mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	No functional changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233740 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1349 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1349 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Replace mux instructions with the corresponding legal instructions.
 | 
						|
// It is meant to work post-SSA, but still on virtual registers. It was
 | 
						|
// originally placed between register coalescing and machine instruction
 | 
						|
// scheduler.
 | 
						|
// In this place in the optimization sequence, live interval analysis had
 | 
						|
// been performed, and the live intervals should be preserved. A large part
 | 
						|
// of the code deals with preserving the liveness information.
 | 
						|
//
 | 
						|
// Liveness tracking aside, the main functionality of this pass is divided
 | 
						|
// into two steps. The first step is to replace an instruction
 | 
						|
//   vreg0 = C2_mux vreg0, vreg1, vreg2
 | 
						|
// with a pair of conditional transfers
 | 
						|
//   vreg0 = A2_tfrt vreg0, vreg1
 | 
						|
//   vreg0 = A2_tfrf vreg0, vreg2
 | 
						|
// It is the intention that the execution of this pass could be terminated
 | 
						|
// after this step, and the code generated would be functionally correct.
 | 
						|
//
 | 
						|
// If the uses of the source values vreg1 and vreg2 are kills, and their
 | 
						|
// definitions are predicable, then in the second step, the conditional
 | 
						|
// transfers will then be rewritten as predicated instructions. E.g.
 | 
						|
//   vreg0 = A2_or vreg1, vreg2
 | 
						|
//   vreg3 = A2_tfrt vreg99, vreg0<kill>
 | 
						|
// will be rewritten as
 | 
						|
//   vreg3 = A2_port vreg99, vreg1, vreg2
 | 
						|
//
 | 
						|
// This replacement has two variants: "up" and "down". Consider this case:
 | 
						|
//   vreg0 = A2_or vreg1, vreg2
 | 
						|
//   ... [intervening instructions] ...
 | 
						|
//   vreg3 = A2_tfrt vreg99, vreg0<kill>
 | 
						|
// variant "up":
 | 
						|
//   vreg3 = A2_port vreg99, vreg1, vreg2
 | 
						|
//   ... [intervening instructions, vreg0->vreg3] ...
 | 
						|
//   [deleted]
 | 
						|
// variant "down":
 | 
						|
//   [deleted]
 | 
						|
//   ... [intervening instructions] ...
 | 
						|
//   vreg3 = A2_port vreg99, vreg1, vreg2
 | 
						|
//
 | 
						|
// Both, one or none of these variants may be valid, and checks are made
 | 
						|
// to rule out inapplicable variants.
 | 
						|
//
 | 
						|
// As an additional optimization, before either of the two steps above is
 | 
						|
// executed, the pass attempts to coalesce the target register with one of
 | 
						|
// the source registers, e.g. given an instruction
 | 
						|
//   vreg3 = C2_mux vreg0, vreg1, vreg2
 | 
						|
// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
 | 
						|
// the instruction would then be (for example)
 | 
						|
//   vreg3 = C2_mux vreg0, vreg3, vreg2
 | 
						|
// and, under certain circumstances, this could result in only one predicated
 | 
						|
// instruction:
 | 
						|
//   vreg3 = A2_tfrf vreg0, vreg2
 | 
						|
//
 | 
						|
 | 
						|
#define DEBUG_TYPE "expand-condsets"
 | 
						|
#include "HexagonTargetMachine.h"
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
 | 
						|
  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
 | 
						|
static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
 | 
						|
  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializeHexagonExpandCondsetsPass(PassRegistry&);
 | 
						|
  FunctionPass *createHexagonExpandCondsets();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class HexagonExpandCondsets : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    HexagonExpandCondsets() :
 | 
						|
        MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
 | 
						|
        LIS(0), CoaLimitActive(false),
 | 
						|
        TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
 | 
						|
      if (OptCoaLimit.getPosition())
 | 
						|
        CoaLimitActive = true, CoaLimit = OptCoaLimit;
 | 
						|
      if (OptTfrLimit.getPosition())
 | 
						|
        TfrLimitActive = true, TfrLimit = OptTfrLimit;
 | 
						|
      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "Hexagon Expand Condsets";
 | 
						|
    }
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<LiveIntervals>();
 | 
						|
      AU.addPreserved<LiveIntervals>();
 | 
						|
      AU.addPreserved<SlotIndexes>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
  private:
 | 
						|
    const HexagonInstrInfo *HII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    MachineRegisterInfo *MRI;
 | 
						|
    LiveIntervals *LIS;
 | 
						|
 | 
						|
    bool CoaLimitActive, TfrLimitActive;
 | 
						|
    unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
 | 
						|
 | 
						|
    struct RegisterRef {
 | 
						|
      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
 | 
						|
          Sub(Op.getSubReg()) {}
 | 
						|
      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
 | 
						|
      bool operator== (RegisterRef RR) const {
 | 
						|
        return Reg == RR.Reg && Sub == RR.Sub;
 | 
						|
      }
 | 
						|
      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
 | 
						|
      unsigned Reg, Sub;
 | 
						|
    };
 | 
						|
 | 
						|
    typedef DenseMap<unsigned,unsigned> ReferenceMap;
 | 
						|
    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
 | 
						|
    enum { Exec_Then = 0x10, Exec_Else = 0x20 };
 | 
						|
    unsigned getMaskForSub(unsigned Sub);
 | 
						|
    bool isCondset(const MachineInstr *MI);
 | 
						|
 | 
						|
    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
 | 
						|
    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
 | 
						|
 | 
						|
    LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
 | 
						|
    LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
 | 
						|
    void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
 | 
						|
    void makeUndead(unsigned Reg, SlotIndex S);
 | 
						|
    void shrinkToUses(unsigned Reg, LiveInterval &LI);
 | 
						|
    void updateKillFlags(unsigned Reg, LiveInterval &LI);
 | 
						|
    void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
 | 
						|
        LiveInterval &LI);
 | 
						|
    void addInstrToLiveness(MachineInstr *MI);
 | 
						|
    void removeInstrFromLiveness(MachineInstr *MI);
 | 
						|
 | 
						|
    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
 | 
						|
    MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
 | 
						|
        unsigned DstSR, const MachineOperand &PredOp, bool Cond);
 | 
						|
    bool split(MachineInstr *MI);
 | 
						|
    bool splitInBlock(MachineBasicBlock &B);
 | 
						|
 | 
						|
    bool isPredicable(MachineInstr *MI);
 | 
						|
    MachineInstr *getReachingDefForPred(RegisterRef RD,
 | 
						|
        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
 | 
						|
    bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
 | 
						|
    bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
 | 
						|
    void predicateAt(RegisterRef RD, MachineInstr *MI,
 | 
						|
        MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
 | 
						|
    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
 | 
						|
        bool Cond, MachineBasicBlock::iterator First,
 | 
						|
        MachineBasicBlock::iterator Last);
 | 
						|
    bool predicate(MachineInstr *TfrI, bool Cond);
 | 
						|
    bool predicateInBlock(MachineBasicBlock &B);
 | 
						|
 | 
						|
    void postprocessUndefImplicitUses(MachineBasicBlock &B);
 | 
						|
    void removeImplicitUses(MachineInstr *MI);
 | 
						|
    void removeImplicitUses(MachineBasicBlock &B);
 | 
						|
 | 
						|
    bool isIntReg(RegisterRef RR, unsigned &BW);
 | 
						|
    bool isIntraBlocks(LiveInterval &LI);
 | 
						|
    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
 | 
						|
    bool coalesceSegments(MachineFunction &MF);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char HexagonExpandCondsets::ID = 0;
 | 
						|
 | 
						|
 | 
						|
unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
 | 
						|
  switch (Sub) {
 | 
						|
    case Hexagon::subreg_loreg:
 | 
						|
      return Sub_Low;
 | 
						|
    case Hexagon::subreg_hireg:
 | 
						|
      return Sub_High;
 | 
						|
    case Hexagon::NoSubRegister:
 | 
						|
      return Sub_None;
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid subregister");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::C2_mux:
 | 
						|
    case Hexagon::C2_muxii:
 | 
						|
    case Hexagon::C2_muxir:
 | 
						|
    case Hexagon::C2_muxri:
 | 
						|
    case Hexagon::MUX64_rr:
 | 
						|
        return true;
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
 | 
						|
      unsigned Exec) {
 | 
						|
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
 | 
						|
  ReferenceMap::iterator F = Map.find(RR.Reg);
 | 
						|
  if (F == Map.end())
 | 
						|
    Map.insert(std::make_pair(RR.Reg, Mask));
 | 
						|
  else
 | 
						|
    F->second |= Mask;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
 | 
						|
      unsigned Exec) {
 | 
						|
  ReferenceMap::iterator F = Map.find(RR.Reg);
 | 
						|
  if (F == Map.end())
 | 
						|
    return false;
 | 
						|
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
 | 
						|
  if (Mask & F->second)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
 | 
						|
      SlotIndex S) {
 | 
						|
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
    if (I->start >= S)
 | 
						|
      return I;
 | 
						|
  }
 | 
						|
  return LI.end();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
 | 
						|
      SlotIndex S) {
 | 
						|
  LiveInterval::iterator P = LI.end();
 | 
						|
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
    if (I->end > S)
 | 
						|
      return P;
 | 
						|
    P = I;
 | 
						|
  }
 | 
						|
  return P;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Find the implicit use of register Reg in slot index S, and make sure
 | 
						|
/// that the "defined" flag is set to SetDef. While the mux expansion is
 | 
						|
/// going on, predicated instructions will have implicit uses of the
 | 
						|
/// registers that are being defined. This is to keep any preceding
 | 
						|
/// definitions live. If there is no preceding definition, the implicit
 | 
						|
/// use will be marked as "undef", otherwise it will be "defined". This
 | 
						|
/// function is used to update the flag.
 | 
						|
void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
 | 
						|
      bool SetDef) {
 | 
						|
  if (!S.isRegister())
 | 
						|
    return;
 | 
						|
  MachineInstr *MI = LIS->getInstructionFromIndex(S);
 | 
						|
  assert(MI && "Expecting instruction");
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
 | 
						|
      continue;
 | 
						|
    bool IsDef = !Op.isUndef();
 | 
						|
    if (Op.isImplicit() && IsDef != SetDef)
 | 
						|
      Op.setIsUndef(!SetDef);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
 | 
						|
  // If S is a block boundary, then there can still be a dead def reaching
 | 
						|
  // this point. Instead of traversing the CFG, queue start points of all
 | 
						|
  // live segments that begin with a register, and end at a block boundary.
 | 
						|
  // This may "resurrect" some truly dead definitions, but doing so is
 | 
						|
  // harmless.
 | 
						|
  SmallVector<MachineInstr*,8> Defs;
 | 
						|
  if (S.isBlock()) {
 | 
						|
    LiveInterval &LI = LIS->getInterval(Reg);
 | 
						|
    for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
      if (!I->start.isRegister() || !I->end.isBlock())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
 | 
						|
      Defs.push_back(MI);
 | 
						|
    }
 | 
						|
  } else if (S.isRegister()) {
 | 
						|
    MachineInstr *MI = LIS->getInstructionFromIndex(S);
 | 
						|
    Defs.push_back(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
 | 
						|
    MachineInstr *MI = Defs[i];
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      Op.setIsDead(false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Shrink the segments in the live interval for a given register to the last
 | 
						|
/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
 | 
						|
/// function will not mark any definitions of Reg as dead. The reason for this
 | 
						|
/// is that this function is used while a MUX instruction is being expanded,
 | 
						|
/// or while a conditional copy is undergoing predication. During these
 | 
						|
/// processes, there may be defs present in the instruction sequence that have
 | 
						|
/// not yet been removed, or there may be missing uses that have not yet been
 | 
						|
/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
 | 
						|
/// but since it does not extend any intervals that are too short, we need to
 | 
						|
/// pre-emptively extend them here in anticipation of further changes.
 | 
						|
void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
 | 
						|
  SmallVector<MachineInstr*,4> Deads;
 | 
						|
  LIS->shrinkToUses(&LI, &Deads);
 | 
						|
  // Need to undo the deadification made by "shrinkToUses". It's easier to
 | 
						|
  // do it here, since we have a list of all instructions that were just
 | 
						|
  // marked as dead.
 | 
						|
  for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
 | 
						|
    MachineInstr *MI = Deads[i];
 | 
						|
    // Clear the "dead" flag.
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      Op.setIsDead(false);
 | 
						|
    }
 | 
						|
    // Extend the live segment to the beginning of the next one.
 | 
						|
    LiveInterval::iterator End = LI.end();
 | 
						|
    SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
 | 
						|
    LiveInterval::iterator T = LI.FindSegmentContaining(S);
 | 
						|
    assert(T != End);
 | 
						|
    LiveInterval::iterator N = std::next(T);
 | 
						|
    if (N != End)
 | 
						|
      T->end = N->start;
 | 
						|
    else
 | 
						|
      T->end = LIS->getMBBEndIdx(MI->getParent());
 | 
						|
  }
 | 
						|
  updateKillFlags(Reg, LI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Given an updated live interval LI for register Reg, update the kill flags
 | 
						|
/// in instructions using Reg to reflect the liveness changes.
 | 
						|
void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
 | 
						|
  MRI->clearKillFlags(Reg);
 | 
						|
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
    SlotIndex EX = I->end;
 | 
						|
    if (!EX.isRegister())
 | 
						|
      continue;
 | 
						|
    MachineInstr *MI = LIS->getInstructionFromIndex(EX);
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
 | 
						|
        continue;
 | 
						|
      // Only set the kill flag on the first encountered use of Reg in this
 | 
						|
      // instruction.
 | 
						|
      Op.setIsKill(true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// When adding a new instruction to liveness, the newly added definition
 | 
						|
/// will start a new live segment. This may happen at a position that falls
 | 
						|
/// within an existing live segment. In such case that live segment needs to
 | 
						|
/// be truncated to make room for the new segment. Ultimately, the truncation
 | 
						|
/// will occur at the last use, but for now the segment can be terminated
 | 
						|
/// right at the place where the new segment will start. The segments will be
 | 
						|
/// shrunk-to-uses later.
 | 
						|
void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
 | 
						|
      SlotIndex S, LiveInterval &LI) {
 | 
						|
  // Terminate the live segment pointed to by LT within a live interval LI.
 | 
						|
  if (LT == LI.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  VNInfo *OldVN = LT->valno;
 | 
						|
  SlotIndex EX = LT->end;
 | 
						|
  LT->end = S;
 | 
						|
  // If LT does not end at a block boundary, the termination is done.
 | 
						|
  if (!EX.isBlock())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If LT ended at a block boundary, it's possible that its value number
 | 
						|
  // is picked up at the beginning other blocks. Create a new value number
 | 
						|
  // and change such blocks to use it instead.
 | 
						|
  VNInfo *NewVN = 0;
 | 
						|
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
    if (!I->start.isBlock() || I->valno != OldVN)
 | 
						|
      continue;
 | 
						|
    // Generate on-demand a new value number that is defined by the
 | 
						|
    // block beginning (i.e. -phi).
 | 
						|
    if (!NewVN)
 | 
						|
      NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
 | 
						|
    I->valno = NewVN;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Add the specified instruction to live intervals. This function is used
 | 
						|
/// to update the live intervals while the program code is being changed.
 | 
						|
/// Neither the expansion of a MUX, nor the predication are atomic, and this
 | 
						|
/// function is used to update the live intervals while these transformations
 | 
						|
/// are being done.
 | 
						|
void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
 | 
						|
  SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
 | 
						|
                                       : LIS->getInstructionIndex(MI);
 | 
						|
  DEBUG(dbgs() << "adding liveness info for instr\n  " << MX << "  " << *MI);
 | 
						|
 | 
						|
  MX = MX.getRegSlot();
 | 
						|
  bool Predicated = HII->isPredicated(MI);
 | 
						|
  MachineBasicBlock *MB = MI->getParent();
 | 
						|
 | 
						|
  // Strip all implicit uses from predicated instructions. They will be
 | 
						|
  // added again, according to the updated information.
 | 
						|
  if (Predicated)
 | 
						|
    removeImplicitUses(MI);
 | 
						|
 | 
						|
  // For each def in MI we need to insert a new live segment starting at MX
 | 
						|
  // into the interval. If there already exists a live segment in the interval
 | 
						|
  // that contains MX, we need to terminate it at MX.
 | 
						|
  SmallVector<RegisterRef,2> Defs;
 | 
						|
  for (auto &Op : MI->operands())
 | 
						|
    if (Op.isReg() && Op.isDef())
 | 
						|
      Defs.push_back(RegisterRef(Op));
 | 
						|
 | 
						|
  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
 | 
						|
    unsigned DefR = Defs[i].Reg;
 | 
						|
    LiveInterval &LID = LIS->getInterval(DefR);
 | 
						|
    DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
 | 
						|
                 << " with interval\n  " << LID << "\n");
 | 
						|
    // If MX falls inside of an existing live segment, terminate it.
 | 
						|
    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
 | 
						|
    if (LT != LID.end())
 | 
						|
      terminateSegment(LT, MX, LID);
 | 
						|
    DEBUG(dbgs() << "after terminating segment\n  " << LID << "\n");
 | 
						|
 | 
						|
    // Create a new segment starting from MX.
 | 
						|
    LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
 | 
						|
    SlotIndex EX;
 | 
						|
    VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
 | 
						|
    if (N == LID.end()) {
 | 
						|
      // There is no live segment after MX. End this segment at the end of
 | 
						|
      // the block.
 | 
						|
      EX = LIS->getMBBEndIdx(MB);
 | 
						|
    } else {
 | 
						|
      // If the next segment starts at the block boundary, end the new segment
 | 
						|
      // at the boundary of the preceding block (i.e. the previous index).
 | 
						|
      // Otherwise, end the segment at the beginning of the next segment. In
 | 
						|
      // either case it will be "shrunk-to-uses" later.
 | 
						|
      EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
 | 
						|
    }
 | 
						|
    if (Predicated) {
 | 
						|
      // Predicated instruction will have an implicit use of the defined
 | 
						|
      // register. This is necessary so that this definition will not make
 | 
						|
      // any previous definitions dead. If there are no previous live
 | 
						|
      // segments, still add the implicit use, but make it "undef".
 | 
						|
      // Because of the implicit use, the preceding definition is not
 | 
						|
      // dead. Mark is as such (if necessary).
 | 
						|
      MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
 | 
						|
      ImpUse.setSubReg(Defs[i].Sub);
 | 
						|
      bool Undef = false;
 | 
						|
      if (P == LID.end())
 | 
						|
        Undef = true;
 | 
						|
      else {
 | 
						|
        // If the previous segment extends to the end of the previous block,
 | 
						|
        // the end index may actually be the beginning of this block. If
 | 
						|
        // the previous segment ends at a block boundary, move it back by one,
 | 
						|
        // to get the proper block for it.
 | 
						|
        SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
 | 
						|
        MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
 | 
						|
        if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
 | 
						|
          Undef = true;
 | 
						|
      }
 | 
						|
      if (!Undef) {
 | 
						|
        makeUndead(DefR, P->valno->def);
 | 
						|
        // We are adding a live use, so extend the previous segment to
 | 
						|
        // include it.
 | 
						|
        P->end = MX;
 | 
						|
      } else {
 | 
						|
        ImpUse.setIsUndef(true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MI->readsRegister(DefR))
 | 
						|
        MI->addOperand(ImpUse);
 | 
						|
      if (N != LID.end())
 | 
						|
        makeDefined(DefR, N->start, true);
 | 
						|
    }
 | 
						|
    LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
 | 
						|
    LID.addSegment(NR);
 | 
						|
    DEBUG(dbgs() << "added a new segment " << NR << "\n  " << LID << "\n");
 | 
						|
    shrinkToUses(DefR, LID);
 | 
						|
    DEBUG(dbgs() << "updated imp-uses: " << *MI);
 | 
						|
    LID.verify();
 | 
						|
  }
 | 
						|
 | 
						|
  // For each use in MI:
 | 
						|
  // - If there is no live segment that contains MX for the used register,
 | 
						|
  //   extend the previous one. Ignore implicit uses.
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
 | 
						|
      continue;
 | 
						|
    unsigned UseR = Op.getReg();
 | 
						|
    LiveInterval &LIU = LIS->getInterval(UseR);
 | 
						|
    // Find the last segment P that starts before MX.
 | 
						|
    LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
 | 
						|
    if (P == LIU.end())
 | 
						|
      P = prevSegment(LIU, MX);
 | 
						|
 | 
						|
    assert(P != LIU.end() && "MI uses undefined register?");
 | 
						|
    SlotIndex EX = P->end;
 | 
						|
    // If P contains MX, there is not much to do.
 | 
						|
    if (EX > MX) {
 | 
						|
      Op.setIsKill(false);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Otherwise, extend P to "next(MX)".
 | 
						|
    P->end = MX.getNextIndex();
 | 
						|
    Op.setIsKill(true);
 | 
						|
    // Get the old "kill" instruction, and remove the kill flag.
 | 
						|
    if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
 | 
						|
      KI->clearRegisterKills(UseR, nullptr);
 | 
						|
    shrinkToUses(UseR, LIU);
 | 
						|
    LIU.verify();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Update the live interval information to reflect the removal of the given
 | 
						|
/// instruction from the program. As with "addInstrToLiveness", this function
 | 
						|
/// is called while the program code is being changed.
 | 
						|
void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
 | 
						|
  SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
 | 
						|
  DEBUG(dbgs() << "removing instr\n  " << MX << "  " << *MI);
 | 
						|
 | 
						|
  // For each def in MI:
 | 
						|
  // If MI starts a live segment, merge this segment with the previous segment.
 | 
						|
  //
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned DefR = Op.getReg();
 | 
						|
    LiveInterval &LID = LIS->getInterval(DefR);
 | 
						|
    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
 | 
						|
    assert(LT != LID.end() && "Expecting live segments");
 | 
						|
    DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
 | 
						|
                 << " with interval\n  " << LID << "\n");
 | 
						|
    if (LT->start != MX)
 | 
						|
      continue;
 | 
						|
 | 
						|
    VNInfo *MVN = LT->valno;
 | 
						|
    if (LT != LID.begin()) {
 | 
						|
      // If the current live segment is not the first, the task is easy. If
 | 
						|
      // the previous segment continues into the current block, extend it to
 | 
						|
      // the end of the current one, and merge the value numbers.
 | 
						|
      // Otherwise, remove the current segment, and make the end of it "undef".
 | 
						|
      LiveInterval::iterator P = std::prev(LT);
 | 
						|
      SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
 | 
						|
      MachineBasicBlock *MB = MI->getParent();
 | 
						|
      MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
 | 
						|
      if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
 | 
						|
        makeDefined(DefR, LT->end, false);
 | 
						|
        LID.removeSegment(*LT);
 | 
						|
      } else {
 | 
						|
        // Make the segments adjacent, so that merge-vn can also merge the
 | 
						|
        // segments.
 | 
						|
        P->end = LT->start;
 | 
						|
        makeUndead(DefR, P->valno->def);
 | 
						|
        LID.MergeValueNumberInto(MVN, P->valno);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      LiveInterval::iterator N = std::next(LT);
 | 
						|
      LiveInterval::iterator RmB = LT, RmE = N;
 | 
						|
      while (N != LID.end()) {
 | 
						|
        // Iterate until the first register-based definition is found
 | 
						|
        // (i.e. skip all block-boundary entries).
 | 
						|
        LiveInterval::iterator Next = std::next(N);
 | 
						|
        if (N->start.isRegister()) {
 | 
						|
          makeDefined(DefR, N->start, false);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (N->end.isRegister()) {
 | 
						|
          makeDefined(DefR, N->end, false);
 | 
						|
          RmE = Next;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        RmE = Next;
 | 
						|
        N = Next;
 | 
						|
      }
 | 
						|
      // Erase the segments in one shot to avoid invalidating iterators.
 | 
						|
      LID.segments.erase(RmB, RmE);
 | 
						|
    }
 | 
						|
 | 
						|
    bool VNUsed = false;
 | 
						|
    for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
 | 
						|
      if (I->valno != MVN)
 | 
						|
        continue;
 | 
						|
      VNUsed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (!VNUsed)
 | 
						|
      MVN->markUnused();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "new interval: ");
 | 
						|
    if (!LID.empty()) {
 | 
						|
      DEBUG(dbgs() << LID << "\n");
 | 
						|
      LID.verify();
 | 
						|
    } else {
 | 
						|
      DEBUG(dbgs() << "<empty>\n");
 | 
						|
      LIS->removeInterval(DefR);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For uses there is nothing to do. The intervals will be updated via
 | 
						|
  // shrinkToUses.
 | 
						|
  SmallVector<unsigned,4> Uses;
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
      continue;
 | 
						|
    Uses.push_back(R);
 | 
						|
  }
 | 
						|
  LIS->RemoveMachineInstrFromMaps(MI);
 | 
						|
  MI->eraseFromParent();
 | 
						|
  for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
 | 
						|
    LiveInterval &LI = LIS->getInterval(Uses[i]);
 | 
						|
    shrinkToUses(Uses[i], LI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Get the opcode for a conditional transfer of the value in SO (source
 | 
						|
/// operand). The condition (true/false) is given in Cond.
 | 
						|
unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
 | 
						|
      bool Cond) {
 | 
						|
  using namespace Hexagon;
 | 
						|
  if (SO.isReg()) {
 | 
						|
    unsigned PhysR;
 | 
						|
    RegisterRef RS = SO;
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
 | 
						|
      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
 | 
						|
      assert(VC->begin() != VC->end() && "Empty register class");
 | 
						|
      PhysR = *VC->begin();
 | 
						|
    } else {
 | 
						|
      assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
 | 
						|
      PhysR = RS.Reg;
 | 
						|
    }
 | 
						|
    unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
 | 
						|
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
 | 
						|
    switch (RC->getSize()) {
 | 
						|
      case 4:
 | 
						|
        return Cond ? A2_tfrt : A2_tfrf;
 | 
						|
      case 8:
 | 
						|
        return Cond ? A2_tfrpt : A2_tfrpf;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Invalid register operand");
 | 
						|
  }
 | 
						|
  if (SO.isImm() || SO.isFPImm())
 | 
						|
    return Cond ? C2_cmoveit : C2_cmoveif;
 | 
						|
  llvm_unreachable("Unexpected source operand");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Generate a conditional transfer, copying the value SrcOp to the
 | 
						|
/// destination register DstR:DstSR, and using the predicate register from
 | 
						|
/// PredOp. The Cond argument specifies whether the predicate is to be
 | 
						|
/// if(PredOp), or if(!PredOp).
 | 
						|
MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
 | 
						|
      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
 | 
						|
  MachineInstr *MI = SrcOp.getParent();
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  MachineBasicBlock::iterator At = MI;
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
 | 
						|
  // Don't avoid identity copies here (i.e. if the source and the destination
 | 
						|
  // are the same registers). It is actually better to generate them here,
 | 
						|
  // since this would cause the copy to potentially be predicated in the next
 | 
						|
  // step. The predication will remove such a copy if it is unable to
 | 
						|
  /// predicate.
 | 
						|
 | 
						|
  unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
 | 
						|
  MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
 | 
						|
        .addReg(DstR, RegState::Define, DstSR)
 | 
						|
        .addOperand(PredOp)
 | 
						|
        .addOperand(SrcOp);
 | 
						|
  // We don't want any kills yet.
 | 
						|
  TfrI->clearKillInfo();
 | 
						|
  DEBUG(dbgs() << "created an initial copy: " << *TfrI);
 | 
						|
  return TfrI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
 | 
						|
/// performs all necessary changes to complete the replacement.
 | 
						|
bool HexagonExpandCondsets::split(MachineInstr *MI) {
 | 
						|
  if (TfrLimitActive) {
 | 
						|
    if (TfrCounter >= TfrLimit)
 | 
						|
      return false;
 | 
						|
    TfrCounter++;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
 | 
						|
               << ": " << *MI);
 | 
						|
  MachineOperand &MD = MI->getOperand(0); // Definition
 | 
						|
  MachineOperand &MP = MI->getOperand(1); // Predicate register
 | 
						|
  assert(MD.isDef());
 | 
						|
  unsigned DR = MD.getReg(), DSR = MD.getSubReg();
 | 
						|
 | 
						|
  // First, create the two invididual conditional transfers, and add each
 | 
						|
  // of them to the live intervals information. Do that first and then remove
 | 
						|
  // the old instruction from live intervals.
 | 
						|
  if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
 | 
						|
    addInstrToLiveness(TfrT);
 | 
						|
  if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
 | 
						|
    addInstrToLiveness(TfrF);
 | 
						|
  removeInstrFromLiveness(MI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Split all MUX instructions in the given block into pairs of contitional
 | 
						|
/// transfers.
 | 
						|
bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
 | 
						|
  bool Changed = false;
 | 
						|
  MachineBasicBlock::iterator I, E, NextI;
 | 
						|
  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    if (isCondset(I))
 | 
						|
      Changed |= split(I);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
 | 
						|
  if (HII->isPredicated(MI) || !HII->isPredicable(MI))
 | 
						|
    return false;
 | 
						|
  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
 | 
						|
    return false;
 | 
						|
  // Reject instructions with multiple defs (e.g. post-increment loads).
 | 
						|
  bool HasDef = false;
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isDef())
 | 
						|
      continue;
 | 
						|
    if (HasDef)
 | 
						|
      return false;
 | 
						|
    HasDef = true;
 | 
						|
  }
 | 
						|
  for (auto &Mo : MI->memoperands())
 | 
						|
    if (Mo->isVolatile())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Find the reaching definition for a predicated use of RD. The RD is used
 | 
						|
/// under the conditions given by PredR and Cond, and this function will ignore
 | 
						|
/// definitions that set RD under the opposite conditions.
 | 
						|
MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
 | 
						|
      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
 | 
						|
  MachineBasicBlock &B = *UseIt->getParent();
 | 
						|
  MachineBasicBlock::iterator I = UseIt, S = B.begin();
 | 
						|
  if (I == S)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  bool PredValid = true;
 | 
						|
  do {
 | 
						|
    --I;
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    // Check if this instruction can be ignored, i.e. if it is predicated
 | 
						|
    // on the complementary condition.
 | 
						|
    if (PredValid && HII->isPredicated(MI)) {
 | 
						|
      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the defs. If the PredR is defined, invalidate it. If RD is
 | 
						|
    // defined, return the instruction or 0, depending on the circumstances.
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef())
 | 
						|
        continue;
 | 
						|
      RegisterRef RR = Op;
 | 
						|
      if (RR.Reg == PredR) {
 | 
						|
        PredValid = false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (RR.Reg != RD.Reg)
 | 
						|
        continue;
 | 
						|
      // If the "Reg" part agrees, there is still the subregister to check.
 | 
						|
      // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
 | 
						|
      // not vreg1 (w/o subregisters).
 | 
						|
      if (RR.Sub == RD.Sub)
 | 
						|
        return MI;
 | 
						|
      if (RR.Sub == 0 || RD.Sub == 0)
 | 
						|
        return 0;
 | 
						|
      // We have different subregisters, so we can continue looking.
 | 
						|
    }
 | 
						|
  } while (I != S);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Check if the instruction MI can be safely moved over a set of instructions
 | 
						|
/// whose side-effects (in terms of register defs and uses) are expressed in
 | 
						|
/// the maps Defs and Uses. These maps reflect the conditional defs and uses
 | 
						|
/// that depend on the same predicate register to allow moving instructions
 | 
						|
/// over instructions predicated on the opposite condition.
 | 
						|
bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
 | 
						|
      ReferenceMap &Uses) {
 | 
						|
  // In order to be able to safely move MI over instructions that define
 | 
						|
  // "Defs" and use "Uses", no def operand from MI can be defined or used
 | 
						|
  // and no use operand can be defined.
 | 
						|
  for (auto &Op : MI->operands()) {
 | 
						|
    if (!Op.isReg())
 | 
						|
      continue;
 | 
						|
    RegisterRef RR = Op;
 | 
						|
    // For physical register we would need to check register aliases, etc.
 | 
						|
    // and we don't want to bother with that. It would be of little value
 | 
						|
    // before the actual register rewriting (from virtual to physical).
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | 
						|
      return false;
 | 
						|
    // No redefs for any operand.
 | 
						|
    if (isRefInMap(RR, Defs, Exec_Then))
 | 
						|
      return false;
 | 
						|
    // For defs, there cannot be uses.
 | 
						|
    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Check if the instruction accessing memory (TheI) can be moved to the
 | 
						|
/// location ToI.
 | 
						|
bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
 | 
						|
      bool IsDown) {
 | 
						|
  bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
 | 
						|
  if (!IsLoad && !IsStore)
 | 
						|
    return true;
 | 
						|
  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
 | 
						|
    return true;
 | 
						|
  if (TheI->hasUnmodeledSideEffects())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
 | 
						|
  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
 | 
						|
  bool Ordered = TheI->hasOrderedMemoryRef();
 | 
						|
 | 
						|
  // Search for aliased memory reference in (StartI, EndI).
 | 
						|
  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    if (MI->hasUnmodeledSideEffects())
 | 
						|
      return false;
 | 
						|
    bool L = MI->mayLoad(), S = MI->mayStore();
 | 
						|
    if (!L && !S)
 | 
						|
      continue;
 | 
						|
    if (Ordered && MI->hasOrderedMemoryRef())
 | 
						|
      return false;
 | 
						|
 | 
						|
    bool Conflict = (L && IsStore) || S;
 | 
						|
    if (Conflict)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Generate a predicated version of MI (where the condition is given via
 | 
						|
/// PredR and Cond) at the point indicated by Where.
 | 
						|
void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
 | 
						|
      MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
 | 
						|
  // The problem with updating live intervals is that we can move one def
 | 
						|
  // past another def. In particular, this can happen when moving an A2_tfrt
 | 
						|
  // over an A2_tfrf defining the same register. From the point of view of
 | 
						|
  // live intervals, these two instructions are two separate definitions,
 | 
						|
  // and each one starts another live segment. LiveIntervals's "handleMove"
 | 
						|
  // does not allow such moves, so we need to handle it ourselves. To avoid
 | 
						|
  // invalidating liveness data while we are using it, the move will be
 | 
						|
  // implemented in 4 steps: (1) add a clone of the instruction MI at the
 | 
						|
  // target location, (2) update liveness, (3) delete the old instruction,
 | 
						|
  // and (4) update liveness again.
 | 
						|
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
 | 
						|
  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
 | 
						|
  unsigned Ox = 0, NP = MI->getNumOperands();
 | 
						|
  // Skip all defs from MI first.
 | 
						|
  while (Ox < NP) {
 | 
						|
    MachineOperand &MO = MI->getOperand(Ox);
 | 
						|
    if (!MO.isReg() || !MO.isDef())
 | 
						|
      break;
 | 
						|
    Ox++;
 | 
						|
  }
 | 
						|
  // Add the new def, then the predicate register, then the rest of the
 | 
						|
  // operands.
 | 
						|
  MB.addReg(RD.Reg, RegState::Define, RD.Sub);
 | 
						|
  MB.addReg(PredR);
 | 
						|
  while (Ox < NP) {
 | 
						|
    MachineOperand &MO = MI->getOperand(Ox);
 | 
						|
    if (!MO.isReg() || !MO.isImplicit())
 | 
						|
      MB.addOperand(MO);
 | 
						|
    Ox++;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunction &MF = *B.getParent();
 | 
						|
  MachineInstr::mmo_iterator I = MI->memoperands_begin();
 | 
						|
  unsigned NR = std::distance(I, MI->memoperands_end());
 | 
						|
  MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
 | 
						|
  for (unsigned i = 0; i < NR; ++i)
 | 
						|
    MemRefs[i] = *I++;
 | 
						|
  MB.setMemRefs(MemRefs, MemRefs+NR);
 | 
						|
 | 
						|
  MachineInstr *NewI = MB;
 | 
						|
  NewI->clearKillInfo();
 | 
						|
  addInstrToLiveness(NewI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// In the range [First, Last], rename all references to the "old" register RO
 | 
						|
/// to the "new" register RN, but only in instructions predicated on the given
 | 
						|
/// condition.
 | 
						|
void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
 | 
						|
      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
 | 
						|
      MachineBasicBlock::iterator Last) {
 | 
						|
  MachineBasicBlock::iterator End = std::next(Last);
 | 
						|
  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    // Do not touch instructions that are not predicated, or are predicated
 | 
						|
    // on the opposite condition.
 | 
						|
    if (!HII->isPredicated(MI))
 | 
						|
      continue;
 | 
						|
    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || RO != RegisterRef(Op))
 | 
						|
        continue;
 | 
						|
      Op.setReg(RN.Reg);
 | 
						|
      Op.setSubReg(RN.Sub);
 | 
						|
      // In practice, this isn't supposed to see any defs.
 | 
						|
      assert(!Op.isDef() && "Not expecting a def");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// For a given conditional copy, predicate the definition of the source of
 | 
						|
/// the copy under the given condition (using the same predicate register as
 | 
						|
/// the copy).
 | 
						|
bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
 | 
						|
  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
 | 
						|
  unsigned Opc = TfrI->getOpcode();
 | 
						|
  (void)Opc;
 | 
						|
  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
 | 
						|
  DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
 | 
						|
               << ": " << *TfrI);
 | 
						|
 | 
						|
  MachineOperand &MD = TfrI->getOperand(0);
 | 
						|
  MachineOperand &MP = TfrI->getOperand(1);
 | 
						|
  MachineOperand &MS = TfrI->getOperand(2);
 | 
						|
  // The source operand should be a <kill>. This is not strictly necessary,
 | 
						|
  // but it makes things a lot simpler. Otherwise, we would need to rename
 | 
						|
  // some registers, which would complicate the transformation considerably.
 | 
						|
  if (!MS.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  RegisterRef RT(MS);
 | 
						|
  unsigned PredR = MP.getReg();
 | 
						|
  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
 | 
						|
  if (!DefI || !isPredicable(DefI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Source def: " << *DefI);
 | 
						|
 | 
						|
  // Collect the information about registers defined and used between the
 | 
						|
  // DefI and the TfrI.
 | 
						|
  // Map: reg -> bitmask of subregs
 | 
						|
  ReferenceMap Uses, Defs;
 | 
						|
  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
 | 
						|
 | 
						|
  // Check if the predicate register is valid between DefI and TfrI.
 | 
						|
  // If it is, we can then ignore instructions predicated on the negated
 | 
						|
  // conditions when collecting def and use information.
 | 
						|
  bool PredValid = true;
 | 
						|
  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
 | 
						|
    if (!I->modifiesRegister(PredR, 0))
 | 
						|
      continue;
 | 
						|
    PredValid = false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    // If this instruction is predicated on the same register, it could
 | 
						|
    // potentially be ignored.
 | 
						|
    // By default assume that the instruction executes on the same condition
 | 
						|
    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
 | 
						|
    unsigned Exec = Exec_Then | Exec_Else;
 | 
						|
    if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
 | 
						|
      Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
 | 
						|
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg())
 | 
						|
        continue;
 | 
						|
      // We don't want to deal with physical registers. The reason is that
 | 
						|
      // they can be aliased with other physical registers. Aliased virtual
 | 
						|
      // registers must share the same register number, and can only differ
 | 
						|
      // in the subregisters, which we are keeping track of. Physical
 | 
						|
      // registers ters no longer have subregisters---their super- and
 | 
						|
      // subregisters are other physical registers, and we are not checking
 | 
						|
      // that.
 | 
						|
      RegisterRef RR = Op;
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | 
						|
        return false;
 | 
						|
 | 
						|
      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
 | 
						|
      addRefToMap(RR, Map, Exec);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The situation:
 | 
						|
  //   RT = DefI
 | 
						|
  //   ...
 | 
						|
  //   RD = TfrI ..., RT
 | 
						|
 | 
						|
  // If the register-in-the-middle (RT) is used or redefined between
 | 
						|
  // DefI and TfrI, we may not be able proceed with this transformation.
 | 
						|
  // We can ignore a def that will not execute together with TfrI, and a
 | 
						|
  // use that will. If there is such a use (that does execute together with
 | 
						|
  // TfrI), we will not be able to move DefI down. If there is a use that
 | 
						|
  // executed if TfrI's condition is false, then RT must be available
 | 
						|
  // unconditionally (cannot be predicated).
 | 
						|
  // Essentially, we need to be able to rename RT to RD in this segment.
 | 
						|
  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
 | 
						|
    return false;
 | 
						|
  RegisterRef RD = MD;
 | 
						|
  // If the predicate register is defined between DefI and TfrI, the only
 | 
						|
  // potential thing to do would be to move the DefI down to TfrI, and then
 | 
						|
  // predicate. The reaching def (DefI) must be movable down to the location
 | 
						|
  // of the TfrI.
 | 
						|
  // If the target register of the TfrI (RD) is not used or defined between
 | 
						|
  // DefI and TfrI, consider moving TfrI up to DefI.
 | 
						|
  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
 | 
						|
  bool CanDown = canMoveOver(DefI, Defs, Uses);
 | 
						|
  // The TfrI does not access memory, but DefI could. Check if it's safe
 | 
						|
  // to move DefI down to TfrI.
 | 
						|
  if (DefI->mayLoad() || DefI->mayStore())
 | 
						|
    if (!canMoveMemTo(DefI, TfrI, true))
 | 
						|
      CanDown = false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
 | 
						|
               << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
 | 
						|
  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
 | 
						|
  if (CanUp)
 | 
						|
    predicateAt(RD, DefI, PastDefIt, PredR, Cond);
 | 
						|
  else if (CanDown)
 | 
						|
    predicateAt(RD, DefI, TfrIt, PredR, Cond);
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (RT != RD)
 | 
						|
    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
 | 
						|
 | 
						|
  // Delete the user of RT first (it should work either way, but this order
 | 
						|
  // of deleting is more natural).
 | 
						|
  removeInstrFromLiveness(TfrI);
 | 
						|
  removeInstrFromLiveness(DefI);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Predicate all cases of conditional copies in the specified block.
 | 
						|
bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
 | 
						|
  bool Changed = false;
 | 
						|
  MachineBasicBlock::iterator I, E, NextI;
 | 
						|
  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    unsigned Opc = I->getOpcode();
 | 
						|
    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
 | 
						|
      bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
 | 
						|
      if (!Done) {
 | 
						|
        // If we didn't predicate I, we may need to remove it in case it is
 | 
						|
        // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
 | 
						|
        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
 | 
						|
          removeInstrFromLiveness(I);
 | 
						|
      }
 | 
						|
      Changed |= Done;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
 | 
						|
  for (unsigned i = MI->getNumOperands(); i > 0; --i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i-1);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.isImplicit())
 | 
						|
      MI->RemoveOperand(i-1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
 | 
						|
  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    if (HII->isPredicated(MI))
 | 
						|
      removeImplicitUses(MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
 | 
						|
  // Implicit uses that are "undef" are only meaningful (outside of the
 | 
						|
  // internals of this pass) when the instruction defines a subregister,
 | 
						|
  // and the implicit-undef use applies to the defined register. In such
 | 
						|
  // cases, the proper way to record the information in the IR is to mark
 | 
						|
  // the definition as "undef", which will be interpreted as "read-undef".
 | 
						|
  typedef SmallSet<unsigned,2> RegisterSet;
 | 
						|
  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    RegisterSet Undefs;
 | 
						|
    for (unsigned i = MI->getNumOperands(); i > 0; --i) {
 | 
						|
      MachineOperand &MO = MI->getOperand(i-1);
 | 
						|
      if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
 | 
						|
        MI->RemoveOperand(i-1);
 | 
						|
        Undefs.insert(MO.getReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
 | 
						|
        continue;
 | 
						|
      if (Undefs.count(Op.getReg()))
 | 
						|
        Op.setIsUndef(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | 
						|
    return false;
 | 
						|
  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
 | 
						|
  if (RC == &Hexagon::IntRegsRegClass) {
 | 
						|
    BW = 32;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (RC == &Hexagon::DoubleRegsRegClass) {
 | 
						|
    BW = (RR.Sub != 0) ? 32 : 64;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
 | 
						|
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
 | 
						|
    LiveRange::Segment &LR = *I;
 | 
						|
    // Range must start at a register...
 | 
						|
    if (!LR.start.isRegister())
 | 
						|
      return false;
 | 
						|
    // ...and end in a register or in a dead slot.
 | 
						|
    if (!LR.end.isRegister() && !LR.end.isDead())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
 | 
						|
  if (CoaLimitActive) {
 | 
						|
    if (CoaCounter >= CoaLimit)
 | 
						|
      return false;
 | 
						|
    CoaCounter++;
 | 
						|
  }
 | 
						|
  unsigned BW1, BW2;
 | 
						|
  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
 | 
						|
    return false;
 | 
						|
  if (MRI->isLiveIn(R1.Reg))
 | 
						|
    return false;
 | 
						|
  if (MRI->isLiveIn(R2.Reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LiveInterval &L1 = LIS->getInterval(R1.Reg);
 | 
						|
  LiveInterval &L2 = LIS->getInterval(R2.Reg);
 | 
						|
  bool Overlap = L1.overlaps(L2);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "compatible registers: ("
 | 
						|
               << (Overlap ? "overlap" : "disjoint") << ")\n  "
 | 
						|
               << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
 | 
						|
               << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
 | 
						|
  if (R1.Sub || R2.Sub)
 | 
						|
    return false;
 | 
						|
  if (Overlap)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Coalescing could have a negative impact on scheduling, so try to limit
 | 
						|
  // to some reasonable extent. Only consider coalescing segments, when one
 | 
						|
  // of them does not cross basic block boundaries.
 | 
						|
  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MRI->replaceRegWith(R2.Reg, R1.Reg);
 | 
						|
 | 
						|
  // Move all live segments from L2 to L1.
 | 
						|
  typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
 | 
						|
  ValueInfoMap VM;
 | 
						|
  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
 | 
						|
    VNInfo *NewVN, *OldVN = I->valno;
 | 
						|
    ValueInfoMap::iterator F = VM.find(OldVN);
 | 
						|
    if (F == VM.end()) {
 | 
						|
      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
 | 
						|
      VM.insert(std::make_pair(OldVN, NewVN));
 | 
						|
    } else {
 | 
						|
      NewVN = F->second;
 | 
						|
    }
 | 
						|
    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
 | 
						|
  }
 | 
						|
  while (L2.begin() != L2.end())
 | 
						|
    L2.removeSegment(*L2.begin());
 | 
						|
 | 
						|
  updateKillFlags(R1.Reg, L1);
 | 
						|
  DEBUG(dbgs() << "coalesced: " << L1 << "\n");
 | 
						|
  L1.verify();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Attempt to coalesce one of the source registers to a MUX intruction with
 | 
						|
/// the destination register. This could lead to having only one predicated
 | 
						|
/// instruction in the end instead of two.
 | 
						|
bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
 | 
						|
  SmallVector<MachineInstr*,16> Condsets;
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock &B = *I;
 | 
						|
    for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
 | 
						|
      MachineInstr *MI = &*J;
 | 
						|
      if (!isCondset(MI))
 | 
						|
        continue;
 | 
						|
      MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
 | 
						|
      if (!S1.isReg() && !S2.isReg())
 | 
						|
        continue;
 | 
						|
      Condsets.push_back(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
 | 
						|
    MachineInstr *CI = Condsets[i];
 | 
						|
    RegisterRef RD = CI->getOperand(0);
 | 
						|
    RegisterRef RP = CI->getOperand(1);
 | 
						|
    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
 | 
						|
    bool Done = false;
 | 
						|
    // Consider this case:
 | 
						|
    //   vreg1 = instr1 ...
 | 
						|
    //   vreg2 = instr2 ...
 | 
						|
    //   vreg0 = C2_mux ..., vreg1, vreg2
 | 
						|
    // If vreg0 was coalesced with vreg1, we could end up with the following
 | 
						|
    // code:
 | 
						|
    //   vreg0 = instr1 ...
 | 
						|
    //   vreg2 = instr2 ...
 | 
						|
    //   vreg0 = A2_tfrf ..., vreg2
 | 
						|
    // which will later become:
 | 
						|
    //   vreg0 = instr1 ...
 | 
						|
    //   vreg0 = instr2_cNotPt ...
 | 
						|
    // i.e. there will be an unconditional definition (instr1) of vreg0
 | 
						|
    // followed by a conditional one. The output dependency was there before
 | 
						|
    // and it unavoidable, but if instr1 is predicable, we will no longer be
 | 
						|
    // able to predicate it here.
 | 
						|
    // To avoid this scenario, don't coalesce the destination register with
 | 
						|
    // a source register that is defined by a predicable instruction.
 | 
						|
    if (S1.isReg()) {
 | 
						|
      RegisterRef RS = S1;
 | 
						|
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
 | 
						|
      if (!RDef || !HII->isPredicable(RDef))
 | 
						|
        Done = coalesceRegisters(RD, RegisterRef(S1));
 | 
						|
    }
 | 
						|
    if (!Done && S2.isReg()) {
 | 
						|
      RegisterRef RS = S2;
 | 
						|
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
 | 
						|
      if (!RDef || !HII->isPredicable(RDef))
 | 
						|
        Done = coalesceRegisters(RD, RegisterRef(S2));
 | 
						|
    }
 | 
						|
    Changed |= Done;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  LIS = &getAnalysis<LiveIntervals>();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Try to coalesce the target of a mux with one of its sources.
 | 
						|
  // This could eliminate a register copy in some circumstances.
 | 
						|
  Changed |= coalesceSegments(MF);
 | 
						|
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
 | 
						|
    // First, simply split all muxes into a pair of conditional transfers
 | 
						|
    // and update the live intervals to reflect the new arrangement.
 | 
						|
    // This is done mainly to make the live interval update simpler, than it
 | 
						|
    // would be while trying to predicate instructions at the same time.
 | 
						|
    Changed |= splitInBlock(*I);
 | 
						|
    // Traverse all blocks and collapse predicable instructions feeding
 | 
						|
    // conditional transfers into predicated instructions.
 | 
						|
    // Walk over all the instructions again, so we may catch pre-existing
 | 
						|
    // cases that were not created in the previous step.
 | 
						|
    Changed |= predicateInBlock(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | 
						|
    postprocessUndefImplicitUses(*I);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static void initializePassOnce(PassRegistry &Registry) {
 | 
						|
  const char *Name = "Hexagon Expand Condsets";
 | 
						|
  PassInfo *PI = new PassInfo(Name, "expand-condsets",
 | 
						|
        &HexagonExpandCondsets::ID, 0, false, false);
 | 
						|
  Registry.registerPass(*PI, true);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
 | 
						|
  CALL_ONCE_INITIALIZATION(initializePassOnce)
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
FunctionPass *llvm::createHexagonExpandCondsets() {
 | 
						|
  return new HexagonExpandCondsets();
 | 
						|
}
 |