mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	bitcasts of them. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36537 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			391 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a useful analysis step to figure out what numbered slots
 | 
						|
// values in a program will land in (keeping track of per plane information).
 | 
						|
//
 | 
						|
// This is used when writing a file to disk, either in bytecode or assembly.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SlotCalculator.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/InlineAsm.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/TypeSymbolTable.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/ValueSymbolTable.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false), 
 | 
						|
    cl::desc("Enable SlotCalculator debug output"), cl::Hidden);
 | 
						|
#define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X
 | 
						|
#else
 | 
						|
#define SC_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
void SlotCalculator::insertPrimitives() {
 | 
						|
  // Preload the table with the built-in types. These built-in types are
 | 
						|
  // inserted first to ensure that they have low integer indices which helps to
 | 
						|
  // keep bytecode sizes small. Note that the first group of indices must match
 | 
						|
  // the Type::TypeIDs for the primitive types. After that the integer types are
 | 
						|
  // added, but the order and value is not critical. What is critical is that 
 | 
						|
  // the indices of these "well known" slot numbers be properly maintained in
 | 
						|
  // Reader.h which uses them directly to extract values of these types.
 | 
						|
  SC_DEBUG("Inserting primitive types:\n");
 | 
						|
                                    // See WellKnownTypeSlots in Reader.h
 | 
						|
  getOrCreateTypeSlot(Type::VoidTy  ); // 0: VoidTySlot
 | 
						|
  getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot
 | 
						|
  getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot
 | 
						|
  getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot
 | 
						|
  assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert");
 | 
						|
  // Above here *must* correspond 1:1 with the primitive types.
 | 
						|
  getOrCreateTypeSlot(Type::Int1Ty  ); // 4: Int1TySlot
 | 
						|
  getOrCreateTypeSlot(Type::Int8Ty  ); // 5: Int8TySlot
 | 
						|
  getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot
 | 
						|
  getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot
 | 
						|
  getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot
 | 
						|
}
 | 
						|
 | 
						|
SlotCalculator::SlotCalculator(const Module *M) {
 | 
						|
  assert(M);
 | 
						|
  TheModule = M;
 | 
						|
 | 
						|
  insertPrimitives();
 | 
						|
  processModule();
 | 
						|
}
 | 
						|
 | 
						|
// processModule - Process all of the module level function declarations and
 | 
						|
// types that are available.
 | 
						|
//
 | 
						|
void SlotCalculator::processModule() {
 | 
						|
  SC_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the global variables to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I)
 | 
						|
    CreateSlotIfNeeded(I);
 | 
						|
 | 
						|
  // Scavenge the types out of the functions, then add the functions themselves
 | 
						|
  // to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I)
 | 
						|
    CreateSlotIfNeeded(I);
 | 
						|
 | 
						|
  // Add all of the global aliases to the value table...
 | 
						|
  //
 | 
						|
  for (Module::const_alias_iterator I = TheModule->alias_begin(),
 | 
						|
         E = TheModule->alias_end(); I != E; ++I)
 | 
						|
    CreateSlotIfNeeded(I);
 | 
						|
 | 
						|
  // Add all of the module level constants used as initializers
 | 
						|
  //
 | 
						|
  for (Module::const_global_iterator I = TheModule->global_begin(),
 | 
						|
         E = TheModule->global_end(); I != E; ++I)
 | 
						|
    if (I->hasInitializer())
 | 
						|
      CreateSlotIfNeeded(I->getInitializer());
 | 
						|
 | 
						|
  // Add all of the module level constants used as aliasees
 | 
						|
  //
 | 
						|
  for (Module::const_alias_iterator I = TheModule->alias_begin(),
 | 
						|
         E = TheModule->alias_end(); I != E; ++I)
 | 
						|
    if (I->getAliasee())
 | 
						|
      CreateSlotIfNeeded(I->getAliasee());
 | 
						|
 | 
						|
  // Now that all global constants have been added, rearrange constant planes
 | 
						|
  // that contain constant strings so that the strings occur at the start of the
 | 
						|
  // plane, not somewhere in the middle.
 | 
						|
  //
 | 
						|
  for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) {
 | 
						|
    if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane]))
 | 
						|
      if (AT->getElementType() == Type::Int8Ty) {
 | 
						|
        TypePlane &Plane = Table[plane];
 | 
						|
        unsigned FirstNonStringID = 0;
 | 
						|
        for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | 
						|
          if (isa<ConstantAggregateZero>(Plane[i]) ||
 | 
						|
              (isa<ConstantArray>(Plane[i]) &&
 | 
						|
               cast<ConstantArray>(Plane[i])->isString())) {
 | 
						|
            // Check to see if we have to shuffle this string around.  If not,
 | 
						|
            // don't do anything.
 | 
						|
            if (i != FirstNonStringID) {
 | 
						|
              // Swap the plane entries....
 | 
						|
              std::swap(Plane[i], Plane[FirstNonStringID]);
 | 
						|
 | 
						|
              // Keep the NodeMap up to date.
 | 
						|
              NodeMap[Plane[i]] = i;
 | 
						|
              NodeMap[Plane[FirstNonStringID]] = FirstNonStringID;
 | 
						|
            }
 | 
						|
            ++FirstNonStringID;
 | 
						|
          }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan all of the functions for their constants, which allows us to emit
 | 
						|
  // more compact modules.
 | 
						|
  SC_DEBUG("Inserting function constants:\n");
 | 
						|
  for (Module::const_iterator F = TheModule->begin(), E = TheModule->end();
 | 
						|
       F != E; ++F) {
 | 
						|
    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
 | 
						|
        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); 
 | 
						|
             OI != E; ++OI) {
 | 
						|
          if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
 | 
						|
              isa<InlineAsm>(*OI))
 | 
						|
            CreateSlotIfNeeded(*OI);
 | 
						|
        }
 | 
						|
        getOrCreateTypeSlot(I->getType());
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert constants that are named at module level into the slot pool so that
 | 
						|
  // the module symbol table can refer to them...
 | 
						|
  SC_DEBUG("Inserting SymbolTable values:\n");
 | 
						|
  processTypeSymbolTable(&TheModule->getTypeSymbolTable());
 | 
						|
  processValueSymbolTable(&TheModule->getValueSymbolTable());
 | 
						|
 | 
						|
  // Now that we have collected together all of the information relevant to the
 | 
						|
  // module, compactify the type table if it is particularly big and outputting
 | 
						|
  // a bytecode file.  The basic problem we run into is that some programs have
 | 
						|
  // a large number of types, which causes the type field to overflow its size,
 | 
						|
  // which causes instructions to explode in size (particularly call
 | 
						|
  // instructions).  To avoid this behavior, we "sort" the type table so that
 | 
						|
  // all non-value types are pushed to the end of the type table, giving nice
 | 
						|
  // low numbers to the types that can be used by instructions, thus reducing
 | 
						|
  // the amount of explodage we suffer.
 | 
						|
  if (Types.size() >= 64) {
 | 
						|
    unsigned FirstNonValueTypeID = 0;
 | 
						|
    for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | 
						|
      if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) {
 | 
						|
        // Check to see if we have to shuffle this type around.  If not, don't
 | 
						|
        // do anything.
 | 
						|
        if (i != FirstNonValueTypeID) {
 | 
						|
          // Swap the type ID's.
 | 
						|
          std::swap(Types[i], Types[FirstNonValueTypeID]);
 | 
						|
 | 
						|
          // Keep the TypeMap up to date.
 | 
						|
          TypeMap[Types[i]] = i;
 | 
						|
          TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID;
 | 
						|
 | 
						|
          // When we move a type, make sure to move its value plane as needed.
 | 
						|
          if (Table.size() > FirstNonValueTypeID) {
 | 
						|
            if (Table.size() <= i) Table.resize(i+1);
 | 
						|
            std::swap(Table[i], Table[FirstNonValueTypeID]);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ++FirstNonValueTypeID;
 | 
						|
      }
 | 
						|
  }
 | 
						|
    
 | 
						|
  NumModuleTypes = getNumPlanes();
 | 
						|
 | 
						|
  SC_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
// processTypeSymbolTable - Insert all of the type sin the specified symbol
 | 
						|
// table.
 | 
						|
void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) {
 | 
						|
  for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); 
 | 
						|
       TI != TE; ++TI )
 | 
						|
    getOrCreateTypeSlot(TI->second);
 | 
						|
}
 | 
						|
 | 
						|
// processSymbolTable - Insert all of the values in the specified symbol table
 | 
						|
// into the values table...
 | 
						|
//
 | 
						|
void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) {
 | 
						|
  for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); 
 | 
						|
       VI != VE; ++VI)
 | 
						|
    CreateSlotIfNeeded(VI->getValue());
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::CreateSlotIfNeeded(const Value *V) {
 | 
						|
  // Check to see if it's already in!
 | 
						|
  if (NodeMap.count(V)) return;
 | 
						|
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  assert(Ty != Type::VoidTy && "Can't insert void values!");
 | 
						|
  
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isa<GlobalValue>(C)) {
 | 
						|
      // Initializers for globals are handled explicitly elsewhere.
 | 
						|
    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
 | 
						|
      // Do not index the characters that make up constant strings.  We emit
 | 
						|
      // constant strings as special entities that don't require their
 | 
						|
      // individual characters to be emitted.
 | 
						|
      if (!C->isNullValue())
 | 
						|
        ConstantStrings.push_back(cast<ConstantArray>(C));
 | 
						|
    } else {
 | 
						|
      // This makes sure that if a constant has uses (for example an array of
 | 
						|
      // const ints), that they are inserted also.
 | 
						|
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | 
						|
           I != E; ++I)
 | 
						|
        CreateSlotIfNeeded(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned TyPlane = getOrCreateTypeSlot(Ty);
 | 
						|
  if (Table.size() <= TyPlane)    // Make sure we have the type plane allocated.
 | 
						|
    Table.resize(TyPlane+1, TypePlane());
 | 
						|
  
 | 
						|
  // If this is the first value to get inserted into the type plane, make sure
 | 
						|
  // to insert the implicit null value.
 | 
						|
  if (Table[TyPlane].empty()) {
 | 
						|
    // Label's and opaque types can't have a null value.
 | 
						|
    if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) {
 | 
						|
      Value *ZeroInitializer = Constant::getNullValue(Ty);
 | 
						|
      
 | 
						|
      // If we are pushing zeroinit, it will be handled below.
 | 
						|
      if (V != ZeroInitializer) {
 | 
						|
        Table[TyPlane].push_back(ZeroInitializer);
 | 
						|
        NodeMap[ZeroInitializer] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  NodeMap[V] = Table[TyPlane].size();
 | 
						|
  Table[TyPlane].push_back(V);
 | 
						|
  
 | 
						|
  SC_DEBUG("  Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
 | 
						|
           NodeMap[V] << "\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) {
 | 
						|
  TypeMapType::iterator TyIt = TypeMap.find(Ty);
 | 
						|
  if (TyIt != TypeMap.end()) return TyIt->second;
 | 
						|
 | 
						|
  // Insert into TypeMap.
 | 
						|
  unsigned ResultSlot = TypeMap[Ty] = Types.size();
 | 
						|
  Types.push_back(Ty);
 | 
						|
  SC_DEBUG("  Inserting type [" << ResultSlot << "] = " << *Ty << "\n" );
 | 
						|
  
 | 
						|
  // Loop over any contained types in the definition, ensuring they are also
 | 
						|
  // inserted.
 | 
						|
  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
 | 
						|
       I != E; ++I)
 | 
						|
    getOrCreateTypeSlot(*I);
 | 
						|
 | 
						|
  return ResultSlot;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void SlotCalculator::incorporateFunction(const Function *F) {
 | 
						|
  SC_DEBUG("begin processFunction!\n");
 | 
						|
  
 | 
						|
  // Iterate over function arguments, adding them to the value table...
 | 
						|
  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
      I != E; ++I)
 | 
						|
    CreateFunctionValueSlot(I);
 | 
						|
  
 | 
						|
  SC_DEBUG("Inserting Instructions:\n");
 | 
						|
  
 | 
						|
  // Add all of the instructions to the type planes...
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
    CreateFunctionValueSlot(BB);
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | 
						|
      if (I->getType() != Type::VoidTy)
 | 
						|
        CreateFunctionValueSlot(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  SC_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::purgeFunction() {
 | 
						|
  SC_DEBUG("begin purgeFunction!\n");
 | 
						|
  
 | 
						|
  // Next, remove values from existing type planes
 | 
						|
  for (DenseMap<unsigned,unsigned,
 | 
						|
          ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(),
 | 
						|
       E = ModuleLevel.end(); I != E; ++I) {
 | 
						|
    unsigned PlaneNo = I->first;
 | 
						|
    unsigned ModuleLev = I->second;
 | 
						|
    
 | 
						|
    // Pop all function-local values in this type-plane off of Table.
 | 
						|
    TypePlane &Plane = getPlane(PlaneNo);
 | 
						|
    assert(ModuleLev < Plane.size() && "module levels higher than elements?");
 | 
						|
    for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) {
 | 
						|
      NodeMap.erase(Plane.back());       // Erase from nodemap
 | 
						|
      Plane.pop_back();                  // Shrink plane
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ModuleLevel.clear();
 | 
						|
 | 
						|
  // Finally, remove any type planes defined by the function...
 | 
						|
  while (Table.size() > NumModuleTypes) {
 | 
						|
    TypePlane &Plane = Table.back();
 | 
						|
    SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size "
 | 
						|
             << Plane.size() << "\n");
 | 
						|
    for (unsigned i = 0, e = Plane.size(); i != e; ++i)
 | 
						|
      NodeMap.erase(Plane[i]);   // Erase from nodemap
 | 
						|
    
 | 
						|
    Table.pop_back();                // Nuke the plane, we don't like it.
 | 
						|
  }
 | 
						|
  
 | 
						|
  SC_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
inline static bool hasImplicitNull(const Type* Ty) {
 | 
						|
  return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void SlotCalculator::CreateFunctionValueSlot(const Value *V) {
 | 
						|
  assert(!NodeMap.count(V) && "Function-local value can't be inserted!");
 | 
						|
  
 | 
						|
  const Type *Ty = V->getType();
 | 
						|
  assert(Ty != Type::VoidTy && "Can't insert void values!");
 | 
						|
  assert(!isa<Constant>(V) && "Not a function-local value!");
 | 
						|
  
 | 
						|
  unsigned TyPlane = getOrCreateTypeSlot(Ty);
 | 
						|
  if (Table.size() <= TyPlane)    // Make sure we have the type plane allocated.
 | 
						|
    Table.resize(TyPlane+1, TypePlane());
 | 
						|
  
 | 
						|
  // If this is the first value noticed of this type within this function,
 | 
						|
  // remember the module level for this type plane in ModuleLevel.  This reminds
 | 
						|
  // us to remove the values in purgeFunction and tells us how many to remove.
 | 
						|
  if (TyPlane < NumModuleTypes)
 | 
						|
    ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size()));
 | 
						|
  
 | 
						|
  // If this is the first value to get inserted into the type plane, make sure
 | 
						|
  // to insert the implicit null value.
 | 
						|
  if (Table[TyPlane].empty()) {
 | 
						|
    // Label's and opaque types can't have a null value.
 | 
						|
    if (hasImplicitNull(Ty)) {
 | 
						|
      Value *ZeroInitializer = Constant::getNullValue(Ty);
 | 
						|
      
 | 
						|
      // If we are pushing zeroinit, it will be handled below.
 | 
						|
      if (V != ZeroInitializer) {
 | 
						|
        Table[TyPlane].push_back(ZeroInitializer);
 | 
						|
        NodeMap[ZeroInitializer] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Insert node into table and NodeMap...
 | 
						|
  NodeMap[V] = Table[TyPlane].size();
 | 
						|
  Table[TyPlane].push_back(V);
 | 
						|
  
 | 
						|
  SC_DEBUG("  Inserting value [" << TyPlane << "] = " << *V << " slot=" <<
 | 
						|
           NodeMap[V] << "\n");
 | 
						|
} 
 |