mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
c25e7581b9
Make llvm_unreachable take an optional string, thus moving the cerr<< out of line. LLVM_UNREACHABLE is now a simple wrapper that makes the message go away for NDEBUG builds. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75379 91177308-0d34-0410-b5e6-96231b3b80d8
845 lines
34 KiB
C++
845 lines
34 KiB
C++
//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions determines the possibility of performing constant
|
|
// folding.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cerrno>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding internal helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
|
|
/// from a global, return the global and the constant. Because of
|
|
/// constantexprs, this function is recursive.
|
|
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
|
|
int64_t &Offset, const TargetData &TD) {
|
|
// Trivial case, constant is the global.
|
|
if ((GV = dyn_cast<GlobalValue>(C))) {
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if this isn't a constant expr, bail out.
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
|
|
if (!CE) return false;
|
|
|
|
// Look through ptr->int and ptr->ptr casts.
|
|
if (CE->getOpcode() == Instruction::PtrToInt ||
|
|
CE->getOpcode() == Instruction::BitCast)
|
|
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
|
|
|
|
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// Cannot compute this if the element type of the pointer is missing size
|
|
// info.
|
|
if (!cast<PointerType>(CE->getOperand(0)->getType())
|
|
->getElementType()->isSized())
|
|
return false;
|
|
|
|
// If the base isn't a global+constant, we aren't either.
|
|
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
|
|
return false;
|
|
|
|
// Otherwise, add any offset that our operands provide.
|
|
gep_type_iterator GTI = gep_type_begin(CE);
|
|
for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
|
|
i != e; ++i, ++GTI) {
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(*i);
|
|
if (!CI) return false; // Index isn't a simple constant?
|
|
if (CI->getZExtValue() == 0) continue; // Not adding anything.
|
|
|
|
if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
|
|
// N = N + Offset
|
|
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
|
|
} else {
|
|
const SequentialType *SQT = cast<SequentialType>(*GTI);
|
|
Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
|
|
/// Attempt to symbolically evaluate the result of a binary operator merging
|
|
/// these together. If target data info is available, it is provided as TD,
|
|
/// otherwise TD is null.
|
|
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
|
|
Constant *Op1, const TargetData *TD,
|
|
LLVMContext *Context){
|
|
// SROA
|
|
|
|
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
|
|
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
|
|
// bits.
|
|
|
|
|
|
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
|
|
// constant. This happens frequently when iterating over a global array.
|
|
if (Opc == Instruction::Sub && TD) {
|
|
GlobalValue *GV1, *GV2;
|
|
int64_t Offs1, Offs2;
|
|
|
|
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
|
|
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
|
|
GV1 == GV2) {
|
|
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
|
|
return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
|
|
/// constant expression, do so.
|
|
static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
|
|
const Type *ResultTy,
|
|
LLVMContext *Context,
|
|
const TargetData *TD) {
|
|
Constant *Ptr = Ops[0];
|
|
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
|
|
return 0;
|
|
|
|
uint64_t BasePtr = 0;
|
|
if (!Ptr->isNullValue()) {
|
|
// If this is a inttoptr from a constant int, we can fold this as the base,
|
|
// otherwise we can't.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
|
|
if (CE->getOpcode() == Instruction::IntToPtr)
|
|
if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
|
|
BasePtr = Base->getZExtValue();
|
|
|
|
if (BasePtr == 0)
|
|
return 0;
|
|
}
|
|
|
|
// If this is a constant expr gep that is effectively computing an
|
|
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
|
|
for (unsigned i = 1; i != NumOps; ++i)
|
|
if (!isa<ConstantInt>(Ops[i]))
|
|
return false;
|
|
|
|
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
|
|
(Value**)Ops+1, NumOps-1);
|
|
Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
|
|
return Context->getConstantExprIntToPtr(C, ResultTy);
|
|
}
|
|
|
|
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
|
|
/// targetdata. Return 0 if unfoldable.
|
|
static Constant *FoldBitCast(Constant *C, const Type *DestTy,
|
|
const TargetData &TD, LLVMContext *Context) {
|
|
// If this is a bitcast from constant vector -> vector, fold it.
|
|
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
|
|
if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
|
|
// If the element types match, VMCore can fold it.
|
|
unsigned NumDstElt = DestVTy->getNumElements();
|
|
unsigned NumSrcElt = CV->getNumOperands();
|
|
if (NumDstElt == NumSrcElt)
|
|
return 0;
|
|
|
|
const Type *SrcEltTy = CV->getType()->getElementType();
|
|
const Type *DstEltTy = DestVTy->getElementType();
|
|
|
|
// Otherwise, we're changing the number of elements in a vector, which
|
|
// requires endianness information to do the right thing. For example,
|
|
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
|
|
// folds to (little endian):
|
|
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
|
|
// and to (big endian):
|
|
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
|
|
|
|
// First thing is first. We only want to think about integer here, so if
|
|
// we have something in FP form, recast it as integer.
|
|
if (DstEltTy->isFloatingPoint()) {
|
|
// Fold to an vector of integers with same size as our FP type.
|
|
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
|
|
const Type *DestIVTy = Context->getVectorType(
|
|
Context->getIntegerType(FPWidth), NumDstElt);
|
|
// Recursively handle this integer conversion, if possible.
|
|
C = FoldBitCast(C, DestIVTy, TD, Context);
|
|
if (!C) return 0;
|
|
|
|
// Finally, VMCore can handle this now that #elts line up.
|
|
return Context->getConstantExprBitCast(C, DestTy);
|
|
}
|
|
|
|
// Okay, we know the destination is integer, if the input is FP, convert
|
|
// it to integer first.
|
|
if (SrcEltTy->isFloatingPoint()) {
|
|
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
|
|
const Type *SrcIVTy = Context->getVectorType(
|
|
Context->getIntegerType(FPWidth), NumSrcElt);
|
|
// Ask VMCore to do the conversion now that #elts line up.
|
|
C = Context->getConstantExprBitCast(C, SrcIVTy);
|
|
CV = dyn_cast<ConstantVector>(C);
|
|
if (!CV) return 0; // If VMCore wasn't able to fold it, bail out.
|
|
}
|
|
|
|
// Now we know that the input and output vectors are both integer vectors
|
|
// of the same size, and that their #elements is not the same. Do the
|
|
// conversion here, which depends on whether the input or output has
|
|
// more elements.
|
|
bool isLittleEndian = TD.isLittleEndian();
|
|
|
|
SmallVector<Constant*, 32> Result;
|
|
if (NumDstElt < NumSrcElt) {
|
|
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
|
|
Constant *Zero = Context->getNullValue(DstEltTy);
|
|
unsigned Ratio = NumSrcElt/NumDstElt;
|
|
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
|
|
unsigned SrcElt = 0;
|
|
for (unsigned i = 0; i != NumDstElt; ++i) {
|
|
// Build each element of the result.
|
|
Constant *Elt = Zero;
|
|
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
|
|
for (unsigned j = 0; j != Ratio; ++j) {
|
|
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
|
|
if (!Src) return 0; // Reject constantexpr elements.
|
|
|
|
// Zero extend the element to the right size.
|
|
Src = Context->getConstantExprZExt(Src, Elt->getType());
|
|
|
|
// Shift it to the right place, depending on endianness.
|
|
Src = Context->getConstantExprShl(Src,
|
|
Context->getConstantInt(Src->getType(), ShiftAmt));
|
|
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
|
|
|
|
// Mix it in.
|
|
Elt = Context->getConstantExprOr(Elt, Src);
|
|
}
|
|
Result.push_back(Elt);
|
|
}
|
|
} else {
|
|
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
|
|
unsigned Ratio = NumDstElt/NumSrcElt;
|
|
unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
|
|
|
|
// Loop over each source value, expanding into multiple results.
|
|
for (unsigned i = 0; i != NumSrcElt; ++i) {
|
|
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
|
|
if (!Src) return 0; // Reject constantexpr elements.
|
|
|
|
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
|
|
for (unsigned j = 0; j != Ratio; ++j) {
|
|
// Shift the piece of the value into the right place, depending on
|
|
// endianness.
|
|
Constant *Elt = Context->getConstantExprLShr(Src,
|
|
Context->getConstantInt(Src->getType(), ShiftAmt));
|
|
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
|
|
|
|
// Truncate and remember this piece.
|
|
Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
|
|
}
|
|
}
|
|
}
|
|
|
|
return Context->getConstantVector(Result.data(), Result.size());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding public APIs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ConstantFoldInstruction - Attempt to constant fold the specified
|
|
/// instruction. If successful, the constant result is returned, if not, null
|
|
/// is returned. Note that this function can only fail when attempting to fold
|
|
/// instructions like loads and stores, which have no constant expression form.
|
|
///
|
|
Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
|
|
const TargetData *TD) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
if (PN->getNumIncomingValues() == 0)
|
|
return Context->getUndef(PN->getType());
|
|
|
|
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
|
|
if (Result == 0) return 0;
|
|
|
|
// Handle PHI nodes specially here...
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
|
|
return 0; // Not all the same incoming constants...
|
|
|
|
// If we reach here, all incoming values are the same constant.
|
|
return Result;
|
|
}
|
|
|
|
// Scan the operand list, checking to see if they are all constants, if so,
|
|
// hand off to ConstantFoldInstOperands.
|
|
SmallVector<Constant*, 8> Ops;
|
|
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
|
|
if (Constant *Op = dyn_cast<Constant>(*i))
|
|
Ops.push_back(Op);
|
|
else
|
|
return 0; // All operands not constant!
|
|
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
|
return ConstantFoldCompareInstOperands(CI->getPredicate(),
|
|
Ops.data(), Ops.size(),
|
|
Context, TD);
|
|
else
|
|
return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
|
|
Ops.data(), Ops.size(), Context, TD);
|
|
}
|
|
|
|
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
|
|
/// using the specified TargetData. If successful, the constant result is
|
|
/// result is returned, if not, null is returned.
|
|
Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
|
|
LLVMContext *Context,
|
|
const TargetData *TD) {
|
|
SmallVector<Constant*, 8> Ops;
|
|
for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
|
|
Ops.push_back(cast<Constant>(*i));
|
|
|
|
if (CE->isCompare())
|
|
return ConstantFoldCompareInstOperands(CE->getPredicate(),
|
|
Ops.data(), Ops.size(),
|
|
Context, TD);
|
|
else
|
|
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
|
|
Ops.data(), Ops.size(), Context, TD);
|
|
}
|
|
|
|
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
|
|
/// specified opcode and operands. If successful, the constant result is
|
|
/// returned, if not, null is returned. Note that this function can fail when
|
|
/// attempting to fold instructions like loads and stores, which have no
|
|
/// constant expression form.
|
|
///
|
|
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
|
|
Constant* const* Ops, unsigned NumOps,
|
|
LLVMContext *Context,
|
|
const TargetData *TD) {
|
|
// Handle easy binops first.
|
|
if (Instruction::isBinaryOp(Opcode)) {
|
|
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
|
|
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
|
|
Context))
|
|
return C;
|
|
|
|
return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
|
|
}
|
|
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case Instruction::Call:
|
|
if (Function *F = dyn_cast<Function>(Ops[0]))
|
|
if (canConstantFoldCallTo(F))
|
|
return ConstantFoldCall(F, Ops+1, NumOps-1);
|
|
return 0;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
LLVM_UNREACHABLE("This function is invalid for compares: no predicate specified");
|
|
case Instruction::PtrToInt:
|
|
// If the input is a inttoptr, eliminate the pair. This requires knowing
|
|
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
|
|
if (TD && CE->getOpcode() == Instruction::IntToPtr) {
|
|
Constant *Input = CE->getOperand(0);
|
|
unsigned InWidth = Input->getType()->getScalarSizeInBits();
|
|
if (TD->getPointerSizeInBits() < InWidth) {
|
|
Constant *Mask =
|
|
Context->getConstantInt(APInt::getLowBitsSet(InWidth,
|
|
TD->getPointerSizeInBits()));
|
|
Input = Context->getConstantExprAnd(Input, Mask);
|
|
}
|
|
// Do a zext or trunc to get to the dest size.
|
|
return Context->getConstantExprIntegerCast(Input, DestTy, false);
|
|
}
|
|
}
|
|
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
|
case Instruction::IntToPtr:
|
|
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
|
|
// the int size is >= the ptr size. This requires knowing the width of a
|
|
// pointer, so it can't be done in ConstantExpr::getCast.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
|
|
if (TD &&
|
|
TD->getPointerSizeInBits() <=
|
|
CE->getType()->getScalarSizeInBits()) {
|
|
if (CE->getOpcode() == Instruction::PtrToInt) {
|
|
Constant *Input = CE->getOperand(0);
|
|
Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
|
|
return C ? C : Context->getConstantExprBitCast(Input, DestTy);
|
|
}
|
|
// If there's a constant offset added to the integer value before
|
|
// it is casted back to a pointer, see if the expression can be
|
|
// converted into a GEP.
|
|
if (CE->getOpcode() == Instruction::Add)
|
|
if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
|
|
if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
|
|
if (R->getOpcode() == Instruction::PtrToInt)
|
|
if (GlobalVariable *GV =
|
|
dyn_cast<GlobalVariable>(R->getOperand(0))) {
|
|
const PointerType *GVTy = cast<PointerType>(GV->getType());
|
|
if (const ArrayType *AT =
|
|
dyn_cast<ArrayType>(GVTy->getElementType())) {
|
|
const Type *ElTy = AT->getElementType();
|
|
uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
|
|
APInt PSA(L->getValue().getBitWidth(), AllocSize);
|
|
if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
|
|
L->getValue().urem(PSA) == 0) {
|
|
APInt ElemIdx = L->getValue().udiv(PSA);
|
|
if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
|
|
AT->getNumElements()))) {
|
|
Constant *Index[] = {
|
|
Context->getNullValue(CE->getType()),
|
|
Context->getConstantInt(ElemIdx)
|
|
};
|
|
return
|
|
Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
|
|
case Instruction::BitCast:
|
|
if (TD)
|
|
if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
|
|
return C;
|
|
return Context->getConstantExprBitCast(Ops[0], DestTy);
|
|
case Instruction::Select:
|
|
return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ExtractElement:
|
|
return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
|
|
case Instruction::InsertElement:
|
|
return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ShuffleVector:
|
|
return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::GetElementPtr:
|
|
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
|
|
return C;
|
|
|
|
return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
|
|
}
|
|
}
|
|
|
|
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
|
|
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
|
|
/// returns a constant expression of the specified operands.
|
|
///
|
|
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
|
|
Constant*const * Ops,
|
|
unsigned NumOps,
|
|
LLVMContext *Context,
|
|
const TargetData *TD) {
|
|
// fold: icmp (inttoptr x), null -> icmp x, 0
|
|
// fold: icmp (ptrtoint x), 0 -> icmp x, null
|
|
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
|
|
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
|
|
//
|
|
// ConstantExpr::getCompare cannot do this, because it doesn't have TD
|
|
// around to know if bit truncation is happening.
|
|
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
|
|
if (TD && Ops[1]->isNullValue()) {
|
|
const Type *IntPtrTy = TD->getIntPtrType();
|
|
if (CE0->getOpcode() == Instruction::IntToPtr) {
|
|
// Convert the integer value to the right size to ensure we get the
|
|
// proper extension or truncation.
|
|
Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
|
|
IntPtrTy, false);
|
|
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
|
|
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
|
Context, TD);
|
|
}
|
|
|
|
// Only do this transformation if the int is intptrty in size, otherwise
|
|
// there is a truncation or extension that we aren't modeling.
|
|
if (CE0->getOpcode() == Instruction::PtrToInt &&
|
|
CE0->getType() == IntPtrTy) {
|
|
Constant *C = CE0->getOperand(0);
|
|
Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
|
|
// FIXME!
|
|
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
|
Context, TD);
|
|
}
|
|
}
|
|
|
|
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
|
|
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
|
|
const Type *IntPtrTy = TD->getIntPtrType();
|
|
|
|
if (CE0->getOpcode() == Instruction::IntToPtr) {
|
|
// Convert the integer value to the right size to ensure we get the
|
|
// proper extension or truncation.
|
|
Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
|
|
IntPtrTy, false);
|
|
Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
|
|
IntPtrTy, false);
|
|
Constant *NewOps[] = { C0, C1 };
|
|
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
|
Context, TD);
|
|
}
|
|
|
|
// Only do this transformation if the int is intptrty in size, otherwise
|
|
// there is a truncation or extension that we aren't modeling.
|
|
if ((CE0->getOpcode() == Instruction::PtrToInt &&
|
|
CE0->getType() == IntPtrTy &&
|
|
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
|
|
Constant *NewOps[] = {
|
|
CE0->getOperand(0), CE1->getOperand(0)
|
|
};
|
|
return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
|
|
Context, TD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
|
|
}
|
|
|
|
|
|
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
|
|
/// getelementptr constantexpr, return the constant value being addressed by the
|
|
/// constant expression, or null if something is funny and we can't decide.
|
|
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
|
ConstantExpr *CE,
|
|
LLVMContext *Context) {
|
|
if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
|
|
return 0; // Do not allow stepping over the value!
|
|
|
|
// Loop over all of the operands, tracking down which value we are
|
|
// addressing...
|
|
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
|
|
for (++I; I != E; ++I)
|
|
if (const StructType *STy = dyn_cast<StructType>(*I)) {
|
|
ConstantInt *CU = cast<ConstantInt>(I.getOperand());
|
|
assert(CU->getZExtValue() < STy->getNumElements() &&
|
|
"Struct index out of range!");
|
|
unsigned El = (unsigned)CU->getZExtValue();
|
|
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
|
|
C = CS->getOperand(El);
|
|
} else if (isa<ConstantAggregateZero>(C)) {
|
|
C = Context->getNullValue(STy->getElementType(El));
|
|
} else if (isa<UndefValue>(C)) {
|
|
C = Context->getUndef(STy->getElementType(El));
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
|
|
if (CI->getZExtValue() >= ATy->getNumElements())
|
|
return 0;
|
|
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
|
|
C = CA->getOperand(CI->getZExtValue());
|
|
else if (isa<ConstantAggregateZero>(C))
|
|
C = Context->getNullValue(ATy->getElementType());
|
|
else if (isa<UndefValue>(C))
|
|
C = Context->getUndef(ATy->getElementType());
|
|
else
|
|
return 0;
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
|
|
if (CI->getZExtValue() >= PTy->getNumElements())
|
|
return 0;
|
|
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
|
|
C = CP->getOperand(CI->getZExtValue());
|
|
else if (isa<ConstantAggregateZero>(C))
|
|
C = Context->getNullValue(PTy->getElementType());
|
|
else if (isa<UndefValue>(C))
|
|
C = Context->getUndef(PTy->getElementType());
|
|
else
|
|
return 0;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding for Calls
|
|
//
|
|
|
|
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
|
|
/// the specified function.
|
|
bool
|
|
llvm::canConstantFoldCallTo(const Function *F) {
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::sqrt:
|
|
case Intrinsic::powi:
|
|
case Intrinsic::bswap:
|
|
case Intrinsic::ctpop:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
return true;
|
|
default: break;
|
|
}
|
|
|
|
if (!F->hasName()) return false;
|
|
const char *Str = F->getNameStart();
|
|
unsigned Len = F->getNameLen();
|
|
|
|
// In these cases, the check of the length is required. We don't want to
|
|
// return true for a name like "cos\0blah" which strcmp would return equal to
|
|
// "cos", but has length 8.
|
|
switch (Str[0]) {
|
|
default: return false;
|
|
case 'a':
|
|
if (Len == 4)
|
|
return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
|
|
!strcmp(Str, "atan");
|
|
else if (Len == 5)
|
|
return !strcmp(Str, "atan2");
|
|
return false;
|
|
case 'c':
|
|
if (Len == 3)
|
|
return !strcmp(Str, "cos");
|
|
else if (Len == 4)
|
|
return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
|
|
!strcmp(Str, "cosh");
|
|
return false;
|
|
case 'e':
|
|
if (Len == 3)
|
|
return !strcmp(Str, "exp");
|
|
return false;
|
|
case 'f':
|
|
if (Len == 4)
|
|
return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
|
|
else if (Len == 5)
|
|
return !strcmp(Str, "floor");
|
|
return false;
|
|
break;
|
|
case 'l':
|
|
if (Len == 3 && !strcmp(Str, "log"))
|
|
return true;
|
|
if (Len == 5 && !strcmp(Str, "log10"))
|
|
return true;
|
|
return false;
|
|
case 'p':
|
|
if (Len == 3 && !strcmp(Str, "pow"))
|
|
return true;
|
|
return false;
|
|
case 's':
|
|
if (Len == 3)
|
|
return !strcmp(Str, "sin");
|
|
if (Len == 4)
|
|
return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
|
|
!strcmp(Str, "sinf");
|
|
if (Len == 5)
|
|
return !strcmp(Str, "sqrtf");
|
|
return false;
|
|
case 't':
|
|
if (Len == 3 && !strcmp(Str, "tan"))
|
|
return true;
|
|
else if (Len == 4 && !strcmp(Str, "tanh"))
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
|
|
const Type *Ty, LLVMContext *Context) {
|
|
errno = 0;
|
|
V = NativeFP(V);
|
|
if (errno != 0) {
|
|
errno = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (Ty == Type::FloatTy)
|
|
return Context->getConstantFP(APFloat((float)V));
|
|
if (Ty == Type::DoubleTy)
|
|
return Context->getConstantFP(APFloat(V));
|
|
LLVM_UNREACHABLE("Can only constant fold float/double");
|
|
return 0; // dummy return to suppress warning
|
|
}
|
|
|
|
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
|
|
double V, double W,
|
|
const Type *Ty,
|
|
LLVMContext *Context) {
|
|
errno = 0;
|
|
V = NativeFP(V, W);
|
|
if (errno != 0) {
|
|
errno = 0;
|
|
return 0;
|
|
}
|
|
|
|
if (Ty == Type::FloatTy)
|
|
return Context->getConstantFP(APFloat((float)V));
|
|
if (Ty == Type::DoubleTy)
|
|
return Context->getConstantFP(APFloat(V));
|
|
LLVM_UNREACHABLE("Can only constant fold float/double");
|
|
return 0; // dummy return to suppress warning
|
|
}
|
|
|
|
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
|
|
/// with the specified arguments, returning null if unsuccessful.
|
|
|
|
Constant *
|
|
llvm::ConstantFoldCall(Function *F,
|
|
Constant* const* Operands, unsigned NumOperands) {
|
|
if (!F->hasName()) return 0;
|
|
LLVMContext *Context = F->getContext();
|
|
const char *Str = F->getNameStart();
|
|
unsigned Len = F->getNameLen();
|
|
|
|
const Type *Ty = F->getReturnType();
|
|
if (NumOperands == 1) {
|
|
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
|
|
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
|
|
return 0;
|
|
/// Currently APFloat versions of these functions do not exist, so we use
|
|
/// the host native double versions. Float versions are not called
|
|
/// directly but for all these it is true (float)(f((double)arg)) ==
|
|
/// f(arg). Long double not supported yet.
|
|
double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
|
|
Op->getValueAPF().convertToDouble();
|
|
switch (Str[0]) {
|
|
case 'a':
|
|
if (Len == 4 && !strcmp(Str, "acos"))
|
|
return ConstantFoldFP(acos, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "asin"))
|
|
return ConstantFoldFP(asin, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "atan"))
|
|
return ConstantFoldFP(atan, V, Ty, Context);
|
|
break;
|
|
case 'c':
|
|
if (Len == 4 && !strcmp(Str, "ceil"))
|
|
return ConstantFoldFP(ceil, V, Ty, Context);
|
|
else if (Len == 3 && !strcmp(Str, "cos"))
|
|
return ConstantFoldFP(cos, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "cosh"))
|
|
return ConstantFoldFP(cosh, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "cosf"))
|
|
return ConstantFoldFP(cos, V, Ty, Context);
|
|
break;
|
|
case 'e':
|
|
if (Len == 3 && !strcmp(Str, "exp"))
|
|
return ConstantFoldFP(exp, V, Ty, Context);
|
|
break;
|
|
case 'f':
|
|
if (Len == 4 && !strcmp(Str, "fabs"))
|
|
return ConstantFoldFP(fabs, V, Ty, Context);
|
|
else if (Len == 5 && !strcmp(Str, "floor"))
|
|
return ConstantFoldFP(floor, V, Ty, Context);
|
|
break;
|
|
case 'l':
|
|
if (Len == 3 && !strcmp(Str, "log") && V > 0)
|
|
return ConstantFoldFP(log, V, Ty, Context);
|
|
else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
|
|
return ConstantFoldFP(log10, V, Ty, Context);
|
|
else if (!strcmp(Str, "llvm.sqrt.f32") ||
|
|
!strcmp(Str, "llvm.sqrt.f64")) {
|
|
if (V >= -0.0)
|
|
return ConstantFoldFP(sqrt, V, Ty, Context);
|
|
else // Undefined
|
|
return Context->getNullValue(Ty);
|
|
}
|
|
break;
|
|
case 's':
|
|
if (Len == 3 && !strcmp(Str, "sin"))
|
|
return ConstantFoldFP(sin, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "sinh"))
|
|
return ConstantFoldFP(sinh, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
|
|
return ConstantFoldFP(sqrt, V, Ty, Context);
|
|
else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
|
|
return ConstantFoldFP(sqrt, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "sinf"))
|
|
return ConstantFoldFP(sin, V, Ty, Context);
|
|
break;
|
|
case 't':
|
|
if (Len == 3 && !strcmp(Str, "tan"))
|
|
return ConstantFoldFP(tan, V, Ty, Context);
|
|
else if (Len == 4 && !strcmp(Str, "tanh"))
|
|
return ConstantFoldFP(tanh, V, Ty, Context);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
|
|
if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
|
|
return Context->getConstantInt(Op->getValue().byteSwap());
|
|
else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
|
|
return Context->getConstantInt(Ty, Op->getValue().countPopulation());
|
|
else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
|
|
return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
|
|
else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
|
|
return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
|
|
}
|
|
} else if (NumOperands == 2) {
|
|
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
|
|
if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
|
|
return 0;
|
|
double Op1V = Ty==Type::FloatTy ?
|
|
(double)Op1->getValueAPF().convertToFloat():
|
|
Op1->getValueAPF().convertToDouble();
|
|
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
|
|
double Op2V = Ty==Type::FloatTy ?
|
|
(double)Op2->getValueAPF().convertToFloat():
|
|
Op2->getValueAPF().convertToDouble();
|
|
|
|
if (Len == 3 && !strcmp(Str, "pow")) {
|
|
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
|
|
} else if (Len == 4 && !strcmp(Str, "fmod")) {
|
|
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
|
|
} else if (Len == 5 && !strcmp(Str, "atan2")) {
|
|
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
|
|
}
|
|
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
|
|
if (!strcmp(Str, "llvm.powi.f32")) {
|
|
return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
|
|
(int)Op2C->getZExtValue())));
|
|
} else if (!strcmp(Str, "llvm.powi.f64")) {
|
|
return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
|
|
(int)Op2C->getZExtValue())));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|