mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	definition below all of the header #include lines, lib/Transforms/... edition. This one is tricky for two reasons. We again have a couple of passes that define something else before the includes as well. I've sunk their name macros with the DEBUG_TYPE. Also, InstCombine contains headers that need DEBUG_TYPE, so now those headers #define and #undef DEBUG_TYPE around their code, leaving them well formed modular headers. Fixing these headers was a large motivation for all of these changes, as "leaky" macros of this form are hard on the modules implementation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			916 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion, attempting to remove as much
 | |
| // code from the body of a loop as possible.  It does this by either hoisting
 | |
| // code into the preheader block, or by sinking code to the exit blocks if it is
 | |
| // safe.  This pass also promotes must-aliased memory locations in the loop to
 | |
| // live in registers, thus hoisting and sinking "invariant" loads and stores.
 | |
| //
 | |
| // This pass uses alias analysis for two purposes:
 | |
| //
 | |
| //  1. Moving loop invariant loads and calls out of loops.  If we can determine
 | |
| //     that a load or call inside of a loop never aliases anything stored to,
 | |
| //     we can hoist it or sink it like any other instruction.
 | |
| //  2. Scalar Promotion of Memory - If there is a store instruction inside of
 | |
| //     the loop, we try to move the store to happen AFTER the loop instead of
 | |
| //     inside of the loop.  This can only happen if a few conditions are true:
 | |
| //       A. The pointer stored through is loop invariant
 | |
| //       B. There are no stores or loads in the loop which _may_ alias the
 | |
| //          pointer.  There are no calls in the loop which mod/ref the pointer.
 | |
| //     If these conditions are true, we can promote the loads and stores in the
 | |
| //     loop of the pointer to use a temporary alloca'd variable.  We then use
 | |
| //     the SSAUpdater to construct the appropriate SSA form for the value.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PredIteratorCache.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "licm"
 | |
| 
 | |
| STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
 | |
| STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
 | |
| STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
 | |
| STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
 | |
| STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisablePromotion("disable-licm-promotion", cl::Hidden,
 | |
|                  cl::desc("Disable memory promotion in LICM pass"));
 | |
| 
 | |
| namespace {
 | |
|   struct LICM : public LoopPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     LICM() : LoopPass(ID) {
 | |
|       initializeLICMPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|     }
 | |
| 
 | |
|     using llvm::Pass::doFinalization;
 | |
| 
 | |
|     bool doFinalization() override {
 | |
|       assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     AliasAnalysis *AA;       // Current AliasAnalysis information
 | |
|     LoopInfo      *LI;       // Current LoopInfo
 | |
|     DominatorTree *DT;       // Dominator Tree for the current Loop.
 | |
| 
 | |
|     const DataLayout *DL;    // DataLayout for constant folding.
 | |
|     TargetLibraryInfo *TLI;  // TargetLibraryInfo for constant folding.
 | |
| 
 | |
|     // State that is updated as we process loops.
 | |
|     bool Changed;            // Set to true when we change anything.
 | |
|     BasicBlock *Preheader;   // The preheader block of the current loop...
 | |
|     Loop *CurLoop;           // The current loop we are working on...
 | |
|     AliasSetTracker *CurAST; // AliasSet information for the current loop...
 | |
|     bool MayThrow;           // The current loop contains an instruction which
 | |
|                              // may throw, thus preventing code motion of
 | |
|                              // instructions with side effects.
 | |
|     DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
 | |
| 
 | |
|     /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
 | |
|     void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
 | |
|                                  Loop *L) override;
 | |
| 
 | |
|     /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
 | |
|     /// set.
 | |
|     void deleteAnalysisValue(Value *V, Loop *L) override;
 | |
| 
 | |
|     /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
|     /// dominated by the specified block, and that are in the current loop) in
 | |
|     /// reverse depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit uses before definitions, allowing us to sink a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void SinkRegion(DomTreeNode *N);
 | |
| 
 | |
|     /// HoistRegion - Walk the specified region of the CFG (defined by all
 | |
|     /// blocks dominated by the specified block, and that are in the current
 | |
|     /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
 | |
|     /// visit definitions before uses, allowing us to hoist a loop body in one
 | |
|     /// pass without iteration.
 | |
|     ///
 | |
|     void HoistRegion(DomTreeNode *N);
 | |
| 
 | |
|     /// inSubLoop - Little predicate that returns true if the specified basic
 | |
|     /// block is in a subloop of the current one, not the current one itself.
 | |
|     ///
 | |
|     bool inSubLoop(BasicBlock *BB) {
 | |
|       assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
 | |
|       return LI->getLoopFor(BB) != CurLoop;
 | |
|     }
 | |
| 
 | |
|     /// sink - When an instruction is found to only be used outside of the loop,
 | |
|     /// this function moves it to the exit blocks and patches up SSA form as
 | |
|     /// needed.
 | |
|     ///
 | |
|     void sink(Instruction &I);
 | |
| 
 | |
|     /// hoist - When an instruction is found to only use loop invariant operands
 | |
|     /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
|     ///
 | |
|     void hoist(Instruction &I);
 | |
| 
 | |
|     /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
 | |
|     /// is not a trapping instruction or if it is a trapping instruction and is
 | |
|     /// guaranteed to execute.
 | |
|     ///
 | |
|     bool isSafeToExecuteUnconditionally(Instruction &I);
 | |
| 
 | |
|     /// isGuaranteedToExecute - Check that the instruction is guaranteed to
 | |
|     /// execute.
 | |
|     ///
 | |
|     bool isGuaranteedToExecute(Instruction &I);
 | |
| 
 | |
|     /// pointerInvalidatedByLoop - Return true if the body of this loop may
 | |
|     /// store into the memory location pointed to by V.
 | |
|     ///
 | |
|     bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
 | |
|                                   const MDNode *TBAAInfo) {
 | |
|       // Check to see if any of the basic blocks in CurLoop invalidate *V.
 | |
|       return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
 | |
|     }
 | |
| 
 | |
|     bool canSinkOrHoistInst(Instruction &I);
 | |
|     bool isNotUsedInLoop(Instruction &I);
 | |
| 
 | |
|     void PromoteAliasSet(AliasSet &AS,
 | |
|                          SmallVectorImpl<BasicBlock*> &ExitBlocks,
 | |
|                          SmallVectorImpl<Instruction*> &InsertPts,
 | |
|                          PredIteratorCache &PIC);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LICM::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
 | |
| 
 | |
| Pass *llvm::createLICMPass() { return new LICM(); }
 | |
| 
 | |
| /// Hoist expressions out of the specified loop. Note, alias info for inner
 | |
| /// loop is not preserved so it is not a good idea to run LICM multiple
 | |
| /// times on one loop.
 | |
| ///
 | |
| bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   Changed = false;
 | |
| 
 | |
|   // Get our Loop and Alias Analysis information...
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|   DL = DLP ? &DLP->getDataLayout() : 0;
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
| 
 | |
|   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
 | |
| 
 | |
|   CurAST = new AliasSetTracker(*AA);
 | |
|   // Collect Alias info from subloops.
 | |
|   for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
 | |
|        LoopItr != LoopItrE; ++LoopItr) {
 | |
|     Loop *InnerL = *LoopItr;
 | |
|     AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
 | |
|     assert(InnerAST && "Where is my AST?");
 | |
| 
 | |
|     // What if InnerLoop was modified by other passes ?
 | |
|     CurAST->add(*InnerAST);
 | |
| 
 | |
|     // Once we've incorporated the inner loop's AST into ours, we don't need the
 | |
|     // subloop's anymore.
 | |
|     delete InnerAST;
 | |
|     LoopToAliasSetMap.erase(InnerL);
 | |
|   }
 | |
| 
 | |
|   CurLoop = L;
 | |
| 
 | |
|   // Get the preheader block to move instructions into...
 | |
|   Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Loop over the body of this loop, looking for calls, invokes, and stores.
 | |
|   // Because subloops have already been incorporated into AST, we skip blocks in
 | |
|   // subloops.
 | |
|   //
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I) {
 | |
|     BasicBlock *BB = *I;
 | |
|     if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
 | |
|       CurAST->add(*BB);                 // Incorporate the specified basic block
 | |
|   }
 | |
| 
 | |
|   MayThrow = false;
 | |
|   // TODO: We've already searched for instructions which may throw in subloops.
 | |
|   // We may want to reuse this information.
 | |
|   for (Loop::block_iterator BB = L->block_begin(), BBE = L->block_end();
 | |
|        (BB != BBE) && !MayThrow ; ++BB)
 | |
|     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end();
 | |
|          (I != E) && !MayThrow; ++I)
 | |
|       MayThrow |= I->mayThrow();
 | |
| 
 | |
|   // We want to visit all of the instructions in this loop... that are not parts
 | |
|   // of our subloops (they have already had their invariants hoisted out of
 | |
|   // their loop, into this loop, so there is no need to process the BODIES of
 | |
|   // the subloops).
 | |
|   //
 | |
|   // Traverse the body of the loop in depth first order on the dominator tree so
 | |
|   // that we are guaranteed to see definitions before we see uses.  This allows
 | |
|   // us to sink instructions in one pass, without iteration.  After sinking
 | |
|   // instructions, we perform another pass to hoist them out of the loop.
 | |
|   //
 | |
|   if (L->hasDedicatedExits())
 | |
|     SinkRegion(DT->getNode(L->getHeader()));
 | |
|   if (Preheader)
 | |
|     HoistRegion(DT->getNode(L->getHeader()));
 | |
| 
 | |
|   // Now that all loop invariants have been removed from the loop, promote any
 | |
|   // memory references to scalars that we can.
 | |
|   if (!DisablePromotion && (Preheader || L->hasDedicatedExits())) {
 | |
|     SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|     SmallVector<Instruction *, 8> InsertPts;
 | |
|     PredIteratorCache PIC;
 | |
| 
 | |
|     // Loop over all of the alias sets in the tracker object.
 | |
|     for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|          I != E; ++I)
 | |
|       PromoteAliasSet(*I, ExitBlocks, InsertPts, PIC);
 | |
| 
 | |
|     // Once we have promoted values across the loop body we have to recursively
 | |
|     // reform LCSSA as any nested loop may now have values defined within the
 | |
|     // loop used in the outer loop.
 | |
|     // FIXME: This is really heavy handed. It would be a bit better to use an
 | |
|     // SSAUpdater strategy during promotion that was LCSSA aware and reformed
 | |
|     // it as it went.
 | |
|     if (Changed)
 | |
|       formLCSSARecursively(*L, *DT, getAnalysisIfAvailable<ScalarEvolution>());
 | |
|   }
 | |
| 
 | |
|   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
 | |
|   // specifically moving instructions across the loop boundary and so it is
 | |
|   // especially in need of sanity checking here.
 | |
|   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
 | |
|   assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
 | |
|          "Parent loop not left in LCSSA form after LICM!");
 | |
| 
 | |
|   // Clear out loops state information for the next iteration
 | |
|   CurLoop = 0;
 | |
|   Preheader = 0;
 | |
| 
 | |
|   // If this loop is nested inside of another one, save the alias information
 | |
|   // for when we process the outer loop.
 | |
|   if (L->getParentLoop())
 | |
|     LoopToAliasSetMap[L] = CurAST;
 | |
|   else
 | |
|     delete CurAST;
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in
 | |
| /// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
 | |
| /// uses before definitions, allowing us to sink a loop body in one pass without
 | |
| /// iteration.
 | |
| ///
 | |
| void LICM::SinkRegion(DomTreeNode *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // We are processing blocks in reverse dfo, so process children first.
 | |
|   const std::vector<DomTreeNode*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     SinkRegion(Children[i]);
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (inSubLoop(BB)) return;
 | |
| 
 | |
|   for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
 | |
|     Instruction &I = *--II;
 | |
| 
 | |
|     // If the instruction is dead, we would try to sink it because it isn't used
 | |
|     // in the loop, instead, just delete it.
 | |
|     if (isInstructionTriviallyDead(&I, TLI)) {
 | |
|       DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
 | |
|       ++II;
 | |
|       CurAST->deleteValue(&I);
 | |
|       I.eraseFromParent();
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if we can sink this instruction to the exit blocks
 | |
|     // of the loop.  We can do this if the all users of the instruction are
 | |
|     // outside of the loop.  In this case, it doesn't even matter if the
 | |
|     // operands of the instruction are loop invariant.
 | |
|     //
 | |
|     if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
 | |
|       ++II;
 | |
|       sink(I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
 | |
| /// dominated by the specified block, and that are in the current loop) in depth
 | |
| /// first order w.r.t the DominatorTree.  This allows us to visit definitions
 | |
| /// before uses, allowing us to hoist a loop body in one pass without iteration.
 | |
| ///
 | |
| void LICM::HoistRegion(DomTreeNode *N) {
 | |
|   assert(N != 0 && "Null dominator tree node?");
 | |
|   BasicBlock *BB = N->getBlock();
 | |
| 
 | |
|   // If this subregion is not in the top level loop at all, exit.
 | |
|   if (!CurLoop->contains(BB)) return;
 | |
| 
 | |
|   // Only need to process the contents of this block if it is not part of a
 | |
|   // subloop (which would already have been processed).
 | |
|   if (!inSubLoop(BB))
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
 | |
|       Instruction &I = *II++;
 | |
| 
 | |
|       // Try constant folding this instruction.  If all the operands are
 | |
|       // constants, it is technically hoistable, but it would be better to just
 | |
|       // fold it.
 | |
|       if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
 | |
|         DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C << '\n');
 | |
|         CurAST->copyValue(&I, C);
 | |
|         CurAST->deleteValue(&I);
 | |
|         I.replaceAllUsesWith(C);
 | |
|         I.eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Try hoisting the instruction out to the preheader.  We can only do this
 | |
|       // if all of the operands of the instruction are loop invariant and if it
 | |
|       // is safe to hoist the instruction.
 | |
|       //
 | |
|       if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
 | |
|           isSafeToExecuteUnconditionally(I))
 | |
|         hoist(I);
 | |
|     }
 | |
| 
 | |
|   const std::vector<DomTreeNode*> &Children = N->getChildren();
 | |
|   for (unsigned i = 0, e = Children.size(); i != e; ++i)
 | |
|     HoistRegion(Children[i]);
 | |
| }
 | |
| 
 | |
| /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
 | |
| /// instruction.
 | |
| ///
 | |
| bool LICM::canSinkOrHoistInst(Instruction &I) {
 | |
|   // Loads have extra constraints we have to verify before we can hoist them.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|     if (!LI->isUnordered())
 | |
|       return false;        // Don't hoist volatile/atomic loads!
 | |
| 
 | |
|     // Loads from constant memory are always safe to move, even if they end up
 | |
|     // in the same alias set as something that ends up being modified.
 | |
|     if (AA->pointsToConstantMemory(LI->getOperand(0)))
 | |
|       return true;
 | |
|     if (LI->getMetadata("invariant.load"))
 | |
|       return true;
 | |
| 
 | |
|     // Don't hoist loads which have may-aliased stores in loop.
 | |
|     uint64_t Size = 0;
 | |
|     if (LI->getType()->isSized())
 | |
|       Size = AA->getTypeStoreSize(LI->getType());
 | |
|     return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
 | |
|                                      LI->getMetadata(LLVMContext::MD_tbaa));
 | |
|   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Don't sink or hoist dbg info; it's legal, but not useful.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       return false;
 | |
| 
 | |
|     // Handle simple cases by querying alias analysis.
 | |
|     AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
 | |
|     if (Behavior == AliasAnalysis::DoesNotAccessMemory)
 | |
|       return true;
 | |
|     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
 | |
|       // If this call only reads from memory and there are no writes to memory
 | |
|       // in the loop, we can hoist or sink the call as appropriate.
 | |
|       bool FoundMod = false;
 | |
|       for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
 | |
|            I != E; ++I) {
 | |
|         AliasSet &AS = *I;
 | |
|         if (!AS.isForwardingAliasSet() && AS.isMod()) {
 | |
|           FoundMod = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!FoundMod) return true;
 | |
|     }
 | |
| 
 | |
|     // FIXME: This should use mod/ref information to see if we can hoist or
 | |
|     // sink the call.
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Only these instructions are hoistable/sinkable.
 | |
|   if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
 | |
|       !isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
 | |
|       !isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
 | |
|       !isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
 | |
|       !isa<InsertValueInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   return isSafeToExecuteUnconditionally(I);
 | |
| }
 | |
| 
 | |
| /// \brief Returns true if a PHINode is a trivially replaceable with an
 | |
| /// Instruction.
 | |
| ///
 | |
| /// This is true when all incoming values are that instruction. This pattern
 | |
| /// occurs most often with LCSSA PHI nodes.
 | |
| static bool isTriviallyReplacablePHI(PHINode &PN, Instruction &I) {
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN.getIncomingValue(i) != &I)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isNotUsedInLoop - Return true if the only users of this instruction are
 | |
| /// outside of the loop.  If this is true, we can sink the instruction to the
 | |
| /// exit blocks of the loop.
 | |
| ///
 | |
| bool LICM::isNotUsedInLoop(Instruction &I) {
 | |
|   for (User *U : I.users()) {
 | |
|     Instruction *UI = cast<Instruction>(U);
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(UI)) {
 | |
|       // A PHI node where all of the incoming values are this instruction are
 | |
|       // special -- they can just be RAUW'ed with the instruction and thus
 | |
|       // don't require a use in the predecessor. This is a particular important
 | |
|       // special case because it is the pattern found in LCSSA form.
 | |
|       if (isTriviallyReplacablePHI(*PN, I)) {
 | |
|         if (CurLoop->contains(PN))
 | |
|           return false;
 | |
|         else
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, PHI node uses occur in predecessor blocks if the incoming
 | |
|       // values. Check for such a use being inside the loop.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingValue(i) == &I)
 | |
|           if (CurLoop->contains(PN->getIncomingBlock(i)))
 | |
|             return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CurLoop->contains(UI))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// sink - When an instruction is found to only be used outside of the loop,
 | |
| /// this function moves it to the exit blocks and patches up SSA form as needed.
 | |
| /// This method is guaranteed to remove the original instruction from its
 | |
| /// position, and may either delete it or move it to outside of the loop.
 | |
| ///
 | |
| void LICM::sink(Instruction &I) {
 | |
|   DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumSunk;
 | |
|   Changed = true;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   SmallVector<BasicBlock *, 32> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
 | |
| #endif
 | |
| 
 | |
|   // If this instruction is only used outside of the loop, then all users are
 | |
|   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
 | |
|   // the instruction.
 | |
|   while (!I.use_empty()) {
 | |
|     // The user must be a PHI node.
 | |
|     PHINode *PN = cast<PHINode>(I.user_back());
 | |
| 
 | |
|     BasicBlock *ExitBlock = PN->getParent();
 | |
|     assert(ExitBlockSet.count(ExitBlock) &&
 | |
|            "The LCSSA PHI is not in an exit block!");
 | |
| 
 | |
|     Instruction *New = I.clone();
 | |
|     ExitBlock->getInstList().insert(ExitBlock->getFirstInsertionPt(), New);
 | |
|     if (!I.getName().empty())
 | |
|       New->setName(I.getName() + ".le");
 | |
| 
 | |
|     // Build LCSSA PHI nodes for any in-loop operands. Note that this is
 | |
|     // particularly cheap because we can rip off the PHI node that we're
 | |
|     // replacing for the number and blocks of the predecessors.
 | |
|     // OPT: If this shows up in a profile, we can instead finish sinking all
 | |
|     // invariant instructions, and then walk their operands to re-establish
 | |
|     // LCSSA. That will eliminate creating PHI nodes just to nuke them when
 | |
|     // sinking bottom-up.
 | |
|     for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
 | |
|          ++OI)
 | |
|       if (Instruction *OInst = dyn_cast<Instruction>(*OI))
 | |
|         if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
 | |
|           if (!OLoop->contains(PN)) {
 | |
|             PHINode *OpPN = PHINode::Create(
 | |
|                 OInst->getType(), PN->getNumIncomingValues(),
 | |
|                 OInst->getName() + ".lcssa", ExitBlock->begin());
 | |
|             for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|               OpPN->addIncoming(OInst, PN->getIncomingBlock(i));
 | |
|             *OI = OpPN;
 | |
|           }
 | |
| 
 | |
|     PN->replaceAllUsesWith(New);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   CurAST->deleteValue(&I);
 | |
|   I.eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// hoist - When an instruction is found to only use loop invariant operands
 | |
| /// that is safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| void LICM::hoist(Instruction &I) {
 | |
|   DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
 | |
|         << I << "\n");
 | |
| 
 | |
|   // Move the new node to the Preheader, before its terminator.
 | |
|   I.moveBefore(Preheader->getTerminator());
 | |
| 
 | |
|   if (isa<LoadInst>(I)) ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I)) ++NumMovedCalls;
 | |
|   ++NumHoisted;
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
 | |
| /// not a trapping instruction or if it is a trapping instruction and is
 | |
| /// guaranteed to execute.
 | |
| ///
 | |
| bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
 | |
|   // If it is not a trapping instruction, it is always safe to hoist.
 | |
|   if (isSafeToSpeculativelyExecute(&Inst))
 | |
|     return true;
 | |
| 
 | |
|   return isGuaranteedToExecute(Inst);
 | |
| }
 | |
| 
 | |
| bool LICM::isGuaranteedToExecute(Instruction &Inst) {
 | |
| 
 | |
|   // Somewhere in this loop there is an instruction which may throw and make us
 | |
|   // exit the loop.
 | |
|   if (MayThrow)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise we have to check to make sure that the instruction dominates all
 | |
|   // of the exit blocks.  If it doesn't, then there is a path out of the loop
 | |
|   // which does not execute this instruction, so we can't hoist it.
 | |
| 
 | |
|   // If the instruction is in the header block for the loop (which is very
 | |
|   // common), it is always guaranteed to dominate the exit blocks.  Since this
 | |
|   // is a common case, and can save some work, check it now.
 | |
|   if (Inst.getParent() == CurLoop->getHeader())
 | |
|     return true;
 | |
| 
 | |
|   // Get the exit blocks for the current loop.
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   CurLoop->getExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Verify that the block dominates each of the exit blocks of the loop.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|     if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
 | |
|       return false;
 | |
| 
 | |
|   // As a degenerate case, if the loop is statically infinite then we haven't
 | |
|   // proven anything since there are no exit blocks.
 | |
|   if (ExitBlocks.empty())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class LoopPromoter : public LoadAndStorePromoter {
 | |
|     Value *SomePtr;  // Designated pointer to store to.
 | |
|     SmallPtrSet<Value*, 4> &PointerMustAliases;
 | |
|     SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
 | |
|     SmallVectorImpl<Instruction*> &LoopInsertPts;
 | |
|     PredIteratorCache &PredCache;
 | |
|     AliasSetTracker &AST;
 | |
|     LoopInfo &LI;
 | |
|     DebugLoc DL;
 | |
|     int Alignment;
 | |
|     MDNode *TBAATag;
 | |
| 
 | |
|     Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         if (Loop *L = LI.getLoopFor(I->getParent()))
 | |
|           if (!L->contains(BB)) {
 | |
|             // We need to create an LCSSA PHI node for the incoming value and
 | |
|             // store that.
 | |
|             PHINode *PN = PHINode::Create(
 | |
|                 I->getType(), PredCache.GetNumPreds(BB),
 | |
|                 I->getName() + ".lcssa", BB->begin());
 | |
|             for (BasicBlock **PI = PredCache.GetPreds(BB); *PI; ++PI)
 | |
|               PN->addIncoming(I, *PI);
 | |
|             return PN;
 | |
|           }
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     LoopPromoter(Value *SP, const SmallVectorImpl<Instruction *> &Insts,
 | |
|                  SSAUpdater &S, SmallPtrSet<Value *, 4> &PMA,
 | |
|                  SmallVectorImpl<BasicBlock *> &LEB,
 | |
|                  SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
 | |
|                  AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
 | |
|                  MDNode *TBAATag)
 | |
|         : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
 | |
|           LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
 | |
|           LI(li), DL(dl), Alignment(alignment), TBAATag(TBAATag) {}
 | |
| 
 | |
|     bool isInstInList(Instruction *I,
 | |
|                       const SmallVectorImpl<Instruction*> &) const override {
 | |
|       Value *Ptr;
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|         Ptr = LI->getOperand(0);
 | |
|       else
 | |
|         Ptr = cast<StoreInst>(I)->getPointerOperand();
 | |
|       return PointerMustAliases.count(Ptr);
 | |
|     }
 | |
| 
 | |
|     void doExtraRewritesBeforeFinalDeletion() const override {
 | |
|       // Insert stores after in the loop exit blocks.  Each exit block gets a
 | |
|       // store of the live-out values that feed them.  Since we've already told
 | |
|       // the SSA updater about the defs in the loop and the preheader
 | |
|       // definition, it is all set and we can start using it.
 | |
|       for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
 | |
|         BasicBlock *ExitBlock = LoopExitBlocks[i];
 | |
|         Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
 | |
|         LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
 | |
|         Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
 | |
|         Instruction *InsertPos = LoopInsertPts[i];
 | |
|         StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
 | |
|         NewSI->setAlignment(Alignment);
 | |
|         NewSI->setDebugLoc(DL);
 | |
|         if (TBAATag) NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
 | |
|       // Update alias analysis.
 | |
|       AST.copyValue(LI, V);
 | |
|     }
 | |
|     void instructionDeleted(Instruction *I) const override {
 | |
|       AST.deleteValue(I);
 | |
|     }
 | |
|   };
 | |
| } // end anon namespace
 | |
| 
 | |
| /// PromoteAliasSet - Try to promote memory values to scalars by sinking
 | |
| /// stores out of the loop and moving loads to before the loop.  We do this by
 | |
| /// looping over the stores in the loop, looking for stores to Must pointers
 | |
| /// which are loop invariant.
 | |
| ///
 | |
| void LICM::PromoteAliasSet(AliasSet &AS,
 | |
|                            SmallVectorImpl<BasicBlock*> &ExitBlocks,
 | |
|                            SmallVectorImpl<Instruction*> &InsertPts,
 | |
|                            PredIteratorCache &PIC) {
 | |
|   // We can promote this alias set if it has a store, if it is a "Must" alias
 | |
|   // set, if the pointer is loop invariant, and if we are not eliminating any
 | |
|   // volatile loads or stores.
 | |
|   if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
 | |
|       AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
 | |
|     return;
 | |
| 
 | |
|   assert(!AS.empty() &&
 | |
|          "Must alias set should have at least one pointer element in it!");
 | |
|   Value *SomePtr = AS.begin()->getValue();
 | |
| 
 | |
|   // It isn't safe to promote a load/store from the loop if the load/store is
 | |
|   // conditional.  For example, turning:
 | |
|   //
 | |
|   //    for () { if (c) *P += 1; }
 | |
|   //
 | |
|   // into:
 | |
|   //
 | |
|   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
 | |
|   //
 | |
|   // is not safe, because *P may only be valid to access if 'c' is true.
 | |
|   //
 | |
|   // It is safe to promote P if all uses are direct load/stores and if at
 | |
|   // least one is guaranteed to be executed.
 | |
|   bool GuaranteedToExecute = false;
 | |
| 
 | |
|   SmallVector<Instruction*, 64> LoopUses;
 | |
|   SmallPtrSet<Value*, 4> PointerMustAliases;
 | |
| 
 | |
|   // We start with an alignment of one and try to find instructions that allow
 | |
|   // us to prove better alignment.
 | |
|   unsigned Alignment = 1;
 | |
|   MDNode *TBAATag = 0;
 | |
| 
 | |
|   // Check that all of the pointers in the alias set have the same type.  We
 | |
|   // cannot (yet) promote a memory location that is loaded and stored in
 | |
|   // different sizes.  While we are at it, collect alignment and TBAA info.
 | |
|   for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
 | |
|     Value *ASIV = ASI->getValue();
 | |
|     PointerMustAliases.insert(ASIV);
 | |
| 
 | |
|     // Check that all of the pointers in the alias set have the same type.  We
 | |
|     // cannot (yet) promote a memory location that is loaded and stored in
 | |
|     // different sizes.
 | |
|     if (SomePtr->getType() != ASIV->getType())
 | |
|       return;
 | |
| 
 | |
|     for (User *U : ASIV->users()) {
 | |
|       // Ignore instructions that are outside the loop.
 | |
|       Instruction *UI = dyn_cast<Instruction>(U);
 | |
|       if (!UI || !CurLoop->contains(UI))
 | |
|         continue;
 | |
| 
 | |
|       // If there is an non-load/store instruction in the loop, we can't promote
 | |
|       // it.
 | |
|       if (LoadInst *load = dyn_cast<LoadInst>(UI)) {
 | |
|         assert(!load->isVolatile() && "AST broken");
 | |
|         if (!load->isSimple())
 | |
|           return;
 | |
|       } else if (StoreInst *store = dyn_cast<StoreInst>(UI)) {
 | |
|         // Stores *of* the pointer are not interesting, only stores *to* the
 | |
|         // pointer.
 | |
|         if (UI->getOperand(1) != ASIV)
 | |
|           continue;
 | |
|         assert(!store->isVolatile() && "AST broken");
 | |
|         if (!store->isSimple())
 | |
|           return;
 | |
| 
 | |
|         // Note that we only check GuaranteedToExecute inside the store case
 | |
|         // so that we do not introduce stores where they did not exist before
 | |
|         // (which would break the LLVM concurrency model).
 | |
| 
 | |
|         // If the alignment of this instruction allows us to specify a more
 | |
|         // restrictive (and performant) alignment and if we are sure this
 | |
|         // instruction will be executed, update the alignment.
 | |
|         // Larger is better, with the exception of 0 being the best alignment.
 | |
|         unsigned InstAlignment = store->getAlignment();
 | |
|         if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
 | |
|           if (isGuaranteedToExecute(*UI)) {
 | |
|             GuaranteedToExecute = true;
 | |
|             Alignment = InstAlignment;
 | |
|           }
 | |
| 
 | |
|         if (!GuaranteedToExecute)
 | |
|           GuaranteedToExecute = isGuaranteedToExecute(*UI);
 | |
| 
 | |
|       } else
 | |
|         return; // Not a load or store.
 | |
| 
 | |
|       // Merge the TBAA tags.
 | |
|       if (LoopUses.empty()) {
 | |
|         // On the first load/store, just take its TBAA tag.
 | |
|         TBAATag = UI->getMetadata(LLVMContext::MD_tbaa);
 | |
|       } else if (TBAATag) {
 | |
|         TBAATag = MDNode::getMostGenericTBAA(TBAATag,
 | |
|                                        UI->getMetadata(LLVMContext::MD_tbaa));
 | |
|       }
 | |
| 
 | |
|       LoopUses.push_back(UI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there isn't a guaranteed-to-execute instruction, we can't promote.
 | |
|   if (!GuaranteedToExecute)
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, this is safe to promote, lets do it!
 | |
|   DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
 | |
|   Changed = true;
 | |
|   ++NumPromoted;
 | |
| 
 | |
|   // Grab a debug location for the inserted loads/stores; given that the
 | |
|   // inserted loads/stores have little relation to the original loads/stores,
 | |
|   // this code just arbitrarily picks a location from one, since any debug
 | |
|   // location is better than none.
 | |
|   DebugLoc DL = LoopUses[0]->getDebugLoc();
 | |
| 
 | |
|   // Figure out the loop exits and their insertion points, if this is the
 | |
|   // first promotion.
 | |
|   if (ExitBlocks.empty()) {
 | |
|     CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|     InsertPts.resize(ExitBlocks.size());
 | |
|     for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
 | |
|       InsertPts[i] = ExitBlocks[i]->getFirstInsertionPt();
 | |
|   }
 | |
| 
 | |
|   // We use the SSAUpdater interface to insert phi nodes as required.
 | |
|   SmallVector<PHINode*, 16> NewPHIs;
 | |
|   SSAUpdater SSA(&NewPHIs);
 | |
|   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
 | |
|                         InsertPts, PIC, *CurAST, *LI, DL, Alignment, TBAATag);
 | |
| 
 | |
|   // Set up the preheader to have a definition of the value.  It is the live-out
 | |
|   // value from the preheader that uses in the loop will use.
 | |
|   LoadInst *PreheaderLoad =
 | |
|     new LoadInst(SomePtr, SomePtr->getName()+".promoted",
 | |
|                  Preheader->getTerminator());
 | |
|   PreheaderLoad->setAlignment(Alignment);
 | |
|   PreheaderLoad->setDebugLoc(DL);
 | |
|   if (TBAATag) PreheaderLoad->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
|   SSA.AddAvailableValue(Preheader, PreheaderLoad);
 | |
| 
 | |
|   // Rewrite all the loads in the loop and remember all the definitions from
 | |
|   // stores in the loop.
 | |
|   Promoter.run(LoopUses);
 | |
| 
 | |
|   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
 | |
|   if (PreheaderLoad->use_empty())
 | |
|     PreheaderLoad->eraseFromParent();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
 | |
| void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
 | |
|   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
 | |
|   if (!AST)
 | |
|     return;
 | |
| 
 | |
|   AST->copyValue(From, To);
 | |
| }
 | |
| 
 | |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
 | |
| /// set.
 | |
| void LICM::deleteAnalysisValue(Value *V, Loop *L) {
 | |
|   AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
 | |
|   if (!AST)
 | |
|     return;
 | |
| 
 | |
|   AST->deleteValue(V);
 | |
| }
 |