mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	COFF COMDATs (for selection kinds other than 'select any') require at least one non-section symbol in the symbol table. Satisfy this by morally enhancing the linkage from private to internal. Differential Revision: http://reviews.llvm.org/D8394 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232570 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			548 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			548 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines layout properties related to datatype size/offset/alignment
 | |
| // information.  It uses lazy annotations to cache information about how
 | |
| // structure types are laid out and used.
 | |
| //
 | |
| // This structure should be created once, filled in if the defaults are not
 | |
| // correct and then passed around by const&.  None of the members functions
 | |
| // require modification to the object.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_IR_DATALAYOUT_H
 | |
| #define LLVM_IR_DATALAYOUT_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| 
 | |
| // This needs to be outside of the namespace, to avoid conflict with llvm-c
 | |
| // decl.
 | |
| typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class Value;
 | |
| class Type;
 | |
| class IntegerType;
 | |
| class StructType;
 | |
| class StructLayout;
 | |
| class Triple;
 | |
| class GlobalVariable;
 | |
| class LLVMContext;
 | |
| template<typename T>
 | |
| class ArrayRef;
 | |
| 
 | |
| /// Enum used to categorize the alignment types stored by LayoutAlignElem
 | |
| enum AlignTypeEnum {
 | |
|   INVALID_ALIGN = 0,
 | |
|   INTEGER_ALIGN = 'i',
 | |
|   VECTOR_ALIGN = 'v',
 | |
|   FLOAT_ALIGN = 'f',
 | |
|   AGGREGATE_ALIGN = 'a'
 | |
| };
 | |
| 
 | |
| // FIXME: Currently the DataLayout string carries a "preferred alignment"
 | |
| // for types. As the DataLayout is module/global, this should likely be
 | |
| // sunk down to an FTTI element that is queried rather than a global
 | |
| // preference.
 | |
| 
 | |
| /// \brief Layout alignment element.
 | |
| ///
 | |
| /// Stores the alignment data associated with a given alignment type (integer,
 | |
| /// vector, float) and type bit width.
 | |
| ///
 | |
| /// \note The unusual order of elements in the structure attempts to reduce
 | |
| /// padding and make the structure slightly more cache friendly.
 | |
| struct LayoutAlignElem {
 | |
|   /// \brief Alignment type from \c AlignTypeEnum
 | |
|   unsigned AlignType : 8;
 | |
|   unsigned TypeBitWidth : 24;
 | |
|   unsigned ABIAlign : 16;
 | |
|   unsigned PrefAlign : 16;
 | |
| 
 | |
|   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                              unsigned pref_align, uint32_t bit_width);
 | |
|   bool operator==(const LayoutAlignElem &rhs) const;
 | |
| };
 | |
| 
 | |
| /// \brief Layout pointer alignment element.
 | |
| ///
 | |
| /// Stores the alignment data associated with a given pointer and address space.
 | |
| ///
 | |
| /// \note The unusual order of elements in the structure attempts to reduce
 | |
| /// padding and make the structure slightly more cache friendly.
 | |
| struct PointerAlignElem {
 | |
|   unsigned ABIAlign;
 | |
|   unsigned PrefAlign;
 | |
|   uint32_t TypeByteWidth;
 | |
|   uint32_t AddressSpace;
 | |
| 
 | |
|   /// Initializer
 | |
|   static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
 | |
|                               unsigned PrefAlign, uint32_t TypeByteWidth);
 | |
|   bool operator==(const PointerAlignElem &rhs) const;
 | |
| };
 | |
| 
 | |
| /// \brief A parsed version of the target data layout string in and methods for
 | |
| /// querying it.
 | |
| ///
 | |
| /// The target data layout string is specified *by the target* - a frontend
 | |
| /// generating LLVM IR is required to generate the right target data for the
 | |
| /// target being codegen'd to.
 | |
| class DataLayout {
 | |
| private:
 | |
|   /// Defaults to false.
 | |
|   bool BigEndian;
 | |
| 
 | |
|   unsigned StackNaturalAlign;
 | |
| 
 | |
|   enum ManglingModeT {
 | |
|     MM_None,
 | |
|     MM_ELF,
 | |
|     MM_MachO,
 | |
|     MM_WinCOFF,
 | |
|     MM_WinCOFFX86,
 | |
|     MM_Mips
 | |
|   };
 | |
|   ManglingModeT ManglingMode;
 | |
| 
 | |
|   SmallVector<unsigned char, 8> LegalIntWidths;
 | |
| 
 | |
|   /// \brief Primitive type alignment data.
 | |
|   SmallVector<LayoutAlignElem, 16> Alignments;
 | |
| 
 | |
|   /// \brief The string representation used to create this DataLayout
 | |
|   std::string StringRepresentation;
 | |
| 
 | |
|   typedef SmallVector<PointerAlignElem, 8> PointersTy;
 | |
|   PointersTy Pointers;
 | |
| 
 | |
|   PointersTy::const_iterator
 | |
|   findPointerLowerBound(uint32_t AddressSpace) const {
 | |
|     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
 | |
|   }
 | |
| 
 | |
|   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
 | |
| 
 | |
|   /// This member is a signal that a requested alignment type and bit width were
 | |
|   /// not found in the SmallVector.
 | |
|   static const LayoutAlignElem InvalidAlignmentElem;
 | |
| 
 | |
|   /// This member is a signal that a requested pointer type and bit width were
 | |
|   /// not found in the DenseSet.
 | |
|   static const PointerAlignElem InvalidPointerElem;
 | |
| 
 | |
|   // The StructType -> StructLayout map.
 | |
|   mutable void *LayoutMap;
 | |
| 
 | |
|   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
 | |
|                     unsigned pref_align, uint32_t bit_width);
 | |
|   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
 | |
|                             bool ABIAlign, Type *Ty) const;
 | |
|   void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
 | |
|                            unsigned PrefAlign, uint32_t TypeByteWidth);
 | |
| 
 | |
|   /// Internal helper method that returns requested alignment for type.
 | |
|   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
 | |
| 
 | |
|   /// \brief Valid alignment predicate.
 | |
|   ///
 | |
|   /// Predicate that tests a LayoutAlignElem reference returned by get() against
 | |
|   /// InvalidAlignmentElem.
 | |
|   bool validAlignment(const LayoutAlignElem &align) const {
 | |
|     return &align != &InvalidAlignmentElem;
 | |
|   }
 | |
| 
 | |
|   /// \brief Valid pointer predicate.
 | |
|   ///
 | |
|   /// Predicate that tests a PointerAlignElem reference returned by get()
 | |
|   /// against \c InvalidPointerElem.
 | |
|   bool validPointer(const PointerAlignElem &align) const {
 | |
|     return &align != &InvalidPointerElem;
 | |
|   }
 | |
| 
 | |
|   /// Parses a target data specification string. Assert if the string is
 | |
|   /// malformed.
 | |
|   void parseSpecifier(StringRef LayoutDescription);
 | |
| 
 | |
|   // Free all internal data structures.
 | |
|   void clear();
 | |
| 
 | |
| public:
 | |
|   /// Constructs a DataLayout from a specification string. See reset().
 | |
|   explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
 | |
|     reset(LayoutDescription);
 | |
|   }
 | |
| 
 | |
|   /// Initialize target data from properties stored in the module.
 | |
|   explicit DataLayout(const Module *M);
 | |
| 
 | |
|   void init(const Module *M);
 | |
| 
 | |
|   DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
 | |
| 
 | |
|   DataLayout &operator=(const DataLayout &DL) {
 | |
|     clear();
 | |
|     StringRepresentation = DL.StringRepresentation;
 | |
|     BigEndian = DL.isBigEndian();
 | |
|     StackNaturalAlign = DL.StackNaturalAlign;
 | |
|     ManglingMode = DL.ManglingMode;
 | |
|     LegalIntWidths = DL.LegalIntWidths;
 | |
|     Alignments = DL.Alignments;
 | |
|     Pointers = DL.Pointers;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const DataLayout &Other) const;
 | |
|   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
 | |
| 
 | |
|   ~DataLayout(); // Not virtual, do not subclass this class
 | |
| 
 | |
|   /// Parse a data layout string (with fallback to default values).
 | |
|   void reset(StringRef LayoutDescription);
 | |
| 
 | |
|   /// Layout endianness...
 | |
|   bool isLittleEndian() const { return !BigEndian; }
 | |
|   bool isBigEndian() const { return BigEndian; }
 | |
| 
 | |
|   /// \brief Returns the string representation of the DataLayout.
 | |
|   ///
 | |
|   /// This representation is in the same format accepted by the string
 | |
|   /// constructor above. This should not be used to compare two DataLayout as
 | |
|   /// different string can represent the same layout.
 | |
|   std::string getStringRepresentation() const { return StringRepresentation; }
 | |
| 
 | |
|   /// \brief Test if the DataLayout was constructed from an empty string.
 | |
|   bool isDefault() const { return StringRepresentation.empty(); }
 | |
| 
 | |
|   /// \brief Returns true if the specified type is known to be a native integer
 | |
|   /// type supported by the CPU.
 | |
|   ///
 | |
|   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
 | |
|   /// on any known one. This returns false if the integer width is not legal.
 | |
|   ///
 | |
|   /// The width is specified in bits.
 | |
|   bool isLegalInteger(unsigned Width) const {
 | |
|     for (unsigned LegalIntWidth : LegalIntWidths)
 | |
|       if (LegalIntWidth == Width)
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
 | |
| 
 | |
|   /// Returns true if the given alignment exceeds the natural stack alignment.
 | |
|   bool exceedsNaturalStackAlignment(unsigned Align) const {
 | |
|     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
 | |
|   }
 | |
| 
 | |
|   unsigned getStackAlignment() const { return StackNaturalAlign; }
 | |
| 
 | |
|   bool hasMicrosoftFastStdCallMangling() const {
 | |
|     return ManglingMode == MM_WinCOFFX86;
 | |
|   }
 | |
| 
 | |
|   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
 | |
| 
 | |
|   const char *getLinkerPrivateGlobalPrefix() const {
 | |
|     if (ManglingMode == MM_MachO)
 | |
|       return "l";
 | |
|     return "";
 | |
|   }
 | |
| 
 | |
|   char getGlobalPrefix() const {
 | |
|     switch (ManglingMode) {
 | |
|     case MM_None:
 | |
|     case MM_ELF:
 | |
|     case MM_Mips:
 | |
|     case MM_WinCOFF:
 | |
|       return '\0';
 | |
|     case MM_MachO:
 | |
|     case MM_WinCOFFX86:
 | |
|       return '_';
 | |
|     }
 | |
|     llvm_unreachable("invalid mangling mode");
 | |
|   }
 | |
| 
 | |
|   const char *getPrivateGlobalPrefix() const {
 | |
|     switch (ManglingMode) {
 | |
|     case MM_None:
 | |
|       return "";
 | |
|     case MM_ELF:
 | |
|       return ".L";
 | |
|     case MM_Mips:
 | |
|       return "$";
 | |
|     case MM_MachO:
 | |
|     case MM_WinCOFF:
 | |
|     case MM_WinCOFFX86:
 | |
|       return "L";
 | |
|     }
 | |
|     llvm_unreachable("invalid mangling mode");
 | |
|   }
 | |
| 
 | |
|   static const char *getManglingComponent(const Triple &T);
 | |
| 
 | |
|   /// \brief Returns true if the specified type fits in a native integer type
 | |
|   /// supported by the CPU.
 | |
|   ///
 | |
|   /// For example, if the CPU only supports i32 as a native integer type, then
 | |
|   /// i27 fits in a legal integer type but i45 does not.
 | |
|   bool fitsInLegalInteger(unsigned Width) const {
 | |
|     for (unsigned LegalIntWidth : LegalIntWidths)
 | |
|       if (Width <= LegalIntWidth)
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// Layout pointer alignment
 | |
|   /// FIXME: The defaults need to be removed once all of
 | |
|   /// the backends/clients are updated.
 | |
|   unsigned getPointerABIAlignment(unsigned AS = 0) const;
 | |
| 
 | |
|   /// Return target's alignment for stack-based pointers
 | |
|   /// FIXME: The defaults need to be removed once all of
 | |
|   /// the backends/clients are updated.
 | |
|   unsigned getPointerPrefAlignment(unsigned AS = 0) const;
 | |
| 
 | |
|   /// Layout pointer size
 | |
|   /// FIXME: The defaults need to be removed once all of
 | |
|   /// the backends/clients are updated.
 | |
|   unsigned getPointerSize(unsigned AS = 0) const;
 | |
| 
 | |
|   /// Layout pointer size, in bits
 | |
|   /// FIXME: The defaults need to be removed once all of
 | |
|   /// the backends/clients are updated.
 | |
|   unsigned getPointerSizeInBits(unsigned AS = 0) const {
 | |
|     return getPointerSize(AS) * 8;
 | |
|   }
 | |
| 
 | |
|   /// Layout pointer size, in bits, based on the type.  If this function is
 | |
|   /// called with a pointer type, then the type size of the pointer is returned.
 | |
|   /// If this function is called with a vector of pointers, then the type size
 | |
|   /// of the pointer is returned.  This should only be called with a pointer or
 | |
|   /// vector of pointers.
 | |
|   unsigned getPointerTypeSizeInBits(Type *) const;
 | |
| 
 | |
|   unsigned getPointerTypeSize(Type *Ty) const {
 | |
|     return getPointerTypeSizeInBits(Ty) / 8;
 | |
|   }
 | |
| 
 | |
|   /// Size examples:
 | |
|   ///
 | |
|   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
 | |
|   /// ----        ----------  ---------------  ---------------
 | |
|   ///  i1            1           8                8
 | |
|   ///  i8            8           8                8
 | |
|   ///  i19          19          24               32
 | |
|   ///  i32          32          32               32
 | |
|   ///  i100        100         104              128
 | |
|   ///  i128        128         128              128
 | |
|   ///  Float        32          32               32
 | |
|   ///  Double       64          64               64
 | |
|   ///  X86_FP80     80          80               96
 | |
|   ///
 | |
|   /// [*] The alloc size depends on the alignment, and thus on the target.
 | |
|   ///     These values are for x86-32 linux.
 | |
| 
 | |
|   /// \brief Returns the number of bits necessary to hold the specified type.
 | |
|   ///
 | |
|   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
 | |
|   /// have a size (Type::isSized() must return true).
 | |
|   uint64_t getTypeSizeInBits(Type *Ty) const;
 | |
| 
 | |
|   /// \brief Returns the maximum number of bytes that may be overwritten by
 | |
|   /// storing the specified type.
 | |
|   ///
 | |
|   /// For example, returns 5 for i36 and 10 for x86_fp80.
 | |
|   uint64_t getTypeStoreSize(Type *Ty) const {
 | |
|     return (getTypeSizeInBits(Ty) + 7) / 8;
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns the maximum number of bits that may be overwritten by
 | |
|   /// storing the specified type; always a multiple of 8.
 | |
|   ///
 | |
|   /// For example, returns 40 for i36 and 80 for x86_fp80.
 | |
|   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
 | |
|     return 8 * getTypeStoreSize(Ty);
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns the offset in bytes between successive objects of the
 | |
|   /// specified type, including alignment padding.
 | |
|   ///
 | |
|   /// This is the amount that alloca reserves for this type. For example,
 | |
|   /// returns 12 or 16 for x86_fp80, depending on alignment.
 | |
|   uint64_t getTypeAllocSize(Type *Ty) const {
 | |
|     // Round up to the next alignment boundary.
 | |
|     return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns the offset in bits between successive objects of the
 | |
|   /// specified type, including alignment padding; always a multiple of 8.
 | |
|   ///
 | |
|   /// This is the amount that alloca reserves for this type. For example,
 | |
|   /// returns 96 or 128 for x86_fp80, depending on alignment.
 | |
|   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
 | |
|     return 8 * getTypeAllocSize(Ty);
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns the minimum ABI-required alignment for the specified type.
 | |
|   unsigned getABITypeAlignment(Type *Ty) const;
 | |
| 
 | |
|   /// \brief Returns the minimum ABI-required alignment for an integer type of
 | |
|   /// the specified bitwidth.
 | |
|   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
 | |
| 
 | |
|   /// \brief Returns the preferred stack/global alignment for the specified
 | |
|   /// type.
 | |
|   ///
 | |
|   /// This is always at least as good as the ABI alignment.
 | |
|   unsigned getPrefTypeAlignment(Type *Ty) const;
 | |
| 
 | |
|   /// \brief Returns the preferred alignment for the specified type, returned as
 | |
|   /// log2 of the value (a shift amount).
 | |
|   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
 | |
| 
 | |
|   /// \brief Returns an integer type with size at least as big as that of a
 | |
|   /// pointer in the given address space.
 | |
|   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
 | |
| 
 | |
|   /// \brief Returns an integer (vector of integer) type with size at least as
 | |
|   /// big as that of a pointer of the given pointer (vector of pointer) type.
 | |
|   Type *getIntPtrType(Type *) const;
 | |
| 
 | |
|   /// \brief Returns the smallest integer type with size at least as big as
 | |
|   /// Width bits.
 | |
|   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
 | |
| 
 | |
|   /// \brief Returns the largest legal integer type, or null if none are set.
 | |
|   Type *getLargestLegalIntType(LLVMContext &C) const {
 | |
|     unsigned LargestSize = getLargestLegalIntTypeSize();
 | |
|     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
 | |
|   }
 | |
| 
 | |
|   /// \brief Returns the size of largest legal integer type size, or 0 if none
 | |
|   /// are set.
 | |
|   unsigned getLargestLegalIntTypeSize() const;
 | |
| 
 | |
|   /// \brief Returns the offset from the beginning of the type for the specified
 | |
|   /// indices.
 | |
|   ///
 | |
|   /// This is used to implement getelementptr.
 | |
|   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
 | |
| 
 | |
|   /// \brief Returns a StructLayout object, indicating the alignment of the
 | |
|   /// struct, its size, and the offsets of its fields.
 | |
|   ///
 | |
|   /// Note that this information is lazily cached.
 | |
|   const StructLayout *getStructLayout(StructType *Ty) const;
 | |
| 
 | |
|   /// \brief Returns the preferred alignment of the specified global.
 | |
|   ///
 | |
|   /// This includes an explicitly requested alignment (if the global has one).
 | |
|   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
 | |
| 
 | |
|   /// \brief Returns the preferred alignment of the specified global, returned
 | |
|   /// in log form.
 | |
|   ///
 | |
|   /// This includes an explicitly requested alignment (if the global has one).
 | |
|   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
 | |
| };
 | |
| 
 | |
| inline DataLayout *unwrap(LLVMTargetDataRef P) {
 | |
|   return reinterpret_cast<DataLayout *>(P);
 | |
| }
 | |
| 
 | |
| inline LLVMTargetDataRef wrap(const DataLayout *P) {
 | |
|   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
 | |
| }
 | |
| 
 | |
| /// Used to lazily calculate structure layout information for a target machine,
 | |
| /// based on the DataLayout structure.
 | |
| class StructLayout {
 | |
|   uint64_t StructSize;
 | |
|   unsigned StructAlignment;
 | |
|   unsigned NumElements;
 | |
|   uint64_t MemberOffsets[1]; // variable sized array!
 | |
| public:
 | |
|   uint64_t getSizeInBytes() const { return StructSize; }
 | |
| 
 | |
|   uint64_t getSizeInBits() const { return 8 * StructSize; }
 | |
| 
 | |
|   unsigned getAlignment() const { return StructAlignment; }
 | |
| 
 | |
|   /// \brief Given a valid byte offset into the structure, returns the structure
 | |
|   /// index that contains it.
 | |
|   unsigned getElementContainingOffset(uint64_t Offset) const;
 | |
| 
 | |
|   uint64_t getElementOffset(unsigned Idx) const {
 | |
|     assert(Idx < NumElements && "Invalid element idx!");
 | |
|     return MemberOffsets[Idx];
 | |
|   }
 | |
| 
 | |
|   uint64_t getElementOffsetInBits(unsigned Idx) const {
 | |
|     return getElementOffset(Idx) * 8;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   friend class DataLayout; // Only DataLayout can create this class
 | |
|   StructLayout(StructType *ST, const DataLayout &DL);
 | |
| };
 | |
| 
 | |
| // The implementation of this method is provided inline as it is particularly
 | |
| // well suited to constant folding when called on a specific Type subclass.
 | |
| inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
 | |
|   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::LabelTyID:
 | |
|     return getPointerSizeInBits(0);
 | |
|   case Type::PointerTyID:
 | |
|     return getPointerSizeInBits(Ty->getPointerAddressSpace());
 | |
|   case Type::ArrayTyID: {
 | |
|     ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     return ATy->getNumElements() *
 | |
|            getTypeAllocSizeInBits(ATy->getElementType());
 | |
|   }
 | |
|   case Type::StructTyID:
 | |
|     // Get the layout annotation... which is lazily created on demand.
 | |
|     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
 | |
|   case Type::IntegerTyID:
 | |
|     return Ty->getIntegerBitWidth();
 | |
|   case Type::HalfTyID:
 | |
|     return 16;
 | |
|   case Type::FloatTyID:
 | |
|     return 32;
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::X86_MMXTyID:
 | |
|     return 64;
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::FP128TyID:
 | |
|     return 128;
 | |
|   // In memory objects this is always aligned to a higher boundary, but
 | |
|   // only 80 bits contain information.
 | |
|   case Type::X86_FP80TyID:
 | |
|     return 80;
 | |
|   case Type::VectorTyID: {
 | |
|     VectorType *VTy = cast<VectorType>(Ty);
 | |
|     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |