mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
df563ca1f3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60186 91177308-0d34-0410-b5e6-96231b3b80d8
1011 lines
29 KiB
Plaintext
1011 lines
29 KiB
Plaintext
Target Independent Opportunities:
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should make the various target's "IMPLICIT_DEF" instructions be a single
|
|
target-independent opcode like TargetInstrInfo::INLINEASM. This would allow
|
|
us to eliminate the TargetInstrDesc::isImplicitDef() method, and would allow
|
|
us to avoid having to define this for every target for every register class.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
With the recent changes to make the implicit def/use set explicit in
|
|
machineinstrs, we should change the target descriptions for 'call' instructions
|
|
so that the .td files don't list all the call-clobbered registers as implicit
|
|
defs. Instead, these should be added by the code generator (e.g. on the dag).
|
|
|
|
This has a number of uses:
|
|
|
|
1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
|
|
for their different impdef sets.
|
|
2. Targets with multiple calling convs (e.g. x86) which have different clobber
|
|
sets don't need copies of call instructions.
|
|
3. 'Interprocedural register allocation' can be done to reduce the clobber sets
|
|
of calls.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Make the PPC branch selector target independant
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
|
|
precision don't matter (ffastmath). Misc/mandel will like this. :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Solve this DAG isel folding deficiency:
|
|
|
|
int X, Y;
|
|
|
|
void fn1(void)
|
|
{
|
|
X = X | (Y << 3);
|
|
}
|
|
|
|
compiles to
|
|
|
|
fn1:
|
|
movl Y, %eax
|
|
shll $3, %eax
|
|
orl X, %eax
|
|
movl %eax, X
|
|
ret
|
|
|
|
The problem is the store's chain operand is not the load X but rather
|
|
a TokenFactor of the load X and load Y, which prevents the folding.
|
|
|
|
There are two ways to fix this:
|
|
|
|
1. The dag combiner can start using alias analysis to realize that y/x
|
|
don't alias, making the store to X not dependent on the load from Y.
|
|
2. The generated isel could be made smarter in the case it can't
|
|
disambiguate the pointers.
|
|
|
|
Number 1 is the preferred solution.
|
|
|
|
This has been "fixed" by a TableGen hack. But that is a short term workaround
|
|
which will be removed once the proper fix is made.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
On targets with expensive 64-bit multiply, we could LSR this:
|
|
|
|
for (i = ...; ++i) {
|
|
x = 1ULL << i;
|
|
|
|
into:
|
|
long long tmp = 1;
|
|
for (i = ...; ++i, tmp+=tmp)
|
|
x = tmp;
|
|
|
|
This would be a win on ppc32, but not x86 or ppc64.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Interesting? testcase for add/shift/mul reassoc:
|
|
|
|
int bar(int x, int y) {
|
|
return x*x*x+y+x*x*x*x*x*y*y*y*y;
|
|
}
|
|
int foo(int z, int n) {
|
|
return bar(z, n) + bar(2*z, 2*n);
|
|
}
|
|
|
|
Reassociate should handle the example in GCC PR16157.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These two functions should generate the same code on big-endian systems:
|
|
|
|
int g(int *j,int *l) { return memcmp(j,l,4); }
|
|
int h(int *j, int *l) { return *j - *l; }
|
|
|
|
this could be done in SelectionDAGISel.cpp, along with other special cases,
|
|
for 1,2,4,8 bytes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It would be nice to revert this patch:
|
|
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
|
|
|
|
And teach the dag combiner enough to simplify the code expanded before
|
|
legalize. It seems plausible that this knowledge would let it simplify other
|
|
stuff too.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
|
|
to the type size. It works but can be overly conservative as the alignment of
|
|
specific vector types are target dependent.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should add 'unaligned load/store' nodes, and produce them from code like
|
|
this:
|
|
|
|
v4sf example(float *P) {
|
|
return (v4sf){P[0], P[1], P[2], P[3] };
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add support for conditional increments, and other related patterns. Instead
|
|
of:
|
|
|
|
movl 136(%esp), %eax
|
|
cmpl $0, %eax
|
|
je LBB16_2 #cond_next
|
|
LBB16_1: #cond_true
|
|
incl _foo
|
|
LBB16_2: #cond_next
|
|
|
|
emit:
|
|
movl _foo, %eax
|
|
cmpl $1, %edi
|
|
sbbl $-1, %eax
|
|
movl %eax, _foo
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
|
|
|
|
Expand these to calls of sin/cos and stores:
|
|
double sincos(double x, double *sin, double *cos);
|
|
float sincosf(float x, float *sin, float *cos);
|
|
long double sincosl(long double x, long double *sin, long double *cos);
|
|
|
|
Doing so could allow SROA of the destination pointers. See also:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Scalar Repl cannot currently promote this testcase to 'ret long cst':
|
|
|
|
%struct.X = type { i32, i32 }
|
|
%struct.Y = type { %struct.X }
|
|
|
|
define i64 @bar() {
|
|
%retval = alloca %struct.Y, align 8
|
|
%tmp12 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 0
|
|
store i32 0, i32* %tmp12
|
|
%tmp15 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 1
|
|
store i32 1, i32* %tmp15
|
|
%retval.upgrd.1 = bitcast %struct.Y* %retval to i64*
|
|
%retval.upgrd.2 = load i64* %retval.upgrd.1
|
|
ret i64 %retval.upgrd.2
|
|
}
|
|
|
|
it should be extended to do so.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
-scalarrepl should promote this to be a vector scalar.
|
|
|
|
%struct..0anon = type { <4 x float> }
|
|
|
|
define void @test1(<4 x float> %V, float* %P) {
|
|
%u = alloca %struct..0anon, align 16
|
|
%tmp = getelementptr %struct..0anon* %u, i32 0, i32 0
|
|
store <4 x float> %V, <4 x float>* %tmp
|
|
%tmp1 = bitcast %struct..0anon* %u to [4 x float]*
|
|
%tmp.upgrd.1 = getelementptr [4 x float]* %tmp1, i32 0, i32 1
|
|
%tmp.upgrd.2 = load float* %tmp.upgrd.1
|
|
%tmp3 = mul float %tmp.upgrd.2, 2.000000e+00
|
|
store float %tmp3, float* %P
|
|
ret void
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Turn this into a single byte store with no load (the other 3 bytes are
|
|
unmodified):
|
|
|
|
void %test(uint* %P) {
|
|
%tmp = load uint* %P
|
|
%tmp14 = or uint %tmp, 3305111552
|
|
%tmp15 = and uint %tmp14, 3321888767
|
|
store uint %tmp15, uint* %P
|
|
ret void
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x.
|
|
|
|
Compile:
|
|
|
|
int bar(int x)
|
|
{
|
|
int t = __builtin_clz(x);
|
|
return -(t>>5);
|
|
}
|
|
|
|
to:
|
|
|
|
_bar: addic r3,r3,-1
|
|
subfe r3,r3,r3
|
|
blr
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Legalize should lower ctlz like this:
|
|
ctlz(x) = popcnt((x-1) & ~x)
|
|
|
|
on targets that have popcnt but not ctlz. itanium, what else?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
quantum_sigma_x in 462.libquantum contains the following loop:
|
|
|
|
for(i=0; i<reg->size; i++)
|
|
{
|
|
/* Flip the target bit of each basis state */
|
|
reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
|
|
}
|
|
|
|
Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
|
|
so cool to turn it into something like:
|
|
|
|
long long Res = ((MAX_UNSIGNED) 1 << target);
|
|
if (target < 32) {
|
|
for(i=0; i<reg->size; i++)
|
|
reg->node[i].state ^= Res & 0xFFFFFFFFULL;
|
|
} else {
|
|
for(i=0; i<reg->size; i++)
|
|
reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
|
|
}
|
|
|
|
... which would only do one 32-bit XOR per loop iteration instead of two.
|
|
|
|
It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
|
|
alas...
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This isn't recognized as bswap by instcombine (yes, it really is bswap):
|
|
|
|
unsigned long reverse(unsigned v) {
|
|
unsigned t;
|
|
t = v ^ ((v << 16) | (v >> 16));
|
|
t &= ~0xff0000;
|
|
v = (v << 24) | (v >> 8);
|
|
return v ^ (t >> 8);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These idioms should be recognized as popcount (see PR1488):
|
|
|
|
unsigned countbits_slow(unsigned v) {
|
|
unsigned c;
|
|
for (c = 0; v; v >>= 1)
|
|
c += v & 1;
|
|
return c;
|
|
}
|
|
unsigned countbits_fast(unsigned v){
|
|
unsigned c;
|
|
for (c = 0; v; c++)
|
|
v &= v - 1; // clear the least significant bit set
|
|
return c;
|
|
}
|
|
|
|
BITBOARD = unsigned long long
|
|
int PopCnt(register BITBOARD a) {
|
|
register int c=0;
|
|
while(a) {
|
|
c++;
|
|
a &= a - 1;
|
|
}
|
|
return c;
|
|
}
|
|
unsigned int popcount(unsigned int input) {
|
|
unsigned int count = 0;
|
|
for (unsigned int i = 0; i < 4 * 8; i++)
|
|
count += (input >> i) & i;
|
|
return count;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These should turn into single 16-bit (unaligned?) loads on little/big endian
|
|
processors.
|
|
|
|
unsigned short read_16_le(const unsigned char *adr) {
|
|
return adr[0] | (adr[1] << 8);
|
|
}
|
|
unsigned short read_16_be(const unsigned char *adr) {
|
|
return (adr[0] << 8) | adr[1];
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
-instcombine should handle this transform:
|
|
icmp pred (sdiv X / C1 ), C2
|
|
when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
|
|
|
|
Currently InstCombine avoids this transform but will do it when the signs of
|
|
the operands and the sign of the divide match. See the FIXME in
|
|
InstructionCombining.cpp in the visitSetCondInst method after the switch case
|
|
for Instruction::UDiv (around line 4447) for more details.
|
|
|
|
The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
|
|
this construct.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
viterbi speeds up *significantly* if the various "history" related copy loops
|
|
are turned into memcpy calls at the source level. We need a "loops to memcpy"
|
|
pass.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
|
|
typedef unsigned U32;
|
|
typedef unsigned long long U64;
|
|
int test (U32 *inst, U64 *regs) {
|
|
U64 effective_addr2;
|
|
U32 temp = *inst;
|
|
int r1 = (temp >> 20) & 0xf;
|
|
int b2 = (temp >> 16) & 0xf;
|
|
effective_addr2 = temp & 0xfff;
|
|
if (b2) effective_addr2 += regs[b2];
|
|
b2 = (temp >> 12) & 0xf;
|
|
if (b2) effective_addr2 += regs[b2];
|
|
effective_addr2 &= regs[4];
|
|
if ((effective_addr2 & 3) == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
|
|
we don't eliminate the computation of the top half of effective_addr2 because
|
|
we don't have whole-function selection dags. On x86, this means we use one
|
|
extra register for the function when effective_addr2 is declared as U64 than
|
|
when it is declared U32.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Promote for i32 bswap can use i64 bswap + shr. Useful on targets with 64-bit
|
|
regs and bswap, like itanium.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
LSR should know what GPR types a target has. This code:
|
|
|
|
volatile short X, Y; // globals
|
|
|
|
void foo(int N) {
|
|
int i;
|
|
for (i = 0; i < N; i++) { X = i; Y = i*4; }
|
|
}
|
|
|
|
produces two identical IV's (after promotion) on PPC/ARM:
|
|
|
|
LBB1_1: @bb.preheader
|
|
mov r3, #0
|
|
mov r2, r3
|
|
mov r1, r3
|
|
LBB1_2: @bb
|
|
ldr r12, LCPI1_0
|
|
ldr r12, [r12]
|
|
strh r2, [r12]
|
|
ldr r12, LCPI1_1
|
|
ldr r12, [r12]
|
|
strh r3, [r12]
|
|
add r1, r1, #1 <- [0,+,1]
|
|
add r3, r3, #4
|
|
add r2, r2, #1 <- [0,+,1]
|
|
cmp r1, r0
|
|
bne LBB1_2 @bb
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail call elim should be more aggressive, checking to see if the call is
|
|
followed by an uncond branch to an exit block.
|
|
|
|
; This testcase is due to tail-duplication not wanting to copy the return
|
|
; instruction into the terminating blocks because there was other code
|
|
; optimized out of the function after the taildup happened.
|
|
; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
|
|
|
|
define i32 @t4(i32 %a) {
|
|
entry:
|
|
%tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
|
|
%tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp.2, label %then.0, label %else.0
|
|
|
|
then.0: ; preds = %entry
|
|
%tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
|
|
%tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
|
|
br label %return
|
|
|
|
else.0: ; preds = %entry
|
|
%tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
|
|
br i1 %tmp.7, label %then.1, label %return
|
|
|
|
then.1: ; preds = %else.0
|
|
%tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
|
|
%tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
|
|
br label %return
|
|
|
|
return: ; preds = %then.1, %else.0, %then.0
|
|
%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
|
|
[ %tmp.9, %then.1 ]
|
|
ret i32 %result.0
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail recursion elimination is not transforming this function, because it is
|
|
returning n, which fails the isDynamicConstant check in the accumulator
|
|
recursion checks.
|
|
|
|
long long fib(const long long n) {
|
|
switch(n) {
|
|
case 0:
|
|
case 1:
|
|
return n;
|
|
default:
|
|
return fib(n-1) + fib(n-2);
|
|
}
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Tail recursion elimination should handle:
|
|
|
|
int pow2m1(int n) {
|
|
if (n == 0)
|
|
return 0;
|
|
return 2 * pow2m1 (n - 1) + 1;
|
|
}
|
|
|
|
Also, multiplies can be turned into SHL's, so they should be handled as if
|
|
they were associative. "return foo() << 1" can be tail recursion eliminated.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Argument promotion should promote arguments for recursive functions, like
|
|
this:
|
|
|
|
; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
|
|
|
|
define internal i32 @foo(i32* %x) {
|
|
entry:
|
|
%tmp = load i32* %x ; <i32> [#uses=0]
|
|
%tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
|
|
ret i32 %tmp.foo
|
|
}
|
|
|
|
define i32 @bar(i32* %x) {
|
|
entry:
|
|
%tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
|
|
ret i32 %tmp3
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
"basicaa" should know how to look through "or" instructions that act like add
|
|
instructions. For example in this code, the x*4+1 is turned into x*4 | 1, and
|
|
basicaa can't analyze the array subscript, leading to duplicated loads in the
|
|
generated code:
|
|
|
|
void test(int X, int Y, int a[]) {
|
|
int i;
|
|
for (i=2; i<1000; i+=4) {
|
|
a[i+0] = a[i-1+0]*a[i-2+0];
|
|
a[i+1] = a[i-1+1]*a[i-2+1];
|
|
a[i+2] = a[i-1+2]*a[i-2+2];
|
|
a[i+3] = a[i-1+3]*a[i-2+3];
|
|
}
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should investigate an instruction sinking pass. Consider this silly
|
|
example in pic mode:
|
|
|
|
#include <assert.h>
|
|
void foo(int x) {
|
|
assert(x);
|
|
//...
|
|
}
|
|
|
|
we compile this to:
|
|
_foo:
|
|
subl $28, %esp
|
|
call "L1$pb"
|
|
"L1$pb":
|
|
popl %eax
|
|
cmpl $0, 32(%esp)
|
|
je LBB1_2 # cond_true
|
|
LBB1_1: # return
|
|
# ...
|
|
addl $28, %esp
|
|
ret
|
|
LBB1_2: # cond_true
|
|
...
|
|
|
|
The PIC base computation (call+popl) is only used on one path through the
|
|
code, but is currently always computed in the entry block. It would be
|
|
better to sink the picbase computation down into the block for the
|
|
assertion, as it is the only one that uses it. This happens for a lot of
|
|
code with early outs.
|
|
|
|
Another example is loads of arguments, which are usually emitted into the
|
|
entry block on targets like x86. If not used in all paths through a
|
|
function, they should be sunk into the ones that do.
|
|
|
|
In this case, whole-function-isel would also handle this.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Investigate lowering of sparse switch statements into perfect hash tables:
|
|
http://burtleburtle.net/bob/hash/perfect.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should turn things like "load+fabs+store" and "load+fneg+store" into the
|
|
corresponding integer operations. On a yonah, this loop:
|
|
|
|
double a[256];
|
|
void foo() {
|
|
int i, b;
|
|
for (b = 0; b < 10000000; b++)
|
|
for (i = 0; i < 256; i++)
|
|
a[i] = -a[i];
|
|
}
|
|
|
|
is twice as slow as this loop:
|
|
|
|
long long a[256];
|
|
void foo() {
|
|
int i, b;
|
|
for (b = 0; b < 10000000; b++)
|
|
for (i = 0; i < 256; i++)
|
|
a[i] ^= (1ULL << 63);
|
|
}
|
|
|
|
and I suspect other processors are similar. On X86 in particular this is a
|
|
big win because doing this with integers allows the use of read/modify/write
|
|
instructions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
DAG Combiner should try to combine small loads into larger loads when
|
|
profitable. For example, we compile this C++ example:
|
|
|
|
struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
|
|
extern THotKey m_HotKey;
|
|
THotKey GetHotKey () { return m_HotKey; }
|
|
|
|
into (-O3 -fno-exceptions -static -fomit-frame-pointer):
|
|
|
|
__Z9GetHotKeyv:
|
|
pushl %esi
|
|
movl 8(%esp), %eax
|
|
movb _m_HotKey+3, %cl
|
|
movb _m_HotKey+4, %dl
|
|
movb _m_HotKey+2, %ch
|
|
movw _m_HotKey, %si
|
|
movw %si, (%eax)
|
|
movb %ch, 2(%eax)
|
|
movb %cl, 3(%eax)
|
|
movb %dl, 4(%eax)
|
|
popl %esi
|
|
ret $4
|
|
|
|
GCC produces:
|
|
|
|
__Z9GetHotKeyv:
|
|
movl _m_HotKey, %edx
|
|
movl 4(%esp), %eax
|
|
movl %edx, (%eax)
|
|
movzwl _m_HotKey+4, %edx
|
|
movw %dx, 4(%eax)
|
|
ret $4
|
|
|
|
The LLVM IR contains the needed alignment info, so we should be able to
|
|
merge the loads and stores into 4-byte loads:
|
|
|
|
%struct.THotKey = type { i16, i8, i8, i8 }
|
|
define void @_Z9GetHotKeyv(%struct.THotKey* sret %agg.result) nounwind {
|
|
...
|
|
%tmp2 = load i16* getelementptr (@m_HotKey, i32 0, i32 0), align 8
|
|
%tmp5 = load i8* getelementptr (@m_HotKey, i32 0, i32 1), align 2
|
|
%tmp8 = load i8* getelementptr (@m_HotKey, i32 0, i32 2), align 1
|
|
%tmp11 = load i8* getelementptr (@m_HotKey, i32 0, i32 3), align 2
|
|
|
|
Alternatively, we should use a small amount of base-offset alias analysis
|
|
to make it so the scheduler doesn't need to hold all the loads in regs at
|
|
once.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should extend parameter attributes to capture more information about
|
|
pointer parameters for alias analysis. Some ideas:
|
|
|
|
1. Add a "nocapture" attribute, which indicates that the callee does not store
|
|
the address of the parameter into a global or any other memory location
|
|
visible to the callee. This can be used to make basicaa and other analyses
|
|
more powerful. It is true for things like memcpy, strcat, and many other
|
|
things, including structs passed by value, most C++ references, etc.
|
|
2. Generalize readonly to be set on parameters. This is important mod/ref
|
|
info for the function, which is important for basicaa and others. It can
|
|
also be used by the inliner to avoid inserting a memcpy for byval
|
|
arguments when the function is inlined.
|
|
|
|
These functions can be inferred by various analysis passes such as the
|
|
globalsmodrefaa pass. Note that getting #2 right is actually really tricky.
|
|
Consider this code:
|
|
|
|
struct S; S G;
|
|
void caller(S byvalarg) { G.field = 1; ... }
|
|
void callee() { caller(G); }
|
|
|
|
The fact that the caller does not modify byval arg is not enough, we need
|
|
to know that it doesn't modify G either. This is very tricky.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should add an FRINT node to the DAG to model targets that have legal
|
|
implementations of ceil/floor/rint.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34043
|
|
contains a testcase that compiles down to:
|
|
|
|
%struct.XMM128 = type { <4 x float> }
|
|
..
|
|
%src = alloca %struct.XMM128
|
|
..
|
|
%tmp6263 = bitcast %struct.XMM128* %src to <2 x i64>*
|
|
%tmp65 = getelementptr %struct.XMM128* %src, i32 0, i32 0
|
|
store <2 x i64> %tmp5899, <2 x i64>* %tmp6263, align 16
|
|
%tmp66 = load <4 x float>* %tmp65, align 16
|
|
%tmp71 = add <4 x float> %tmp66, %tmp66
|
|
|
|
If the mid-level optimizer turned the bitcast of pointer + store of tmp5899
|
|
into a bitcast of the vector value and a store to the pointer, then the
|
|
store->load could be easily removed.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Consider:
|
|
|
|
int test() {
|
|
long long input[8] = {1,1,1,1,1,1,1,1};
|
|
foo(input);
|
|
}
|
|
|
|
We currently compile this into a memcpy from a global array since the
|
|
initializer is fairly large and not memset'able. This is good, but the memcpy
|
|
gets lowered to load/stores in the code generator. This is also ok, except
|
|
that the codegen lowering for memcpy doesn't handle the case when the source
|
|
is a constant global. This gives us atrocious code like this:
|
|
|
|
call "L1$pb"
|
|
"L1$pb":
|
|
popl %eax
|
|
movl _C.0.1444-"L1$pb"+32(%eax), %ecx
|
|
movl %ecx, 40(%esp)
|
|
movl _C.0.1444-"L1$pb"+20(%eax), %ecx
|
|
movl %ecx, 28(%esp)
|
|
movl _C.0.1444-"L1$pb"+36(%eax), %ecx
|
|
movl %ecx, 44(%esp)
|
|
movl _C.0.1444-"L1$pb"+44(%eax), %ecx
|
|
movl %ecx, 52(%esp)
|
|
movl _C.0.1444-"L1$pb"+40(%eax), %ecx
|
|
movl %ecx, 48(%esp)
|
|
movl _C.0.1444-"L1$pb"+12(%eax), %ecx
|
|
movl %ecx, 20(%esp)
|
|
movl _C.0.1444-"L1$pb"+4(%eax), %ecx
|
|
...
|
|
|
|
instead of:
|
|
movl $1, 16(%esp)
|
|
movl $0, 20(%esp)
|
|
movl $1, 24(%esp)
|
|
movl $0, 28(%esp)
|
|
movl $1, 32(%esp)
|
|
movl $0, 36(%esp)
|
|
...
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
http://llvm.org/PR717:
|
|
|
|
The following code should compile into "ret int undef". Instead, LLVM
|
|
produces "ret int 0":
|
|
|
|
int f() {
|
|
int x = 4;
|
|
int y;
|
|
if (x == 3) y = 0;
|
|
return y;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The loop unroller should partially unroll loops (instead of peeling them)
|
|
when code growth isn't too bad and when an unroll count allows simplification
|
|
of some code within the loop. One trivial example is:
|
|
|
|
#include <stdio.h>
|
|
int main() {
|
|
int nRet = 17;
|
|
int nLoop;
|
|
for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
|
|
if ( nLoop & 1 )
|
|
nRet += 2;
|
|
else
|
|
nRet -= 1;
|
|
}
|
|
return nRet;
|
|
}
|
|
|
|
Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
|
|
reduction in code size. The resultant code would then also be suitable for
|
|
exit value computation.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We miss a bunch of rotate opportunities on various targets, including ppc, x86,
|
|
etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
|
|
matching code in dag combine doesn't look through truncates aggressively
|
|
enough. Here are some testcases reduces from GCC PR17886:
|
|
|
|
unsigned long long f(unsigned long long x, int y) {
|
|
return (x << y) | (x >> 64-y);
|
|
}
|
|
unsigned f2(unsigned x, int y){
|
|
return (x << y) | (x >> 32-y);
|
|
}
|
|
unsigned long long f3(unsigned long long x){
|
|
int y = 9;
|
|
return (x << y) | (x >> 64-y);
|
|
}
|
|
unsigned f4(unsigned x){
|
|
int y = 10;
|
|
return (x << y) | (x >> 32-y);
|
|
}
|
|
unsigned long long f5(unsigned long long x, unsigned long long y) {
|
|
return (x << 8) | ((y >> 48) & 0xffull);
|
|
}
|
|
unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
|
|
switch(z) {
|
|
case 1:
|
|
return (x << 8) | ((y >> 48) & 0xffull);
|
|
case 2:
|
|
return (x << 16) | ((y >> 40) & 0xffffull);
|
|
case 3:
|
|
return (x << 24) | ((y >> 32) & 0xffffffull);
|
|
case 4:
|
|
return (x << 32) | ((y >> 24) & 0xffffffffull);
|
|
default:
|
|
return (x << 40) | ((y >> 16) & 0xffffffffffull);
|
|
}
|
|
}
|
|
|
|
On X86-64, we only handle f2/f3/f4 right. On x86-32, a few of these
|
|
generate truly horrible code, instead of using shld and friends. On
|
|
ARM, we end up with calls to L___lshrdi3/L___ashldi3 in f, which is
|
|
badness. PPC64 misses f, f5 and f6. CellSPU aborts in isel.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We do a number of simplifications in simplify libcalls to strength reduce
|
|
standard library functions, but we don't currently merge them together. For
|
|
example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
|
|
be done safely if "b" isn't modified between the strlen and memcpy of course.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should be able to evaluate this loop:
|
|
|
|
int test(int x_offs) {
|
|
while (x_offs > 4)
|
|
x_offs -= 4;
|
|
return x_offs;
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Reassociate should turn things like:
|
|
|
|
int factorial(int X) {
|
|
return X*X*X*X*X*X*X*X;
|
|
}
|
|
|
|
into llvm.powi calls, allowing the code generator to produce balanced
|
|
multiplication trees.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We generate a horrible libcall for llvm.powi. For example, we compile:
|
|
|
|
#include <cmath>
|
|
double f(double a) { return std::pow(a, 4); }
|
|
|
|
into:
|
|
|
|
__Z1fd:
|
|
subl $12, %esp
|
|
movsd 16(%esp), %xmm0
|
|
movsd %xmm0, (%esp)
|
|
movl $4, 8(%esp)
|
|
call L___powidf2$stub
|
|
addl $12, %esp
|
|
ret
|
|
|
|
GCC produces:
|
|
|
|
__Z1fd:
|
|
subl $12, %esp
|
|
movsd 16(%esp), %xmm0
|
|
mulsd %xmm0, %xmm0
|
|
mulsd %xmm0, %xmm0
|
|
movsd %xmm0, (%esp)
|
|
fldl (%esp)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We compile this program: (from GCC PR11680)
|
|
http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
|
|
|
|
Into code that runs the same speed in fast/slow modes, but both modes run 2x
|
|
slower than when compile with GCC (either 4.0 or 4.2):
|
|
|
|
$ llvm-g++ perf.cpp -O3 -fno-exceptions
|
|
$ time ./a.out fast
|
|
1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
|
|
|
|
$ g++ perf.cpp -O3 -fno-exceptions
|
|
$ time ./a.out fast
|
|
0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
|
|
|
|
It looks like we are making the same inlining decisions, so this may be raw
|
|
codegen badness or something else (haven't investigated).
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We miss some instcombines for stuff like this:
|
|
void bar (void);
|
|
void foo (unsigned int a) {
|
|
/* This one is equivalent to a >= (3 << 2). */
|
|
if ((a >> 2) >= 3)
|
|
bar ();
|
|
}
|
|
|
|
A few other related ones are in GCC PR14753.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Divisibility by constant can be simplified (according to GCC PR12849) from
|
|
being a mulhi to being a mul lo (cheaper). Testcase:
|
|
|
|
void bar(unsigned n) {
|
|
if (n % 3 == 0)
|
|
true();
|
|
}
|
|
|
|
I think this basically amounts to a dag combine to simplify comparisons against
|
|
multiply hi's into a comparison against the mullo.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SROA is not promoting the union on the stack in this example, we should end
|
|
up with no allocas.
|
|
|
|
union vec2d {
|
|
double e[2];
|
|
double v __attribute__((vector_size(16)));
|
|
};
|
|
typedef union vec2d vec2d;
|
|
|
|
static vec2d a={{1,2}}, b={{3,4}};
|
|
|
|
vec2d foo () {
|
|
return (vec2d){ .v = a.v + b.v * (vec2d){{5,5}}.v };
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This C++ file:
|
|
void g(); struct A { int n; int m; A& operator++(void) { ++n; if (n == m) g();
|
|
return *this; } A() : n(0), m(0) { } friend bool operator!=(A const& a1,
|
|
A const& a2) { return a1.n != a2.n; } }; void testfunction(A& iter) { A const
|
|
end; while (iter != end) ++iter; }
|
|
|
|
Compiles down to:
|
|
|
|
bb: ; preds = %bb3.backedge, %bb.nph
|
|
%.rle = phi i32 [ %1, %bb.nph ], [ %7, %bb3.backedge ] ; <i32> [#uses=1]
|
|
%4 = add i32 %.rle, 1 ; <i32> [#uses=2]
|
|
store i32 %4, i32* %0, align 4
|
|
%5 = load i32* %3, align 4 ; <i32> [#uses=1]
|
|
%6 = icmp eq i32 %4, %5 ; <i1> [#uses=1]
|
|
br i1 %6, label %bb1, label %bb3.backedge
|
|
|
|
bb1: ; preds = %bb
|
|
tail call void @_Z1gv()
|
|
br label %bb3.backedge
|
|
|
|
bb3.backedge: ; preds = %bb, %bb1
|
|
%7 = load i32* %0, align 4 ; <i32> [#uses=2]
|
|
|
|
|
|
The %7 load is partially redundant with the store of %4 to %0, GVN's PRE
|
|
should remove it, but it doesn't apply to memory objects.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
|
|
bunch of other stuff from this example (see PR1604):
|
|
|
|
#include <cstdio>
|
|
struct test {
|
|
int val;
|
|
virtual ~test() {}
|
|
};
|
|
|
|
int main() {
|
|
test t;
|
|
std::scanf("%d", &t.val);
|
|
std::printf("%d\n", t.val);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instcombine will merge comparisons like (x >= 10) && (x < 20) by producing (x -
|
|
10) u< 10, but only when the comparisons have matching sign.
|
|
|
|
This could be converted with a similiar technique. (PR1941)
|
|
|
|
define i1 @test(i8 %x) {
|
|
%A = icmp uge i8 %x, 5
|
|
%B = icmp slt i8 %x, 20
|
|
%C = and i1 %A, %B
|
|
ret i1 %C
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
These three functions all perform the same computation, but produce different
|
|
assembly. On x86, they are sorted from slowest to fastest.
|
|
|
|
define i8 @udiv(i8 %x) readnone nounwind {
|
|
%A = udiv i8 %x, 250
|
|
ret i8 %A
|
|
}
|
|
|
|
define i8 @select(i8 %x) readnone nounwind {
|
|
%A = icmp ult i8 %x, 250
|
|
%B = select i1 %A, i8 0, i8 1
|
|
ret i8 %B
|
|
}
|
|
|
|
define i8 @addshr(i8 %x) readnone nounwind {
|
|
%A = zext i8 %x to i9
|
|
%B = add i9 %A, 6 ;; 256 - 250 == 6
|
|
%C = lshr i9 %B, 8
|
|
%D = trunc i9 %C to i8
|
|
ret i8 %D
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|