mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	definition below all of the header #include lines, lib/Transforms/... edition. This one is tricky for two reasons. We again have a couple of passes that define something else before the includes as well. I've sunk their name macros with the DEBUG_TYPE. Also, InstCombine contains headers that need DEBUG_TYPE, so now those headers #define and #undef DEBUG_TYPE around their code, leaving them well formed modular headers. Fixing these headers was a large motivation for all of these changes, as "leaky" macros of this form are hard on the modules implementation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1075 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1075 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineVectorOps.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements instcombine for ExtractElement, InsertElement and
 | |
| // ShuffleVector.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | |
| /// is to leave as a vector operation.  isConstant indicates whether we're
 | |
| /// extracting one known element.  If false we're extracting a variable index.
 | |
| static bool CheapToScalarize(Value *V, bool isConstant) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isConstant) return true;
 | |
| 
 | |
|     // If all elts are the same, we can extract it and use any of the values.
 | |
|     if (Constant *Op0 = C->getAggregateElement(0U)) {
 | |
|       for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
 | |
|            ++i)
 | |
|         if (C->getAggregateElement(i) != Op0)
 | |
|           return false;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // Insert element gets simplified to the inserted element or is deleted if
 | |
|   // this is constant idx extract element and its a constant idx insertelt.
 | |
|   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | |
|       isa<ConstantInt>(I->getOperand(2)))
 | |
|     return true;
 | |
|   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | |
|     return true;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | |
|     if (BO->hasOneUse() &&
 | |
|         (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(BO->getOperand(1), isConstant)))
 | |
|       return true;
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     if (CI->hasOneUse() &&
 | |
|         (CheapToScalarize(CI->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(CI->getOperand(1), isConstant)))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindScalarElement - Given a vector and an element number, see if the scalar
 | |
| /// value is already around as a register, for example if it were inserted then
 | |
| /// extracted from the vector.
 | |
| static Value *FindScalarElement(Value *V, unsigned EltNo) {
 | |
|   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | |
|   VectorType *VTy = cast<VectorType>(V->getType());
 | |
|   unsigned Width = VTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(VTy->getElementType());
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return C->getAggregateElement(EltNo);
 | |
| 
 | |
|   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantInt>(III->getOperand(2)))
 | |
|       return 0;
 | |
|     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt)
 | |
|       return III->getOperand(1);
 | |
| 
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return FindScalarElement(III->getOperand(0), EltNo);
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
|     int InEl = SVI->getMaskValue(EltNo);
 | |
|     if (InEl < 0)
 | |
|       return UndefValue::get(VTy->getElementType());
 | |
|     if (InEl < (int)LHSWidth)
 | |
|       return FindScalarElement(SVI->getOperand(0), InEl);
 | |
|     return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | |
|   }
 | |
| 
 | |
|   // Extract a value from a vector add operation with a constant zero.
 | |
|   Value *Val = 0; Constant *Con = 0;
 | |
|   if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
 | |
|     if (Con->getAggregateElement(EltNo)->isNullValue())
 | |
|       return FindScalarElement(Val, EltNo);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we don't know.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // If we have a PHI node with a vector type that has only 2 uses: feed
 | |
| // itself and be an operand of extractelement at a constant location,
 | |
| // try to replace the PHI of the vector type with a PHI of a scalar type.
 | |
| Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
 | |
|   // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
 | |
|   if (!PN->hasNUses(2))
 | |
|     return NULL;
 | |
| 
 | |
|   // If so, it's known at this point that one operand is PHI and the other is
 | |
|   // an extractelement node. Find the PHI user that is not the extractelement
 | |
|   // node.
 | |
|   auto iu = PN->user_begin();
 | |
|   Instruction *PHIUser = dyn_cast<Instruction>(*iu);
 | |
|   if (PHIUser == cast<Instruction>(&EI))
 | |
|     PHIUser = cast<Instruction>(*(++iu));
 | |
| 
 | |
|   // Verify that this PHI user has one use, which is the PHI itself,
 | |
|   // and that it is a binary operation which is cheap to scalarize.
 | |
|   // otherwise return NULL.
 | |
|   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
 | |
|       !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
 | |
|     return NULL;
 | |
| 
 | |
|   // Create a scalar PHI node that will replace the vector PHI node
 | |
|   // just before the current PHI node.
 | |
|   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
 | |
|       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
 | |
|   // Scalarize each PHI operand.
 | |
|   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | |
|     Value *PHIInVal = PN->getIncomingValue(i);
 | |
|     BasicBlock *inBB = PN->getIncomingBlock(i);
 | |
|     Value *Elt = EI.getIndexOperand();
 | |
|     // If the operand is the PHI induction variable:
 | |
|     if (PHIInVal == PHIUser) {
 | |
|       // Scalarize the binary operation. Its first operand is the
 | |
|       // scalar PHI and the second operand is extracted from the other
 | |
|       // vector operand.
 | |
|       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
 | |
|       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
 | |
|       Value *Op = InsertNewInstWith(
 | |
|           ExtractElementInst::Create(B0->getOperand(opId), Elt,
 | |
|                                      B0->getOperand(opId)->getName() + ".Elt"),
 | |
|           *B0);
 | |
|       Value *newPHIUser = InsertNewInstWith(
 | |
|           BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
 | |
|       scalarPHI->addIncoming(newPHIUser, inBB);
 | |
|     } else {
 | |
|       // Scalarize PHI input:
 | |
|       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
 | |
|       // Insert the new instruction into the predecessor basic block.
 | |
|       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
 | |
|       BasicBlock::iterator InsertPos;
 | |
|       if (pos && !isa<PHINode>(pos)) {
 | |
|         InsertPos = pos;
 | |
|         ++InsertPos;
 | |
|       } else {
 | |
|         InsertPos = inBB->getFirstInsertionPt();
 | |
|       }
 | |
| 
 | |
|       InsertNewInstWith(newEI, *InsertPos);
 | |
| 
 | |
|       scalarPHI->addIncoming(newEI, inBB);
 | |
|     }
 | |
|   }
 | |
|   return ReplaceInstUsesWith(EI, scalarPHI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   // If vector val is constant with all elements the same, replace EI with
 | |
|   // that element.  We handle a known element # below.
 | |
|   if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
 | |
|     if (CheapToScalarize(C, false))
 | |
|       return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
 | |
| 
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|     unsigned IndexVal = IdxC->getZExtValue();
 | |
|     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
 | |
| 
 | |
|     // If this is extracting an invalid index, turn this into undef, to avoid
 | |
|     // crashing the code below.
 | |
|     if (IndexVal >= VectorWidth)
 | |
|       return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
| 
 | |
|     // This instruction only demands the single element from the input vector.
 | |
|     // If the input vector has a single use, simplify it based on this use
 | |
|     // property.
 | |
|     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
 | |
|       APInt UndefElts(VectorWidth, 0);
 | |
|       APInt DemandedMask(VectorWidth, 0);
 | |
|       DemandedMask.setBit(IndexVal);
 | |
|       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
 | |
|                                                 DemandedMask, UndefElts)) {
 | |
|         EI.setOperand(0, V);
 | |
|         return &EI;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
 | |
|       return ReplaceInstUsesWith(EI, Elt);
 | |
| 
 | |
|     // If the this extractelement is directly using a bitcast from a vector of
 | |
|     // the same number of elements, see if we can find the source element from
 | |
|     // it.  In this case, we will end up needing to bitcast the scalars.
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
 | |
|       if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
 | |
|         if (VT->getNumElements() == VectorWidth)
 | |
|           if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
 | |
|             return new BitCastInst(Elt, EI.getType());
 | |
|     }
 | |
| 
 | |
|     // If there's a vector PHI feeding a scalar use through this extractelement
 | |
|     // instruction, try to scalarize the PHI.
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
 | |
|       Instruction *scalarPHI = scalarizePHI(EI, PN);
 | |
|       if (scalarPHI)
 | |
|         return scalarPHI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | |
|     // Push extractelement into predecessor operation if legal and
 | |
|     // profitable to do so
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|       if (I->hasOneUse() &&
 | |
|           CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
 | |
|         Value *newEI0 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
 | |
|                                         EI.getName()+".lhs");
 | |
|         Value *newEI1 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
 | |
|                                         EI.getName()+".rhs");
 | |
|         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
 | |
|       }
 | |
|     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|       // Extracting the inserted element?
 | |
|       if (IE->getOperand(2) == EI.getOperand(1))
 | |
|         return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | |
|       // If the inserted and extracted elements are constants, they must not
 | |
|       // be the same value, extract from the pre-inserted value instead.
 | |
|       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
 | |
|         Worklist.AddValue(EI.getOperand(0));
 | |
|         EI.setOperand(0, IE->getOperand(0));
 | |
|         return &EI;
 | |
|       }
 | |
|     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|       // If this is extracting an element from a shufflevector, figure out where
 | |
|       // it came from and extract from the appropriate input element instead.
 | |
|       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
 | |
|         Value *Src;
 | |
|         unsigned LHSWidth =
 | |
|           SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
| 
 | |
|         if (SrcIdx < 0)
 | |
|           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|         if (SrcIdx < (int)LHSWidth)
 | |
|           Src = SVI->getOperand(0);
 | |
|         else {
 | |
|           SrcIdx -= LHSWidth;
 | |
|           Src = SVI->getOperand(1);
 | |
|         }
 | |
|         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
 | |
|         return ExtractElementInst::Create(Src,
 | |
|                                           ConstantInt::get(Int32Ty,
 | |
|                                                            SrcIdx, false));
 | |
|       }
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|       // Canonicalize extractelement(cast) -> cast(extractelement)
 | |
|       // bitcasts can change the number of vector elements and they cost nothing
 | |
|       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
 | |
|         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
 | |
|                                                   EI.getIndexOperand());
 | |
|         Worklist.AddValue(EE);
 | |
|         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
 | |
|       }
 | |
|     } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|       if (SI->hasOneUse()) {
 | |
|         // TODO: For a select on vectors, it might be useful to do this if it
 | |
|         // has multiple extractelement uses. For vector select, that seems to
 | |
|         // fight the vectorizer.
 | |
| 
 | |
|         // If we are extracting an element from a vector select or a select on
 | |
|         // vectors, a select on the scalars extracted from the vector arguments.
 | |
|         Value *TrueVal = SI->getTrueValue();
 | |
|         Value *FalseVal = SI->getFalseValue();
 | |
| 
 | |
|         Value *Cond = SI->getCondition();
 | |
|         if (Cond->getType()->isVectorTy()) {
 | |
|           Cond = Builder->CreateExtractElement(Cond,
 | |
|                                                EI.getIndexOperand(),
 | |
|                                                Cond->getName() + ".elt");
 | |
|         }
 | |
| 
 | |
|         Value *V1Elem
 | |
|           = Builder->CreateExtractElement(TrueVal,
 | |
|                                           EI.getIndexOperand(),
 | |
|                                           TrueVal->getName() + ".elt");
 | |
| 
 | |
|         Value *V2Elem
 | |
|           = Builder->CreateExtractElement(FalseVal,
 | |
|                                           EI.getIndexOperand(),
 | |
|                                           FalseVal->getName() + ".elt");
 | |
|         return SelectInst::Create(Cond,
 | |
|                                   V1Elem,
 | |
|                                   V2Elem,
 | |
|                                   SI->getName() + ".elt");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | |
| /// elements from either LHS or RHS, return the shuffle mask and true.
 | |
| /// Otherwise, return false.
 | |
| static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | |
|                                          SmallVectorImpl<Constant*> &Mask) {
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "Invalid CollectSingleShuffleElements");
 | |
|   unsigned NumElts = V->getType()->getVectorNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == LHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (V == RHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                       i+NumElts));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (!isa<ConstantInt>(IdxOp))
 | |
|       return false;
 | |
|     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | |
|       // Okay, we can handle this if the vector we are insertinting into is
 | |
|       // transitively ok.
 | |
|       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|         // If so, update the mask to reflect the inserted undef.
 | |
|         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
 | |
|         return true;
 | |
|       }
 | |
|     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | |
|       if (isa<ConstantInt>(EI->getOperand(1))) {
 | |
|         unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
 | |
| 
 | |
|         // This must be extracting from either LHS or RHS.
 | |
|         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | |
|           // Okay, we can handle this if the vector we are insertinting into is
 | |
|           // transitively ok.
 | |
|           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
 | |
|             // If so, update the mask to reflect the inserted value.
 | |
|             if (EI->getOperand(0) == LHS) {
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx);
 | |
|             } else {
 | |
|               assert(EI->getOperand(0) == RHS);
 | |
|               Mask[InsertedIdx % NumElts] =
 | |
|               ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                                ExtractedIdx + NumLHSElts);
 | |
|             }
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// We are building a shuffle to create V, which is a sequence of insertelement,
 | |
| /// extractelement pairs. If PermittedRHS is set, then we must either use it or
 | |
| /// not rely on the second vector source. Return an std::pair containing the
 | |
| /// left and right vectors of the proposed shuffle (or 0), and set the Mask
 | |
| /// parameter as required.
 | |
| ///
 | |
| /// Note: we intentionally don't try to fold earlier shuffles since they have
 | |
| /// often been chosen carefully to be efficiently implementable on the target.
 | |
| typedef std::pair<Value *, Value *> ShuffleOps;
 | |
| 
 | |
| static ShuffleOps CollectShuffleElements(Value *V,
 | |
|                                          SmallVectorImpl<Constant *> &Mask,
 | |
|                                          Value *PermittedRHS) {
 | |
|   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
 | |
|   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
 | |
|     return std::make_pair(
 | |
|         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantAggregateZero>(V)) {
 | |
|     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
 | |
|     return std::make_pair(V, nullptr);
 | |
|   }
 | |
| 
 | |
|   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
| 
 | |
|     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|         // Either the extracted from or inserted into vector must be RHSVec,
 | |
|         // otherwise we'd end up with a shuffle of three inputs.
 | |
|         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == 0) {
 | |
|           Value *RHS = EI->getOperand(0);
 | |
|           ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS);
 | |
|           assert(LR.second == 0 || LR.second == RHS);
 | |
| 
 | |
|           if (LR.first->getType() != RHS->getType()) {
 | |
|             // We tried our best, but we can't find anything compatible with RHS
 | |
|             // further up the chain. Return a trivial shuffle.
 | |
|             for (unsigned i = 0; i < NumElts; ++i)
 | |
|               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
 | |
|             return std::make_pair(V, nullptr);
 | |
|           }
 | |
| 
 | |
|           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
 | |
|           Mask[InsertedIdx % NumElts] =
 | |
|             ConstantInt::get(Type::getInt32Ty(V->getContext()),
 | |
|                              NumLHSElts+ExtractedIdx);
 | |
|           return std::make_pair(LR.first, RHS);
 | |
|         }
 | |
| 
 | |
|         if (VecOp == PermittedRHS) {
 | |
|           // We've gone as far as we can: anything on the other side of the
 | |
|           // extractelement will already have been converted into a shuffle.
 | |
|           unsigned NumLHSElts =
 | |
|               EI->getOperand(0)->getType()->getVectorNumElements();
 | |
|           for (unsigned i = 0; i != NumElts; ++i)
 | |
|             Mask.push_back(ConstantInt::get(
 | |
|                 Type::getInt32Ty(V->getContext()),
 | |
|                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
 | |
|           return std::make_pair(EI->getOperand(0), PermittedRHS);
 | |
|         }
 | |
| 
 | |
|         // If this insertelement is a chain that comes from exactly these two
 | |
|         // vectors, return the vector and the effective shuffle.
 | |
|         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
 | |
|             CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
 | |
|                                          Mask))
 | |
|           return std::make_pair(EI->getOperand(0), PermittedRHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, can't do anything fancy.  Return an identity vector.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
 | |
|   return std::make_pair(V, nullptr);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Value *VecOp    = IE.getOperand(0);
 | |
|   Value *ScalarOp = IE.getOperand(1);
 | |
|   Value *IdxOp    = IE.getOperand(2);
 | |
| 
 | |
|   // Inserting an undef or into an undefined place, remove this.
 | |
|   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
 | |
|     ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|   // If the inserted element was extracted from some other vector, and if the
 | |
|   // indexes are constant, try to turn this into a shufflevector operation.
 | |
|   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
 | |
|       unsigned NumInsertVectorElts = IE.getType()->getNumElements();
 | |
|       unsigned NumExtractVectorElts =
 | |
|           EI->getOperand(0)->getType()->getVectorNumElements();
 | |
|       unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
| 
 | |
|       if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|       if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
 | |
|         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | |
| 
 | |
|       // If we are extracting a value from a vector, then inserting it right
 | |
|       // back into the same place, just use the input vector.
 | |
|       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
| 
 | |
|       // If this insertelement isn't used by some other insertelement, turn it
 | |
|       // (and any insertelements it points to), into one big shuffle.
 | |
|       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
 | |
|         SmallVector<Constant*, 16> Mask;
 | |
|         ShuffleOps LR = CollectShuffleElements(&IE, Mask, 0);
 | |
| 
 | |
|         // The proposed shuffle may be trivial, in which case we shouldn't
 | |
|         // perform the combine.
 | |
|         if (LR.first != &IE && LR.second != &IE) {
 | |
|           // We now have a shuffle of LHS, RHS, Mask.
 | |
|           if (LR.second == 0) LR.second = UndefValue::get(LR.first->getType());
 | |
|           return new ShuffleVectorInst(LR.first, LR.second,
 | |
|                                        ConstantVector::get(Mask));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &IE)
 | |
|       return ReplaceInstUsesWith(IE, V);
 | |
|     return &IE;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Return true if we can evaluate the specified expression tree if the vector
 | |
| /// elements were shuffled in a different order.
 | |
| static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
 | |
|                                 unsigned Depth = 5) {
 | |
|   // We can always reorder the elements of a constant.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
| 
 | |
|   // We won't reorder vector arguments. No IPO here.
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // Two users may expect different orders of the elements. Don't try it.
 | |
|   if (!I->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   if (Depth == 0) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::GetElementPtr: {
 | |
|       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|         if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     case Instruction::InsertElement: {
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
 | |
|       if (!CI) return false;
 | |
|       int ElementNumber = CI->getLimitedValue();
 | |
| 
 | |
|       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
 | |
|       // can't put an element into multiple indices.
 | |
|       bool SeenOnce = false;
 | |
|       for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|         if (Mask[i] == ElementNumber) {
 | |
|           if (SeenOnce)
 | |
|             return false;
 | |
|           SeenOnce = true;
 | |
|         }
 | |
|       }
 | |
|       return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Rebuild a new instruction just like 'I' but with the new operands given.
 | |
| /// In the event of type mismatch, the type of the operands is correct.
 | |
| static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
 | |
|   // We don't want to use the IRBuilder here because we want the replacement
 | |
|   // instructions to appear next to 'I', not the builder's insertion point.
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       BinaryOperator *BO = cast<BinaryOperator>(I);
 | |
|       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
 | |
|       BinaryOperator *New =
 | |
|           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
 | |
|                                  NewOps[0], NewOps[1], "", BO);
 | |
|       if (isa<OverflowingBinaryOperator>(BO)) {
 | |
|         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
 | |
|         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
 | |
|       }
 | |
|       if (isa<PossiblyExactOperator>(BO)) {
 | |
|         New->setIsExact(BO->isExact());
 | |
|       }
 | |
|       if (isa<FPMathOperator>(BO))
 | |
|         New->copyFastMathFlags(I);
 | |
|       return New;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|       assert(NewOps.size() == 2 && "icmp with #ops != 2");
 | |
|       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
 | |
|                           NewOps[0], NewOps[1]);
 | |
|     case Instruction::FCmp:
 | |
|       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
 | |
|       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
 | |
|                           NewOps[0], NewOps[1]);
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt: {
 | |
|       // It's possible that the mask has a different number of elements from
 | |
|       // the original cast. We recompute the destination type to match the mask.
 | |
|       Type *DestTy =
 | |
|           VectorType::get(I->getType()->getScalarType(),
 | |
|                           NewOps[0]->getType()->getVectorNumElements());
 | |
|       assert(NewOps.size() == 1 && "cast with #ops != 1");
 | |
|       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
 | |
|                               "", I);
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       Value *Ptr = NewOps[0];
 | |
|       ArrayRef<Value*> Idx = NewOps.slice(1);
 | |
|       GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
 | |
|       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
 | |
|       return GEP;
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("failed to rebuild vector instructions");
 | |
| }
 | |
| 
 | |
| Value *
 | |
| InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
 | |
|   // Mask.size() does not need to be equal to the number of vector elements.
 | |
| 
 | |
|   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
 | |
|                                            Mask.size()));
 | |
|   }
 | |
|   if (isa<ConstantAggregateZero>(V)) {
 | |
|     return ConstantAggregateZero::get(
 | |
|                VectorType::get(V->getType()->getScalarType(),
 | |
|                                Mask.size()));
 | |
|   }
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     SmallVector<Constant *, 16> MaskValues;
 | |
|     for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] == -1)
 | |
|         MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
 | |
|       else
 | |
|         MaskValues.push_back(Builder->getInt32(Mask[i]));
 | |
|     }
 | |
|     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
 | |
|                                           ConstantVector::get(MaskValues));
 | |
|   }
 | |
| 
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::Select:
 | |
|     case Instruction::GetElementPtr: {
 | |
|       SmallVector<Value*, 8> NewOps;
 | |
|       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
 | |
|       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|         Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
 | |
|         NewOps.push_back(V);
 | |
|         NeedsRebuild |= (V != I->getOperand(i));
 | |
|       }
 | |
|       if (NeedsRebuild) {
 | |
|         return BuildNew(I, NewOps);
 | |
|       }
 | |
|       return I;
 | |
|     }
 | |
|     case Instruction::InsertElement: {
 | |
|       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
 | |
| 
 | |
|       // The insertelement was inserting at Element. Figure out which element
 | |
|       // that becomes after shuffling. The answer is guaranteed to be unique
 | |
|       // by CanEvaluateShuffled.
 | |
|       bool Found = false;
 | |
|       int Index = 0;
 | |
|       for (int e = Mask.size(); Index != e; ++Index) {
 | |
|         if (Mask[Index] == Element) {
 | |
|           Found = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If element is not in Mask, no need to handle the operand 1 (element to
 | |
|       // be inserted). Just evaluate values in operand 0 according to Mask.
 | |
|       if (!Found)
 | |
|         return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | |
| 
 | |
|       Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
 | |
|       return InsertElementInst::Create(V, I->getOperand(1),
 | |
|                                        Builder->getInt32(Index), "", I);
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("failed to reorder elements of vector instruction!");
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Value *LHS = SVI.getOperand(0);
 | |
|   Value *RHS = SVI.getOperand(1);
 | |
|   SmallVector<int, 16> Mask = SVI.getShuffleMask();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Undefined shuffle mask -> undefined value.
 | |
|   if (isa<UndefValue>(SVI.getOperand(2)))
 | |
|     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
 | |
| 
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | |
|     if (V != &SVI)
 | |
|       return ReplaceInstUsesWith(SVI, V);
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
 | |
| 
 | |
|   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | |
|   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | |
|   if (LHS == RHS || isa<UndefValue>(LHS)) {
 | |
|     if (isa<UndefValue>(LHS) && LHS == RHS) {
 | |
|       // shuffle(undef,undef,mask) -> undef.
 | |
|       Value *Result = (VWidth == LHSWidth)
 | |
|                       ? LHS : UndefValue::get(SVI.getType());
 | |
|       return ReplaceInstUsesWith(SVI, Result);
 | |
|     }
 | |
| 
 | |
|     // Remap any references to RHS to use LHS.
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
 | |
|       if (Mask[i] < 0) {
 | |
|         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
 | |
|           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
 | |
|         Mask[i] = -1;     // Turn into undef.
 | |
|         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
 | |
|       } else {
 | |
|         Mask[i] = Mask[i] % e;  // Force to LHS.
 | |
|         Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
 | |
|                                         Mask[i]));
 | |
|       }
 | |
|     }
 | |
|     SVI.setOperand(0, SVI.getOperand(1));
 | |
|     SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | |
|     SVI.setOperand(2, ConstantVector::get(Elts));
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   if (VWidth == LHSWidth) {
 | |
|     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | |
|     bool isLHSID = true, isRHSID = true;
 | |
| 
 | |
|     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] < 0) continue;  // Ignore undef values.
 | |
|       // Is this an identity shuffle of the LHS value?
 | |
|       isLHSID &= (Mask[i] == (int)i);
 | |
| 
 | |
|       // Is this an identity shuffle of the RHS value?
 | |
|       isRHSID &= (Mask[i]-e == i);
 | |
|     }
 | |
| 
 | |
|     // Eliminate identity shuffles.
 | |
|     if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | |
|     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | |
|   }
 | |
| 
 | |
|   if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
 | |
|     Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
 | |
|     return ReplaceInstUsesWith(SVI, V);
 | |
|   }
 | |
| 
 | |
|   // If the LHS is a shufflevector itself, see if we can combine it with this
 | |
|   // one without producing an unusual shuffle.
 | |
|   // Cases that might be simplified:
 | |
|   // 1.
 | |
|   // x1=shuffle(v1,v2,mask1)
 | |
|   //  x=shuffle(x1,undef,mask)
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,undef,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
 | |
|   // 2.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == mask1.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,x2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
 | |
|   // 3.
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v2.size() == mask2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(x1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
 | |
|   // 4.
 | |
|   // x1=shuffle(v1,undef,mask1)
 | |
|   // x2=shuffle(v2,undef,mask2)
 | |
|   //  x=shuffle(x1,x2,mask)
 | |
|   // where v1.size() == v2.size()
 | |
|   //        ==>
 | |
|   //  x=shuffle(v1,v2,newMask)
 | |
|   // newMask[i] = (mask[i] < x1.size())
 | |
|   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
 | |
|   //
 | |
|   // Here we are really conservative:
 | |
|   // we are absolutely afraid of producing a shuffle mask not in the input
 | |
|   // program, because the code gen may not be smart enough to turn a merged
 | |
|   // shuffle into two specific shuffles: it may produce worse code.  As such,
 | |
|   // we only merge two shuffles if the result is either a splat or one of the
 | |
|   // input shuffle masks.  In this case, merging the shuffles just removes
 | |
|   // one instruction, which we know is safe.  This is good for things like
 | |
|   // turning: (splat(splat)) -> splat, or
 | |
|   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
 | |
|   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | |
|   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | |
|   if (LHSShuffle)
 | |
|     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
 | |
|       LHSShuffle = NULL;
 | |
|   if (RHSShuffle)
 | |
|     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
 | |
|       RHSShuffle = NULL;
 | |
|   if (!LHSShuffle && !RHSShuffle)
 | |
|     return MadeChange ? &SVI : 0;
 | |
| 
 | |
|   Value* LHSOp0 = NULL;
 | |
|   Value* LHSOp1 = NULL;
 | |
|   Value* RHSOp0 = NULL;
 | |
|   unsigned LHSOp0Width = 0;
 | |
|   unsigned RHSOp0Width = 0;
 | |
|   if (LHSShuffle) {
 | |
|     LHSOp0 = LHSShuffle->getOperand(0);
 | |
|     LHSOp1 = LHSShuffle->getOperand(1);
 | |
|     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
 | |
|   }
 | |
|   if (RHSShuffle) {
 | |
|     RHSOp0 = RHSShuffle->getOperand(0);
 | |
|     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
 | |
|   }
 | |
|   Value* newLHS = LHS;
 | |
|   Value* newRHS = RHS;
 | |
|   if (LHSShuffle) {
 | |
|     // case 1
 | |
|     if (isa<UndefValue>(RHS)) {
 | |
|       newLHS = LHSOp0;
 | |
|       newRHS = LHSOp1;
 | |
|     }
 | |
|     // case 2 or 4
 | |
|     else if (LHSOp0Width == LHSWidth) {
 | |
|       newLHS = LHSOp0;
 | |
|     }
 | |
|   }
 | |
|   // case 3 or 4
 | |
|   if (RHSShuffle && RHSOp0Width == LHSWidth) {
 | |
|     newRHS = RHSOp0;
 | |
|   }
 | |
|   // case 4
 | |
|   if (LHSOp0 == RHSOp0) {
 | |
|     newLHS = LHSOp0;
 | |
|     newRHS = NULL;
 | |
|   }
 | |
| 
 | |
|   if (newLHS == LHS && newRHS == RHS)
 | |
|     return MadeChange ? &SVI : 0;
 | |
| 
 | |
|   SmallVector<int, 16> LHSMask;
 | |
|   SmallVector<int, 16> RHSMask;
 | |
|   if (newLHS != LHS)
 | |
|     LHSMask = LHSShuffle->getShuffleMask();
 | |
|   if (RHSShuffle && newRHS != RHS)
 | |
|     RHSMask = RHSShuffle->getShuffleMask();
 | |
| 
 | |
|   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
 | |
|   SmallVector<int, 16> newMask;
 | |
|   bool isSplat = true;
 | |
|   int SplatElt = -1;
 | |
|   // Create a new mask for the new ShuffleVectorInst so that the new
 | |
|   // ShuffleVectorInst is equivalent to the original one.
 | |
|   for (unsigned i = 0; i < VWidth; ++i) {
 | |
|     int eltMask;
 | |
|     if (Mask[i] < 0) {
 | |
|       // This element is an undef value.
 | |
|       eltMask = -1;
 | |
|     } else if (Mask[i] < (int)LHSWidth) {
 | |
|       // This element is from left hand side vector operand.
 | |
|       //
 | |
|       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       if (newLHS != LHS) {
 | |
|         eltMask = LHSMask[Mask[i]];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
 | |
|           eltMask = -1;
 | |
|       } else
 | |
|         eltMask = Mask[i];
 | |
|     } else {
 | |
|       // This element is from right hand side vector operand
 | |
|       //
 | |
|       // If the value selected is an undef value, explicitly specify it
 | |
|       // with a -1 mask value. (case 1)
 | |
|       if (isa<UndefValue>(RHS))
 | |
|         eltMask = -1;
 | |
|       // If RHS is going to be replaced (case 3 or 4), calculate the
 | |
|       // new mask value for the element.
 | |
|       else if (newRHS != RHS) {
 | |
|         eltMask = RHSMask[Mask[i]-LHSWidth];
 | |
|         // If the value selected is an undef value, explicitly specify it
 | |
|         // with a -1 mask value.
 | |
|         if (eltMask >= (int)RHSOp0Width) {
 | |
|           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
 | |
|                  && "should have been check above");
 | |
|           eltMask = -1;
 | |
|         }
 | |
|       } else
 | |
|         eltMask = Mask[i]-LHSWidth;
 | |
| 
 | |
|       // If LHS's width is changed, shift the mask value accordingly.
 | |
|       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
 | |
|       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
 | |
|       // If newRHS == newLHS, we want to remap any references from newRHS to
 | |
|       // newLHS so that we can properly identify splats that may occur due to
 | |
|       // obfuscation across the two vectors.
 | |
|       if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
 | |
|         eltMask += newLHSWidth;
 | |
|     }
 | |
| 
 | |
|     // Check if this could still be a splat.
 | |
|     if (eltMask >= 0) {
 | |
|       if (SplatElt >= 0 && SplatElt != eltMask)
 | |
|         isSplat = false;
 | |
|       SplatElt = eltMask;
 | |
|     }
 | |
| 
 | |
|     newMask.push_back(eltMask);
 | |
|   }
 | |
| 
 | |
|   // If the result mask is equal to one of the original shuffle masks,
 | |
|   // or is a splat, do the replacement.
 | |
|   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
 | |
|     SmallVector<Constant*, 16> Elts;
 | |
|     Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
 | |
|     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
 | |
|       if (newMask[i] < 0) {
 | |
|         Elts.push_back(UndefValue::get(Int32Ty));
 | |
|       } else {
 | |
|         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
 | |
|       }
 | |
|     }
 | |
|     if (newRHS == NULL)
 | |
|       newRHS = UndefValue::get(newLHS->getType());
 | |
|     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
 | |
|   }
 | |
| 
 | |
|   return MadeChange ? &SVI : 0;
 | |
| }
 |