
|       if (isa<ConstantSDNode>(Ops[C+i]))
 | |
|         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(PromOp,
 | |
|       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1,
 | |
|                   Ops.data(), Ops.size()));
 | |
|   }
 | |
| 
 | |
|   // Now we're left with the initial truncation itself.
 | |
|   if (N->getOpcode() == ISD::TRUNCATE)
 | |
|     return N->getOperand(0);
 | |
| 
 | |
|   // Otherwise, this is a comparison. The operands to be compared have just
 | |
|   // changed type (to i1), but everything else is the same.
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
 | |
|                                                   DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // If we're tracking CR bits, we need to be careful that we don't have:
 | |
|   //   zext(binary-ops(trunc(x), trunc(y)))
 | |
|   // or
 | |
|   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
 | |
|   // such that we're unnecessarily moving things into CR bits that can more
 | |
|   // efficiently stay in GPRs. Note that if we're not certain that the high
 | |
|   // bits are set as required by the final extension, we still may need to do
 | |
|   // some masking to get the proper behavior.
 | |
| 
 | |
|   // This same functionality is important on PPC64 when dealing with
 | |
|   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
 | |
|   // the return values of functions. Because it is so similar, it is handled
 | |
|   // here as well.
 | |
| 
 | |
|   if (N->getValueType(0) != MVT::i32 &&
 | |
|       N->getValueType(0) != MVT::i64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (!((N->getOperand(0).getValueType() == MVT::i1 &&
 | |
|         PPCSubTarget.useCRBits()) ||
 | |
|        (N->getOperand(0).getValueType() == MVT::i32 &&
 | |
|         PPCSubTarget.isPPC64())))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (N->getOperand(0).getOpcode() != ISD::AND &&
 | |
|       N->getOperand(0).getOpcode() != ISD::OR  &&
 | |
|       N->getOperand(0).getOpcode() != ISD::XOR &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT &&
 | |
|       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
 | |
|     return SDValue();
 | |
| 
 | |
|   SmallVector<SDValue, 4> Inputs;
 | |
|   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
 | |
|   SmallPtrSet<SDNode *, 16> Visited;
 | |
| 
 | |
|   // Visit all inputs, collect all binary operations (and, or, xor and
 | |
|   // select) that are all fed by truncations. 
 | |
|   while (!BinOps.empty()) {
 | |
|     SDValue BinOp = BinOps.back();
 | |
|     BinOps.pop_back();
 | |
| 
 | |
|     if (!Visited.insert(BinOp.getNode()))
 | |
|       continue;
 | |
| 
 | |
|     PromOps.push_back(BinOp);
 | |
| 
 | |
|     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | |
|       // The condition of the select is not promoted.
 | |
|       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | |
|         continue;
 | |
|       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | |
|         continue;
 | |
| 
 | |
|       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | |
|           isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | |
|         Inputs.push_back(BinOp.getOperand(i)); 
 | |
|       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | |
|                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
 | |
|         BinOps.push_back(BinOp.getOperand(i));
 | |
|       } else {
 | |
|         // We have an input that is not a truncation or another binary
 | |
|         // operation; we'll abort this transformation.
 | |
|         return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure that this is a self-contained cluster of operations (which
 | |
|   // is not quite the same thing as saying that everything has only one
 | |
|   // use).
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | |
|                               UE = Inputs[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == Inputs[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == Inputs[i] ||
 | |
|             User->getOperand(1) == Inputs[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | |
|     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | |
|                               UE = PromOps[i].getNode()->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *User = *UI;
 | |
|       if (User != N && !Visited.count(User))
 | |
|         return SDValue();
 | |
| 
 | |
|       // Make sure that we're not going to promote the non-output-value
 | |
|       // operand(s) or SELECT or SELECT_CC.
 | |
|       // FIXME: Although we could sometimes handle this, and it does occur in
 | |
|       // practice that one of the condition inputs to the select is also one of
 | |
|       // the outputs, we currently can't deal with this.
 | |
|       if (User->getOpcode() == ISD::SELECT) {
 | |
|         if (User->getOperand(0) == PromOps[i])
 | |
|           return SDValue();
 | |
|       } else if (User->getOpcode() == ISD::SELECT_CC) {
 | |
|         if (User->getOperand(0) == PromOps[i] ||
 | |
|             User->getOperand(1) == PromOps[i])
 | |
|           return SDValue();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
 | |
|   bool ReallyNeedsExt = false;
 | |
|   if (N->getOpcode() != ISD::ANY_EXTEND) {
 | |
|     // If all of the inputs are not already sign/zero extended, then
 | |
|     // we'll still need to do that at the end.
 | |
|     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|       if (isa<ConstantSDNode>(Inputs[i]))
 | |
|         continue;
 | |
| 
 | |
|       unsigned OpBits =
 | |
|         Inputs[i].getOperand(0).getValueSizeInBits();
 | |
|       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
 | |
| 
 | |
|       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
 | |
|            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
 | |
|                                   APInt::getHighBitsSet(OpBits,
 | |
|                                                         OpBits-PromBits))) ||
 | |
|           (N->getOpcode() == ISD::SIGN_EXTEND &&
 | |
|            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
 | |
|              (OpBits-(PromBits-1)))) {
 | |
|         ReallyNeedsExt = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace all inputs, either with the truncation operand, or a
 | |
|   // truncation or extension to the final output type.
 | |
|   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | |
|     // Constant inputs need to be replaced with the to-be-promoted nodes that
 | |
|     // use them because they might have users outside of the cluster of
 | |
|     // promoted nodes.
 | |
|     if (isa<ConstantSDNode>(Inputs[i]))
 | |
|       continue;
 | |
| 
 | |
|     SDValue InSrc = Inputs[i].getOperand(0);
 | |
|     if (Inputs[i].getValueType() == N->getValueType(0))
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
 | |
|     else if (N->getOpcode() == ISD::SIGN_EXTEND)
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|     else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|     else
 | |
|       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | |
|         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | |
|   }
 | |
| 
 | |
|   // Replace all operations (these are all the same, but have a different
 | |
|   // (promoted) return type). DAG.getNode will validate that the types of
 | |
|   // a binary operator match, so go through the list in reverse so that
 | |
|   // we've likely promoted both operands first.
 | |
|   while (!PromOps.empty()) {
 | |
|     SDValue PromOp = PromOps.back();
 | |
|     PromOps.pop_back();
 | |
| 
 | |
|     unsigned C;
 | |
|     switch (PromOp.getOpcode()) {
 | |
|     default:             C = 0; break;
 | |
|     case ISD::SELECT:    C = 1; break;
 | |
|     case ISD::SELECT_CC: C = 2; break;
 | |
|     }
 | |
| 
 | |
|     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | |
|          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
 | |
|         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | |
|          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
 | |
|       // The to-be-promoted operands of this node have not yet been
 | |
|       // promoted (this should be rare because we're going through the
 | |
|       // list backward, but if one of the operands has several users in
 | |
|       // this cluster of to-be-promoted nodes, it is possible).
 | |
|       PromOps.insert(PromOps.begin(), PromOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | |
|                                 PromOp.getNode()->op_end());
 | |
| 
 | |
|     // If this node has constant inputs, then they'll need to be promoted here.
 | |
|     for (unsigned i = 0; i < 2; ++i) {
 | |
|       if (!isa<ConstantSDNode>(Ops[C+i]))
 | |
|         continue;
 | |
|       if (Ops[C+i].getValueType() == N->getValueType(0))
 | |
|         continue;
 | |
| 
 | |
|       if (N->getOpcode() == ISD::SIGN_EXTEND)
 | |
|         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|       else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|       else
 | |
|         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | |
|     }
 | |
| 
 | |
|     DAG.ReplaceAllUsesOfValueWith(PromOp,
 | |
|       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0),
 | |
|                   Ops.data(), Ops.size()));
 | |
|   }
 | |
| 
 | |
|   // Now we're left with the initial extension itself.
 | |
|   if (!ReallyNeedsExt)
 | |
|     return N->getOperand(0);
 | |
| 
 | |
|   // To zero extend, just mask off everything except for the first bit (in the
 | |
|   // i1 case).
 | |
|   if (N->getOpcode() == ISD::ZERO_EXTEND)
 | |
|     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
 | |
|                        DAG.getConstant(APInt::getLowBitsSet(
 | |
|                                          N->getValueSizeInBits(0), PromBits),
 | |
|                                        N->getValueType(0)));
 | |
| 
 | |
|   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
 | |
|          "Invalid extension type");
 | |
|   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
 | |
|   SDValue ShiftCst =
 | |
|     DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
 | |
|   return DAG.getNode(ISD::SRA, dl, N->getValueType(0), 
 | |
|                      DAG.getNode(ISD::SHL, dl, N->getValueType(0),
 | |
|                                  N->getOperand(0), ShiftCst), ShiftCst);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   const TargetMachine &TM = getTargetMachine();
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDLoc dl(N);
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case PPCISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->isNullValue())   // 0 << V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::SRL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->isNullValue())   // 0 >>u V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::SRA:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->isNullValue() ||   //  0 >>s V -> 0.
 | |
|           C->isAllOnesValue())    // -1 >>s V -> -1.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|   case ISD::ZERO_EXTEND:
 | |
|   case ISD::ANY_EXTEND: 
 | |
|     return DAGCombineExtBoolTrunc(N, DCI);
 | |
|   case ISD::TRUNCATE:
 | |
|   case ISD::SETCC:
 | |
|   case ISD::SELECT_CC:
 | |
|     return DAGCombineTruncBoolExt(N, DCI);
 | |
|   case ISD::FDIV: {
 | |
|     assert(TM.Options.UnsafeFPMath &&
 | |
|            "Reciprocal estimates require UnsafeFPMath");
 | |
| 
 | |
|     if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
 | |
|       SDValue RV =
 | |
|         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
 | |
|       if (RV.getNode() != 0) {
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
|         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
 | |
|                            N->getOperand(0), RV);
 | |
|       }
 | |
|     } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
 | |
|                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
 | |
|       SDValue RV =
 | |
|         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
 | |
|                                  DCI);
 | |
|       if (RV.getNode() != 0) {
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
|         RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
 | |
|                          N->getValueType(0), RV);
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
|         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
 | |
|                            N->getOperand(0), RV);
 | |
|       }
 | |
|     } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
 | |
|                N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
 | |
|       SDValue RV =
 | |
|         DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
 | |
|                                  DCI);
 | |
|       if (RV.getNode() != 0) {
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
|         RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
 | |
|                          N->getValueType(0), RV,
 | |
|                          N->getOperand(1).getOperand(1));
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
|         return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
 | |
|                            N->getOperand(0), RV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
 | |
|     if (RV.getNode() != 0) {
 | |
|       DCI.AddToWorklist(RV.getNode());
 | |
|       return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
 | |
|                          N->getOperand(0), RV);
 | |
|     }
 | |
| 
 | |
|     }
 | |
|     break;
 | |
|   case ISD::FSQRT: {
 | |
|     assert(TM.Options.UnsafeFPMath &&
 | |
|            "Reciprocal estimates require UnsafeFPMath");
 | |
| 
 | |
|     // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
 | |
|     // reciprocal sqrt.
 | |
|     SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
 | |
|     if (RV.getNode() != 0) {
 | |
|       DCI.AddToWorklist(RV.getNode());
 | |
|       RV = DAGCombineFastRecip(RV, DCI);
 | |
|       if (RV.getNode() != 0) {
 | |
| 	// Unfortunately, RV is now NaN if the input was exactly 0. Select out
 | |
| 	// this case and force the answer to 0.
 | |
| 
 | |
|         EVT VT = RV.getValueType();
 | |
| 
 | |
|         SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
 | |
|         if (VT.isVector()) {
 | |
|           assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
 | |
|           Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
 | |
|         }
 | |
| 
 | |
|         SDValue ZeroCmp =
 | |
|           DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
 | |
|                        N->getOperand(0), Zero, ISD::SETEQ);
 | |
|         DCI.AddToWorklist(ZeroCmp.getNode());
 | |
|         DCI.AddToWorklist(RV.getNode());
 | |
| 
 | |
|         RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
 | |
|                          ZeroCmp, Zero, RV);
 | |
|         return RV;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SINT_TO_FP:
 | |
|     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
 | |
|       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
 | |
|         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
 | |
|         // We allow the src/dst to be either f32/f64, but the intermediate
 | |
|         // type must be i64.
 | |
|         if (N->getOperand(0).getValueType() == MVT::i64 &&
 | |
|             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
 | |
|           SDValue Val = N->getOperand(0).getOperand(0);
 | |
|           if (Val.getValueType() == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | |
|             DCI.AddToWorklist(Val.getNode());
 | |
|           }
 | |
| 
 | |
|           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.getNode());
 | |
|           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.getNode());
 | |
|           if (N->getValueType(0) == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
 | |
|                               DAG.getIntPtrConstant(0));
 | |
|             DCI.AddToWorklist(Val.getNode());
 | |
|           }
 | |
|           return Val;
 | |
|         } else if (N->getOperand(0).getValueType() == MVT::i32) {
 | |
|           // If the intermediate type is i32, we can avoid the load/store here
 | |
|           // too.
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::STORE:
 | |
|     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
 | |
|     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
 | |
|         !cast<StoreSDNode>(N)->isTruncatingStore() &&
 | |
|         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
 | |
|         N->getOperand(1).getValueType() == MVT::i32 &&
 | |
|         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
 | |
|       SDValue Val = N->getOperand(1).getOperand(0);
 | |
|       if (Val.getValueType() == MVT::f32) {
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | |
|         DCI.AddToWorklist(Val.getNode());
 | |
|       }
 | |
|       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
 | |
|       DCI.AddToWorklist(Val.getNode());
 | |
| 
 | |
|       SDValue Ops[] = {
 | |
|         N->getOperand(0), Val, N->getOperand(2),
 | |
|         DAG.getValueType(N->getOperand(1).getValueType())
 | |
|       };
 | |
| 
 | |
|       Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
 | |
|               DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
 | |
|               cast<StoreSDNode>(N)->getMemoryVT(),
 | |
|               cast<StoreSDNode>(N)->getMemOperand());
 | |
|       DCI.AddToWorklist(Val.getNode());
 | |
|       return Val;
 | |
|     }
 | |
| 
 | |
|     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | |
|     if (cast<StoreSDNode>(N)->isUnindexed() &&
 | |
|         N->getOperand(1).getOpcode() == ISD::BSWAP &&
 | |
|         N->getOperand(1).getNode()->hasOneUse() &&
 | |
|         (N->getOperand(1).getValueType() == MVT::i32 ||
 | |
|          N->getOperand(1).getValueType() == MVT::i16 ||
 | |
|          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
 | |
|           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
 | |
|           N->getOperand(1).getValueType() == MVT::i64))) {
 | |
|       SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | |
|       // Do an any-extend to 32-bits if this is a half-word input.
 | |
|       if (BSwapOp.getValueType() == MVT::i16)
 | |
|         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
 | |
| 
 | |
|       SDValue Ops[] = {
 | |
|         N->getOperand(0), BSwapOp, N->getOperand(2),
 | |
|         DAG.getValueType(N->getOperand(1).getValueType())
 | |
|       };
 | |
|       return
 | |
|         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
 | |
|                                 Ops, array_lengthof(Ops),
 | |
|                                 cast<StoreSDNode>(N)->getMemoryVT(),
 | |
|                                 cast<StoreSDNode>(N)->getMemOperand());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::LOAD: {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     EVT VT = LD->getValueType(0);
 | |
|     Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
 | |
|     unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
 | |
|     if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
 | |
|         TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
 | |
|         (VT == MVT::v16i8 || VT == MVT::v8i16 ||
 | |
|          VT == MVT::v4i32 || VT == MVT::v4f32) &&
 | |
|         LD->getAlignment() < ABIAlignment) {
 | |
|       // This is a type-legal unaligned Altivec load.
 | |
|       SDValue Chain = LD->getChain();
 | |
|       SDValue Ptr = LD->getBasePtr();
 | |
| 
 | |
|       // This implements the loading of unaligned vectors as described in
 | |
|       // the venerable Apple Velocity Engine overview. Specifically:
 | |
|       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
 | |
|       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
 | |
|       //
 | |
|       // The general idea is to expand a sequence of one or more unaligned
 | |
|       // loads into a alignment-based permutation-control instruction (lvsl),
 | |
|       // a series of regular vector loads (which always truncate their
 | |
|       // input address to an aligned address), and a series of permutations.
 | |
|       // The results of these permutations are the requested loaded values.
 | |
|       // The trick is that the last "extra" load is not taken from the address
 | |
|       // you might suspect (sizeof(vector) bytes after the last requested
 | |
|       // load), but rather sizeof(vector) - 1 bytes after the last
 | |
|       // requested vector. The point of this is to avoid a page fault if the
 | |
|       // base address happened to be aligned. This works because if the base
 | |
|       // address is aligned, then adding less than a full vector length will
 | |
|       // cause the last vector in the sequence to be (re)loaded. Otherwise,
 | |
|       // the next vector will be fetched as you might suspect was necessary.
 | |
| 
 | |
|       // We might be able to reuse the permutation generation from
 | |
|       // a different base address offset from this one by an aligned amount.
 | |
|       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
 | |
|       // optimization later.
 | |
|       SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
 | |
|                                           DAG, dl, MVT::v16i8);
 | |
| 
 | |
|       // Refine the alignment of the original load (a "new" load created here
 | |
|       // which was identical to the first except for the alignment would be
 | |
|       // merged with the existing node regardless).
 | |
|       MachineFunction &MF = DAG.getMachineFunction();
 | |
|       MachineMemOperand *MMO =
 | |
|         MF.getMachineMemOperand(LD->getPointerInfo(),
 | |
|                                 LD->getMemOperand()->getFlags(),
 | |
|                                 LD->getMemoryVT().getStoreSize(),
 | |
|                                 ABIAlignment);
 | |
|       LD->refineAlignment(MMO);
 | |
|       SDValue BaseLoad = SDValue(LD, 0);
 | |
| 
 | |
|       // Note that the value of IncOffset (which is provided to the next
 | |
|       // load's pointer info offset value, and thus used to calculate the
 | |
|       // alignment), and the value of IncValue (which is actually used to
 | |
|       // increment the pointer value) are different! This is because we
 | |
|       // require the next load to appear to be aligned, even though it
 | |
|       // is actually offset from the base pointer by a lesser amount.
 | |
|       int IncOffset = VT.getSizeInBits() / 8;
 | |
|       int IncValue = IncOffset;
 | |
| 
 | |
|       // Walk (both up and down) the chain looking for another load at the real
 | |
|       // (aligned) offset (the alignment of the other load does not matter in
 | |
|       // this case). If found, then do not use the offset reduction trick, as
 | |
|       // that will prevent the loads from being later combined (as they would
 | |
|       // otherwise be duplicates).
 | |
|       if (!findConsecutiveLoad(LD, DAG))
 | |
|         --IncValue;
 | |
| 
 | |
|       SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
 | |
|       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | |
| 
 | |
|       SDValue ExtraLoad =
 | |
|         DAG.getLoad(VT, dl, Chain, Ptr,
 | |
|                     LD->getPointerInfo().getWithOffset(IncOffset),
 | |
|                     LD->isVolatile(), LD->isNonTemporal(),
 | |
|                     LD->isInvariant(), ABIAlignment);
 | |
| 
 | |
|       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|         BaseLoad.getValue(1), ExtraLoad.getValue(1));
 | |
| 
 | |
|       if (BaseLoad.getValueType() != MVT::v4i32)
 | |
|         BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
 | |
| 
 | |
|       if (ExtraLoad.getValueType() != MVT::v4i32)
 | |
|         ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
 | |
| 
 | |
|       SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
 | |
|                                       BaseLoad, ExtraLoad, PermCntl, DAG, dl);
 | |
| 
 | |
|       if (VT != MVT::v4i32)
 | |
|         Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
 | |
| 
 | |
|       // Now we need to be really careful about how we update the users of the
 | |
|       // original load. We cannot just call DCI.CombineTo (or
 | |
|       // DAG.ReplaceAllUsesWith for that matter), because the load still has
 | |
|       // uses created here (the permutation for example) that need to stay.
 | |
|       SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|       while (UI != UE) {
 | |
|         SDUse &Use = UI.getUse();
 | |
|         SDNode *User = *UI;
 | |
|         // Note: BaseLoad is checked here because it might not be N, but a
 | |
|         // bitcast of N.
 | |
|         if (User == Perm.getNode() || User == BaseLoad.getNode() ||
 | |
|             User == TF.getNode() || Use.getResNo() > 1) {
 | |
|           ++UI;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         SDValue To = Use.getResNo() ? TF : Perm;
 | |
|         ++UI;
 | |
| 
 | |
|         SmallVector<SDValue, 8> Ops;
 | |
|         for (SDNode::op_iterator O = User->op_begin(),
 | |
|              OE = User->op_end(); O != OE; ++O) {
 | |
|           if (*O == Use)
 | |
|             Ops.push_back(To);
 | |
|           else
 | |
|             Ops.push_back(*O);
 | |
|         }
 | |
| 
 | |
|         DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
 | |
|       }
 | |
| 
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|     if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
 | |
|           Intrinsic::ppc_altivec_lvsl &&
 | |
|         N->getOperand(1)->getOpcode() == ISD::ADD) {
 | |
|       SDValue Add = N->getOperand(1);
 | |
| 
 | |
|       if (DAG.MaskedValueIsZero(Add->getOperand(1),
 | |
|             APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
 | |
|               Add.getValueType().getScalarType().getSizeInBits()))) {
 | |
|         SDNode *BasePtr = Add->getOperand(0).getNode();
 | |
|         for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | |
|              UE = BasePtr->use_end(); UI != UE; ++UI) {
 | |
|           if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|               cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
 | |
|                 Intrinsic::ppc_altivec_lvsl) {
 | |
|             // We've found another LVSL, and this address if an aligned
 | |
|             // multiple of that one. The results will be the same, so use the
 | |
|             // one we've just found instead.
 | |
| 
 | |
|             return SDValue(*UI, 0);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case ISD::BSWAP:
 | |
|     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | |
|     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | |
|         N->getOperand(0).hasOneUse() &&
 | |
|         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
 | |
|          (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
 | |
|           TM.getSubtarget<PPCSubtarget>().isPPC64() &&
 | |
|           N->getValueType(0) == MVT::i64))) {
 | |
|       SDValue Load = N->getOperand(0);
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Load);
 | |
|       // Create the byte-swapping load.
 | |
|       SDValue Ops[] = {
 | |
|         LD->getChain(),    // Chain
 | |
|         LD->getBasePtr(),  // Ptr
 | |
|         DAG.getValueType(N->getValueType(0)) // VT
 | |
|       };
 | |
|       SDValue BSLoad =
 | |
|         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
 | |
|                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
 | |
|                                               MVT::i64 : MVT::i32, MVT::Other),
 | |
|                                 Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
 | |
| 
 | |
|       // If this is an i16 load, insert the truncate.
 | |
|       SDValue ResVal = BSLoad;
 | |
|       if (N->getValueType(0) == MVT::i16)
 | |
|         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
 | |
| 
 | |
|       // First, combine the bswap away.  This makes the value produced by the
 | |
|       // load dead.
 | |
|       DCI.CombineTo(N, ResVal);
 | |
| 
 | |
|       // Next, combine the load away, we give it a bogus result value but a real
 | |
|       // chain result.  The result value is dead because the bswap is dead.
 | |
|       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | |
| 
 | |
|       // Return N so it doesn't get rechecked!
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case PPCISD::VCMP: {
 | |
|     // If a VCMPo node already exists with exactly the same operands as this
 | |
|     // node, use its result instead of this node (VCMPo computes both a CR6 and
 | |
|     // a normal output).
 | |
|     //
 | |
|     if (!N->getOperand(0).hasOneUse() &&
 | |
|         !N->getOperand(1).hasOneUse() &&
 | |
|         !N->getOperand(2).hasOneUse()) {
 | |
| 
 | |
|       // Scan all of the users of the LHS, looking for VCMPo's that match.
 | |
|       SDNode *VCMPoNode = 0;
 | |
| 
 | |
|       SDNode *LHSN = N->getOperand(0).getNode();
 | |
|       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (UI->getOpcode() == PPCISD::VCMPo &&
 | |
|             UI->getOperand(1) == N->getOperand(1) &&
 | |
|             UI->getOperand(2) == N->getOperand(2) &&
 | |
|             UI->getOperand(0) == N->getOperand(0)) {
 | |
|           VCMPoNode = *UI;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // If there is no VCMPo node, or if the flag value has a single use, don't
 | |
|       // transform this.
 | |
|       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | |
|         break;
 | |
| 
 | |
|       // Look at the (necessarily single) use of the flag value.  If it has a
 | |
|       // chain, this transformation is more complex.  Note that multiple things
 | |
|       // could use the value result, which we should ignore.
 | |
|       SDNode *FlagUser = 0;
 | |
|       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
 | |
|            FlagUser == 0; ++UI) {
 | |
|         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | |
|         SDNode *User = *UI;
 | |
|         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
 | |
|             FlagUser = User;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the user is a MFOCRF instruction, we know this is safe.
 | |
|       // Otherwise we give up for right now.
 | |
|       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
 | |
|         return SDValue(VCMPoNode, 0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BRCOND: {
 | |
|     SDValue Cond = N->getOperand(1);
 | |
|     SDValue Target = N->getOperand(2);
 | |
|  
 | |
|     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero) {
 | |
| 
 | |
|       // We now need to make the intrinsic dead (it cannot be instruction
 | |
|       // selected).
 | |
|       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
 | |
|       assert(Cond.getNode()->hasOneUse() &&
 | |
|              "Counter decrement has more than one use");
 | |
| 
 | |
|       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
 | |
|                          N->getOperand(0), Target);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
|   case ISD::BR_CC: {
 | |
|     // If this is a branch on an altivec predicate comparison, lower this so
 | |
|     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
 | |
|     // lowering is done pre-legalize, because the legalizer lowers the predicate
 | |
|     // compare down to code that is difficult to reassemble.
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | |
| 
 | |
|     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
 | |
|     // value. If so, pass-through the AND to get to the intrinsic.
 | |
|     if (LHS.getOpcode() == ISD::AND &&
 | |
|         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | |
|         isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | |
|         !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
 | |
|           isZero())
 | |
|       LHS = LHS.getOperand(0);
 | |
| 
 | |
|     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
 | |
|           Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | |
|         isa<ConstantSDNode>(RHS)) {
 | |
|       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|              "Counter decrement comparison is not EQ or NE");
 | |
| 
 | |
|       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
 | |
|                     (CC == ISD::SETNE && !Val);
 | |
| 
 | |
|       // We now need to make the intrinsic dead (it cannot be instruction
 | |
|       // selected).
 | |
|       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
 | |
|       assert(LHS.getNode()->hasOneUse() &&
 | |
|              "Counter decrement has more than one use");
 | |
| 
 | |
|       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
 | |
|                          N->getOperand(0), N->getOperand(4));
 | |
|     }
 | |
| 
 | |
|     int CompareOpc;
 | |
|     bool isDot;
 | |
| 
 | |
|     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
 | |
|       assert(isDot && "Can't compare against a vector result!");
 | |
| 
 | |
|       // If this is a comparison against something other than 0/1, then we know
 | |
|       // that the condition is never/always true.
 | |
|       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|       if (Val != 0 && Val != 1) {
 | |
|         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | |
|           return N->getOperand(0);
 | |
|         // Always !=, turn it into an unconditional branch.
 | |
|         return DAG.getNode(ISD::BR, dl, MVT::Other,
 | |
|                            N->getOperand(0), N->getOperand(4));
 | |
|       }
 | |
| 
 | |
|       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | |
| 
 | |
|       // Create the PPCISD altivec 'dot' comparison node.
 | |
|       SDValue Ops[] = {
 | |
|         LHS.getOperand(2),  // LHS of compare
 | |
|         LHS.getOperand(3),  // RHS of compare
 | |
|         DAG.getConstant(CompareOpc, MVT::i32)
 | |
|       };
 | |
|       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
 | |
|       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 | |
| 
 | |
|       // Unpack the result based on how the target uses it.
 | |
|       PPC::Predicate CompOpc;
 | |
|       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
 | |
|       default:  // Can't happen, don't crash on invalid number though.
 | |
|       case 0:   // Branch on the value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | |
|         break;
 | |
|       case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | |
|         break;
 | |
|       case 2:   // Branch on the value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | |
|         break;
 | |
|       case 3:   // Branch on the inverted value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
 | |
|                          DAG.getConstant(CompOpc, MVT::i32),
 | |
|                          DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                          N->getOperand(4), CompNode.getValue(1));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case PPCISD::LBRX: {
 | |
|     // lhbrx is known to have the top bits cleared out.
 | |
|     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
 | |
|       KnownZero = 0xFFFF0000;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
 | |
|     default: break;
 | |
|     case Intrinsic::ppc_altivec_vcmpbfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgefp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtub_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | |
|       KnownZero = ~1U;  // All bits but the low one are known to be zero.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstraintType - Given a constraint, return the type of
 | |
| /// constraint it is for this target.
 | |
| PPCTargetLowering::ConstraintType
 | |
| PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'b':
 | |
|     case 'r':
 | |
|     case 'f':
 | |
|     case 'v':
 | |
|     case 'y':
 | |
|       return C_RegisterClass;
 | |
|     case 'Z':
 | |
|       // FIXME: While Z does indicate a memory constraint, it specifically
 | |
|       // indicates an r+r address (used in conjunction with the 'y' modifier
 | |
|       // in the replacement string). Currently, we're forcing the base
 | |
|       // register to be r0 in the asm printer (which is interpreted as zero)
 | |
|       // and forming the complete address in the second register. This is
 | |
|       // suboptimal.
 | |
|       return C_Memory;
 | |
|     }
 | |
|   } else if (Constraint == "wc") { // individual CR bits.
 | |
|     return C_RegisterClass;
 | |
|   } else if (Constraint == "wa" || Constraint == "wd" ||
 | |
|              Constraint == "wf" || Constraint == "ws") {
 | |
|     return C_RegisterClass; // VSX registers.
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
| PPCTargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (CallOperandVal == NULL)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
| 
 | |
|   // Look at the constraint type.
 | |
|   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
 | |
|     return CW_Register; // an individual CR bit.
 | |
|   else if ((StringRef(constraint) == "wa" ||
 | |
|             StringRef(constraint) == "wd" ||
 | |
|             StringRef(constraint) == "wf") &&
 | |
|            type->isVectorTy())
 | |
|     return CW_Register;
 | |
|   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
 | |
|     return CW_Register;
 | |
| 
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
|   case 'b':
 | |
|     if (type->isIntegerTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'f':
 | |
|     if (type->isFloatTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'd':
 | |
|     if (type->isDoubleTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'v':
 | |
|     if (type->isVectorTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
|   case 'y':
 | |
|     weight = CW_Register;
 | |
|     break;
 | |
|   case 'Z':
 | |
|     weight = CW_Memory;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC RS6000 Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'b':   // R1-R31
 | |
|       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
 | |
|         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
 | |
|       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
 | |
|     case 'r':   // R0-R31
 | |
|       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
 | |
|         return std::make_pair(0U, &PPC::G8RCRegClass);
 | |
|       return std::make_pair(0U, &PPC::GPRCRegClass);
 | |
|     case 'f':
 | |
|       if (VT == MVT::f32 || VT == MVT::i32)
 | |
|         return std::make_pair(0U, &PPC::F4RCRegClass);
 | |
|       if (VT == MVT::f64 || VT == MVT::i64)
 | |
|         return std::make_pair(0U, &PPC::F8RCRegClass);
 | |
|       break;
 | |
|     case 'v':
 | |
|       return std::make_pair(0U, &PPC::VRRCRegClass);
 | |
|     case 'y':   // crrc
 | |
|       return std::make_pair(0U, &PPC::CRRCRegClass);
 | |
|     }
 | |
|   } else if (Constraint == "wc") { // an individual CR bit.
 | |
|     return std::make_pair(0U, &PPC::CRBITRCRegClass);
 | |
|   } else if (Constraint == "wa" || Constraint == "wd" ||
 | |
|              Constraint == "wf") {
 | |
|     return std::make_pair(0U, &PPC::VSRCRegClass);
 | |
|   } else if (Constraint == "ws") {
 | |
|     return std::make_pair(0U, &PPC::VSFRCRegClass);
 | |
|   }
 | |
| 
 | |
|   std::pair<unsigned, const TargetRegisterClass*> R =
 | |
|     TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| 
 | |
|   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
 | |
|   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
 | |
|   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
 | |
|   // register.
 | |
|   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
 | |
|   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
 | |
|   if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
 | |
|       PPC::GPRCRegClass.contains(R.first)) {
 | |
|     const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
 | |
|     return std::make_pair(TRI->getMatchingSuperReg(R.first,
 | |
|                             PPC::sub_32, &PPC::G8RCRegClass),
 | |
|                           &PPC::G8RCRegClass);
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                      std::string &Constraint,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0,0);
 | |
| 
 | |
|   // Only support length 1 constraints.
 | |
|   if (Constraint.length() > 1) return;
 | |
| 
 | |
|   char Letter = Constraint[0];
 | |
|   switch (Letter) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P': {
 | |
|     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!CST) return; // Must be an immediate to match.
 | |
|     unsigned Value = CST->getZExtValue();
 | |
|     switch (Letter) {
 | |
|     default: llvm_unreachable("Unknown constraint letter!");
 | |
|     case 'I':  // "I" is a signed 16-bit constant.
 | |
|       if ((short)Value == (int)Value)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | |
|     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | |
|       if ((short)Value == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | |
|       if ((Value >> 16) == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'M':  // "M" is a constant that is greater than 31.
 | |
|       if (Value > 31)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'N':  // "N" is a positive constant that is an exact power of two.
 | |
|       if ((int)Value > 0 && isPowerOf2_32(Value))
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'O':  // "O" is the constant zero.
 | |
|       if (Value == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | |
|       if ((short)-Value == (int)-Value)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle standard constraint letters.
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               Type *Ty) const {
 | |
|   // FIXME: PPC does not allow r+i addressing modes for vectors!
 | |
| 
 | |
|   // PPC allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // PPC only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default:
 | |
|     // No other scales are supported.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   // Make sure the function does not optimize away the store of the RA to
 | |
|   // the stack.
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
|   FuncInfo->setLRStoreRequired();
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isDarwinABI = PPCSubTarget.isDarwinABI();
 | |
| 
 | |
|   if (Depth > 0) {
 | |
|     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | |
|     SDValue Offset =
 | |
| 
 | |
|       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
 | |
|                       isPPC64? MVT::i64 : MVT::i32);
 | |
|     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | |
|                                    FrameAddr, Offset),
 | |
|                        MachinePointerInfo(), false, false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Just load the return address off the stack.
 | |
|   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | |
|   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
 | |
|                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   SDLoc dl(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MFI->setFrameAddressIsTaken(true);
 | |
| 
 | |
|   // Naked functions never have a frame pointer, and so we use r1. For all
 | |
|   // other functions, this decision must be delayed until during PEI.
 | |
|   unsigned FrameReg;
 | |
|   if (MF.getFunction()->getAttributes().hasAttribute(
 | |
|         AttributeSet::FunctionIndex, Attribute::Naked))
 | |
|     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
 | |
|   else
 | |
|     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
 | |
| 
 | |
|   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
 | |
|                                          PtrVT);
 | |
|   while (Depth--)
 | |
|     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
 | |
|                             FrameAddr, MachinePointerInfo(), false, false,
 | |
|                             false, 0);
 | |
|   return FrameAddr;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The PowerPC target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getOptimalMemOpType - Returns the target specific optimal type for load
 | |
| /// and store operations as a result of memset, memcpy, and memmove
 | |
| /// lowering. If DstAlign is zero that means it's safe to destination
 | |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | |
| /// means there isn't a need to check it against alignment requirement,
 | |
| /// probably because the source does not need to be loaded. If 'IsMemset' is
 | |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
 | |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
 | |
| /// source is constant so it does not need to be loaded.
 | |
| /// It returns EVT::Other if the type should be determined using generic
 | |
| /// target-independent logic.
 | |
| EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
 | |
|                                            unsigned DstAlign, unsigned SrcAlign,
 | |
|                                            bool IsMemset, bool ZeroMemset,
 | |
|                                            bool MemcpyStrSrc,
 | |
|                                            MachineFunction &MF) const {
 | |
|   if (this->PPCSubTarget.isPPC64()) {
 | |
|     return MVT::i64;
 | |
|   } else {
 | |
|     return MVT::i32;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Returns true if it is beneficial to convert a load of a constant
 | |
| /// to just the constant itself.
 | |
| bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | |
|                                                           Type *Ty) const {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0 || BitSize > 64)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | |
|   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | |
|   return NumBits1 == 64 && NumBits2 == 32;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | |
|   if (!VT1.isInteger() || !VT2.isInteger())
 | |
|     return false;
 | |
|   unsigned NumBits1 = VT1.getSizeInBits();
 | |
|   unsigned NumBits2 = VT2.getSizeInBits();
 | |
|   return NumBits1 == 64 && NumBits2 == 32;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return isInt<16>(Imm) || isUInt<16>(Imm);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   return isInt<16>(Imm) || isUInt<16>(Imm);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
 | |
|                                                       unsigned,
 | |
|                                                       bool *Fast) const {
 | |
|   if (DisablePPCUnaligned)
 | |
|     return false;
 | |
| 
 | |
|   // PowerPC supports unaligned memory access for simple non-vector types.
 | |
|   // Although accessing unaligned addresses is not as efficient as accessing
 | |
|   // aligned addresses, it is generally more efficient than manual expansion,
 | |
|   // and generally only traps for software emulation when crossing page
 | |
|   // boundaries.
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   if (VT.getSimpleVT().isVector()) {
 | |
|     if (PPCSubTarget.hasVSX()) {
 | |
|       if (VT != MVT::v2f64 && VT != MVT::v2i64)
 | |
|         return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (VT == MVT::ppcf128)
 | |
|     return false;
 | |
| 
 | |
|   if (Fast)
 | |
|     *Fast = true;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
 | |
|                      EVT VT , unsigned DefinedValues) const {
 | |
|   if (VT == MVT::v2i64)
 | |
|     return false;
 | |
| 
 | |
|   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
 | |
| }
 | |
| 
 | |
| Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
 | |
|   if (DisableILPPref || PPCSubTarget.enableMachineScheduler())
 | |
|     return TargetLowering::getSchedulingPreference(N);
 | |
| 
 | |
|   return Sched::ILP;
 | |
| }
 | |
| 
 | |
| // Create a fast isel object.
 | |
| FastISel *
 | |
| PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
 | |
|                                   const TargetLibraryInfo *LibInfo) const {
 | |
|   return PPC::createFastISel(FuncInfo, LibInfo);
 | |
| }
 |