mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@49968 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2160 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			2160 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | 
						|
                      "http://www.w3.org/TR/html4/strict.dtd">
 | 
						|
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
  <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
 | 
						|
         construction</title>
 | 
						|
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | 
						|
  <meta name="author" content="Chris Lattner">
 | 
						|
  <link rel="stylesheet" href="../llvm.css" type="text/css">
 | 
						|
</head>
 | 
						|
 | 
						|
<body>
 | 
						|
 | 
						|
<div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
 | 
						|
 | 
						|
<ul>
 | 
						|
<li><a href="index.html">Up to Tutorial Index</a></li>
 | 
						|
<li>Chapter 7
 | 
						|
  <ol>
 | 
						|
    <li><a href="#intro">Chapter 7 Introduction</a></li>
 | 
						|
    <li><a href="#why">Why is this a hard problem?</a></li>
 | 
						|
    <li><a href="#memory">Memory in LLVM</a></li>
 | 
						|
    <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
 | 
						|
    <li><a href="#adjustments">Adjusting Existing Variables for
 | 
						|
     Mutation</a></li>
 | 
						|
    <li><a href="#assignment">New Assignment Operator</a></li>
 | 
						|
    <li><a href="#localvars">User-defined Local Variables</a></li>
 | 
						|
    <li><a href="#code">Full Code Listing</a></li>
 | 
						|
  </ol>
 | 
						|
</li>
 | 
						|
<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
 | 
						|
 tidbits</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<div class="doc_author">
 | 
						|
  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
 | 
						|
with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very
 | 
						|
respectable, albeit simple, <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Functional_programming">functional
 | 
						|
programming language</a>.  In our journey, we learned some parsing techniques,
 | 
						|
how to build and represent an AST, how to build LLVM IR, and how to optimize
 | 
						|
the resultant code as well as JIT compile it.</p>
 | 
						|
 | 
						|
<p>While Kaleidoscope is interesting as a functional language, the fact that it
 | 
						|
is functional makes it "too easy" to generate LLVM IR for it.  In particular, a 
 | 
						|
functional language makes it very easy to build LLVM IR directly in <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
 | 
						|
Since LLVM requires that the input code be in SSA form, this is a very nice
 | 
						|
property and it is often unclear to newcomers how to generate code for an
 | 
						|
imperative language with mutable variables.</p>
 | 
						|
 | 
						|
<p>The short (and happy) summary of this chapter is that there is no need for
 | 
						|
your front-end to build SSA form: LLVM provides highly tuned and well tested
 | 
						|
support for this, though the way it works is a bit unexpected for some.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
To understand why mutable variables cause complexities in SSA construction, 
 | 
						|
consider this extremely simple C example:
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
int G, H;
 | 
						|
int test(_Bool Condition) {
 | 
						|
  int X;
 | 
						|
  if (Condition)
 | 
						|
    X = G;
 | 
						|
  else
 | 
						|
    X = H;
 | 
						|
  return X;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>In this case, we have the variable "X", whose value depends on the path 
 | 
						|
executed in the program.  Because there are two different possible values for X
 | 
						|
before the return instruction, a PHI node is inserted to merge the two values.
 | 
						|
The LLVM IR that we want for this example looks like this:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
@G = weak global i32 0   ; type of @G is i32*
 | 
						|
@H = weak global i32 0   ; type of @H is i32*
 | 
						|
 | 
						|
define i32 @test(i1 %Condition) {
 | 
						|
entry:
 | 
						|
	br i1 %Condition, label %cond_true, label %cond_false
 | 
						|
 | 
						|
cond_true:
 | 
						|
	%X.0 = load i32* @G
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_false:
 | 
						|
	%X.1 = load i32* @H
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_next:
 | 
						|
	%X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | 
						|
	ret i32 %X.2
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>In this example, the loads from the G and H global variables are explicit in
 | 
						|
the LLVM IR, and they live in the then/else branches of the if statement
 | 
						|
(cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node
 | 
						|
in the cond_next block selects the right value to use based on where control 
 | 
						|
flow is coming from: if control flow comes from the cond_false block, X.2 gets
 | 
						|
the value of X.1.  Alternatively, if control flow comes from cond_true, it gets
 | 
						|
the value of X.0.  The intent of this chapter is not to explain the details of
 | 
						|
SSA form.  For more information, see one of the many <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online 
 | 
						|
references</a>.</p>
 | 
						|
 | 
						|
<p>The question for this article is "who places the phi nodes when lowering 
 | 
						|
assignments to mutable variables?".  The issue here is that LLVM 
 | 
						|
<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
 | 
						|
However, SSA construction requires non-trivial algorithms and data structures,
 | 
						|
so it is inconvenient and wasteful for every front-end to have to reproduce this
 | 
						|
logic.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="memory">Memory in LLVM</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The 'trick' here is that while LLVM does require all register values to be
 | 
						|
in SSA form, it does not require (or permit) memory objects to be in SSA form.
 | 
						|
In the example above, note that the loads from G and H are direct accesses to
 | 
						|
G and H: they are not renamed or versioned.  This differs from some other
 | 
						|
compiler systems, which do try to version memory objects.  In LLVM, instead of
 | 
						|
encoding dataflow analysis of memory into the LLVM IR, it is handled with <a 
 | 
						|
href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
 | 
						|
demand.</p>
 | 
						|
 | 
						|
<p>
 | 
						|
With this in mind, the high-level idea is that we want to make a stack variable
 | 
						|
(which lives in memory, because it is on the stack) for each mutable object in
 | 
						|
a function.  To take advantage of this trick, we need to talk about how LLVM
 | 
						|
represents stack variables.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>In LLVM, all memory accesses are explicit with load/store instructions, and
 | 
						|
it is carefully designed not to have (or need) an "address-of" operator.  Notice
 | 
						|
how the type of the @G/@H global variables is actually "i32*" even though the 
 | 
						|
variable is defined as "i32".  What this means is that @G defines <em>space</em>
 | 
						|
for an i32 in the global data area, but its <em>name</em> actually refers to the
 | 
						|
address for that space.  Stack variables work the same way, except that instead of 
 | 
						|
being declared with global variable definitions, they are declared with the 
 | 
						|
<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
define i32 @example() {
 | 
						|
entry:
 | 
						|
	%X = alloca i32           ; type of %X is i32*.
 | 
						|
	...
 | 
						|
	%tmp = load i32* %X       ; load the stack value %X from the stack.
 | 
						|
	%tmp2 = add i32 %tmp, 1   ; increment it
 | 
						|
	store i32 %tmp2, i32* %X  ; store it back
 | 
						|
	...
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code shows an example of how you can declare and manipulate a stack
 | 
						|
variable in the LLVM IR.  Stack memory allocated with the alloca instruction is
 | 
						|
fully general: you can pass the address of the stack slot to functions, you can
 | 
						|
store it in other variables, etc.  In our example above, we could rewrite the
 | 
						|
example to use the alloca technique to avoid using a PHI node:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
@G = weak global i32 0   ; type of @G is i32*
 | 
						|
@H = weak global i32 0   ; type of @H is i32*
 | 
						|
 | 
						|
define i32 @test(i1 %Condition) {
 | 
						|
entry:
 | 
						|
	%X = alloca i32           ; type of %X is i32*.
 | 
						|
	br i1 %Condition, label %cond_true, label %cond_false
 | 
						|
 | 
						|
cond_true:
 | 
						|
	%X.0 = load i32* @G
 | 
						|
        store i32 %X.0, i32* %X   ; Update X
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_false:
 | 
						|
	%X.1 = load i32* @H
 | 
						|
        store i32 %X.1, i32* %X   ; Update X
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_next:
 | 
						|
	%X.2 = load i32* %X       ; Read X
 | 
						|
	ret i32 %X.2
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>With this, we have discovered a way to handle arbitrary mutable variables
 | 
						|
without the need to create Phi nodes at all:</p>
 | 
						|
 | 
						|
<ol>
 | 
						|
<li>Each mutable variable becomes a stack allocation.</li>
 | 
						|
<li>Each read of the variable becomes a load from the stack.</li>
 | 
						|
<li>Each update of the variable becomes a store to the stack.</li>
 | 
						|
<li>Taking the address of a variable just uses the stack address directly.</li>
 | 
						|
</ol>
 | 
						|
 | 
						|
<p>While this solution has solved our immediate problem, it introduced another
 | 
						|
one: we have now apparently introduced a lot of stack traffic for very simple
 | 
						|
and common operations, a major performance problem.  Fortunately for us, the
 | 
						|
LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
 | 
						|
this case, promoting allocas like this into SSA registers, inserting Phi nodes
 | 
						|
as appropriate.  If you run this example through the pass, for example, you'll
 | 
						|
get:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
$ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b>
 | 
						|
@G = weak global i32 0
 | 
						|
@H = weak global i32 0
 | 
						|
 | 
						|
define i32 @test(i1 %Condition) {
 | 
						|
entry:
 | 
						|
	br i1 %Condition, label %cond_true, label %cond_false
 | 
						|
 | 
						|
cond_true:
 | 
						|
	%X.0 = load i32* @G
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_false:
 | 
						|
	%X.1 = load i32* @H
 | 
						|
	br label %cond_next
 | 
						|
 | 
						|
cond_next:
 | 
						|
	%X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | 
						|
	ret i32 %X.01
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The mem2reg pass implements the standard "iterated dominance frontier"
 | 
						|
algorithm for constructing SSA form and has a number of optimizations that speed
 | 
						|
up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing 
 | 
						|
with mutable variables, and we highly recommend that you depend on it.  Note that
 | 
						|
mem2reg only works on variables in certain circumstances:</p>
 | 
						|
 | 
						|
<ol>
 | 
						|
<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
 | 
						|
promotes them.  It does not apply to global variables or heap allocations.</li>
 | 
						|
 | 
						|
<li>mem2reg only looks for alloca instructions in the entry block of the
 | 
						|
function.  Being in the entry block guarantees that the alloca is only executed
 | 
						|
once, which makes analysis simpler.</li>
 | 
						|
 | 
						|
<li>mem2reg only promotes allocas whose uses are direct loads and stores.  If
 | 
						|
the address of the stack object is passed to a function, or if any funny pointer
 | 
						|
arithmetic is involved, the alloca will not be promoted.</li>
 | 
						|
 | 
						|
<li>mem2reg only works on allocas of <a 
 | 
						|
href="../LangRef.html#t_classifications">first class</a> 
 | 
						|
values (such as pointers, scalars and vectors), and only if the array size
 | 
						|
of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of
 | 
						|
promoting structs or arrays to registers.  Note that the "scalarrepl" pass is
 | 
						|
more powerful and can promote structs, "unions", and arrays in many cases.</li>
 | 
						|
 | 
						|
</ol>
 | 
						|
 | 
						|
<p>
 | 
						|
All of these properties are easy to satisfy for most imperative languages, and
 | 
						|
we'll illustrate it below with Kaleidoscope.  The final question you may be
 | 
						|
asking is: should I bother with this nonsense for my front-end?  Wouldn't it be
 | 
						|
better if I just did SSA construction directly, avoiding use of the mem2reg
 | 
						|
optimization pass?  In short, we strongly recommend that you use this technique
 | 
						|
for building SSA form, unless there is an extremely good reason not to.  Using
 | 
						|
this technique is:</p>
 | 
						|
 | 
						|
<ul>
 | 
						|
<li>Proven and well tested: llvm-gcc and clang both use this technique for local
 | 
						|
mutable variables.  As such, the most common clients of LLVM are using this to
 | 
						|
handle a bulk of their variables.  You can be sure that bugs are found fast and
 | 
						|
fixed early.</li>
 | 
						|
 | 
						|
<li>Extremely Fast: mem2reg has a number of special cases that make it fast in
 | 
						|
common cases as well as fully general.  For example, it has fast-paths for
 | 
						|
variables that are only used in a single block, variables that only have one
 | 
						|
assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
 | 
						|
</li>
 | 
						|
 | 
						|
<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
 | 
						|
Debug information in LLVM</a> relies on having the address of the variable
 | 
						|
exposed so that debug info can be attached to it.  This technique dovetails 
 | 
						|
very naturally with this style of debug info.</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<p>If nothing else, this makes it much easier to get your front-end up and 
 | 
						|
running, and is very simple to implement.  Lets extend Kaleidoscope with mutable
 | 
						|
variables now!
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="kalvars">Mutable Variables in 
 | 
						|
Kaleidoscope</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Now that we know the sort of problem we want to tackle, lets see what this
 | 
						|
looks like in the context of our little Kaleidoscope language.  We're going to
 | 
						|
add two features:</p>
 | 
						|
 | 
						|
<ol>
 | 
						|
<li>The ability to mutate variables with the '=' operator.</li>
 | 
						|
<li>The ability to define new variables.</li>
 | 
						|
</ol>
 | 
						|
 | 
						|
<p>While the first item is really what this is about, we only have variables
 | 
						|
for incoming arguments as well as for induction variables, and redefining those only
 | 
						|
goes so far :).  Also, the ability to define new variables is a
 | 
						|
useful thing regardless of whether you will be mutating them.  Here's a
 | 
						|
motivating example that shows how we could use these:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
# Define ':' for sequencing: as a low-precedence operator that ignores operands
 | 
						|
# and just returns the RHS.
 | 
						|
def binary : 1 (x y) y;
 | 
						|
 | 
						|
# Recursive fib, we could do this before.
 | 
						|
def fib(x)
 | 
						|
  if (x < 3) then
 | 
						|
    1
 | 
						|
  else
 | 
						|
    fib(x-1)+fib(x-2);
 | 
						|
 | 
						|
# Iterative fib.
 | 
						|
def fibi(x)
 | 
						|
  <b>var a = 1, b = 1, c in</b>
 | 
						|
  (for i = 3, i < x in 
 | 
						|
     <b>c = a + b</b> :
 | 
						|
     <b>a = b</b> :
 | 
						|
     <b>b = c</b>) :
 | 
						|
  b;
 | 
						|
 | 
						|
# Call it. 
 | 
						|
fibi(10);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>
 | 
						|
In order to mutate variables, we have to change our existing variables to use
 | 
						|
the "alloca trick".  Once we have that, we'll add our new operator, then extend
 | 
						|
Kaleidoscope to support new variable definitions.
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
 | 
						|
Mutation</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
The symbol table in Kaleidoscope is managed at code generation time by the 
 | 
						|
'<tt>NamedValues</tt>' map.  This map currently keeps track of the LLVM "Value*"
 | 
						|
that holds the double value for the named variable.  In order to support
 | 
						|
mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
 | 
						|
the <em>memory location</em> of the variable in question.  Note that this 
 | 
						|
change is a refactoring: it changes the structure of the code, but does not
 | 
						|
(by itself) change the behavior of the compiler.  All of these changes are 
 | 
						|
isolated in the Kaleidoscope code generator.</p>
 | 
						|
 | 
						|
<p>
 | 
						|
At this point in Kaleidoscope's development, it only supports variables for two
 | 
						|
things: incoming arguments to functions and the induction variable of 'for'
 | 
						|
loops.  For consistency, we'll allow mutation of these variables in addition to
 | 
						|
other user-defined variables.  This means that these will both need memory
 | 
						|
locations.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>To start our transformation of Kaleidoscope, we'll change the NamedValues
 | 
						|
map so that it maps to AllocaInst* instead of Value*.  Once we do this, the C++ 
 | 
						|
compiler will tell us what parts of the code we need to update:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
static std::map<std::string, AllocaInst*> NamedValues;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Also, since we will need to create these alloca's, we'll use a helper
 | 
						|
function that ensures that the allocas are created in the entry block of the
 | 
						|
function:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | 
						|
/// the function.  This is used for mutable variables etc.
 | 
						|
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | 
						|
                                          const std::string &VarName) {
 | 
						|
  IRBuilder TmpB(&TheFunction->getEntryBlock(),
 | 
						|
                 TheFunction->getEntryBlock().begin());
 | 
						|
  return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This funny looking code creates an IRBuilder object that is pointing at
 | 
						|
the first instruction (.begin()) of the entry block.  It then creates an alloca
 | 
						|
with the expected name and returns it.  Because all values in Kaleidoscope are
 | 
						|
doubles, there is no need to pass in a type to use.</p>
 | 
						|
 | 
						|
<p>With this in place, the first functionality change we want to make is to
 | 
						|
variable references.  In our new scheme, variables live on the stack, so code
 | 
						|
generating a reference to them actually needs to produce a load from the stack
 | 
						|
slot:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *VariableExprAST::Codegen() {
 | 
						|
  // Look this variable up in the function.
 | 
						|
  Value *V = NamedValues[Name];
 | 
						|
  if (V == 0) return ErrorV("Unknown variable name");
 | 
						|
 | 
						|
  <b>// Load the value.
 | 
						|
  return Builder.CreateLoad(V, Name.c_str());</b>
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>As you can see, this is pretty straightforward.  Now we need to update the
 | 
						|
things that define the variables to set up the alloca.  We'll start with 
 | 
						|
<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
 | 
						|
the unabridged code):</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
 | 
						|
  <b>// Create an alloca for the variable in the entry block.
 | 
						|
  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
 | 
						|
  
 | 
						|
    // Emit the start code first, without 'variable' in scope.
 | 
						|
  Value *StartVal = Start->Codegen();
 | 
						|
  if (StartVal == 0) return 0;
 | 
						|
  
 | 
						|
  <b>// Store the value into the alloca.
 | 
						|
  Builder.CreateStore(StartVal, Alloca);</b>
 | 
						|
  ...
 | 
						|
 | 
						|
  // Compute the end condition.
 | 
						|
  Value *EndCond = End->Codegen();
 | 
						|
  if (EndCond == 0) return EndCond;
 | 
						|
  
 | 
						|
  <b>// Reload, increment, and restore the alloca.  This handles the case where
 | 
						|
  // the body of the loop mutates the variable.
 | 
						|
  Value *CurVar = Builder.CreateLoad(Alloca);
 | 
						|
  Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
 | 
						|
  Builder.CreateStore(NextVar, Alloca);</b>
 | 
						|
  ...
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code is virtually identical to the code <a 
 | 
						|
href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>.  The
 | 
						|
big difference is that we no longer have to construct a PHI node, and we use
 | 
						|
load/store to access the variable as needed.</p>
 | 
						|
 | 
						|
<p>To support mutable argument variables, we need to also make allocas for them.
 | 
						|
The code for this is also pretty simple:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// CreateArgumentAllocas - Create an alloca for each argument and register the
 | 
						|
/// argument in the symbol table so that references to it will succeed.
 | 
						|
void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | 
						|
  Function::arg_iterator AI = F->arg_begin();
 | 
						|
  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | 
						|
    // Create an alloca for this variable.
 | 
						|
    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | 
						|
 | 
						|
    // Store the initial value into the alloca.
 | 
						|
    Builder.CreateStore(AI, Alloca);
 | 
						|
 | 
						|
    // Add arguments to variable symbol table.
 | 
						|
    NamedValues[Args[Idx]] = Alloca;
 | 
						|
  }
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>For each argument, we make an alloca, store the input value to the function
 | 
						|
into the alloca, and register the alloca as the memory location for the
 | 
						|
argument.  This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
 | 
						|
it sets up the entry block for the function.</p>
 | 
						|
 | 
						|
<p>The final missing piece is adding the mem2reg pass, which allows us to get
 | 
						|
good codegen once again:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
    // Set up the optimizer pipeline.  Start with registering info about how the
 | 
						|
    // target lays out data structures.
 | 
						|
    OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | 
						|
    <b>// Promote allocas to registers.
 | 
						|
    OurFPM.add(createPromoteMemoryToRegisterPass());</b>
 | 
						|
    // Do simple "peephole" optimizations and bit-twiddling optzns.
 | 
						|
    OurFPM.add(createInstructionCombiningPass());
 | 
						|
    // Reassociate expressions.
 | 
						|
    OurFPM.add(createReassociatePass());
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>It is interesting to see what the code looks like before and after the
 | 
						|
mem2reg optimization runs.  For example, this is the before/after code for our
 | 
						|
recursive fib function.  Before the optimization:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
define double @fib(double %x) {
 | 
						|
entry:
 | 
						|
	<b>%x1 = alloca double
 | 
						|
	store double %x, double* %x1
 | 
						|
	%x2 = load double* %x1</b>
 | 
						|
	%cmptmp = fcmp ult double %x2, 3.000000e+00
 | 
						|
	%booltmp = uitofp i1 %cmptmp to double
 | 
						|
	%ifcond = fcmp one double %booltmp, 0.000000e+00
 | 
						|
	br i1 %ifcond, label %then, label %else
 | 
						|
 | 
						|
then:		; preds = %entry
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
else:		; preds = %entry
 | 
						|
	<b>%x3 = load double* %x1</b>
 | 
						|
	%subtmp = sub double %x3, 1.000000e+00
 | 
						|
	%calltmp = call double @fib( double %subtmp )
 | 
						|
	<b>%x4 = load double* %x1</b>
 | 
						|
	%subtmp5 = sub double %x4, 2.000000e+00
 | 
						|
	%calltmp6 = call double @fib( double %subtmp5 )
 | 
						|
	%addtmp = add double %calltmp, %calltmp6
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
ifcont:		; preds = %else, %then
 | 
						|
	%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | 
						|
	ret double %iftmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Here there is only one variable (x, the input argument) but you can still
 | 
						|
see the extremely simple-minded code generation strategy we are using.  In the
 | 
						|
entry block, an alloca is created, and the initial input value is stored into
 | 
						|
it.  Each reference to the variable does a reload from the stack.  Also, note
 | 
						|
that we didn't modify the if/then/else expression, so it still inserts a PHI
 | 
						|
node.  While we could make an alloca for it, it is actually easier to create a 
 | 
						|
PHI node for it, so we still just make the PHI.</p>
 | 
						|
 | 
						|
<p>Here is the code after the mem2reg pass runs:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
define double @fib(double %x) {
 | 
						|
entry:
 | 
						|
	%cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
 | 
						|
	%booltmp = uitofp i1 %cmptmp to double
 | 
						|
	%ifcond = fcmp one double %booltmp, 0.000000e+00
 | 
						|
	br i1 %ifcond, label %then, label %else
 | 
						|
 | 
						|
then:
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
else:
 | 
						|
	%subtmp = sub double <b>%x</b>, 1.000000e+00
 | 
						|
	%calltmp = call double @fib( double %subtmp )
 | 
						|
	%subtmp5 = sub double <b>%x</b>, 2.000000e+00
 | 
						|
	%calltmp6 = call double @fib( double %subtmp5 )
 | 
						|
	%addtmp = add double %calltmp, %calltmp6
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
ifcont:		; preds = %else, %then
 | 
						|
	%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | 
						|
	ret double %iftmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This is a trivial case for mem2reg, since there are no redefinitions of the
 | 
						|
variable.  The point of showing this is to calm your tension about inserting
 | 
						|
such blatent inefficiencies :).</p>
 | 
						|
 | 
						|
<p>After the rest of the optimizers run, we get:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
define double @fib(double %x) {
 | 
						|
entry:
 | 
						|
	%cmptmp = fcmp ult double %x, 3.000000e+00
 | 
						|
	%booltmp = uitofp i1 %cmptmp to double
 | 
						|
	%ifcond = fcmp ueq double %booltmp, 0.000000e+00
 | 
						|
	br i1 %ifcond, label %else, label %ifcont
 | 
						|
 | 
						|
else:
 | 
						|
	%subtmp = sub double %x, 1.000000e+00
 | 
						|
	%calltmp = call double @fib( double %subtmp )
 | 
						|
	%subtmp5 = sub double %x, 2.000000e+00
 | 
						|
	%calltmp6 = call double @fib( double %subtmp5 )
 | 
						|
	%addtmp = add double %calltmp, %calltmp6
 | 
						|
	ret double %addtmp
 | 
						|
 | 
						|
ifcont:
 | 
						|
	ret double 1.000000e+00
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Here we see that the simplifycfg pass decided to clone the return instruction
 | 
						|
into the end of the 'else' block.  This allowed it to eliminate some branches
 | 
						|
and the PHI node.</p>
 | 
						|
 | 
						|
<p>Now that all symbol table references are updated to use stack variables, 
 | 
						|
we'll add the assignment operator.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>With our current framework, adding a new assignment operator is really
 | 
						|
simple.  We will parse it just like any other binary operator, but handle it
 | 
						|
internally (instead of allowing the user to define it).  The first step is to
 | 
						|
set a precedence:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
 int main() {
 | 
						|
   // Install standard binary operators.
 | 
						|
   // 1 is lowest precedence.
 | 
						|
   <b>BinopPrecedence['='] = 2;</b>
 | 
						|
   BinopPrecedence['<'] = 10;
 | 
						|
   BinopPrecedence['+'] = 20;
 | 
						|
   BinopPrecedence['-'] = 20;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now that the parser knows the precedence of the binary operator, it takes
 | 
						|
care of all the parsing and AST generation.  We just need to implement codegen
 | 
						|
for the assignment operator.  This looks like:</p> 
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *BinaryExprAST::Codegen() {
 | 
						|
  // Special case '=' because we don't want to emit the LHS as an expression.
 | 
						|
  if (Op == '=') {
 | 
						|
    // Assignment requires the LHS to be an identifier.
 | 
						|
    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | 
						|
    if (!LHSE)
 | 
						|
      return ErrorV("destination of '=' must be a variable");
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Unlike the rest of the binary operators, our assignment operator doesn't
 | 
						|
follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled
 | 
						|
as a special case before the other binary operators are handled.  The other 
 | 
						|
strange thing is that it requires the LHS to be a variable.  It is invalid to
 | 
						|
have "(x+1) = expr" - only things like "x = expr" are allowed.
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
    // Codegen the RHS.
 | 
						|
    Value *Val = RHS->Codegen();
 | 
						|
    if (Val == 0) return 0;
 | 
						|
 | 
						|
    // Look up the name.
 | 
						|
    Value *Variable = NamedValues[LHSE->getName()];
 | 
						|
    if (Variable == 0) return ErrorV("Unknown variable name");
 | 
						|
 | 
						|
    Builder.CreateStore(Val, Variable);
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
  ...  
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Once we have the variable, codegen'ing the assignment is straightforward:
 | 
						|
we emit the RHS of the assignment, create a store, and return the computed
 | 
						|
value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p>
 | 
						|
 | 
						|
<p>Now that we have an assignment operator, we can mutate loop variables and
 | 
						|
arguments.  For example, we can now run code like this:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
# Function to print a double.
 | 
						|
extern printd(x);
 | 
						|
 | 
						|
# Define ':' for sequencing: as a low-precedence operator that ignores operands
 | 
						|
# and just returns the RHS.
 | 
						|
def binary : 1 (x y) y;
 | 
						|
 | 
						|
def test(x)
 | 
						|
  printd(x) :
 | 
						|
  x = 4 :
 | 
						|
  printd(x);
 | 
						|
 | 
						|
test(123);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>When run, this example prints "123" and then "4", showing that we did
 | 
						|
actually mutate the value!  Okay, we have now officially implemented our goal:
 | 
						|
getting this to work requires SSA construction in the general case.  However,
 | 
						|
to be really useful, we want the ability to define our own local variables, lets
 | 
						|
add this next! 
 | 
						|
</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="localvars">User-defined Local 
 | 
						|
Variables</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Adding var/in is just like any other other extensions we made to 
 | 
						|
Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
 | 
						|
The first step for adding our new 'var/in' construct is to extend the lexer.
 | 
						|
As before, this is pretty trivial, the code looks like this:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
enum Token {
 | 
						|
  ...
 | 
						|
  <b>// var definition
 | 
						|
  tok_var = -13</b>
 | 
						|
...
 | 
						|
}
 | 
						|
...
 | 
						|
static int gettok() {
 | 
						|
...
 | 
						|
    if (IdentifierStr == "in") return tok_in;
 | 
						|
    if (IdentifierStr == "binary") return tok_binary;
 | 
						|
    if (IdentifierStr == "unary") return tok_unary;
 | 
						|
    <b>if (IdentifierStr == "var") return tok_var;</b>
 | 
						|
    return tok_identifier;
 | 
						|
...
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The next step is to define the AST node that we will construct.  For var/in,
 | 
						|
it looks like this:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// VarExprAST - Expression class for var/in
 | 
						|
class VarExprAST : public ExprAST {
 | 
						|
  std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | 
						|
  ExprAST *Body;
 | 
						|
public:
 | 
						|
  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | 
						|
             ExprAST *body)
 | 
						|
  : VarNames(varnames), Body(body) {}
 | 
						|
  
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>var/in allows a list of names to be defined all at once, and each name can
 | 
						|
optionally have an initializer value.  As such, we capture this information in
 | 
						|
the VarNames vector.  Also, var/in has a body, this body is allowed to access
 | 
						|
the variables defined by the var/in.</p>
 | 
						|
 | 
						|
<p>With this in place, we can define the parser pieces.  The first thing we do is add
 | 
						|
it as a primary expression:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// primary
 | 
						|
///   ::= identifierexpr
 | 
						|
///   ::= numberexpr
 | 
						|
///   ::= parenexpr
 | 
						|
///   ::= ifexpr
 | 
						|
///   ::= forexpr
 | 
						|
<b>///   ::= varexpr</b>
 | 
						|
static ExprAST *ParsePrimary() {
 | 
						|
  switch (CurTok) {
 | 
						|
  default: return Error("unknown token when expecting an expression");
 | 
						|
  case tok_identifier: return ParseIdentifierExpr();
 | 
						|
  case tok_number:     return ParseNumberExpr();
 | 
						|
  case '(':            return ParseParenExpr();
 | 
						|
  case tok_if:         return ParseIfExpr();
 | 
						|
  case tok_for:        return ParseForExpr();
 | 
						|
  <b>case tok_var:        return ParseVarExpr();</b>
 | 
						|
  }
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Next we define ParseVarExpr:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// varexpr ::= 'var' identifier ('=' expression)? 
 | 
						|
//                    (',' identifier ('=' expression)?)* 'in' expression
 | 
						|
static ExprAST *ParseVarExpr() {
 | 
						|
  getNextToken();  // eat the var.
 | 
						|
 | 
						|
  std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | 
						|
 | 
						|
  // At least one variable name is required.
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return Error("expected identifier after var");
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The first part of this code parses the list of identifier/expr pairs into the
 | 
						|
local <tt>VarNames</tt> vector.  
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  while (1) {
 | 
						|
    std::string Name = IdentifierStr;
 | 
						|
    getNextToken();  // eat identifier.
 | 
						|
 | 
						|
    // Read the optional initializer.
 | 
						|
    ExprAST *Init = 0;
 | 
						|
    if (CurTok == '=') {
 | 
						|
      getNextToken(); // eat the '='.
 | 
						|
      
 | 
						|
      Init = ParseExpression();
 | 
						|
      if (Init == 0) return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VarNames.push_back(std::make_pair(Name, Init));
 | 
						|
    
 | 
						|
    // End of var list, exit loop.
 | 
						|
    if (CurTok != ',') break;
 | 
						|
    getNextToken(); // eat the ','.
 | 
						|
    
 | 
						|
    if (CurTok != tok_identifier)
 | 
						|
      return Error("expected identifier list after var");
 | 
						|
  }
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Once all the variables are parsed, we then parse the body and create the
 | 
						|
AST node:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // At this point, we have to have 'in'.
 | 
						|
  if (CurTok != tok_in)
 | 
						|
    return Error("expected 'in' keyword after 'var'");
 | 
						|
  getNextToken();  // eat 'in'.
 | 
						|
  
 | 
						|
  ExprAST *Body = ParseExpression();
 | 
						|
  if (Body == 0) return 0;
 | 
						|
  
 | 
						|
  return new VarExprAST(VarNames, Body);
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now that we can parse and represent the code, we need to support emission of
 | 
						|
LLVM IR for it.  This code starts out with:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *VarExprAST::Codegen() {
 | 
						|
  std::vector<AllocaInst *> OldBindings;
 | 
						|
  
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
 | 
						|
  // Register all variables and emit their initializer.
 | 
						|
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | 
						|
    const std::string &VarName = VarNames[i].first;
 | 
						|
    ExprAST *Init = VarNames[i].second;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Basically it loops over all the variables, installing them one at a time.
 | 
						|
For each variable we put into the symbol table, we remember the previous value
 | 
						|
that we replace in OldBindings.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
    // Emit the initializer before adding the variable to scope, this prevents
 | 
						|
    // the initializer from referencing the variable itself, and permits stuff
 | 
						|
    // like this:
 | 
						|
    //  var a = 1 in
 | 
						|
    //    var a = a in ...   # refers to outer 'a'.
 | 
						|
    Value *InitVal;
 | 
						|
    if (Init) {
 | 
						|
      InitVal = Init->Codegen();
 | 
						|
      if (InitVal == 0) return 0;
 | 
						|
    } else { // If not specified, use 0.0.
 | 
						|
      InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0));
 | 
						|
    }
 | 
						|
    
 | 
						|
    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | 
						|
    Builder.CreateStore(InitVal, Alloca);
 | 
						|
 | 
						|
    // Remember the old variable binding so that we can restore the binding when
 | 
						|
    // we unrecurse.
 | 
						|
    OldBindings.push_back(NamedValues[VarName]);
 | 
						|
    
 | 
						|
    // Remember this binding.
 | 
						|
    NamedValues[VarName] = Alloca;
 | 
						|
  }
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>There are more comments here than code.  The basic idea is that we emit the
 | 
						|
initializer, create the alloca, then update the symbol table to point to it.
 | 
						|
Once all the variables are installed in the symbol table, we evaluate the body
 | 
						|
of the var/in expression:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Codegen the body, now that all vars are in scope.
 | 
						|
  Value *BodyVal = Body->Codegen();
 | 
						|
  if (BodyVal == 0) return 0;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Finally, before returning, we restore the previous variable bindings:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Pop all our variables from scope.
 | 
						|
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | 
						|
    NamedValues[VarNames[i].first] = OldBindings[i];
 | 
						|
 | 
						|
  // Return the body computation.
 | 
						|
  return BodyVal;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The end result of all of this is that we get properly scoped variable 
 | 
						|
definitions, and we even (trivially) allow mutation of them :).</p>
 | 
						|
 | 
						|
<p>With this, we completed what we set out to do.  Our nice iterative fib
 | 
						|
example from the intro compiles and runs just fine.  The mem2reg pass optimizes
 | 
						|
all of our stack variables into SSA registers, inserting PHI nodes where needed,
 | 
						|
and our front-end remains simple: no "iterated dominance frontier" computation
 | 
						|
anywhere in sight.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="code">Full Code Listing</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
Here is the complete code listing for our running example, enhanced with mutable
 | 
						|
variables and var/in support.  To build this example, use:
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
   # Compile
 | 
						|
   g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | 
						|
   # Run
 | 
						|
   ./toy
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Here is the code:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/ModuleProvider.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Analysis/Verifier.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Support/IRBuilder.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lexer
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | 
						|
// of these for known things.
 | 
						|
enum Token {
 | 
						|
  tok_eof = -1,
 | 
						|
 | 
						|
  // commands
 | 
						|
  tok_def = -2, tok_extern = -3,
 | 
						|
 | 
						|
  // primary
 | 
						|
  tok_identifier = -4, tok_number = -5,
 | 
						|
  
 | 
						|
  // control
 | 
						|
  tok_if = -6, tok_then = -7, tok_else = -8,
 | 
						|
  tok_for = -9, tok_in = -10,
 | 
						|
  
 | 
						|
  // operators
 | 
						|
  tok_binary = -11, tok_unary = -12,
 | 
						|
  
 | 
						|
  // var definition
 | 
						|
  tok_var = -13
 | 
						|
};
 | 
						|
 | 
						|
static std::string IdentifierStr;  // Filled in if tok_identifier
 | 
						|
static double NumVal;              // Filled in if tok_number
 | 
						|
 | 
						|
/// gettok - Return the next token from standard input.
 | 
						|
static int gettok() {
 | 
						|
  static int LastChar = ' ';
 | 
						|
 | 
						|
  // Skip any whitespace.
 | 
						|
  while (isspace(LastChar))
 | 
						|
    LastChar = getchar();
 | 
						|
 | 
						|
  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | 
						|
    IdentifierStr = LastChar;
 | 
						|
    while (isalnum((LastChar = getchar())))
 | 
						|
      IdentifierStr += LastChar;
 | 
						|
 | 
						|
    if (IdentifierStr == "def") return tok_def;
 | 
						|
    if (IdentifierStr == "extern") return tok_extern;
 | 
						|
    if (IdentifierStr == "if") return tok_if;
 | 
						|
    if (IdentifierStr == "then") return tok_then;
 | 
						|
    if (IdentifierStr == "else") return tok_else;
 | 
						|
    if (IdentifierStr == "for") return tok_for;
 | 
						|
    if (IdentifierStr == "in") return tok_in;
 | 
						|
    if (IdentifierStr == "binary") return tok_binary;
 | 
						|
    if (IdentifierStr == "unary") return tok_unary;
 | 
						|
    if (IdentifierStr == "var") return tok_var;
 | 
						|
    return tok_identifier;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | 
						|
    std::string NumStr;
 | 
						|
    do {
 | 
						|
      NumStr += LastChar;
 | 
						|
      LastChar = getchar();
 | 
						|
    } while (isdigit(LastChar) || LastChar == '.');
 | 
						|
 | 
						|
    NumVal = strtod(NumStr.c_str(), 0);
 | 
						|
    return tok_number;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LastChar == '#') {
 | 
						|
    // Comment until end of line.
 | 
						|
    do LastChar = getchar();
 | 
						|
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | 
						|
    
 | 
						|
    if (LastChar != EOF)
 | 
						|
      return gettok();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for end of file.  Don't eat the EOF.
 | 
						|
  if (LastChar == EOF)
 | 
						|
    return tok_eof;
 | 
						|
 | 
						|
  // Otherwise, just return the character as its ascii value.
 | 
						|
  int ThisChar = LastChar;
 | 
						|
  LastChar = getchar();
 | 
						|
  return ThisChar;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Abstract Syntax Tree (aka Parse Tree)
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ExprAST - Base class for all expression nodes.
 | 
						|
class ExprAST {
 | 
						|
public:
 | 
						|
  virtual ~ExprAST() {}
 | 
						|
  virtual Value *Codegen() = 0;
 | 
						|
};
 | 
						|
 | 
						|
/// NumberExprAST - Expression class for numeric literals like "1.0".
 | 
						|
class NumberExprAST : public ExprAST {
 | 
						|
  double Val;
 | 
						|
public:
 | 
						|
  NumberExprAST(double val) : Val(val) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// VariableExprAST - Expression class for referencing a variable, like "a".
 | 
						|
class VariableExprAST : public ExprAST {
 | 
						|
  std::string Name;
 | 
						|
public:
 | 
						|
  VariableExprAST(const std::string &name) : Name(name) {}
 | 
						|
  const std::string &getName() const { return Name; }
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// UnaryExprAST - Expression class for a unary operator.
 | 
						|
class UnaryExprAST : public ExprAST {
 | 
						|
  char Opcode;
 | 
						|
  ExprAST *Operand;
 | 
						|
public:
 | 
						|
  UnaryExprAST(char opcode, ExprAST *operand) 
 | 
						|
    : Opcode(opcode), Operand(operand) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// BinaryExprAST - Expression class for a binary operator.
 | 
						|
class BinaryExprAST : public ExprAST {
 | 
						|
  char Op;
 | 
						|
  ExprAST *LHS, *RHS;
 | 
						|
public:
 | 
						|
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | 
						|
    : Op(op), LHS(lhs), RHS(rhs) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// CallExprAST - Expression class for function calls.
 | 
						|
class CallExprAST : public ExprAST {
 | 
						|
  std::string Callee;
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
public:
 | 
						|
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | 
						|
    : Callee(callee), Args(args) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// IfExprAST - Expression class for if/then/else.
 | 
						|
class IfExprAST : public ExprAST {
 | 
						|
  ExprAST *Cond, *Then, *Else;
 | 
						|
public:
 | 
						|
  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | 
						|
  : Cond(cond), Then(then), Else(_else) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// ForExprAST - Expression class for for/in.
 | 
						|
class ForExprAST : public ExprAST {
 | 
						|
  std::string VarName;
 | 
						|
  ExprAST *Start, *End, *Step, *Body;
 | 
						|
public:
 | 
						|
  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | 
						|
             ExprAST *step, ExprAST *body)
 | 
						|
    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// VarExprAST - Expression class for var/in
 | 
						|
class VarExprAST : public ExprAST {
 | 
						|
  std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | 
						|
  ExprAST *Body;
 | 
						|
public:
 | 
						|
  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | 
						|
             ExprAST *body)
 | 
						|
  : VarNames(varnames), Body(body) {}
 | 
						|
  
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// PrototypeAST - This class represents the "prototype" for a function,
 | 
						|
/// which captures its argument names as well as if it is an operator.
 | 
						|
class PrototypeAST {
 | 
						|
  std::string Name;
 | 
						|
  std::vector<std::string> Args;
 | 
						|
  bool isOperator;
 | 
						|
  unsigned Precedence;  // Precedence if a binary op.
 | 
						|
public:
 | 
						|
  PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | 
						|
               bool isoperator = false, unsigned prec = 0)
 | 
						|
  : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | 
						|
  
 | 
						|
  bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | 
						|
  bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | 
						|
  
 | 
						|
  char getOperatorName() const {
 | 
						|
    assert(isUnaryOp() || isBinaryOp());
 | 
						|
    return Name[Name.size()-1];
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned getBinaryPrecedence() const { return Precedence; }
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
  
 | 
						|
  void CreateArgumentAllocas(Function *F);
 | 
						|
};
 | 
						|
 | 
						|
/// FunctionAST - This class represents a function definition itself.
 | 
						|
class FunctionAST {
 | 
						|
  PrototypeAST *Proto;
 | 
						|
  ExprAST *Body;
 | 
						|
public:
 | 
						|
  FunctionAST(PrototypeAST *proto, ExprAST *body)
 | 
						|
    : Proto(proto), Body(body) {}
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Parser
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | 
						|
/// token the parser it looking at.  getNextToken reads another token from the
 | 
						|
/// lexer and updates CurTok with its results.
 | 
						|
static int CurTok;
 | 
						|
static int getNextToken() {
 | 
						|
  return CurTok = gettok();
 | 
						|
}
 | 
						|
 | 
						|
/// BinopPrecedence - This holds the precedence for each binary operator that is
 | 
						|
/// defined.
 | 
						|
static std::map<char, int> BinopPrecedence;
 | 
						|
 | 
						|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | 
						|
static int GetTokPrecedence() {
 | 
						|
  if (!isascii(CurTok))
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  // Make sure it's a declared binop.
 | 
						|
  int TokPrec = BinopPrecedence[CurTok];
 | 
						|
  if (TokPrec <= 0) return -1;
 | 
						|
  return TokPrec;
 | 
						|
}
 | 
						|
 | 
						|
/// Error* - These are little helper functions for error handling.
 | 
						|
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | 
						|
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | 
						|
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
static ExprAST *ParseExpression();
 | 
						|
 | 
						|
/// identifierexpr
 | 
						|
///   ::= identifier
 | 
						|
///   ::= identifier '(' expression* ')'
 | 
						|
static ExprAST *ParseIdentifierExpr() {
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '(') // Simple variable ref.
 | 
						|
    return new VariableExprAST(IdName);
 | 
						|
  
 | 
						|
  // Call.
 | 
						|
  getNextToken();  // eat (
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
  if (CurTok != ')') {
 | 
						|
    while (1) {
 | 
						|
      ExprAST *Arg = ParseExpression();
 | 
						|
      if (!Arg) return 0;
 | 
						|
      Args.push_back(Arg);
 | 
						|
      
 | 
						|
      if (CurTok == ')') break;
 | 
						|
      
 | 
						|
      if (CurTok != ',')
 | 
						|
        return Error("Expected ')' or ',' in argument list");
 | 
						|
      getNextToken();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eat the ')'.
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  return new CallExprAST(IdName, Args);
 | 
						|
}
 | 
						|
 | 
						|
/// numberexpr ::= number
 | 
						|
static ExprAST *ParseNumberExpr() {
 | 
						|
  ExprAST *Result = new NumberExprAST(NumVal);
 | 
						|
  getNextToken(); // consume the number
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// parenexpr ::= '(' expression ')'
 | 
						|
static ExprAST *ParseParenExpr() {
 | 
						|
  getNextToken();  // eat (.
 | 
						|
  ExprAST *V = ParseExpression();
 | 
						|
  if (!V) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != ')')
 | 
						|
    return Error("expected ')'");
 | 
						|
  getNextToken();  // eat ).
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | 
						|
static ExprAST *ParseIfExpr() {
 | 
						|
  getNextToken();  // eat the if.
 | 
						|
  
 | 
						|
  // condition.
 | 
						|
  ExprAST *Cond = ParseExpression();
 | 
						|
  if (!Cond) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_then)
 | 
						|
    return Error("expected then");
 | 
						|
  getNextToken();  // eat the then
 | 
						|
  
 | 
						|
  ExprAST *Then = ParseExpression();
 | 
						|
  if (Then == 0) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_else)
 | 
						|
    return Error("expected else");
 | 
						|
  
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *Else = ParseExpression();
 | 
						|
  if (!Else) return 0;
 | 
						|
  
 | 
						|
  return new IfExprAST(Cond, Then, Else);
 | 
						|
}
 | 
						|
 | 
						|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | 
						|
static ExprAST *ParseForExpr() {
 | 
						|
  getNextToken();  // eat the for.
 | 
						|
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return Error("expected identifier after for");
 | 
						|
  
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '=')
 | 
						|
    return Error("expected '=' after for");
 | 
						|
  getNextToken();  // eat '='.
 | 
						|
  
 | 
						|
  
 | 
						|
  ExprAST *Start = ParseExpression();
 | 
						|
  if (Start == 0) return 0;
 | 
						|
  if (CurTok != ',')
 | 
						|
    return Error("expected ',' after for start value");
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *End = ParseExpression();
 | 
						|
  if (End == 0) return 0;
 | 
						|
  
 | 
						|
  // The step value is optional.
 | 
						|
  ExprAST *Step = 0;
 | 
						|
  if (CurTok == ',') {
 | 
						|
    getNextToken();
 | 
						|
    Step = ParseExpression();
 | 
						|
    if (Step == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CurTok != tok_in)
 | 
						|
    return Error("expected 'in' after for");
 | 
						|
  getNextToken();  // eat 'in'.
 | 
						|
  
 | 
						|
  ExprAST *Body = ParseExpression();
 | 
						|
  if (Body == 0) return 0;
 | 
						|
 | 
						|
  return new ForExprAST(IdName, Start, End, Step, Body);
 | 
						|
}
 | 
						|
 | 
						|
/// varexpr ::= 'var' identifier ('=' expression)? 
 | 
						|
//                    (',' identifier ('=' expression)?)* 'in' expression
 | 
						|
static ExprAST *ParseVarExpr() {
 | 
						|
  getNextToken();  // eat the var.
 | 
						|
 | 
						|
  std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | 
						|
 | 
						|
  // At least one variable name is required.
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return Error("expected identifier after var");
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    std::string Name = IdentifierStr;
 | 
						|
    getNextToken();  // eat identifier.
 | 
						|
 | 
						|
    // Read the optional initializer.
 | 
						|
    ExprAST *Init = 0;
 | 
						|
    if (CurTok == '=') {
 | 
						|
      getNextToken(); // eat the '='.
 | 
						|
      
 | 
						|
      Init = ParseExpression();
 | 
						|
      if (Init == 0) return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    VarNames.push_back(std::make_pair(Name, Init));
 | 
						|
    
 | 
						|
    // End of var list, exit loop.
 | 
						|
    if (CurTok != ',') break;
 | 
						|
    getNextToken(); // eat the ','.
 | 
						|
    
 | 
						|
    if (CurTok != tok_identifier)
 | 
						|
      return Error("expected identifier list after var");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // At this point, we have to have 'in'.
 | 
						|
  if (CurTok != tok_in)
 | 
						|
    return Error("expected 'in' keyword after 'var'");
 | 
						|
  getNextToken();  // eat 'in'.
 | 
						|
  
 | 
						|
  ExprAST *Body = ParseExpression();
 | 
						|
  if (Body == 0) return 0;
 | 
						|
  
 | 
						|
  return new VarExprAST(VarNames, Body);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// primary
 | 
						|
///   ::= identifierexpr
 | 
						|
///   ::= numberexpr
 | 
						|
///   ::= parenexpr
 | 
						|
///   ::= ifexpr
 | 
						|
///   ::= forexpr
 | 
						|
///   ::= varexpr
 | 
						|
static ExprAST *ParsePrimary() {
 | 
						|
  switch (CurTok) {
 | 
						|
  default: return Error("unknown token when expecting an expression");
 | 
						|
  case tok_identifier: return ParseIdentifierExpr();
 | 
						|
  case tok_number:     return ParseNumberExpr();
 | 
						|
  case '(':            return ParseParenExpr();
 | 
						|
  case tok_if:         return ParseIfExpr();
 | 
						|
  case tok_for:        return ParseForExpr();
 | 
						|
  case tok_var:        return ParseVarExpr();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// unary
 | 
						|
///   ::= primary
 | 
						|
///   ::= '!' unary
 | 
						|
static ExprAST *ParseUnary() {
 | 
						|
  // If the current token is not an operator, it must be a primary expr.
 | 
						|
  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | 
						|
    return ParsePrimary();
 | 
						|
  
 | 
						|
  // If this is a unary operator, read it.
 | 
						|
  int Opc = CurTok;
 | 
						|
  getNextToken();
 | 
						|
  if (ExprAST *Operand = ParseUnary())
 | 
						|
    return new UnaryExprAST(Opc, Operand);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// binoprhs
 | 
						|
///   ::= ('+' unary)*
 | 
						|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | 
						|
  // If this is a binop, find its precedence.
 | 
						|
  while (1) {
 | 
						|
    int TokPrec = GetTokPrecedence();
 | 
						|
    
 | 
						|
    // If this is a binop that binds at least as tightly as the current binop,
 | 
						|
    // consume it, otherwise we are done.
 | 
						|
    if (TokPrec < ExprPrec)
 | 
						|
      return LHS;
 | 
						|
    
 | 
						|
    // Okay, we know this is a binop.
 | 
						|
    int BinOp = CurTok;
 | 
						|
    getNextToken();  // eat binop
 | 
						|
    
 | 
						|
    // Parse the unary expression after the binary operator.
 | 
						|
    ExprAST *RHS = ParseUnary();
 | 
						|
    if (!RHS) return 0;
 | 
						|
    
 | 
						|
    // If BinOp binds less tightly with RHS than the operator after RHS, let
 | 
						|
    // the pending operator take RHS as its LHS.
 | 
						|
    int NextPrec = GetTokPrecedence();
 | 
						|
    if (TokPrec < NextPrec) {
 | 
						|
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | 
						|
      if (RHS == 0) return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Merge LHS/RHS.
 | 
						|
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// expression
 | 
						|
///   ::= unary binoprhs
 | 
						|
///
 | 
						|
static ExprAST *ParseExpression() {
 | 
						|
  ExprAST *LHS = ParseUnary();
 | 
						|
  if (!LHS) return 0;
 | 
						|
  
 | 
						|
  return ParseBinOpRHS(0, LHS);
 | 
						|
}
 | 
						|
 | 
						|
/// prototype
 | 
						|
///   ::= id '(' id* ')'
 | 
						|
///   ::= binary LETTER number? (id, id)
 | 
						|
///   ::= unary LETTER (id)
 | 
						|
static PrototypeAST *ParsePrototype() {
 | 
						|
  std::string FnName;
 | 
						|
  
 | 
						|
  int Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | 
						|
  unsigned BinaryPrecedence = 30;
 | 
						|
  
 | 
						|
  switch (CurTok) {
 | 
						|
  default:
 | 
						|
    return ErrorP("Expected function name in prototype");
 | 
						|
  case tok_identifier:
 | 
						|
    FnName = IdentifierStr;
 | 
						|
    Kind = 0;
 | 
						|
    getNextToken();
 | 
						|
    break;
 | 
						|
  case tok_unary:
 | 
						|
    getNextToken();
 | 
						|
    if (!isascii(CurTok))
 | 
						|
      return ErrorP("Expected unary operator");
 | 
						|
    FnName = "unary";
 | 
						|
    FnName += (char)CurTok;
 | 
						|
    Kind = 1;
 | 
						|
    getNextToken();
 | 
						|
    break;
 | 
						|
  case tok_binary:
 | 
						|
    getNextToken();
 | 
						|
    if (!isascii(CurTok))
 | 
						|
      return ErrorP("Expected binary operator");
 | 
						|
    FnName = "binary";
 | 
						|
    FnName += (char)CurTok;
 | 
						|
    Kind = 2;
 | 
						|
    getNextToken();
 | 
						|
    
 | 
						|
    // Read the precedence if present.
 | 
						|
    if (CurTok == tok_number) {
 | 
						|
      if (NumVal < 1 || NumVal > 100)
 | 
						|
        return ErrorP("Invalid precedecnce: must be 1..100");
 | 
						|
      BinaryPrecedence = (unsigned)NumVal;
 | 
						|
      getNextToken();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CurTok != '(')
 | 
						|
    return ErrorP("Expected '(' in prototype");
 | 
						|
  
 | 
						|
  std::vector<std::string> ArgNames;
 | 
						|
  while (getNextToken() == tok_identifier)
 | 
						|
    ArgNames.push_back(IdentifierStr);
 | 
						|
  if (CurTok != ')')
 | 
						|
    return ErrorP("Expected ')' in prototype");
 | 
						|
  
 | 
						|
  // success.
 | 
						|
  getNextToken();  // eat ')'.
 | 
						|
  
 | 
						|
  // Verify right number of names for operator.
 | 
						|
  if (Kind && ArgNames.size() != Kind)
 | 
						|
    return ErrorP("Invalid number of operands for operator");
 | 
						|
  
 | 
						|
  return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | 
						|
}
 | 
						|
 | 
						|
/// definition ::= 'def' prototype expression
 | 
						|
static FunctionAST *ParseDefinition() {
 | 
						|
  getNextToken();  // eat def.
 | 
						|
  PrototypeAST *Proto = ParsePrototype();
 | 
						|
  if (Proto == 0) return 0;
 | 
						|
 | 
						|
  if (ExprAST *E = ParseExpression())
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// toplevelexpr ::= expression
 | 
						|
static FunctionAST *ParseTopLevelExpr() {
 | 
						|
  if (ExprAST *E = ParseExpression()) {
 | 
						|
    // Make an anonymous proto.
 | 
						|
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// external ::= 'extern' prototype
 | 
						|
static PrototypeAST *ParseExtern() {
 | 
						|
  getNextToken();  // eat extern.
 | 
						|
  return ParsePrototype();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Code Generation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Module *TheModule;
 | 
						|
static IRBuilder Builder;
 | 
						|
static std::map<std::string, AllocaInst*> NamedValues;
 | 
						|
static FunctionPassManager *TheFPM;
 | 
						|
 | 
						|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | 
						|
/// the function.  This is used for mutable variables etc.
 | 
						|
static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | 
						|
                                          const std::string &VarName) {
 | 
						|
  IRBuilder TmpB(&TheFunction->getEntryBlock(),
 | 
						|
                 TheFunction->getEntryBlock().begin());
 | 
						|
  return TmpB.CreateAlloca(Type::DoubleTy, 0, VarName.c_str());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *NumberExprAST::Codegen() {
 | 
						|
  return ConstantFP::get(Type::DoubleTy, APFloat(Val));
 | 
						|
}
 | 
						|
 | 
						|
Value *VariableExprAST::Codegen() {
 | 
						|
  // Look this variable up in the function.
 | 
						|
  Value *V = NamedValues[Name];
 | 
						|
  if (V == 0) return ErrorV("Unknown variable name");
 | 
						|
 | 
						|
  // Load the value.
 | 
						|
  return Builder.CreateLoad(V, Name.c_str());
 | 
						|
}
 | 
						|
 | 
						|
Value *UnaryExprAST::Codegen() {
 | 
						|
  Value *OperandV = Operand->Codegen();
 | 
						|
  if (OperandV == 0) return 0;
 | 
						|
  
 | 
						|
  Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | 
						|
  if (F == 0)
 | 
						|
    return ErrorV("Unknown unary operator");
 | 
						|
  
 | 
						|
  return Builder.CreateCall(F, OperandV, "unop");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Value *BinaryExprAST::Codegen() {
 | 
						|
  // Special case '=' because we don't want to emit the LHS as an expression.
 | 
						|
  if (Op == '=') {
 | 
						|
    // Assignment requires the LHS to be an identifier.
 | 
						|
    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | 
						|
    if (!LHSE)
 | 
						|
      return ErrorV("destination of '=' must be a variable");
 | 
						|
    // Codegen the RHS.
 | 
						|
    Value *Val = RHS->Codegen();
 | 
						|
    if (Val == 0) return 0;
 | 
						|
 | 
						|
    // Look up the name.
 | 
						|
    Value *Variable = NamedValues[LHSE->getName()];
 | 
						|
    if (Variable == 0) return ErrorV("Unknown variable name");
 | 
						|
 | 
						|
    Builder.CreateStore(Val, Variable);
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  Value *L = LHS->Codegen();
 | 
						|
  Value *R = RHS->Codegen();
 | 
						|
  if (L == 0 || R == 0) return 0;
 | 
						|
  
 | 
						|
  switch (Op) {
 | 
						|
  case '+': return Builder.CreateAdd(L, R, "addtmp");
 | 
						|
  case '-': return Builder.CreateSub(L, R, "subtmp");
 | 
						|
  case '*': return Builder.CreateMul(L, R, "multmp");
 | 
						|
  case '<':
 | 
						|
    L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | 
						|
    // Convert bool 0/1 to double 0.0 or 1.0
 | 
						|
    return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
 | 
						|
  default: break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | 
						|
  // a call to it.
 | 
						|
  Function *F = TheModule->getFunction(std::string("binary")+Op);
 | 
						|
  assert(F && "binary operator not found!");
 | 
						|
  
 | 
						|
  Value *Ops[] = { L, R };
 | 
						|
  return Builder.CreateCall(F, Ops, Ops+2, "binop");
 | 
						|
}
 | 
						|
 | 
						|
Value *CallExprAST::Codegen() {
 | 
						|
  // Look up the name in the global module table.
 | 
						|
  Function *CalleeF = TheModule->getFunction(Callee);
 | 
						|
  if (CalleeF == 0)
 | 
						|
    return ErrorV("Unknown function referenced");
 | 
						|
  
 | 
						|
  // If argument mismatch error.
 | 
						|
  if (CalleeF->arg_size() != Args.size())
 | 
						|
    return ErrorV("Incorrect # arguments passed");
 | 
						|
 | 
						|
  std::vector<Value*> ArgsV;
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    ArgsV.push_back(Args[i]->Codegen());
 | 
						|
    if (ArgsV.back() == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | 
						|
}
 | 
						|
 | 
						|
Value *IfExprAST::Codegen() {
 | 
						|
  Value *CondV = Cond->Codegen();
 | 
						|
  if (CondV == 0) return 0;
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  CondV = Builder.CreateFCmpONE(CondV, 
 | 
						|
                                ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
 | 
						|
                                "ifcond");
 | 
						|
  
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
  
 | 
						|
  // Create blocks for the then and else cases.  Insert the 'then' block at the
 | 
						|
  // end of the function.
 | 
						|
  BasicBlock *ThenBB = BasicBlock::Create("then", TheFunction);
 | 
						|
  BasicBlock *ElseBB = BasicBlock::Create("else");
 | 
						|
  BasicBlock *MergeBB = BasicBlock::Create("ifcont");
 | 
						|
  
 | 
						|
  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | 
						|
  
 | 
						|
  // Emit then value.
 | 
						|
  Builder.SetInsertPoint(ThenBB);
 | 
						|
  
 | 
						|
  Value *ThenV = Then->Codegen();
 | 
						|
  if (ThenV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | 
						|
  ThenBB = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
  // Emit else block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(ElseBB);
 | 
						|
  Builder.SetInsertPoint(ElseBB);
 | 
						|
  
 | 
						|
  Value *ElseV = Else->Codegen();
 | 
						|
  if (ElseV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | 
						|
  ElseBB = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
  // Emit merge block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(MergeBB);
 | 
						|
  Builder.SetInsertPoint(MergeBB);
 | 
						|
  PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp");
 | 
						|
  
 | 
						|
  PN->addIncoming(ThenV, ThenBB);
 | 
						|
  PN->addIncoming(ElseV, ElseBB);
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
 | 
						|
Value *ForExprAST::Codegen() {
 | 
						|
  // Output this as:
 | 
						|
  //   var = alloca double
 | 
						|
  //   ...
 | 
						|
  //   start = startexpr
 | 
						|
  //   store start -> var
 | 
						|
  //   goto loop
 | 
						|
  // loop: 
 | 
						|
  //   ...
 | 
						|
  //   bodyexpr
 | 
						|
  //   ...
 | 
						|
  // loopend:
 | 
						|
  //   step = stepexpr
 | 
						|
  //   endcond = endexpr
 | 
						|
  //
 | 
						|
  //   curvar = load var
 | 
						|
  //   nextvar = curvar + step
 | 
						|
  //   store nextvar -> var
 | 
						|
  //   br endcond, loop, endloop
 | 
						|
  // outloop:
 | 
						|
  
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
 | 
						|
  // Create an alloca for the variable in the entry block.
 | 
						|
  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | 
						|
  
 | 
						|
  // Emit the start code first, without 'variable' in scope.
 | 
						|
  Value *StartVal = Start->Codegen();
 | 
						|
  if (StartVal == 0) return 0;
 | 
						|
  
 | 
						|
  // Store the value into the alloca.
 | 
						|
  Builder.CreateStore(StartVal, Alloca);
 | 
						|
  
 | 
						|
  // Make the new basic block for the loop header, inserting after current
 | 
						|
  // block.
 | 
						|
  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *LoopBB = BasicBlock::Create("loop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert an explicit fall through from the current block to the LoopBB.
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start insertion in LoopBB.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  
 | 
						|
  // Within the loop, the variable is defined equal to the PHI node.  If it
 | 
						|
  // shadows an existing variable, we have to restore it, so save it now.
 | 
						|
  AllocaInst *OldVal = NamedValues[VarName];
 | 
						|
  NamedValues[VarName] = Alloca;
 | 
						|
  
 | 
						|
  // Emit the body of the loop.  This, like any other expr, can change the
 | 
						|
  // current BB.  Note that we ignore the value computed by the body, but don't
 | 
						|
  // allow an error.
 | 
						|
  if (Body->Codegen() == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Emit the step value.
 | 
						|
  Value *StepVal;
 | 
						|
  if (Step) {
 | 
						|
    StepVal = Step->Codegen();
 | 
						|
    if (StepVal == 0) return 0;
 | 
						|
  } else {
 | 
						|
    // If not specified, use 1.0.
 | 
						|
    StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Compute the end condition.
 | 
						|
  Value *EndCond = End->Codegen();
 | 
						|
  if (EndCond == 0) return EndCond;
 | 
						|
  
 | 
						|
  // Reload, increment, and restore the alloca.  This handles the case where
 | 
						|
  // the body of the loop mutates the variable.
 | 
						|
  Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 | 
						|
  Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
 | 
						|
  Builder.CreateStore(NextVar, Alloca);
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  EndCond = Builder.CreateFCmpONE(EndCond, 
 | 
						|
                                  ConstantFP::get(Type::DoubleTy, APFloat(0.0)),
 | 
						|
                                  "loopcond");
 | 
						|
  
 | 
						|
  // Create the "after loop" block and insert it.
 | 
						|
  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *AfterBB = BasicBlock::Create("afterloop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert the conditional branch into the end of LoopEndBB.
 | 
						|
  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | 
						|
  
 | 
						|
  // Any new code will be inserted in AfterBB.
 | 
						|
  Builder.SetInsertPoint(AfterBB);
 | 
						|
  
 | 
						|
  // Restore the unshadowed variable.
 | 
						|
  if (OldVal)
 | 
						|
    NamedValues[VarName] = OldVal;
 | 
						|
  else
 | 
						|
    NamedValues.erase(VarName);
 | 
						|
 | 
						|
  
 | 
						|
  // for expr always returns 0.0.
 | 
						|
  return Constant::getNullValue(Type::DoubleTy);
 | 
						|
}
 | 
						|
 | 
						|
Value *VarExprAST::Codegen() {
 | 
						|
  std::vector<AllocaInst *> OldBindings;
 | 
						|
  
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
 | 
						|
  // Register all variables and emit their initializer.
 | 
						|
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | 
						|
    const std::string &VarName = VarNames[i].first;
 | 
						|
    ExprAST *Init = VarNames[i].second;
 | 
						|
    
 | 
						|
    // Emit the initializer before adding the variable to scope, this prevents
 | 
						|
    // the initializer from referencing the variable itself, and permits stuff
 | 
						|
    // like this:
 | 
						|
    //  var a = 1 in
 | 
						|
    //    var a = a in ...   # refers to outer 'a'.
 | 
						|
    Value *InitVal;
 | 
						|
    if (Init) {
 | 
						|
      InitVal = Init->Codegen();
 | 
						|
      if (InitVal == 0) return 0;
 | 
						|
    } else { // If not specified, use 0.0.
 | 
						|
      InitVal = ConstantFP::get(Type::DoubleTy, APFloat(0.0));
 | 
						|
    }
 | 
						|
    
 | 
						|
    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | 
						|
    Builder.CreateStore(InitVal, Alloca);
 | 
						|
 | 
						|
    // Remember the old variable binding so that we can restore the binding when
 | 
						|
    // we unrecurse.
 | 
						|
    OldBindings.push_back(NamedValues[VarName]);
 | 
						|
    
 | 
						|
    // Remember this binding.
 | 
						|
    NamedValues[VarName] = Alloca;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Codegen the body, now that all vars are in scope.
 | 
						|
  Value *BodyVal = Body->Codegen();
 | 
						|
  if (BodyVal == 0) return 0;
 | 
						|
  
 | 
						|
  // Pop all our variables from scope.
 | 
						|
  for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | 
						|
    NamedValues[VarNames[i].first] = OldBindings[i];
 | 
						|
 | 
						|
  // Return the body computation.
 | 
						|
  return BodyVal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Function *PrototypeAST::Codegen() {
 | 
						|
  // Make the function type:  double(double,double) etc.
 | 
						|
  std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy);
 | 
						|
  FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false);
 | 
						|
  
 | 
						|
  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | 
						|
  
 | 
						|
  // If F conflicted, there was already something named 'Name'.  If it has a
 | 
						|
  // body, don't allow redefinition or reextern.
 | 
						|
  if (F->getName() != Name) {
 | 
						|
    // Delete the one we just made and get the existing one.
 | 
						|
    F->eraseFromParent();
 | 
						|
    F = TheModule->getFunction(Name);
 | 
						|
    
 | 
						|
    // If F already has a body, reject this.
 | 
						|
    if (!F->empty()) {
 | 
						|
      ErrorF("redefinition of function");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If F took a different number of args, reject.
 | 
						|
    if (F->arg_size() != Args.size()) {
 | 
						|
      ErrorF("redefinition of function with different # args");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Set names for all arguments.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | 
						|
       ++AI, ++Idx)
 | 
						|
    AI->setName(Args[Idx]);
 | 
						|
    
 | 
						|
  return F;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateArgumentAllocas - Create an alloca for each argument and register the
 | 
						|
/// argument in the symbol table so that references to it will succeed.
 | 
						|
void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | 
						|
  Function::arg_iterator AI = F->arg_begin();
 | 
						|
  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | 
						|
    // Create an alloca for this variable.
 | 
						|
    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | 
						|
 | 
						|
    // Store the initial value into the alloca.
 | 
						|
    Builder.CreateStore(AI, Alloca);
 | 
						|
 | 
						|
    // Add arguments to variable symbol table.
 | 
						|
    NamedValues[Args[Idx]] = Alloca;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Function *FunctionAST::Codegen() {
 | 
						|
  NamedValues.clear();
 | 
						|
  
 | 
						|
  Function *TheFunction = Proto->Codegen();
 | 
						|
  if (TheFunction == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // If this is an operator, install it.
 | 
						|
  if (Proto->isBinaryOp())
 | 
						|
    BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | 
						|
  
 | 
						|
  // Create a new basic block to start insertion into.
 | 
						|
  BasicBlock *BB = BasicBlock::Create("entry", TheFunction);
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  
 | 
						|
  // Add all arguments to the symbol table and create their allocas.
 | 
						|
  Proto->CreateArgumentAllocas(TheFunction);
 | 
						|
  
 | 
						|
  if (Value *RetVal = Body->Codegen()) {
 | 
						|
    // Finish off the function.
 | 
						|
    Builder.CreateRet(RetVal);
 | 
						|
 | 
						|
    // Validate the generated code, checking for consistency.
 | 
						|
    verifyFunction(*TheFunction);
 | 
						|
 | 
						|
    // Optimize the function.
 | 
						|
    TheFPM->run(*TheFunction);
 | 
						|
    
 | 
						|
    return TheFunction;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Error reading body, remove function.
 | 
						|
  TheFunction->eraseFromParent();
 | 
						|
 | 
						|
  if (Proto->isBinaryOp())
 | 
						|
    BinopPrecedence.erase(Proto->getOperatorName());
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top-Level parsing and JIT Driver
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static ExecutionEngine *TheExecutionEngine;
 | 
						|
 | 
						|
static void HandleDefinition() {
 | 
						|
  if (FunctionAST *F = ParseDefinition()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      fprintf(stderr, "Read function definition:");
 | 
						|
      LF->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleExtern() {
 | 
						|
  if (PrototypeAST *P = ParseExtern()) {
 | 
						|
    if (Function *F = P->Codegen()) {
 | 
						|
      fprintf(stderr, "Read extern: ");
 | 
						|
      F->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleTopLevelExpression() {
 | 
						|
  // Evaluate a top level expression into an anonymous function.
 | 
						|
  if (FunctionAST *F = ParseTopLevelExpr()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      // JIT the function, returning a function pointer.
 | 
						|
      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | 
						|
      
 | 
						|
      // Cast it to the right type (takes no arguments, returns a double) so we
 | 
						|
      // can call it as a native function.
 | 
						|
      double (*FP)() = (double (*)())FPtr;
 | 
						|
      fprintf(stderr, "Evaluated to %f\n", FP());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// top ::= definition | external | expression | ';'
 | 
						|
static void MainLoop() {
 | 
						|
  while (1) {
 | 
						|
    fprintf(stderr, "ready> ");
 | 
						|
    switch (CurTok) {
 | 
						|
    case tok_eof:    return;
 | 
						|
    case ';':        getNextToken(); break;  // ignore top level semicolons.
 | 
						|
    case tok_def:    HandleDefinition(); break;
 | 
						|
    case tok_extern: HandleExtern(); break;
 | 
						|
    default:         HandleTopLevelExpression(); break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Library" functions that can be "extern'd" from user code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// putchard - putchar that takes a double and returns 0.
 | 
						|
extern "C" 
 | 
						|
double putchard(double X) {
 | 
						|
  putchar((char)X);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// printd - printf that takes a double prints it as "%f\n", returning 0.
 | 
						|
extern "C" 
 | 
						|
double printd(double X) {
 | 
						|
  printf("%f\n", X);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Main driver code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
int main() {
 | 
						|
  // Install standard binary operators.
 | 
						|
  // 1 is lowest precedence.
 | 
						|
  BinopPrecedence['='] = 2;
 | 
						|
  BinopPrecedence['<'] = 10;
 | 
						|
  BinopPrecedence['+'] = 20;
 | 
						|
  BinopPrecedence['-'] = 20;
 | 
						|
  BinopPrecedence['*'] = 40;  // highest.
 | 
						|
 | 
						|
  // Prime the first token.
 | 
						|
  fprintf(stderr, "ready> ");
 | 
						|
  getNextToken();
 | 
						|
 | 
						|
  // Make the module, which holds all the code.
 | 
						|
  TheModule = new Module("my cool jit");
 | 
						|
  
 | 
						|
  // Create the JIT.
 | 
						|
  TheExecutionEngine = ExecutionEngine::create(TheModule);
 | 
						|
 | 
						|
  {
 | 
						|
    ExistingModuleProvider OurModuleProvider(TheModule);
 | 
						|
    FunctionPassManager OurFPM(&OurModuleProvider);
 | 
						|
      
 | 
						|
    // Set up the optimizer pipeline.  Start with registering info about how the
 | 
						|
    // target lays out data structures.
 | 
						|
    OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | 
						|
    // Promote allocas to registers.
 | 
						|
    OurFPM.add(createPromoteMemoryToRegisterPass());
 | 
						|
    // Do simple "peephole" optimizations and bit-twiddling optzns.
 | 
						|
    OurFPM.add(createInstructionCombiningPass());
 | 
						|
    // Reassociate expressions.
 | 
						|
    OurFPM.add(createReassociatePass());
 | 
						|
    // Eliminate Common SubExpressions.
 | 
						|
    OurFPM.add(createGVNPass());
 | 
						|
    // Simplify the control flow graph (deleting unreachable blocks, etc).
 | 
						|
    OurFPM.add(createCFGSimplificationPass());
 | 
						|
 | 
						|
    // Set the global so the code gen can use this.
 | 
						|
    TheFPM = &OurFPM;
 | 
						|
 | 
						|
    // Run the main "interpreter loop" now.
 | 
						|
    MainLoop();
 | 
						|
    
 | 
						|
    TheFPM = 0;
 | 
						|
    
 | 
						|
    // Print out all of the generated code.
 | 
						|
    TheModule->dump();
 | 
						|
    
 | 
						|
  }  // Free module provider (and thus the module) and pass manager.
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<hr>
 | 
						|
<address>
 | 
						|
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | 
						|
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | 
						|
  <a href="http://validator.w3.org/check/referer"><img
 | 
						|
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | 
						|
 | 
						|
  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | 
						|
  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | 
						|
  Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | 
						|
</address>
 | 
						|
</body>
 | 
						|
</html>
 |