mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Also a couple of other changes to avoid use of PointerType::getElementType here & there too. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236799 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			527 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			527 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines various classes for working with Instructions and
 | |
| // ConstantExprs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_IR_OPERATOR_H
 | |
| #define LLVM_IR_OPERATOR_H
 | |
| 
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class GetElementPtrInst;
 | |
| class BinaryOperator;
 | |
| class ConstantExpr;
 | |
| 
 | |
| /// This is a utility class that provides an abstraction for the common
 | |
| /// functionality between Instructions and ConstantExprs.
 | |
| class Operator : public User {
 | |
| private:
 | |
|   // The Operator class is intended to be used as a utility, and is never itself
 | |
|   // instantiated.
 | |
|   void *operator new(size_t, unsigned) = delete;
 | |
|   void *operator new(size_t s) = delete;
 | |
|   Operator() = delete;
 | |
| 
 | |
| protected:
 | |
|   // NOTE: Cannot use = delete because it's not legal to delete
 | |
|   // an overridden method that's not deleted in the base class. Cannot leave
 | |
|   // this unimplemented because that leads to an ODR-violation.
 | |
|   ~Operator() override;
 | |
| 
 | |
| public:
 | |
|   /// Return the opcode for this Instruction or ConstantExpr.
 | |
|   unsigned getOpcode() const {
 | |
|     if (const Instruction *I = dyn_cast<Instruction>(this))
 | |
|       return I->getOpcode();
 | |
|     return cast<ConstantExpr>(this)->getOpcode();
 | |
|   }
 | |
| 
 | |
|   /// If V is an Instruction or ConstantExpr, return its opcode.
 | |
|   /// Otherwise return UserOp1.
 | |
|   static unsigned getOpcode(const Value *V) {
 | |
|     if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|       return I->getOpcode();
 | |
|     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|       return CE->getOpcode();
 | |
|     return Instruction::UserOp1;
 | |
|   }
 | |
| 
 | |
|   static inline bool classof(const Instruction *) { return true; }
 | |
|   static inline bool classof(const ConstantExpr *) { return true; }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Instruction>(V) || isa<ConstantExpr>(V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Utility class for integer arithmetic operators which may exhibit overflow -
 | |
| /// Add, Sub, and Mul. It does not include SDiv, despite that operator having
 | |
| /// the potential for overflow.
 | |
| class OverflowingBinaryOperator : public Operator {
 | |
| public:
 | |
|   enum {
 | |
|     NoUnsignedWrap = (1 << 0),
 | |
|     NoSignedWrap   = (1 << 1)
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   friend class BinaryOperator;
 | |
|   friend class ConstantExpr;
 | |
|   void setHasNoUnsignedWrap(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
 | |
|   }
 | |
|   void setHasNoSignedWrap(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Test whether this operation is known to never
 | |
|   /// undergo unsigned overflow, aka the nuw property.
 | |
|   bool hasNoUnsignedWrap() const {
 | |
|     return SubclassOptionalData & NoUnsignedWrap;
 | |
|   }
 | |
| 
 | |
|   /// Test whether this operation is known to never
 | |
|   /// undergo signed overflow, aka the nsw property.
 | |
|   bool hasNoSignedWrap() const {
 | |
|     return (SubclassOptionalData & NoSignedWrap) != 0;
 | |
|   }
 | |
| 
 | |
|   static inline bool classof(const Instruction *I) {
 | |
|     return I->getOpcode() == Instruction::Add ||
 | |
|            I->getOpcode() == Instruction::Sub ||
 | |
|            I->getOpcode() == Instruction::Mul ||
 | |
|            I->getOpcode() == Instruction::Shl;
 | |
|   }
 | |
|   static inline bool classof(const ConstantExpr *CE) {
 | |
|     return CE->getOpcode() == Instruction::Add ||
 | |
|            CE->getOpcode() == Instruction::Sub ||
 | |
|            CE->getOpcode() == Instruction::Mul ||
 | |
|            CE->getOpcode() == Instruction::Shl;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | |
|            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// A udiv or sdiv instruction, which can be marked as "exact",
 | |
| /// indicating that no bits are destroyed.
 | |
| class PossiblyExactOperator : public Operator {
 | |
| public:
 | |
|   enum {
 | |
|     IsExact = (1 << 0)
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   friend class BinaryOperator;
 | |
|   friend class ConstantExpr;
 | |
|   void setIsExact(bool B) {
 | |
|     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Test whether this division is known to be exact, with zero remainder.
 | |
|   bool isExact() const {
 | |
|     return SubclassOptionalData & IsExact;
 | |
|   }
 | |
| 
 | |
|   static bool isPossiblyExactOpcode(unsigned OpC) {
 | |
|     return OpC == Instruction::SDiv ||
 | |
|            OpC == Instruction::UDiv ||
 | |
|            OpC == Instruction::AShr ||
 | |
|            OpC == Instruction::LShr;
 | |
|   }
 | |
|   static inline bool classof(const ConstantExpr *CE) {
 | |
|     return isPossiblyExactOpcode(CE->getOpcode());
 | |
|   }
 | |
|   static inline bool classof(const Instruction *I) {
 | |
|     return isPossiblyExactOpcode(I->getOpcode());
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | |
|            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Convenience struct for specifying and reasoning about fast-math flags.
 | |
| class FastMathFlags {
 | |
| private:
 | |
|   friend class FPMathOperator;
 | |
|   unsigned Flags;
 | |
|   FastMathFlags(unsigned F) : Flags(F) { }
 | |
| 
 | |
| public:
 | |
|   enum {
 | |
|     UnsafeAlgebra   = (1 << 0),
 | |
|     NoNaNs          = (1 << 1),
 | |
|     NoInfs          = (1 << 2),
 | |
|     NoSignedZeros   = (1 << 3),
 | |
|     AllowReciprocal = (1 << 4)
 | |
|   };
 | |
| 
 | |
|   FastMathFlags() : Flags(0)
 | |
|   { }
 | |
| 
 | |
|   /// Whether any flag is set
 | |
|   bool any() const { return Flags != 0; }
 | |
| 
 | |
|   /// Set all the flags to false
 | |
|   void clear() { Flags = 0; }
 | |
| 
 | |
|   /// Flag queries
 | |
|   bool noNaNs() const          { return 0 != (Flags & NoNaNs); }
 | |
|   bool noInfs() const          { return 0 != (Flags & NoInfs); }
 | |
|   bool noSignedZeros() const   { return 0 != (Flags & NoSignedZeros); }
 | |
|   bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
 | |
|   bool unsafeAlgebra() const   { return 0 != (Flags & UnsafeAlgebra); }
 | |
| 
 | |
|   /// Flag setters
 | |
|   void setNoNaNs()          { Flags |= NoNaNs; }
 | |
|   void setNoInfs()          { Flags |= NoInfs; }
 | |
|   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
 | |
|   void setAllowReciprocal() { Flags |= AllowReciprocal; }
 | |
|   void setUnsafeAlgebra() {
 | |
|     Flags |= UnsafeAlgebra;
 | |
|     setNoNaNs();
 | |
|     setNoInfs();
 | |
|     setNoSignedZeros();
 | |
|     setAllowReciprocal();
 | |
|   }
 | |
| 
 | |
|   void operator&=(const FastMathFlags &OtherFlags) {
 | |
|     Flags &= OtherFlags.Flags;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// Utility class for floating point operations which can have
 | |
| /// information about relaxed accuracy requirements attached to them.
 | |
| class FPMathOperator : public Operator {
 | |
| private:
 | |
|   friend class Instruction;
 | |
| 
 | |
|   void setHasUnsafeAlgebra(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
 | |
|       (B * FastMathFlags::UnsafeAlgebra);
 | |
| 
 | |
|     // Unsafe algebra implies all the others
 | |
|     if (B) {
 | |
|       setHasNoNaNs(true);
 | |
|       setHasNoInfs(true);
 | |
|       setHasNoSignedZeros(true);
 | |
|       setHasAllowReciprocal(true);
 | |
|     }
 | |
|   }
 | |
|   void setHasNoNaNs(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
 | |
|       (B * FastMathFlags::NoNaNs);
 | |
|   }
 | |
|   void setHasNoInfs(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
 | |
|       (B * FastMathFlags::NoInfs);
 | |
|   }
 | |
|   void setHasNoSignedZeros(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
 | |
|       (B * FastMathFlags::NoSignedZeros);
 | |
|   }
 | |
|   void setHasAllowReciprocal(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
 | |
|       (B * FastMathFlags::AllowReciprocal);
 | |
|   }
 | |
| 
 | |
|   /// Convenience function for setting multiple fast-math flags.
 | |
|   /// FMF is a mask of the bits to set.
 | |
|   void setFastMathFlags(FastMathFlags FMF) {
 | |
|     SubclassOptionalData |= FMF.Flags;
 | |
|   }
 | |
| 
 | |
|   /// Convenience function for copying all fast-math flags.
 | |
|   /// All values in FMF are transferred to this operator.
 | |
|   void copyFastMathFlags(FastMathFlags FMF) {
 | |
|     SubclassOptionalData = FMF.Flags;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Test whether this operation is permitted to be
 | |
|   /// algebraically transformed, aka the 'A' fast-math property.
 | |
|   bool hasUnsafeAlgebra() const {
 | |
|     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
 | |
|   }
 | |
| 
 | |
|   /// Test whether this operation's arguments and results are to be
 | |
|   /// treated as non-NaN, aka the 'N' fast-math property.
 | |
|   bool hasNoNaNs() const {
 | |
|     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
 | |
|   }
 | |
| 
 | |
|   /// Test whether this operation's arguments and results are to be
 | |
|   /// treated as NoN-Inf, aka the 'I' fast-math property.
 | |
|   bool hasNoInfs() const {
 | |
|     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
 | |
|   }
 | |
| 
 | |
|   /// Test whether this operation can treat the sign of zero
 | |
|   /// as insignificant, aka the 'S' fast-math property.
 | |
|   bool hasNoSignedZeros() const {
 | |
|     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
 | |
|   }
 | |
| 
 | |
|   /// Test whether this operation is permitted to use
 | |
|   /// reciprocal instead of division, aka the 'R' fast-math property.
 | |
|   bool hasAllowReciprocal() const {
 | |
|     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
 | |
|   }
 | |
| 
 | |
|   /// Convenience function for getting all the fast-math flags
 | |
|   FastMathFlags getFastMathFlags() const {
 | |
|     return FastMathFlags(SubclassOptionalData);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the maximum error permitted by this operation in ULPs.  An
 | |
|   /// accuracy of 0.0 means that the operation should be performed with the
 | |
|   /// default precision.
 | |
|   float getFPAccuracy() const;
 | |
| 
 | |
|   static inline bool classof(const Instruction *I) {
 | |
|     return I->getType()->isFPOrFPVectorTy();
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return isa<Instruction>(V) && classof(cast<Instruction>(V));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// A helper template for defining operators for individual opcodes.
 | |
| template<typename SuperClass, unsigned Opc>
 | |
| class ConcreteOperator : public SuperClass {
 | |
| public:
 | |
|   static inline bool classof(const Instruction *I) {
 | |
|     return I->getOpcode() == Opc;
 | |
|   }
 | |
|   static inline bool classof(const ConstantExpr *CE) {
 | |
|     return CE->getOpcode() == Opc;
 | |
|   }
 | |
|   static inline bool classof(const Value *V) {
 | |
|     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
 | |
|            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
 | |
|   }
 | |
| };
 | |
| 
 | |
| class AddOperator
 | |
|   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
 | |
| };
 | |
| class SubOperator
 | |
|   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
 | |
| };
 | |
| class MulOperator
 | |
|   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
 | |
| };
 | |
| class ShlOperator
 | |
|   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
 | |
| };
 | |
| 
 | |
| 
 | |
| class SDivOperator
 | |
|   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
 | |
| };
 | |
| class UDivOperator
 | |
|   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
 | |
| };
 | |
| class AShrOperator
 | |
|   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
 | |
| };
 | |
| class LShrOperator
 | |
|   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
 | |
| };
 | |
| 
 | |
| 
 | |
| class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
 | |
| 
 | |
| 
 | |
| class GEPOperator
 | |
|   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
 | |
|   enum {
 | |
|     IsInBounds = (1 << 0)
 | |
|   };
 | |
| 
 | |
|   friend class GetElementPtrInst;
 | |
|   friend class ConstantExpr;
 | |
|   void setIsInBounds(bool B) {
 | |
|     SubclassOptionalData =
 | |
|       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Test whether this is an inbounds GEP, as defined by LangRef.html.
 | |
|   bool isInBounds() const {
 | |
|     return SubclassOptionalData & IsInBounds;
 | |
|   }
 | |
| 
 | |
|   inline op_iterator       idx_begin()       { return op_begin()+1; }
 | |
|   inline const_op_iterator idx_begin() const { return op_begin()+1; }
 | |
|   inline op_iterator       idx_end()         { return op_end(); }
 | |
|   inline const_op_iterator idx_end()   const { return op_end(); }
 | |
| 
 | |
|   Value *getPointerOperand() {
 | |
|     return getOperand(0);
 | |
|   }
 | |
|   const Value *getPointerOperand() const {
 | |
|     return getOperand(0);
 | |
|   }
 | |
|   static unsigned getPointerOperandIndex() {
 | |
|     return 0U;                      // get index for modifying correct operand
 | |
|   }
 | |
| 
 | |
|   /// Method to return the pointer operand as a PointerType.
 | |
|   Type *getPointerOperandType() const {
 | |
|     return getPointerOperand()->getType();
 | |
|   }
 | |
| 
 | |
|   Type *getSourceElementType() const;
 | |
| 
 | |
|   /// Method to return the address space of the pointer operand.
 | |
|   unsigned getPointerAddressSpace() const {
 | |
|     return getPointerOperandType()->getPointerAddressSpace();
 | |
|   }
 | |
| 
 | |
|   unsigned getNumIndices() const {  // Note: always non-negative
 | |
|     return getNumOperands() - 1;
 | |
|   }
 | |
| 
 | |
|   bool hasIndices() const {
 | |
|     return getNumOperands() > 1;
 | |
|   }
 | |
| 
 | |
|   /// Return true if all of the indices of this GEP are zeros.
 | |
|   /// If so, the result pointer and the first operand have the same
 | |
|   /// value, just potentially different types.
 | |
|   bool hasAllZeroIndices() const {
 | |
|     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
 | |
|       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
 | |
|         if (C->isZero())
 | |
|           continue;
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Return true if all of the indices of this GEP are constant integers.
 | |
|   /// If so, the result pointer and the first operand have
 | |
|   /// a constant offset between them.
 | |
|   bool hasAllConstantIndices() const {
 | |
|     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
 | |
|       if (!isa<ConstantInt>(I))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// \brief Accumulate the constant address offset of this GEP if possible.
 | |
|   ///
 | |
|   /// This routine accepts an APInt into which it will accumulate the constant
 | |
|   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
 | |
|   /// all-constant, it returns false and the value of the offset APInt is
 | |
|   /// undefined (it is *not* preserved!). The APInt passed into this routine
 | |
|   /// must be at exactly as wide as the IntPtr type for the address space of the
 | |
|   /// base GEP pointer.
 | |
|   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
 | |
|     assert(Offset.getBitWidth() ==
 | |
|            DL.getPointerSizeInBits(getPointerAddressSpace()) &&
 | |
|            "The offset must have exactly as many bits as our pointer.");
 | |
| 
 | |
|     for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
 | |
|          GTI != GTE; ++GTI) {
 | |
|       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
 | |
|       if (!OpC)
 | |
|         return false;
 | |
|       if (OpC->isZero())
 | |
|         continue;
 | |
| 
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         unsigned ElementIdx = OpC->getZExtValue();
 | |
|         const StructLayout *SL = DL.getStructLayout(STy);
 | |
|         Offset += APInt(Offset.getBitWidth(),
 | |
|                         SL->getElementOffset(ElementIdx));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For array or vector indices, scale the index by the size of the type.
 | |
|       APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
 | |
|       Offset += Index * APInt(Offset.getBitWidth(),
 | |
|                               DL.getTypeAllocSize(GTI.getIndexedType()));
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| class PtrToIntOperator
 | |
|     : public ConcreteOperator<Operator, Instruction::PtrToInt> {
 | |
|   friend class PtrToInt;
 | |
|   friend class ConstantExpr;
 | |
| 
 | |
| public:
 | |
|   Value *getPointerOperand() {
 | |
|     return getOperand(0);
 | |
|   }
 | |
|   const Value *getPointerOperand() const {
 | |
|     return getOperand(0);
 | |
|   }
 | |
|   static unsigned getPointerOperandIndex() {
 | |
|     return 0U;                      // get index for modifying correct operand
 | |
|   }
 | |
| 
 | |
|   /// Method to return the pointer operand as a PointerType.
 | |
|   Type *getPointerOperandType() const {
 | |
|     return getPointerOperand()->getType();
 | |
|   }
 | |
| 
 | |
|   /// Method to return the address space of the pointer operand.
 | |
|   unsigned getPointerAddressSpace() const {
 | |
|     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BitCastOperator
 | |
|     : public ConcreteOperator<Operator, Instruction::BitCast> {
 | |
|   friend class BitCastInst;
 | |
|   friend class ConstantExpr;
 | |
| 
 | |
| public:
 | |
|   Type *getSrcTy() const {
 | |
|     return getOperand(0)->getType();
 | |
|   }
 | |
| 
 | |
|   Type *getDestTy() const {
 | |
|     return getType();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |