mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Due to darwin gcc bug, one version of darwin linker coalesces static const int, which defauts PassID based pass identification. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36652 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2022 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2022 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Reid Spencer and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a module pass that applies a variety of small
 | |
| // optimizations for calls to specific well-known function calls (e.g. runtime
 | |
| // library functions). For example, a call to the function "exit(3)" that
 | |
| // occurs within the main() function can be transformed into a simple "return 3"
 | |
| // instruction. Any optimization that takes this form (replace call to library
 | |
| // function with simpler code that provides the same result) belongs in this
 | |
| // file.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "simplify-libcalls"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/ADT/hash_map"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// This statistic keeps track of the total number of library calls that have
 | |
| /// been simplified regardless of which call it is.
 | |
| STATISTIC(SimplifiedLibCalls, "Number of library calls simplified");
 | |
| 
 | |
| namespace {
 | |
|   // Forward declarations
 | |
|   class LibCallOptimization;
 | |
|   class SimplifyLibCalls;
 | |
|   
 | |
| /// This list is populated by the constructor for LibCallOptimization class.
 | |
| /// Therefore all subclasses are registered here at static initialization time
 | |
| /// and this list is what the SimplifyLibCalls pass uses to apply the individual
 | |
| /// optimizations to the call sites.
 | |
| /// @brief The list of optimizations deriving from LibCallOptimization
 | |
| static LibCallOptimization *OptList = 0;
 | |
| 
 | |
| /// This class is the abstract base class for the set of optimizations that
 | |
| /// corresponds to one library call. The SimplifyLibCalls pass will call the
 | |
| /// ValidateCalledFunction method to ask the optimization if a given Function
 | |
| /// is the kind that the optimization can handle. If the subclass returns true,
 | |
| /// then SImplifyLibCalls will also call the OptimizeCall method to perform,
 | |
| /// or attempt to perform, the optimization(s) for the library call. Otherwise,
 | |
| /// OptimizeCall won't be called. Subclasses are responsible for providing the
 | |
| /// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization
 | |
| /// constructor. This is used to efficiently select which call instructions to
 | |
| /// optimize. The criteria for a "lib call" is "anything with well known
 | |
| /// semantics", typically a library function that is defined by an international
 | |
| /// standard. Because the semantics are well known, the optimizations can
 | |
| /// generally short-circuit actually calling the function if there's a simpler
 | |
| /// way (e.g. strlen(X) can be reduced to a constant if X is a constant global).
 | |
| /// @brief Base class for library call optimizations
 | |
| class VISIBILITY_HIDDEN LibCallOptimization {
 | |
|   LibCallOptimization **Prev, *Next;
 | |
|   const char *FunctionName; ///< Name of the library call we optimize
 | |
| #ifndef NDEBUG
 | |
|   Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls)
 | |
| #endif
 | |
| public:
 | |
|   /// The \p fname argument must be the name of the library function being
 | |
|   /// optimized by the subclass.
 | |
|   /// @brief Constructor that registers the optimization.
 | |
|   LibCallOptimization(const char *FName, const char *Description)
 | |
|     : FunctionName(FName) {
 | |
|       
 | |
| #ifndef NDEBUG
 | |
|     occurrences.construct("simplify-libcalls", Description);
 | |
| #endif
 | |
|     // Register this optimizer in the list of optimizations.
 | |
|     Next = OptList;
 | |
|     OptList = this;
 | |
|     Prev = &OptList;
 | |
|     if (Next) Next->Prev = &Next;
 | |
|   }
 | |
|   
 | |
|   /// getNext - All libcall optimizations are chained together into a list,
 | |
|   /// return the next one in the list.
 | |
|   LibCallOptimization *getNext() { return Next; }
 | |
| 
 | |
|   /// @brief Deregister from the optlist
 | |
|   virtual ~LibCallOptimization() {
 | |
|     *Prev = Next;
 | |
|     if (Next) Next->Prev = Prev;
 | |
|   }
 | |
| 
 | |
|   /// The implementation of this function in subclasses should determine if
 | |
|   /// \p F is suitable for the optimization. This method is called by
 | |
|   /// SimplifyLibCalls::runOnModule to short circuit visiting all the call
 | |
|   /// sites of such a function if that function is not suitable in the first
 | |
|   /// place.  If the called function is suitabe, this method should return true;
 | |
|   /// false, otherwise. This function should also perform any lazy
 | |
|   /// initialization that the LibCallOptimization needs to do, if its to return
 | |
|   /// true. This avoids doing initialization until the optimizer is actually
 | |
|   /// going to be called upon to do some optimization.
 | |
|   /// @brief Determine if the function is suitable for optimization
 | |
|   virtual bool ValidateCalledFunction(
 | |
|     const Function* F,    ///< The function that is the target of call sites
 | |
|     SimplifyLibCalls& SLC ///< The pass object invoking us
 | |
|   ) = 0;
 | |
| 
 | |
|   /// The implementations of this function in subclasses is the heart of the
 | |
|   /// SimplifyLibCalls algorithm. Sublcasses of this class implement
 | |
|   /// OptimizeCall to determine if (a) the conditions are right for optimizing
 | |
|   /// the call and (b) to perform the optimization. If an action is taken
 | |
|   /// against ci, the subclass is responsible for returning true and ensuring
 | |
|   /// that ci is erased from its parent.
 | |
|   /// @brief Optimize a call, if possible.
 | |
|   virtual bool OptimizeCall(
 | |
|     CallInst* ci,          ///< The call instruction that should be optimized.
 | |
|     SimplifyLibCalls& SLC  ///< The pass object invoking us
 | |
|   ) = 0;
 | |
| 
 | |
|   /// @brief Get the name of the library call being optimized
 | |
|   const char *getFunctionName() const { return FunctionName; }
 | |
| 
 | |
|   bool ReplaceCallWith(CallInst *CI, Value *V) {
 | |
|     if (!CI->use_empty())
 | |
|       CI->replaceAllUsesWith(V);
 | |
|     CI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// @brief Called by SimplifyLibCalls to update the occurrences statistic.
 | |
|   void succeeded() {
 | |
| #ifndef NDEBUG
 | |
|     DEBUG(++occurrences);
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// This class is an LLVM Pass that applies each of the LibCallOptimization
 | |
| /// instances to all the call sites in a module, relatively efficiently. The
 | |
| /// purpose of this pass is to provide optimizations for calls to well-known
 | |
| /// functions with well-known semantics, such as those in the c library. The
 | |
| /// class provides the basic infrastructure for handling runOnModule.  Whenever
 | |
| /// this pass finds a function call, it asks the appropriate optimizer to
 | |
| /// validate the call (ValidateLibraryCall). If it is validated, then
 | |
| /// the OptimizeCall method is also called.
 | |
| /// @brief A ModulePass for optimizing well-known function calls.
 | |
| class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass {
 | |
| public:
 | |
|   static const char ID; // Pass identifcation, replacement for typeid
 | |
|   SimplifyLibCalls() : ModulePass((intptr_t)&ID) {}
 | |
| 
 | |
|   /// We need some target data for accurate signature details that are
 | |
|   /// target dependent. So we require target data in our AnalysisUsage.
 | |
|   /// @brief Require TargetData from AnalysisUsage.
 | |
|   virtual void getAnalysisUsage(AnalysisUsage& Info) const {
 | |
|     // Ask that the TargetData analysis be performed before us so we can use
 | |
|     // the target data.
 | |
|     Info.addRequired<TargetData>();
 | |
|   }
 | |
| 
 | |
|   /// For this pass, process all of the function calls in the module, calling
 | |
|   /// ValidateLibraryCall and OptimizeCall as appropriate.
 | |
|   /// @brief Run all the lib call optimizations on a Module.
 | |
|   virtual bool runOnModule(Module &M) {
 | |
|     reset(M);
 | |
| 
 | |
|     bool result = false;
 | |
|     hash_map<std::string, LibCallOptimization*> OptznMap;
 | |
|     for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext())
 | |
|       OptznMap[Optzn->getFunctionName()] = Optzn;
 | |
| 
 | |
|     // The call optimizations can be recursive. That is, the optimization might
 | |
|     // generate a call to another function which can also be optimized. This way
 | |
|     // we make the LibCallOptimization instances very specific to the case they
 | |
|     // handle. It also means we need to keep running over the function calls in
 | |
|     // the module until we don't get any more optimizations possible.
 | |
|     bool found_optimization = false;
 | |
|     do {
 | |
|       found_optimization = false;
 | |
|       for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
 | |
|         // All the "well-known" functions are external and have external linkage
 | |
|         // because they live in a runtime library somewhere and were (probably)
 | |
|         // not compiled by LLVM.  So, we only act on external functions that
 | |
|         // have external or dllimport linkage and non-empty uses.
 | |
|         if (!FI->isDeclaration() ||
 | |
|             !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) ||
 | |
|             FI->use_empty())
 | |
|           continue;
 | |
| 
 | |
|         // Get the optimization class that pertains to this function
 | |
|         hash_map<std::string, LibCallOptimization*>::iterator OMI =
 | |
|           OptznMap.find(FI->getName());
 | |
|         if (OMI == OptznMap.end()) continue;
 | |
|         
 | |
|         LibCallOptimization *CO = OMI->second;
 | |
| 
 | |
|         // Make sure the called function is suitable for the optimization
 | |
|         if (!CO->ValidateCalledFunction(FI, *this))
 | |
|           continue;
 | |
| 
 | |
|         // Loop over each of the uses of the function
 | |
|         for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end();
 | |
|              UI != UE ; ) {
 | |
|           // If the use of the function is a call instruction
 | |
|           if (CallInst* CI = dyn_cast<CallInst>(*UI++)) {
 | |
|             // Do the optimization on the LibCallOptimization.
 | |
|             if (CO->OptimizeCall(CI, *this)) {
 | |
|               ++SimplifiedLibCalls;
 | |
|               found_optimization = result = true;
 | |
|               CO->succeeded();
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } while (found_optimization);
 | |
|     
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return the *current* module we're working on.
 | |
|   Module* getModule() const { return M; }
 | |
| 
 | |
|   /// @brief Return the *current* target data for the module we're working on.
 | |
|   TargetData* getTargetData() const { return TD; }
 | |
| 
 | |
|   /// @brief Return the size_t type -- syntactic shortcut
 | |
|   const Type* getIntPtrType() const { return TD->getIntPtrType(); }
 | |
| 
 | |
|   /// @brief Return a Function* for the putchar libcall
 | |
|   Constant *get_putchar() {
 | |
|     if (!putchar_func)
 | |
|       putchar_func = 
 | |
|         M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL);
 | |
|     return putchar_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the puts libcall
 | |
|   Constant *get_puts() {
 | |
|     if (!puts_func)
 | |
|       puts_func = M->getOrInsertFunction("puts", Type::Int32Ty,
 | |
|                                          PointerType::get(Type::Int8Ty),
 | |
|                                          NULL);
 | |
|     return puts_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the fputc libcall
 | |
|   Constant *get_fputc(const Type* FILEptr_type) {
 | |
|     if (!fputc_func)
 | |
|       fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
 | |
|                                           FILEptr_type, NULL);
 | |
|     return fputc_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the fputs libcall
 | |
|   Constant *get_fputs(const Type* FILEptr_type) {
 | |
|     if (!fputs_func)
 | |
|       fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty,
 | |
|                                           PointerType::get(Type::Int8Ty),
 | |
|                                           FILEptr_type, NULL);
 | |
|     return fputs_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the fwrite libcall
 | |
|   Constant *get_fwrite(const Type* FILEptr_type) {
 | |
|     if (!fwrite_func)
 | |
|       fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            TD->getIntPtrType(),
 | |
|                                            TD->getIntPtrType(),
 | |
|                                            FILEptr_type, NULL);
 | |
|     return fwrite_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the sqrt libcall
 | |
|   Constant *get_sqrt() {
 | |
|     if (!sqrt_func)
 | |
|       sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy, 
 | |
|                                          Type::DoubleTy, NULL);
 | |
|     return sqrt_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the strcpy libcall
 | |
|   Constant *get_strcpy() {
 | |
|     if (!strcpy_func)
 | |
|       strcpy_func = M->getOrInsertFunction("strcpy",
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            NULL);
 | |
|     return strcpy_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the strlen libcall
 | |
|   Constant *get_strlen() {
 | |
|     if (!strlen_func)
 | |
|       strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(),
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            NULL);
 | |
|     return strlen_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the memchr libcall
 | |
|   Constant *get_memchr() {
 | |
|     if (!memchr_func)
 | |
|       memchr_func = M->getOrInsertFunction("memchr",
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            PointerType::get(Type::Int8Ty),
 | |
|                                            Type::Int32Ty, TD->getIntPtrType(),
 | |
|                                            NULL);
 | |
|     return memchr_func;
 | |
|   }
 | |
| 
 | |
|   /// @brief Return a Function* for the memcpy libcall
 | |
|   Constant *get_memcpy() {
 | |
|     if (!memcpy_func) {
 | |
|       const Type *SBP = PointerType::get(Type::Int8Ty);
 | |
|       const char *N = TD->getIntPtrType() == Type::Int32Ty ?
 | |
|                             "llvm.memcpy.i32" : "llvm.memcpy.i64";
 | |
|       memcpy_func = M->getOrInsertFunction(N, Type::VoidTy, SBP, SBP,
 | |
|                                            TD->getIntPtrType(), Type::Int32Ty,
 | |
|                                            NULL);
 | |
|     }
 | |
|     return memcpy_func;
 | |
|   }
 | |
| 
 | |
|   Constant *getUnaryFloatFunction(const char *Name, Constant *&Cache) {
 | |
|     if (!Cache)
 | |
|       Cache = M->getOrInsertFunction(Name, Type::FloatTy, Type::FloatTy, NULL);
 | |
|     return Cache;
 | |
|   }
 | |
|   
 | |
|   Constant *get_floorf() { return getUnaryFloatFunction("floorf", floorf_func);}
 | |
|   Constant *get_ceilf()  { return getUnaryFloatFunction( "ceilf",  ceilf_func);}
 | |
|   Constant *get_roundf() { return getUnaryFloatFunction("roundf", roundf_func);}
 | |
|   Constant *get_rintf()  { return getUnaryFloatFunction( "rintf",  rintf_func);}
 | |
|   Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyintf",
 | |
|                                                             nearbyintf_func); }
 | |
| private:
 | |
|   /// @brief Reset our cached data for a new Module
 | |
|   void reset(Module& mod) {
 | |
|     M = &mod;
 | |
|     TD = &getAnalysis<TargetData>();
 | |
|     putchar_func = 0;
 | |
|     puts_func = 0;
 | |
|     fputc_func = 0;
 | |
|     fputs_func = 0;
 | |
|     fwrite_func = 0;
 | |
|     memcpy_func = 0;
 | |
|     memchr_func = 0;
 | |
|     sqrt_func   = 0;
 | |
|     strcpy_func = 0;
 | |
|     strlen_func = 0;
 | |
|     floorf_func = 0;
 | |
|     ceilf_func = 0;
 | |
|     roundf_func = 0;
 | |
|     rintf_func = 0;
 | |
|     nearbyintf_func = 0;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Caches for function pointers.
 | |
|   Constant *putchar_func, *puts_func;
 | |
|   Constant *fputc_func, *fputs_func, *fwrite_func;
 | |
|   Constant *memcpy_func, *memchr_func;
 | |
|   Constant *sqrt_func;
 | |
|   Constant *strcpy_func, *strlen_func;
 | |
|   Constant *floorf_func, *ceilf_func, *roundf_func;
 | |
|   Constant *rintf_func, *nearbyintf_func;
 | |
|   Module *M;             ///< Cached Module
 | |
|   TargetData *TD;        ///< Cached TargetData
 | |
| };
 | |
| 
 | |
| const char SimplifyLibCalls::ID = 0;
 | |
| // Register the pass
 | |
| RegisterPass<SimplifyLibCalls>
 | |
| X("simplify-libcalls", "Simplify well-known library calls");
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| // The only public symbol in this file which just instantiates the pass object
 | |
| ModulePass *llvm::createSimplifyLibCallsPass() {
 | |
|   return new SimplifyLibCalls();
 | |
| }
 | |
| 
 | |
| // Classes below here, in the anonymous namespace, are all subclasses of the
 | |
| // LibCallOptimization class, each implementing all optimizations possible for a
 | |
| // single well-known library call. Each has a static singleton instance that
 | |
| // auto registers it into the "optlist" global above.
 | |
| namespace {
 | |
| 
 | |
| // Forward declare utility functions.
 | |
| static bool GetConstantStringInfo(Value *V, std::string &Str);
 | |
| static Value *CastToCStr(Value *V, Instruction *IP);
 | |
| 
 | |
| /// This LibCallOptimization will find instances of a call to "exit" that occurs
 | |
| /// within the "main" function and change it to a simple "ret" instruction with
 | |
| /// the same value passed to the exit function. When this is done, it splits the
 | |
| /// basic block at the exit(3) call and deletes the call instruction.
 | |
| /// @brief Replace calls to exit in main with a simple return
 | |
| struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization {
 | |
|   ExitInMainOptimization() : LibCallOptimization("exit",
 | |
|       "Number of 'exit' calls simplified") {}
 | |
| 
 | |
|   // Make sure the called function looks like exit (int argument, int return
 | |
|   // type, external linkage, not varargs).
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger();
 | |
|   }
 | |
| 
 | |
|   virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) {
 | |
|     // To be careful, we check that the call to exit is coming from "main", that
 | |
|     // main has external linkage, and the return type of main and the argument
 | |
|     // to exit have the same type.
 | |
|     Function *from = ci->getParent()->getParent();
 | |
|     if (from->hasExternalLinkage())
 | |
|       if (from->getReturnType() == ci->getOperand(1)->getType())
 | |
|         if (from->getName() == "main") {
 | |
|           // Okay, time to actually do the optimization. First, get the basic
 | |
|           // block of the call instruction
 | |
|           BasicBlock* bb = ci->getParent();
 | |
| 
 | |
|           // Create a return instruction that we'll replace the call with.
 | |
|           // Note that the argument of the return is the argument of the call
 | |
|           // instruction.
 | |
|           new ReturnInst(ci->getOperand(1), ci);
 | |
| 
 | |
|           // Split the block at the call instruction which places it in a new
 | |
|           // basic block.
 | |
|           bb->splitBasicBlock(ci);
 | |
| 
 | |
|           // The block split caused a branch instruction to be inserted into
 | |
|           // the end of the original block, right after the return instruction
 | |
|           // that we put there. That's not a valid block, so delete the branch
 | |
|           // instruction.
 | |
|           bb->getInstList().pop_back();
 | |
| 
 | |
|           // Now we can finally get rid of the call instruction which now lives
 | |
|           // in the new basic block.
 | |
|           ci->eraseFromParent();
 | |
| 
 | |
|           // Optimization succeeded, return true.
 | |
|           return true;
 | |
|         }
 | |
|     // We didn't pass the criteria for this optimization so return false
 | |
|     return false;
 | |
|   }
 | |
| } ExitInMainOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strcat library
 | |
| /// function. The simplification is possible only if the string being
 | |
| /// concatenated is a constant array or a constant expression that results in
 | |
| /// a constant string. In this case we can replace it with strlen + llvm.memcpy
 | |
| /// of the constant string. Both of these calls are further reduced, if possible
 | |
| /// on subsequent passes.
 | |
| /// @brief Simplify the strcat library function.
 | |
| struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default constructor
 | |
|   StrCatOptimization() : LibCallOptimization("strcat",
 | |
|       "Number of 'strcat' calls simplified") {}
 | |
| 
 | |
| public:
 | |
| 
 | |
|   /// @brief Make sure that the "strcat" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 2 &&
 | |
|            FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
 | |
|            FT->getParamType(0) == FT->getReturnType() &&
 | |
|            FT->getParamType(1) == FT->getReturnType();
 | |
|   }
 | |
| 
 | |
|   /// @brief Optimize the strcat library function
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // Extract some information from the instruction
 | |
|     Value *Dst = CI->getOperand(1);
 | |
|     Value *Src = CI->getOperand(2);
 | |
| 
 | |
|     // Extract the initializer (while making numerous checks) from the
 | |
|     // source operand of the call to strcat.
 | |
|     std::string SrcStr;
 | |
|     if (!GetConstantStringInfo(Src, SrcStr))
 | |
|       return false;
 | |
| 
 | |
|     // Handle the simple, do-nothing case
 | |
|     if (SrcStr.empty())
 | |
|       return ReplaceCallWith(CI, Dst);
 | |
| 
 | |
|     // We need to find the end of the destination string.  That's where the
 | |
|     // memory is to be moved to. We just generate a call to strlen.
 | |
|     CallInst *DstLen = new CallInst(SLC.get_strlen(), Dst,
 | |
|                                     Dst->getName()+".len", CI);
 | |
| 
 | |
|     // Now that we have the destination's length, we must index into the
 | |
|     // destination's pointer to get the actual memcpy destination (end of
 | |
|     // the string .. we're concatenating).
 | |
|     Dst = new GetElementPtrInst(Dst, DstLen, Dst->getName()+".indexed", CI);
 | |
| 
 | |
|     // We have enough information to now generate the memcpy call to
 | |
|     // do the concatenation for us.
 | |
|     Value *Vals[] = {
 | |
|       Dst, Src,
 | |
|       ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte.
 | |
|       ConstantInt::get(Type::Int32Ty, 1)  // alignment
 | |
|     };
 | |
|     new CallInst(SLC.get_memcpy(), Vals, 4, "", CI);
 | |
| 
 | |
|     return ReplaceCallWith(CI, Dst);
 | |
|   }
 | |
| } StrCatOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strchr library
 | |
| /// function.  It optimizes out cases where the arguments are both constant
 | |
| /// and the result can be determined statically.
 | |
| /// @brief Simplify the strcmp library function.
 | |
| struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   StrChrOptimization() : LibCallOptimization("strchr",
 | |
|       "Number of 'strchr' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "strchr" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 2 &&
 | |
|            FT->getReturnType() == PointerType::get(Type::Int8Ty) &&
 | |
|            FT->getParamType(0) == FT->getReturnType() &&
 | |
|            isa<IntegerType>(FT->getParamType(1));
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the strchr optimizations
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // Check that the first argument to strchr is a constant array of sbyte.
 | |
|     std::string Str;
 | |
|     if (!GetConstantStringInfo(CI->getOperand(1), Str))
 | |
|       return false;
 | |
| 
 | |
|     // If the second operand is not constant, just lower this to memchr since we
 | |
|     // know the length of the input string.
 | |
|     ConstantInt *CSI = dyn_cast<ConstantInt>(CI->getOperand(2));
 | |
|     if (!CSI) {
 | |
|       Value *Args[3] = {
 | |
|         CI->getOperand(1),
 | |
|         CI->getOperand(2),
 | |
|         ConstantInt::get(SLC.getIntPtrType(), Str.size()+1)
 | |
|       };
 | |
|       return ReplaceCallWith(CI, new CallInst(SLC.get_memchr(), Args, 3,
 | |
|                                               CI->getName(), CI));
 | |
|     }
 | |
| 
 | |
|     // strchr can find the nul character.
 | |
|     Str += '\0';
 | |
|     
 | |
|     // Get the character we're looking for
 | |
|     char CharValue = CSI->getSExtValue();
 | |
| 
 | |
|     // Compute the offset
 | |
|     uint64_t i = 0;
 | |
|     while (1) {
 | |
|       if (i == Str.size())    // Didn't find the char.  strchr returns null.
 | |
|         return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
 | |
|       // Did we find our match?
 | |
|       if (Str[i] == CharValue)
 | |
|         break;
 | |
|       ++i;
 | |
|     }
 | |
| 
 | |
|     // strchr(s+n,c)  -> gep(s+n+i,c)
 | |
|     //    (if c is a constant integer and s is a constant string)
 | |
|     Value *Idx = ConstantInt::get(Type::Int64Ty, i);
 | |
|     Value *GEP = new GetElementPtrInst(CI->getOperand(1), Idx, 
 | |
|                                        CI->getOperand(1)->getName() +
 | |
|                                        ".strchr", CI);
 | |
|     return ReplaceCallWith(CI, GEP);
 | |
|   }
 | |
| } StrChrOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strcmp library
 | |
| /// function.  It optimizes out cases where one or both arguments are constant
 | |
| /// and the result can be determined statically.
 | |
| /// @brief Simplify the strcmp library function.
 | |
| struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   StrCmpOptimization() : LibCallOptimization("strcmp",
 | |
|       "Number of 'strcmp' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "strcmp" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 &&
 | |
|            FT->getParamType(0) == FT->getParamType(1) &&
 | |
|            FT->getParamType(0) == PointerType::get(Type::Int8Ty);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the strcmp optimization
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // First, check to see if src and destination are the same. If they are,
 | |
|     // then the optimization is to replace the CallInst with a constant 0
 | |
|     // because the call is a no-op.
 | |
|     Value *Str1P = CI->getOperand(1);
 | |
|     Value *Str2P = CI->getOperand(2);
 | |
|     if (Str1P == Str2P)      // strcmp(x,x)  -> 0
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
 | |
| 
 | |
|     std::string Str1;
 | |
|     if (!GetConstantStringInfo(Str1P, Str1))
 | |
|       return false;
 | |
|     if (Str1.empty()) {
 | |
|       // strcmp("", x) -> *x
 | |
|       Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
 | |
|       V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
 | |
|       return ReplaceCallWith(CI, V);
 | |
|     }
 | |
| 
 | |
|     std::string Str2;
 | |
|     if (!GetConstantStringInfo(Str2P, Str2))
 | |
|       return false;
 | |
|     if (Str2.empty()) {
 | |
|       // strcmp(x,"") -> *x
 | |
|       Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
 | |
|       V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
 | |
|       return ReplaceCallWith(CI, V);
 | |
|     }
 | |
| 
 | |
|     // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
 | |
|     int R = strcmp(Str1.c_str(), Str2.c_str());
 | |
|     return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
 | |
|   }
 | |
| } StrCmpOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strncmp library
 | |
| /// function.  It optimizes out cases where one or both arguments are constant
 | |
| /// and the result can be determined statically.
 | |
| /// @brief Simplify the strncmp library function.
 | |
| struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   StrNCmpOptimization() : LibCallOptimization("strncmp",
 | |
|       "Number of 'strncmp' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "strncmp" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 &&
 | |
|            FT->getParamType(0) == FT->getParamType(1) &&
 | |
|            FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
 | |
|            isa<IntegerType>(FT->getParamType(2));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the strncmp optimization
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // First, check to see if src and destination are the same. If they are,
 | |
|     // then the optimization is to replace the CallInst with a constant 0
 | |
|     // because the call is a no-op.
 | |
|     Value *Str1P = CI->getOperand(1);
 | |
|     Value *Str2P = CI->getOperand(2);
 | |
|     if (Str1P == Str2P)  // strncmp(x,x, n)  -> 0
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
 | |
|     
 | |
|     // Check the length argument, if it is Constant zero then the strings are
 | |
|     // considered equal.
 | |
|     uint64_t Length;
 | |
|     if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
 | |
|       Length = LengthArg->getZExtValue();
 | |
|     else
 | |
|       return false;
 | |
|     
 | |
|     if (Length == 0) // strncmp(x,y,0)   -> 0
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
 | |
|     
 | |
|     std::string Str1;
 | |
|     if (!GetConstantStringInfo(Str1P, Str1))
 | |
|       return false;
 | |
|     if (Str1.empty()) {
 | |
|       // strncmp("", x, n) -> *x
 | |
|       Value *V = new LoadInst(Str2P, CI->getName()+".load", CI);
 | |
|       V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
 | |
|       return ReplaceCallWith(CI, V);
 | |
|     }
 | |
|     
 | |
|     std::string Str2;
 | |
|     if (!GetConstantStringInfo(Str2P, Str2))
 | |
|       return false;
 | |
|     if (Str2.empty()) {
 | |
|       // strncmp(x, "", n) -> *x
 | |
|       Value *V = new LoadInst(Str1P, CI->getName()+".load", CI);
 | |
|       V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI);
 | |
|       return ReplaceCallWith(CI, V);
 | |
|     }
 | |
|     
 | |
|     // strncmp(x, y, n)  -> cnst  (if both x and y are constant strings)
 | |
|     int R = strncmp(Str1.c_str(), Str2.c_str(), Length);
 | |
|     return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R));
 | |
|   }
 | |
| } StrNCmpOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strcpy library
 | |
| /// function.  Two optimizations are possible:
 | |
| /// (1) If src and dest are the same and not volatile, just return dest
 | |
| /// (2) If the src is a constant then we can convert to llvm.memmove
 | |
| /// @brief Simplify the strcpy library function.
 | |
| struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   StrCpyOptimization() : LibCallOptimization("strcpy",
 | |
|       "Number of 'strcpy' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "strcpy" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 2 &&
 | |
|            FT->getParamType(0) == FT->getParamType(1) &&
 | |
|            FT->getReturnType() == FT->getParamType(0) &&
 | |
|            FT->getParamType(0) == PointerType::get(Type::Int8Ty);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the strcpy optimization
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // First, check to see if src and destination are the same. If they are,
 | |
|     // then the optimization is to replace the CallInst with the destination
 | |
|     // because the call is a no-op. Note that this corresponds to the
 | |
|     // degenerate strcpy(X,X) case which should have "undefined" results
 | |
|     // according to the C specification. However, it occurs sometimes and
 | |
|     // we optimize it as a no-op.
 | |
|     Value *Dst = CI->getOperand(1);
 | |
|     Value *Src = CI->getOperand(2);
 | |
|     if (Dst == Src) {
 | |
|       // strcpy(x, x) -> x
 | |
|       return ReplaceCallWith(CI, Dst);
 | |
|     }
 | |
|     
 | |
|     // Get the length of the constant string referenced by the Src operand.
 | |
|     std::string SrcStr;
 | |
|     if (!GetConstantStringInfo(Src, SrcStr))
 | |
|       return false;
 | |
|     
 | |
|     // If the constant string's length is zero we can optimize this by just
 | |
|     // doing a store of 0 at the first byte of the destination
 | |
|     if (SrcStr.size() == 0) {
 | |
|       new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI);
 | |
|       return ReplaceCallWith(CI, Dst);
 | |
|     }
 | |
| 
 | |
|     // We have enough information to now generate the memcpy call to
 | |
|     // do the concatenation for us.
 | |
|     Value *MemcpyOps[] = {
 | |
|       Dst, Src, // Pass length including nul byte.
 | |
|       ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1),
 | |
|       ConstantInt::get(Type::Int32Ty, 1) // alignment
 | |
|     };
 | |
|     new CallInst(SLC.get_memcpy(), MemcpyOps, 4, "", CI);
 | |
| 
 | |
|     return ReplaceCallWith(CI, Dst);
 | |
|   }
 | |
| } StrCpyOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the strlen library
 | |
| /// function by replacing it with a constant value if the string provided to
 | |
| /// it is a constant array.
 | |
| /// @brief Simplify the strlen library function.
 | |
| struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization {
 | |
|   StrLenOptimization() : LibCallOptimization("strlen",
 | |
|       "Number of 'strlen' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "strlen" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 1 &&
 | |
|            FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
 | |
|            isa<IntegerType>(FT->getReturnType());
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the strlen optimization
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // Make sure we're dealing with an sbyte* here.
 | |
|     Value *Src = CI->getOperand(1);
 | |
| 
 | |
|     // Does the call to strlen have exactly one use?
 | |
|     if (CI->hasOneUse()) {
 | |
|       // Is that single use a icmp operator?
 | |
|       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CI->use_back()))
 | |
|         // Is it compared against a constant integer?
 | |
|         if (ConstantInt *Cst = dyn_cast<ConstantInt>(Cmp->getOperand(1))) {
 | |
|           // If its compared against length 0 with == or !=
 | |
|           if (Cst->getZExtValue() == 0 && Cmp->isEquality()) {
 | |
|             // strlen(x) != 0 -> *x != 0
 | |
|             // strlen(x) == 0 -> *x == 0
 | |
|             Value *V = new LoadInst(Src, Src->getName()+".first", CI);
 | |
|             V = new ICmpInst(Cmp->getPredicate(), V, 
 | |
|                              ConstantInt::get(Type::Int8Ty, 0),
 | |
|                              Cmp->getName()+".strlen", CI);
 | |
|             Cmp->replaceAllUsesWith(V);
 | |
|             Cmp->eraseFromParent();
 | |
|             return ReplaceCallWith(CI, 0);  // no uses.
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Get the length of the constant string operand
 | |
|     std::string Str;
 | |
|     if (!GetConstantStringInfo(Src, Str))
 | |
|       return false;
 | |
|       
 | |
|     // strlen("xyz") -> 3 (for example)
 | |
|     return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size()));
 | |
|   }
 | |
| } StrLenOptimizer;
 | |
| 
 | |
| /// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value
 | |
| /// is equal or not-equal to zero. 
 | |
| static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) {
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
 | |
|       if (IC->isEquality())
 | |
|         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
 | |
|           if (C->isNullValue())
 | |
|             continue;
 | |
|     // Unknown instruction.
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This memcmpOptimization will simplify a call to the memcmp library
 | |
| /// function.
 | |
| struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization {
 | |
|   /// @brief Default Constructor
 | |
|   memcmpOptimization()
 | |
|     : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {}
 | |
|   
 | |
|   /// @brief Make sure that the "memcmp" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
 | |
|     Function::const_arg_iterator AI = F->arg_begin();
 | |
|     if (F->arg_size() != 3 || !isa<PointerType>(AI->getType())) return false;
 | |
|     if (!isa<PointerType>((++AI)->getType())) return false;
 | |
|     if (!(++AI)->getType()->isInteger()) return false;
 | |
|     if (!F->getReturnType()->isInteger()) return false;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   /// Because of alignment and instruction information that we don't have, we
 | |
|   /// leave the bulk of this to the code generators.
 | |
|   ///
 | |
|   /// Note that we could do much more if we could force alignment on otherwise
 | |
|   /// small aligned allocas, or if we could indicate that loads have a small
 | |
|   /// alignment.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) {
 | |
|     Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
 | |
| 
 | |
|     // If the two operands are the same, return zero.
 | |
|     if (LHS == RHS) {
 | |
|       // memcmp(s,s,x) -> 0
 | |
|       return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
 | |
|     }
 | |
|     
 | |
|     // Make sure we have a constant length.
 | |
|     ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
 | |
|     if (!LenC) return false;
 | |
|     uint64_t Len = LenC->getZExtValue();
 | |
|       
 | |
|     // If the length is zero, this returns 0.
 | |
|     switch (Len) {
 | |
|     case 0:
 | |
|       // memcmp(s1,s2,0) -> 0
 | |
|       return ReplaceCallWith(CI, Constant::getNullValue(CI->getType()));
 | |
|     case 1: {
 | |
|       // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2
 | |
|       const Type *UCharPtr = PointerType::get(Type::Int8Ty);
 | |
|       CastInst *Op1Cast = CastInst::create(
 | |
|           Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
 | |
|       CastInst *Op2Cast = CastInst::create(
 | |
|           Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
 | |
|       Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI);
 | |
|       Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI);
 | |
|       Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI);
 | |
|       if (RV->getType() != CI->getType())
 | |
|         RV = CastInst::createIntegerCast(RV, CI->getType(), false, 
 | |
|                                          RV->getName(), CI);
 | |
|       return ReplaceCallWith(CI, RV);
 | |
|     }
 | |
|     case 2:
 | |
|       if (IsOnlyUsedInEqualsZeroComparison(CI)) {
 | |
|         // TODO: IF both are aligned, use a short load/compare.
 | |
|       
 | |
|         // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters
 | |
|         const Type *UCharPtr = PointerType::get(Type::Int8Ty);
 | |
|         CastInst *Op1Cast = CastInst::create(
 | |
|             Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI);
 | |
|         CastInst *Op2Cast = CastInst::create(
 | |
|             Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI);
 | |
|         Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI);
 | |
|         Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI);
 | |
|         Value *D1 = BinaryOperator::createSub(S1V1, S2V1,
 | |
|                                               CI->getName()+".d1", CI);
 | |
|         Constant *One = ConstantInt::get(Type::Int32Ty, 1);
 | |
|         Value *G1 = new GetElementPtrInst(Op1Cast, One, "next1v", CI);
 | |
|         Value *G2 = new GetElementPtrInst(Op2Cast, One, "next2v", CI);
 | |
|         Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI);
 | |
|         Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI);
 | |
|         Value *D2 = BinaryOperator::createSub(S1V2, S2V2,
 | |
|                                               CI->getName()+".d1", CI);
 | |
|         Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI);
 | |
|         if (Or->getType() != CI->getType())
 | |
|           Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/, 
 | |
|                                            Or->getName(), CI);
 | |
|         return ReplaceCallWith(CI, Or);
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
| } memcmpOptimizer;
 | |
| 
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the memcpy library
 | |
| /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
 | |
| /// bytes depending on the length of the string and the alignment. Additional
 | |
| /// optimizations are possible in code generation (sequence of immediate store)
 | |
| /// @brief Simplify the memcpy library function.
 | |
| struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization {
 | |
|   LLVMMemCpyMoveOptzn(const char* fname, const char* desc)
 | |
|   : LibCallOptimization(fname, desc) {}
 | |
| 
 | |
|   /// @brief Make sure that the "memcpy" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) {
 | |
|     // Just make sure this has 4 arguments per LLVM spec.
 | |
|     return (f->arg_size() == 4);
 | |
|   }
 | |
| 
 | |
|   /// Because of alignment and instruction information that we don't have, we
 | |
|   /// leave the bulk of this to the code generators. The optimization here just
 | |
|   /// deals with a few degenerate cases where the length of the string and the
 | |
|   /// alignment match the sizes of our intrinsic types so we can do a load and
 | |
|   /// store instead of the memcpy call.
 | |
|   /// @brief Perform the memcpy optimization.
 | |
|   virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) {
 | |
|     // Make sure we have constant int values to work with
 | |
|     ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
 | |
|     if (!LEN)
 | |
|       return false;
 | |
|     ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
 | |
|     if (!ALIGN)
 | |
|       return false;
 | |
| 
 | |
|     // If the length is larger than the alignment, we can't optimize
 | |
|     uint64_t len = LEN->getZExtValue();
 | |
|     uint64_t alignment = ALIGN->getZExtValue();
 | |
|     if (alignment == 0)
 | |
|       alignment = 1; // Alignment 0 is identity for alignment 1
 | |
|     if (len > alignment)
 | |
|       return false;
 | |
| 
 | |
|     // Get the type we will cast to, based on size of the string
 | |
|     Value* dest = ci->getOperand(1);
 | |
|     Value* src = ci->getOperand(2);
 | |
|     const Type* castType = 0;
 | |
|     switch (len) {
 | |
|       case 0:
 | |
|         // memcpy(d,s,0,a) -> d
 | |
|         return ReplaceCallWith(ci, 0);
 | |
|       case 1: castType = Type::Int8Ty; break;
 | |
|       case 2: castType = Type::Int16Ty; break;
 | |
|       case 4: castType = Type::Int32Ty; break;
 | |
|       case 8: castType = Type::Int64Ty; break;
 | |
|       default:
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Cast source and dest to the right sized primitive and then load/store
 | |
|     CastInst* SrcCast = CastInst::create(Instruction::BitCast,
 | |
|         src, PointerType::get(castType), src->getName()+".cast", ci);
 | |
|     CastInst* DestCast = CastInst::create(Instruction::BitCast,
 | |
|         dest, PointerType::get(castType),dest->getName()+".cast", ci);
 | |
|     LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci);
 | |
|     new StoreInst(LI, DestCast, ci);
 | |
|     return ReplaceCallWith(ci, 0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the memcpy/memmove library
 | |
| /// functions.
 | |
| LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32",
 | |
|                                     "Number of 'llvm.memcpy' calls simplified");
 | |
| LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64",
 | |
|                                    "Number of 'llvm.memcpy' calls simplified");
 | |
| LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32",
 | |
|                                    "Number of 'llvm.memmove' calls simplified");
 | |
| LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64",
 | |
|                                    "Number of 'llvm.memmove' calls simplified");
 | |
| 
 | |
| /// This LibCallOptimization will simplify a call to the memset library
 | |
| /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8
 | |
| /// bytes depending on the length argument.
 | |
| struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization {
 | |
|   /// @brief Default Constructor
 | |
|   LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name,
 | |
|       "Number of 'llvm.memset' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "memset" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) {
 | |
|     // Just make sure this has 3 arguments per LLVM spec.
 | |
|     return F->arg_size() == 4;
 | |
|   }
 | |
| 
 | |
|   /// Because of alignment and instruction information that we don't have, we
 | |
|   /// leave the bulk of this to the code generators. The optimization here just
 | |
|   /// deals with a few degenerate cases where the length parameter is constant
 | |
|   /// and the alignment matches the sizes of our intrinsic types so we can do
 | |
|   /// store instead of the memcpy call. Other calls are transformed into the
 | |
|   /// llvm.memset intrinsic.
 | |
|   /// @brief Perform the memset optimization.
 | |
|   virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) {
 | |
|     // Make sure we have constant int values to work with
 | |
|     ConstantInt* LEN = dyn_cast<ConstantInt>(ci->getOperand(3));
 | |
|     if (!LEN)
 | |
|       return false;
 | |
|     ConstantInt* ALIGN = dyn_cast<ConstantInt>(ci->getOperand(4));
 | |
|     if (!ALIGN)
 | |
|       return false;
 | |
| 
 | |
|     // Extract the length and alignment
 | |
|     uint64_t len = LEN->getZExtValue();
 | |
|     uint64_t alignment = ALIGN->getZExtValue();
 | |
| 
 | |
|     // Alignment 0 is identity for alignment 1
 | |
|     if (alignment == 0)
 | |
|       alignment = 1;
 | |
| 
 | |
|     // If the length is zero, this is a no-op
 | |
|     if (len == 0) {
 | |
|       // memset(d,c,0,a) -> noop
 | |
|       return ReplaceCallWith(ci, 0);
 | |
|     }
 | |
| 
 | |
|     // If the length is larger than the alignment, we can't optimize
 | |
|     if (len > alignment)
 | |
|       return false;
 | |
| 
 | |
|     // Make sure we have a constant ubyte to work with so we can extract
 | |
|     // the value to be filled.
 | |
|     ConstantInt* FILL = dyn_cast<ConstantInt>(ci->getOperand(2));
 | |
|     if (!FILL)
 | |
|       return false;
 | |
|     if (FILL->getType() != Type::Int8Ty)
 | |
|       return false;
 | |
| 
 | |
|     // memset(s,c,n) -> store s, c (for n=1,2,4,8)
 | |
| 
 | |
|     // Extract the fill character
 | |
|     uint64_t fill_char = FILL->getZExtValue();
 | |
|     uint64_t fill_value = fill_char;
 | |
| 
 | |
|     // Get the type we will cast to, based on size of memory area to fill, and
 | |
|     // and the value we will store there.
 | |
|     Value* dest = ci->getOperand(1);
 | |
|     const Type* castType = 0;
 | |
|     switch (len) {
 | |
|       case 1:
 | |
|         castType = Type::Int8Ty;
 | |
|         break;
 | |
|       case 2:
 | |
|         castType = Type::Int16Ty;
 | |
|         fill_value |= fill_char << 8;
 | |
|         break;
 | |
|       case 4:
 | |
|         castType = Type::Int32Ty;
 | |
|         fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
 | |
|         break;
 | |
|       case 8:
 | |
|         castType = Type::Int64Ty;
 | |
|         fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24;
 | |
|         fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48;
 | |
|         fill_value |= fill_char << 56;
 | |
|         break;
 | |
|       default:
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Cast dest to the right sized primitive and then load/store
 | |
|     CastInst* DestCast = new BitCastInst(dest, PointerType::get(castType), 
 | |
|                                          dest->getName()+".cast", ci);
 | |
|     new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci);
 | |
|     return ReplaceCallWith(ci, 0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32");
 | |
| LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64");
 | |
| 
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "pow" library
 | |
| /// function. It looks for cases where the result of pow is well known and
 | |
| /// substitutes the appropriate value.
 | |
| /// @brief Simplify the pow library function.
 | |
| struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   PowOptimization() : LibCallOptimization("pow",
 | |
|       "Number of 'pow' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "pow" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
 | |
|     // Just make sure this has 2 arguments
 | |
|     return (f->arg_size() == 2);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the pow optimization.
 | |
|   virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
 | |
|     const Type *Ty = cast<Function>(ci->getOperand(0))->getReturnType();
 | |
|     Value* base = ci->getOperand(1);
 | |
|     Value* expn = ci->getOperand(2);
 | |
|     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(base)) {
 | |
|       double Op1V = Op1->getValue();
 | |
|       if (Op1V == 1.0) // pow(1.0,x) -> 1.0
 | |
|         return ReplaceCallWith(ci, ConstantFP::get(Ty, 1.0));
 | |
|     }  else if (ConstantFP* Op2 = dyn_cast<ConstantFP>(expn)) {
 | |
|       double Op2V = Op2->getValue();
 | |
|       if (Op2V == 0.0) {
 | |
|         // pow(x,0.0) -> 1.0
 | |
|         return ReplaceCallWith(ci, ConstantFP::get(Ty,1.0));
 | |
|       } else if (Op2V == 0.5) {
 | |
|         // pow(x,0.5) -> sqrt(x)
 | |
|         CallInst* sqrt_inst = new CallInst(SLC.get_sqrt(), base,
 | |
|             ci->getName()+".pow",ci);
 | |
|         return ReplaceCallWith(ci, sqrt_inst);
 | |
|       } else if (Op2V == 1.0) {
 | |
|         // pow(x,1.0) -> x
 | |
|         return ReplaceCallWith(ci, base);
 | |
|       } else if (Op2V == -1.0) {
 | |
|         // pow(x,-1.0)    -> 1.0/x
 | |
|         Value *div_inst = 
 | |
|           BinaryOperator::createFDiv(ConstantFP::get(Ty, 1.0), base,
 | |
|                                      ci->getName()+".pow", ci);
 | |
|         return ReplaceCallWith(ci, div_inst);
 | |
|       }
 | |
|     }
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } PowOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "printf" library
 | |
| /// function. It looks for cases where the result of printf is not used and the
 | |
| /// operation can be reduced to something simpler.
 | |
| /// @brief Simplify the printf library function.
 | |
| struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   PrintfOptimization() : LibCallOptimization("printf",
 | |
|       "Number of 'printf' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "printf" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     // Just make sure this has at least 1 argument and returns an integer or
 | |
|     // void type.
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() >= 1 &&
 | |
|           (isa<IntegerType>(FT->getReturnType()) ||
 | |
|            FT->getReturnType() == Type::VoidTy);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the printf optimization.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // All the optimizations depend on the length of the first argument and the
 | |
|     // fact that it is a constant string array. Check that now
 | |
|     std::string FormatStr;
 | |
|     if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
 | |
|       return false;
 | |
|     
 | |
|     // If this is a simple constant string with no format specifiers that ends
 | |
|     // with a \n, turn it into a puts call.
 | |
|     if (FormatStr.empty()) {
 | |
|       // Tolerate printf's declared void.
 | |
|       if (CI->use_empty()) return ReplaceCallWith(CI, 0);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
 | |
|     }
 | |
|     
 | |
|     if (FormatStr.size() == 1) {
 | |
|       // Turn this into a putchar call, even if it is a %.
 | |
|       Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]);
 | |
|       new CallInst(SLC.get_putchar(), V, "", CI);
 | |
|       if (CI->use_empty()) return ReplaceCallWith(CI, 0);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
 | |
|     }
 | |
| 
 | |
|     // Check to see if the format str is something like "foo\n", in which case
 | |
|     // we convert it to a puts call.  We don't allow it to contain any format
 | |
|     // characters.
 | |
|     if (FormatStr[FormatStr.size()-1] == '\n' &&
 | |
|         FormatStr.find('%') == std::string::npos) {
 | |
|       // Create a string literal with no \n on it.  We expect the constant merge
 | |
|       // pass to be run after this pass, to merge duplicate strings.
 | |
|       FormatStr.erase(FormatStr.end()-1);
 | |
|       Constant *Init = ConstantArray::get(FormatStr, true);
 | |
|       Constant *GV = new GlobalVariable(Init->getType(), true,
 | |
|                                         GlobalVariable::InternalLinkage,
 | |
|                                         Init, "str",
 | |
|                                      CI->getParent()->getParent()->getParent());
 | |
|       // Cast GV to be a pointer to char.
 | |
|       GV = ConstantExpr::getBitCast(GV, PointerType::get(Type::Int8Ty));
 | |
|       new CallInst(SLC.get_puts(), GV, "", CI);
 | |
| 
 | |
|       if (CI->use_empty()) return ReplaceCallWith(CI, 0);
 | |
|       return ReplaceCallWith(CI,
 | |
|                              ConstantInt::get(CI->getType(), FormatStr.size()));
 | |
|     }
 | |
|     
 | |
|     
 | |
|     // Only support %c or "%s\n" for now.
 | |
|     if (FormatStr.size() < 2 || FormatStr[0] != '%')
 | |
|       return false;
 | |
| 
 | |
|     // Get the second character and switch on its value
 | |
|     switch (FormatStr[1]) {
 | |
|     default:  return false;
 | |
|     case 's':
 | |
|       if (FormatStr != "%s\n" || CI->getNumOperands() < 3 ||
 | |
|           // TODO: could insert strlen call to compute string length.
 | |
|           !CI->use_empty())
 | |
|         return false;
 | |
| 
 | |
|       // printf("%s\n",str) -> puts(str)
 | |
|       new CallInst(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI),
 | |
|                    CI->getName(), CI);
 | |
|       return ReplaceCallWith(CI, 0);
 | |
|     case 'c': {
 | |
|       // printf("%c",c) -> putchar(c)
 | |
|       if (FormatStr.size() != 2 || CI->getNumOperands() < 3)
 | |
|         return false;
 | |
|       
 | |
|       Value *V = CI->getOperand(2);
 | |
|       if (!isa<IntegerType>(V->getType()) ||
 | |
|           cast<IntegerType>(V->getType())->getBitWidth() > 32)
 | |
|         return false;
 | |
| 
 | |
|       V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int",
 | |
|                                         CI);
 | |
|       new CallInst(SLC.get_putchar(), V, "", CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| } PrintfOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "fprintf" library
 | |
| /// function. It looks for cases where the result of fprintf is not used and the
 | |
| /// operation can be reduced to something simpler.
 | |
| /// @brief Simplify the fprintf library function.
 | |
| struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FPrintFOptimization() : LibCallOptimization("fprintf",
 | |
|       "Number of 'fprintf' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "fprintf" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 2 &&  // two fixed arguments.
 | |
|            FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
 | |
|            isa<PointerType>(FT->getParamType(0)) &&
 | |
|            isa<IntegerType>(FT->getReturnType());
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the fprintf optimization.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // If the call has more than 3 operands, we can't optimize it
 | |
|     if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
 | |
|       return false;
 | |
| 
 | |
|     // All the optimizations depend on the format string.
 | |
|     std::string FormatStr;
 | |
|     if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
 | |
|       return false;
 | |
| 
 | |
|     // If this is just a format string, turn it into fwrite.
 | |
|     if (CI->getNumOperands() == 3) {
 | |
|       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|         if (FormatStr[i] == '%')
 | |
|           return false; // we found a format specifier
 | |
| 
 | |
|       // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file)
 | |
|       const Type *FILEty = CI->getOperand(1)->getType();
 | |
| 
 | |
|       Value *FWriteArgs[] = {
 | |
|         CI->getOperand(2),
 | |
|         ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()),
 | |
|         ConstantInt::get(SLC.getIntPtrType(), 1),
 | |
|         CI->getOperand(1)
 | |
|       };
 | |
|       new CallInst(SLC.get_fwrite(FILEty), FWriteArgs, 4, CI->getName(), CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 
 | |
|                                                   FormatStr.size()));
 | |
|     }
 | |
|     
 | |
|     // The remaining optimizations require the format string to be length 2:
 | |
|     // "%s" or "%c".
 | |
|     if (FormatStr.size() != 2 || FormatStr[0] != '%')
 | |
|       return false;
 | |
| 
 | |
|     // Get the second character and switch on its value
 | |
|     switch (FormatStr[1]) {
 | |
|     case 'c': {
 | |
|       // fprintf(file,"%c",c) -> fputc(c,file)
 | |
|       const Type *FILETy = CI->getOperand(1)->getType();
 | |
|       Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty,
 | |
|                                                CI->getName()+".int", CI);
 | |
|       new CallInst(SLC.get_fputc(FILETy), C, CI->getOperand(1), "", CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
 | |
|     }
 | |
|     case 's': {
 | |
|       const Type *FILETy = CI->getOperand(1)->getType();
 | |
|       
 | |
|       // If the result of the fprintf call is used, we can't do this.
 | |
|       // TODO: we should insert a strlen call.
 | |
|       if (!CI->use_empty())
 | |
|         return false;
 | |
|       
 | |
|       // fprintf(file,"%s",str) -> fputs(str,file)
 | |
|       new CallInst(SLC.get_fputs(FILETy), CastToCStr(CI->getOperand(3), CI),
 | |
|                    CI->getOperand(1), CI->getName(), CI);
 | |
|       return ReplaceCallWith(CI, 0);
 | |
|     }
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| } FPrintFOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "sprintf" library
 | |
| /// function. It looks for cases where the result of sprintf is not used and the
 | |
| /// operation can be reduced to something simpler.
 | |
| /// @brief Simplify the sprintf library function.
 | |
| struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   SPrintFOptimization() : LibCallOptimization("sprintf",
 | |
|       "Number of 'sprintf' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "sprintf" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 2 &&  // two fixed arguments.
 | |
|            FT->getParamType(1) == PointerType::get(Type::Int8Ty) &&
 | |
|            FT->getParamType(0) == FT->getParamType(1) &&
 | |
|            isa<IntegerType>(FT->getReturnType());
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the sprintf optimization.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // If the call has more than 3 operands, we can't optimize it
 | |
|     if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4)
 | |
|       return false;
 | |
| 
 | |
|     std::string FormatStr;
 | |
|     if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
 | |
|       return false;
 | |
|     
 | |
|     if (CI->getNumOperands() == 3) {
 | |
|       // Make sure there's no % in the constant array
 | |
|       for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
 | |
|         if (FormatStr[i] == '%')
 | |
|           return false; // we found a format specifier
 | |
|       
 | |
|       // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1)
 | |
|       Value *MemCpyArgs[] = {
 | |
|         CI->getOperand(1), CI->getOperand(2),
 | |
|         ConstantInt::get(SLC.getIntPtrType(), 
 | |
|                          FormatStr.size()+1), // Copy the nul byte.
 | |
|         ConstantInt::get(Type::Int32Ty, 1)
 | |
|       };
 | |
|       new CallInst(SLC.get_memcpy(), MemCpyArgs, 4, "", CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 
 | |
|                                                   FormatStr.size()));
 | |
|     }
 | |
| 
 | |
|     // The remaining optimizations require the format string to be "%s" or "%c".
 | |
|     if (FormatStr.size() != 2 || FormatStr[0] != '%')
 | |
|       return false;
 | |
| 
 | |
|     // Get the second character and switch on its value
 | |
|     switch (FormatStr[1]) {
 | |
|     case 'c': {
 | |
|       // sprintf(dest,"%c",chr) -> store chr, dest
 | |
|       Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3),
 | |
|                                                 Type::Int8Ty, "char", CI);
 | |
|       new StoreInst(V, CI->getOperand(1), CI);
 | |
|       Value *Ptr = new GetElementPtrInst(CI->getOperand(1),
 | |
|                                          ConstantInt::get(Type::Int32Ty, 1),
 | |
|                                          CI->getOperand(1)->getName()+".end",
 | |
|                                          CI);
 | |
|       new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1));
 | |
|     }
 | |
|     case 's': {
 | |
|       // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
 | |
|       Value *Len = new CallInst(SLC.get_strlen(),
 | |
|                                 CastToCStr(CI->getOperand(3), CI),
 | |
|                                 CI->getOperand(3)->getName()+".len", CI);
 | |
|       Value *UnincLen = Len;
 | |
|       Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1),
 | |
|                                       Len->getName()+"1", CI);
 | |
|       Value *MemcpyArgs[4] = {
 | |
|         CI->getOperand(1),
 | |
|         CastToCStr(CI->getOperand(3), CI),
 | |
|         Len,
 | |
|         ConstantInt::get(Type::Int32Ty, 1)
 | |
|       };
 | |
|       new CallInst(SLC.get_memcpy(), MemcpyArgs, 4, "", CI);
 | |
|       
 | |
|       // The strlen result is the unincremented number of bytes in the string.
 | |
|       if (!CI->use_empty()) {
 | |
|         if (UnincLen->getType() != CI->getType())
 | |
|           UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false, 
 | |
|                                                  Len->getName(), CI);
 | |
|         CI->replaceAllUsesWith(UnincLen);
 | |
|       }
 | |
|       return ReplaceCallWith(CI, 0);
 | |
|     }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| } SPrintFOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "fputs" library
 | |
| /// function. It looks for cases where the result of fputs is not used and the
 | |
| /// operation can be reduced to something simpler.
 | |
| /// @brief Simplify the fputs library function.
 | |
| struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FPutsOptimization() : LibCallOptimization("fputs",
 | |
|       "Number of 'fputs' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "fputs" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     // Just make sure this has 2 arguments
 | |
|     return F->arg_size() == 2;
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the fputs optimization.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // If the result is used, none of these optimizations work.
 | |
|     if (!CI->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     // All the optimizations depend on the length of the first argument and the
 | |
|     // fact that it is a constant string array. Check that now
 | |
|     std::string Str;
 | |
|     if (!GetConstantStringInfo(CI->getOperand(1), Str))
 | |
|       return false;
 | |
| 
 | |
|     const Type *FILETy = CI->getOperand(2)->getType();
 | |
|     // fputs(s,F)  -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1)
 | |
|     Value *FWriteParms[4] = {
 | |
|       CI->getOperand(1),
 | |
|       ConstantInt::get(SLC.getIntPtrType(), Str.size()),
 | |
|       ConstantInt::get(SLC.getIntPtrType(), 1),
 | |
|       CI->getOperand(2)
 | |
|     };
 | |
|     new CallInst(SLC.get_fwrite(FILETy), FWriteParms, 4, "", CI);
 | |
|     return ReplaceCallWith(CI, 0);  // Known to have no uses (see above).
 | |
|   }
 | |
| } FPutsOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "fwrite" function.
 | |
| struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FWriteOptimization() : LibCallOptimization("fwrite",
 | |
|                                        "Number of 'fwrite' calls simplified") {}
 | |
|   
 | |
|   /// @brief Make sure that the "fputs" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     const FunctionType *FT = F->getFunctionType();
 | |
|     return FT->getNumParams() == 4 && 
 | |
|            FT->getParamType(0) == PointerType::get(Type::Int8Ty) &&
 | |
|            FT->getParamType(1) == FT->getParamType(2) &&
 | |
|            isa<IntegerType>(FT->getParamType(1)) &&
 | |
|            isa<PointerType>(FT->getParamType(3)) &&
 | |
|            isa<IntegerType>(FT->getReturnType());
 | |
|   }
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // Get the element size and count.
 | |
|     uint64_t EltSize, EltCount;
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(2)))
 | |
|       EltSize = C->getZExtValue();
 | |
|     else
 | |
|       return false;
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(CI->getOperand(3)))
 | |
|       EltCount = C->getZExtValue();
 | |
|     else
 | |
|       return false;
 | |
|     
 | |
|     // If this is writing zero records, remove the call (it's a noop).
 | |
|     if (EltSize * EltCount == 0)
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0));
 | |
|     
 | |
|     // If this is writing one byte, turn it into fputc.
 | |
|     if (EltSize == 1 && EltCount == 1) {
 | |
|       // fwrite(s,1,1,F) -> fputc(s[0],F)
 | |
|       Value *Ptr = CI->getOperand(1);
 | |
|       Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI);
 | |
|       Val = new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI);
 | |
|       const Type *FILETy = CI->getOperand(4)->getType();
 | |
|       new CallInst(SLC.get_fputc(FILETy), Val, CI->getOperand(4), "", CI);
 | |
|       return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1));
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| } FWriteOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "isdigit" library
 | |
| /// function. It simply does range checks the parameter explicitly.
 | |
| /// @brief Simplify the isdigit library function.
 | |
| struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   isdigitOptimization() : LibCallOptimization("isdigit",
 | |
|       "Number of 'isdigit' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "isdigit" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
 | |
|     // Just make sure this has 1 argument
 | |
|     return (f->arg_size() == 1);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the toascii optimization.
 | |
|   virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
 | |
|     if (ConstantInt* CI = dyn_cast<ConstantInt>(ci->getOperand(1))) {
 | |
|       // isdigit(c)   -> 0 or 1, if 'c' is constant
 | |
|       uint64_t val = CI->getZExtValue();
 | |
|       if (val >= '0' && val <= '9')
 | |
|         return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1));
 | |
|       else
 | |
|         return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0));
 | |
|     }
 | |
| 
 | |
|     // isdigit(c)   -> (unsigned)c - '0' <= 9
 | |
|     CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1),
 | |
|         Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci);
 | |
|     BinaryOperator* sub_inst = BinaryOperator::createSub(cast,
 | |
|         ConstantInt::get(Type::Int32Ty,0x30),
 | |
|         ci->getOperand(1)->getName()+".sub",ci);
 | |
|     ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst,
 | |
|         ConstantInt::get(Type::Int32Ty,9),
 | |
|         ci->getOperand(1)->getName()+".cmp",ci);
 | |
|     CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty, 
 | |
|         ci->getOperand(1)->getName()+".isdigit", ci);
 | |
|     return ReplaceCallWith(ci, c2);
 | |
|   }
 | |
| } isdigitOptimizer;
 | |
| 
 | |
| struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   isasciiOptimization()
 | |
|     : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {}
 | |
|   
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() && 
 | |
|            F->getReturnType()->isInteger();
 | |
|   }
 | |
|   
 | |
|   /// @brief Perform the isascii optimization.
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
|     // isascii(c)   -> (unsigned)c < 128
 | |
|     Value *V = CI->getOperand(1);
 | |
|     Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V, 
 | |
|                               ConstantInt::get(V->getType(), 128), 
 | |
|                               V->getName()+".isascii", CI);
 | |
|     if (Cmp->getType() != CI->getType())
 | |
|       Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI);
 | |
|     return ReplaceCallWith(CI, Cmp);
 | |
|   }
 | |
| } isasciiOptimizer;
 | |
| 
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "toascii" library
 | |
| /// function. It simply does the corresponding and operation to restrict the
 | |
| /// range of values to the ASCII character set (0-127).
 | |
| /// @brief Simplify the toascii library function.
 | |
| struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   ToAsciiOptimization() : LibCallOptimization("toascii",
 | |
|       "Number of 'toascii' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "fputs" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){
 | |
|     // Just make sure this has 2 arguments
 | |
|     return (f->arg_size() == 1);
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the toascii optimization.
 | |
|   virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) {
 | |
|     // toascii(c)   -> (c & 0x7f)
 | |
|     Value *chr = ci->getOperand(1);
 | |
|     Value *and_inst = BinaryOperator::createAnd(chr,
 | |
|         ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci);
 | |
|     return ReplaceCallWith(ci, and_inst);
 | |
|   }
 | |
| } ToAsciiOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "ffs" library
 | |
| /// calls which find the first set bit in an int, long, or long long. The
 | |
| /// optimization is to compute the result at compile time if the argument is
 | |
| /// a constant.
 | |
| /// @brief Simplify the ffs library function.
 | |
| struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization {
 | |
| protected:
 | |
|   /// @brief Subclass Constructor
 | |
|   FFSOptimization(const char* funcName, const char* description)
 | |
|     : LibCallOptimization(funcName, description) {}
 | |
| 
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FFSOptimization() : LibCallOptimization("ffs",
 | |
|       "Number of 'ffs' calls simplified") {}
 | |
| 
 | |
|   /// @brief Make sure that the "ffs" function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     // Just make sure this has 2 arguments
 | |
|     return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty;
 | |
|   }
 | |
| 
 | |
|   /// @brief Perform the ffs optimization.
 | |
|   virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(TheCall->getOperand(1))) {
 | |
|       // ffs(cnst)  -> bit#
 | |
|       // ffsl(cnst) -> bit#
 | |
|       // ffsll(cnst) -> bit#
 | |
|       uint64_t val = CI->getZExtValue();
 | |
|       int result = 0;
 | |
|       if (val) {
 | |
|         ++result;
 | |
|         while ((val & 1) == 0) {
 | |
|           ++result;
 | |
|           val >>= 1;
 | |
|         }
 | |
|       }
 | |
|       return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result));
 | |
|     }
 | |
| 
 | |
|     // ffs(x)   -> x == 0 ? 0 : llvm.cttz(x)+1
 | |
|     // ffsl(x)  -> x == 0 ? 0 : llvm.cttz(x)+1
 | |
|     // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1
 | |
|     const Type *ArgType = TheCall->getOperand(1)->getType();
 | |
|     const char *CTTZName;
 | |
|     assert(ArgType->getTypeID() == Type::IntegerTyID &&
 | |
|            "llvm.cttz argument is not an integer?");
 | |
|     unsigned BitWidth = cast<IntegerType>(ArgType)->getBitWidth();
 | |
|     if (BitWidth == 8)
 | |
|       CTTZName = "llvm.cttz.i8";
 | |
|     else if (BitWidth == 16)
 | |
|       CTTZName = "llvm.cttz.i16"; 
 | |
|     else if (BitWidth == 32)
 | |
|       CTTZName = "llvm.cttz.i32";
 | |
|     else {
 | |
|       assert(BitWidth == 64 && "Unknown bitwidth");
 | |
|       CTTZName = "llvm.cttz.i64";
 | |
|     }
 | |
|     
 | |
|     Constant *F = SLC.getModule()->getOrInsertFunction(CTTZName, ArgType,
 | |
|                                                        ArgType, NULL);
 | |
|     Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType, 
 | |
|                                            false/*ZExt*/, "tmp", TheCall);
 | |
|     Value *V2 = new CallInst(F, V, "tmp", TheCall);
 | |
|     V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/, 
 | |
|                                      "tmp", TheCall);
 | |
|     V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1),
 | |
|                                    "tmp", TheCall);
 | |
|     Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V, 
 | |
|                                Constant::getNullValue(V->getType()), "tmp", 
 | |
|                                TheCall);
 | |
|     V2 = new SelectInst(Cond, ConstantInt::get(Type::Int32Ty, 0), V2,
 | |
|                         TheCall->getName(), TheCall);
 | |
|     return ReplaceCallWith(TheCall, V2);
 | |
|   }
 | |
| } FFSOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "ffsl" library
 | |
| /// calls. It simply uses FFSOptimization for which the transformation is
 | |
| /// identical.
 | |
| /// @brief Simplify the ffsl library function.
 | |
| struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FFSLOptimization() : FFSOptimization("ffsl",
 | |
|       "Number of 'ffsl' calls simplified") {}
 | |
| 
 | |
| } FFSLOptimizer;
 | |
| 
 | |
| /// This LibCallOptimization will simplify calls to the "ffsll" library
 | |
| /// calls. It simply uses FFSOptimization for which the transformation is
 | |
| /// identical.
 | |
| /// @brief Simplify the ffsl library function.
 | |
| struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization {
 | |
| public:
 | |
|   /// @brief Default Constructor
 | |
|   FFSLLOptimization() : FFSOptimization("ffsll",
 | |
|       "Number of 'ffsll' calls simplified") {}
 | |
| 
 | |
| } FFSLLOptimizer;
 | |
| 
 | |
| /// This optimizes unary functions that take and return doubles.
 | |
| struct UnaryDoubleFPOptimizer : public LibCallOptimization {
 | |
|   UnaryDoubleFPOptimizer(const char *Fn, const char *Desc)
 | |
|   : LibCallOptimization(Fn, Desc) {}
 | |
|   
 | |
|   // Make sure that this function has the right prototype
 | |
|   virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){
 | |
|     return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy &&
 | |
|            F->getReturnType() == Type::DoubleTy;
 | |
|   }
 | |
| 
 | |
|   /// ShrinkFunctionToFloatVersion - If the input to this function is really a
 | |
|   /// float, strength reduce this to a float version of the function,
 | |
|   /// e.g. floor((double)FLT) -> (double)floorf(FLT).  This can only be called
 | |
|   /// when the target supports the destination function and where there can be
 | |
|   /// no precision loss.
 | |
|   static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC,
 | |
|                                            Constant *(SimplifyLibCalls::*FP)()){
 | |
|     if (FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1)))
 | |
|       if (Cast->getOperand(0)->getType() == Type::FloatTy) {
 | |
|         Value *New = new CallInst((SLC.*FP)(), Cast->getOperand(0),
 | |
|                                   CI->getName(), CI);
 | |
|         New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI);
 | |
|         CI->replaceAllUsesWith(New);
 | |
|         CI->eraseFromParent();
 | |
|         if (Cast->use_empty())
 | |
|           Cast->eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer {
 | |
|   FloorOptimization()
 | |
|     : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {}
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
| #ifdef HAVE_FLOORF
 | |
|     // If this is a float argument passed in, convert to floorf.
 | |
|     if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf))
 | |
|       return true;
 | |
| #endif
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } FloorOptimizer;
 | |
| 
 | |
| struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer {
 | |
|   CeilOptimization()
 | |
|   : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {}
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
| #ifdef HAVE_CEILF
 | |
|     // If this is a float argument passed in, convert to ceilf.
 | |
|     if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf))
 | |
|       return true;
 | |
| #endif
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } CeilOptimizer;
 | |
| 
 | |
| struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer {
 | |
|   RoundOptimization()
 | |
|   : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {}
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
| #ifdef HAVE_ROUNDF
 | |
|     // If this is a float argument passed in, convert to roundf.
 | |
|     if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf))
 | |
|       return true;
 | |
| #endif
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } RoundOptimizer;
 | |
| 
 | |
| struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer {
 | |
|   RintOptimization()
 | |
|   : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {}
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
| #ifdef HAVE_RINTF
 | |
|     // If this is a float argument passed in, convert to rintf.
 | |
|     if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf))
 | |
|       return true;
 | |
| #endif
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } RintOptimizer;
 | |
| 
 | |
| struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer {
 | |
|   NearByIntOptimization()
 | |
|   : UnaryDoubleFPOptimizer("nearbyint",
 | |
|                            "Number of 'nearbyint' calls simplified") {}
 | |
|   
 | |
|   virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) {
 | |
| #ifdef HAVE_NEARBYINTF
 | |
|     // If this is a float argument passed in, convert to nearbyintf.
 | |
|     if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf))
 | |
|       return true;
 | |
| #endif
 | |
|     return false; // opt failed
 | |
|   }
 | |
| } NearByIntOptimizer;
 | |
| 
 | |
| /// GetConstantStringInfo - This function computes the length of a
 | |
| /// null-terminated constant array of integers.  This function can't rely on the
 | |
| /// size of the constant array because there could be a null terminator in the
 | |
| /// middle of the array.
 | |
| ///
 | |
| /// We also have to bail out if we find a non-integer constant initializer
 | |
| /// of one of the elements or if there is no null-terminator. The logic
 | |
| /// below checks each of these conditions and will return true only if all
 | |
| /// conditions are met.  If the conditions aren't met, this returns false.
 | |
| ///
 | |
| /// If successful, the \p Array param is set to the constant array being
 | |
| /// indexed, the \p Length parameter is set to the length of the null-terminated
 | |
| /// string pointed to by V, the \p StartIdx value is set to the first
 | |
| /// element of the Array that V points to, and true is returned.
 | |
| static bool GetConstantStringInfo(Value *V, std::string &Str) {
 | |
|   // Look through noop bitcast instructions.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
 | |
|     if (BCI->getType() == BCI->getOperand(0)->getType())
 | |
|       return GetConstantStringInfo(BCI->getOperand(0), Str);
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If the value is not a GEP instruction nor a constant expression with a
 | |
|   // GEP instruction, then return false because ConstantArray can't occur
 | |
|   // any other way
 | |
|   User *GEP = 0;
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     GEP = GEPI;
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() != Instruction::GetElementPtr)
 | |
|       return false;
 | |
|     GEP = CE;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Make sure the GEP has exactly three arguments.
 | |
|   if (GEP->getNumOperands() != 3)
 | |
|     return false;
 | |
| 
 | |
|   // Check to make sure that the first operand of the GEP is an integer and
 | |
|   // has value 0 so that we are sure we're indexing into the initializer.
 | |
|   if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
 | |
|     if (!Idx->isZero())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // If the second index isn't a ConstantInt, then this is a variable index
 | |
|   // into the array.  If this occurs, we can't say anything meaningful about
 | |
|   // the string.
 | |
|   uint64_t StartIdx = 0;
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
 | |
|     StartIdx = CI->getZExtValue();
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // The GEP instruction, constant or instruction, must reference a global
 | |
|   // variable that is a constant and is initialized. The referenced constant
 | |
|   // initializer is the array that we'll use for optimization.
 | |
|   GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasInitializer())
 | |
|     return false;
 | |
|   Constant *GlobalInit = GV->getInitializer();
 | |
| 
 | |
|   // Handle the ConstantAggregateZero case
 | |
|   if (isa<ConstantAggregateZero>(GlobalInit)) {
 | |
|     // This is a degenerate case. The initializer is constant zero so the
 | |
|     // length of the string must be zero.
 | |
|     Str.clear();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Must be a Constant Array
 | |
|   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
 | |
|   if (!Array) return false;
 | |
| 
 | |
|   // Get the number of elements in the array
 | |
|   uint64_t NumElts = Array->getType()->getNumElements();
 | |
| 
 | |
|   // Traverse the constant array from StartIdx (derived above) which is
 | |
|   // the place the GEP refers to in the array.
 | |
|   for (unsigned i = StartIdx; i < NumElts; ++i) {
 | |
|     Constant *Elt = Array->getOperand(i);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | |
|     if (!CI) // This array isn't suitable, non-int initializer.
 | |
|       return false;
 | |
|     if (CI->isZero())
 | |
|       return true; // we found end of string, success!
 | |
|     Str += (char)CI->getZExtValue();
 | |
|   }
 | |
|   
 | |
|   return false; // The array isn't null terminated.
 | |
| }
 | |
| 
 | |
| /// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*,
 | |
| /// inserting the cast before IP, and return the cast.
 | |
| /// @brief Cast a value to a "C" string.
 | |
| static Value *CastToCStr(Value *V, Instruction *IP) {
 | |
|   assert(isa<PointerType>(V->getType()) && 
 | |
|          "Can't cast non-pointer type to C string type");
 | |
|   const Type *SBPTy = PointerType::get(Type::Int8Ty);
 | |
|   if (V->getType() != SBPTy)
 | |
|     return new BitCastInst(V, SBPTy, V->getName(), IP);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| // TODO:
 | |
| //   Additional cases that we need to add to this file:
 | |
| //
 | |
| // cbrt:
 | |
| //   * cbrt(expN(X))  -> expN(x/3)
 | |
| //   * cbrt(sqrt(x))  -> pow(x,1/6)
 | |
| //   * cbrt(sqrt(x))  -> pow(x,1/9)
 | |
| //
 | |
| // cos, cosf, cosl:
 | |
| //   * cos(-x)  -> cos(x)
 | |
| //
 | |
| // exp, expf, expl:
 | |
| //   * exp(log(x))  -> x
 | |
| //
 | |
| // log, logf, logl:
 | |
| //   * log(exp(x))   -> x
 | |
| //   * log(x**y)     -> y*log(x)
 | |
| //   * log(exp(y))   -> y*log(e)
 | |
| //   * log(exp2(y))  -> y*log(2)
 | |
| //   * log(exp10(y)) -> y*log(10)
 | |
| //   * log(sqrt(x))  -> 0.5*log(x)
 | |
| //   * log(pow(x,y)) -> y*log(x)
 | |
| //
 | |
| // lround, lroundf, lroundl:
 | |
| //   * lround(cnst) -> cnst'
 | |
| //
 | |
| // memcmp:
 | |
| //   * memcmp(x,y,l)   -> cnst
 | |
| //      (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
 | |
| //
 | |
| // memmove:
 | |
| //   * memmove(d,s,l,a) -> memcpy(d,s,l,a)
 | |
| //       (if s is a global constant array)
 | |
| //
 | |
| // pow, powf, powl:
 | |
| //   * pow(exp(x),y)  -> exp(x*y)
 | |
| //   * pow(sqrt(x),y) -> pow(x,y*0.5)
 | |
| //   * pow(pow(x,y),z)-> pow(x,y*z)
 | |
| //
 | |
| // puts:
 | |
| //   * puts("") -> putchar("\n")
 | |
| //
 | |
| // round, roundf, roundl:
 | |
| //   * round(cnst) -> cnst'
 | |
| //
 | |
| // signbit:
 | |
| //   * signbit(cnst) -> cnst'
 | |
| //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
 | |
| //
 | |
| // sqrt, sqrtf, sqrtl:
 | |
| //   * sqrt(expN(x))  -> expN(x*0.5)
 | |
| //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
 | |
| //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
 | |
| //
 | |
| // stpcpy:
 | |
| //   * stpcpy(str, "literal") ->
 | |
| //           llvm.memcpy(str,"literal",strlen("literal")+1,1)
 | |
| // strrchr:
 | |
| //   * strrchr(s,c) -> reverse_offset_of_in(c,s)
 | |
| //      (if c is a constant integer and s is a constant string)
 | |
| //   * strrchr(s1,0) -> strchr(s1,0)
 | |
| //
 | |
| // strncat:
 | |
| //   * strncat(x,y,0) -> x
 | |
| //   * strncat(x,y,0) -> x (if strlen(y) = 0)
 | |
| //   * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
 | |
| //
 | |
| // strncpy:
 | |
| //   * strncpy(d,s,0) -> d
 | |
| //   * strncpy(d,s,l) -> memcpy(d,s,l,1)
 | |
| //      (if s and l are constants)
 | |
| //
 | |
| // strpbrk:
 | |
| //   * strpbrk(s,a) -> offset_in_for(s,a)
 | |
| //      (if s and a are both constant strings)
 | |
| //   * strpbrk(s,"") -> 0
 | |
| //   * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
 | |
| //
 | |
| // strspn, strcspn:
 | |
| //   * strspn(s,a)   -> const_int (if both args are constant)
 | |
| //   * strspn("",a)  -> 0
 | |
| //   * strspn(s,"")  -> 0
 | |
| //   * strcspn(s,a)  -> const_int (if both args are constant)
 | |
| //   * strcspn("",a) -> 0
 | |
| //   * strcspn(s,"") -> strlen(a)
 | |
| //
 | |
| // strstr:
 | |
| //   * strstr(x,x)  -> x
 | |
| //   * strstr(s1,s2) -> offset_of_s2_in(s1)
 | |
| //       (if s1 and s2 are constant strings)
 | |
| //
 | |
| // tan, tanf, tanl:
 | |
| //   * tan(atan(x)) -> x
 | |
| //
 | |
| // trunc, truncf, truncl:
 | |
| //   * trunc(cnst) -> cnst'
 | |
| //
 | |
| //
 | |
| }
 |