mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	When a large live range is evicted, it will usually be split when it comes around again. By deferring evicted live ranges, the splitting happens at a time when the interference pattern is more realistic. This prevents repeated splitting and evictions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126282 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1370 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1370 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the RAGreedy function pass for register allocation in
 | |
| // optimized builds.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "AllocationOrder.h"
 | |
| #include "LiveIntervalUnion.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "RegAllocBase.h"
 | |
| #include "Spiller.h"
 | |
| #include "SpillPlacement.h"
 | |
| #include "SplitKit.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/PassAnalysisSupport.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/EdgeBundles.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineLoopRanges.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/RegisterCoalescer.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| 
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumGlobalSplits, "Number of split global live ranges");
 | |
| STATISTIC(NumLocalSplits,  "Number of split local live ranges");
 | |
| STATISTIC(NumReassigned,   "Number of interferences reassigned");
 | |
| STATISTIC(NumEvicted,      "Number of interferences evicted");
 | |
| 
 | |
| static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
 | |
|                                        createGreedyRegisterAllocator);
 | |
| 
 | |
| namespace {
 | |
| class RAGreedy : public MachineFunctionPass, public RegAllocBase {
 | |
|   // context
 | |
|   MachineFunction *MF;
 | |
|   BitVector ReservedRegs;
 | |
| 
 | |
|   // analyses
 | |
|   SlotIndexes *Indexes;
 | |
|   LiveStacks *LS;
 | |
|   MachineDominatorTree *DomTree;
 | |
|   MachineLoopInfo *Loops;
 | |
|   MachineLoopRanges *LoopRanges;
 | |
|   EdgeBundles *Bundles;
 | |
|   SpillPlacement *SpillPlacer;
 | |
| 
 | |
|   // state
 | |
|   std::auto_ptr<Spiller> SpillerInstance;
 | |
|   std::auto_ptr<SplitAnalysis> SA;
 | |
|   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
 | |
|   IndexedMap<unsigned, VirtReg2IndexFunctor> Generation;
 | |
| 
 | |
|   // splitting state.
 | |
| 
 | |
|   /// All basic blocks where the current register is live.
 | |
|   SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints;
 | |
| 
 | |
|   /// For every instruction in SA->UseSlots, store the previous non-copy
 | |
|   /// instruction.
 | |
|   SmallVector<SlotIndex, 8> PrevSlot;
 | |
| 
 | |
| public:
 | |
|   RAGreedy();
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   virtual const char* getPassName() const {
 | |
|     return "Greedy Register Allocator";
 | |
|   }
 | |
| 
 | |
|   /// RAGreedy analysis usage.
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|   virtual void releaseMemory();
 | |
|   virtual Spiller &spiller() { return *SpillerInstance; }
 | |
|   virtual void enqueue(LiveInterval *LI);
 | |
|   virtual LiveInterval *dequeue();
 | |
|   virtual unsigned selectOrSplit(LiveInterval&,
 | |
|                                  SmallVectorImpl<LiveInterval*>&);
 | |
| 
 | |
|   /// Perform register allocation.
 | |
|   virtual bool runOnMachineFunction(MachineFunction &mf);
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   bool checkUncachedInterference(LiveInterval&, unsigned);
 | |
|   LiveInterval *getSingleInterference(LiveInterval&, unsigned);
 | |
|   bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
 | |
|   float calcInterferenceWeight(LiveInterval&, unsigned);
 | |
|   float calcInterferenceInfo(LiveInterval&, unsigned);
 | |
|   float calcGlobalSplitCost(const BitVector&);
 | |
|   void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
 | |
|                          SmallVectorImpl<LiveInterval*>&);
 | |
|   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
 | |
|   SlotIndex getPrevMappedIndex(const MachineInstr*);
 | |
|   void calcPrevSlots();
 | |
|   unsigned nextSplitPoint(unsigned);
 | |
|   bool canEvictInterference(LiveInterval&, unsigned, unsigned, float&);
 | |
| 
 | |
|   unsigned tryReassign(LiveInterval&, AllocationOrder&,
 | |
|                               SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned tryEvict(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
 | |
|                           SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
 | |
|     SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned trySplit(LiveInterval&, AllocationOrder&,
 | |
|                     SmallVectorImpl<LiveInterval*>&);
 | |
|   unsigned trySpillInterferences(LiveInterval&, AllocationOrder&,
 | |
|                                  SmallVectorImpl<LiveInterval*>&);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char RAGreedy::ID = 0;
 | |
| 
 | |
| FunctionPass* llvm::createGreedyRegisterAllocator() {
 | |
|   return new RAGreedy();
 | |
| }
 | |
| 
 | |
| RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
 | |
|   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   if (StrongPHIElim)
 | |
|     AU.addRequiredID(StrongPHIEliminationID);
 | |
|   AU.addRequiredTransitive<RegisterCoalescer>();
 | |
|   AU.addRequired<CalculateSpillWeights>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addRequired<MachineLoopRanges>();
 | |
|   AU.addPreserved<MachineLoopRanges>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
|   AU.addPreserved<VirtRegMap>();
 | |
|   AU.addRequired<EdgeBundles>();
 | |
|   AU.addRequired<SpillPlacement>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void RAGreedy::releaseMemory() {
 | |
|   SpillerInstance.reset(0);
 | |
|   Generation.clear();
 | |
|   RegAllocBase::releaseMemory();
 | |
| }
 | |
| 
 | |
| void RAGreedy::enqueue(LiveInterval *LI) {
 | |
|   // Prioritize live ranges by size, assigning larger ranges first.
 | |
|   // The queue holds (size, reg) pairs.
 | |
|   unsigned Size = LI->getSize();
 | |
|   unsigned Reg = LI->reg;
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|          "Can only enqueue virtual registers");
 | |
| 
 | |
|   // Boost ranges that have a physical register hint.
 | |
|   unsigned Hint = VRM->getRegAllocPref(Reg);
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Hint))
 | |
|     Size |= (1u << 30);
 | |
| 
 | |
|   // Boost ranges that we see for the first time.
 | |
|   Generation.grow(Reg);
 | |
|   if (++Generation[Reg] == 1)
 | |
|     Size |= (1u << 31);
 | |
| 
 | |
|   Queue.push(std::make_pair(Size, Reg));
 | |
| }
 | |
| 
 | |
| LiveInterval *RAGreedy::dequeue() {
 | |
|   if (Queue.empty())
 | |
|     return 0;
 | |
|   LiveInterval *LI = &LIS->getInterval(Queue.top().second);
 | |
|   Queue.pop();
 | |
|   return LI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Register Reassignment
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Check interference without using the cache.
 | |
| bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
 | |
|                                          unsigned PhysReg) {
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
 | |
|     if (subQ.checkInterference())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getSingleInterference - Return the single interfering virtual register
 | |
| /// assigned to PhysReg. Return 0 if more than one virtual register is
 | |
| /// interfering.
 | |
| LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
 | |
|                                               unsigned PhysReg) {
 | |
|   // Check physreg and aliases.
 | |
|   LiveInterval *Interference = 0;
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | |
|     if (Q.checkInterference()) {
 | |
|       if (Interference)
 | |
|         return 0;
 | |
|       if (Q.collectInterferingVRegs(2) > 1)
 | |
|         return 0;
 | |
|       Interference = Q.interferingVRegs().front();
 | |
|     }
 | |
|   }
 | |
|   return Interference;
 | |
| }
 | |
| 
 | |
| // Attempt to reassign this virtual register to a different physical register.
 | |
| //
 | |
| // FIXME: we are not yet caching these "second-level" interferences discovered
 | |
| // in the sub-queries. These interferences can change with each call to
 | |
| // selectOrSplit. However, we could implement a "may-interfere" cache that
 | |
| // could be conservatively dirtied when we reassign or split.
 | |
| //
 | |
| // FIXME: This may result in a lot of alias queries. We could summarize alias
 | |
| // live intervals in their parent register's live union, but it's messy.
 | |
| bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
 | |
|                             unsigned WantedPhysReg) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
 | |
|          "Can only reassign virtual registers");
 | |
|   assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
 | |
|          "inconsistent phys reg assigment");
 | |
| 
 | |
|   AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     // Don't reassign to a WantedPhysReg alias.
 | |
|     if (TRI->regsOverlap(PhysReg, WantedPhysReg))
 | |
|       continue;
 | |
| 
 | |
|     if (checkUncachedInterference(InterferingVReg, PhysReg))
 | |
|       continue;
 | |
| 
 | |
|     // Reassign the interfering virtual reg to this physical reg.
 | |
|     unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
 | |
|     DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
 | |
|           TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
 | |
|     unassign(InterferingVReg, OldAssign);
 | |
|     assign(InterferingVReg, PhysReg);
 | |
|     ++NumReassigned;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// tryReassign - Try to reassign a single interference to a different physreg.
 | |
| /// @param  VirtReg Currently unassigned virtual register.
 | |
| /// @param  Order   Physregs to try.
 | |
| /// @return         Physreg to assign VirtReg, or 0.
 | |
| unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                SmallVectorImpl<LiveInterval*> &NewVRegs){
 | |
|   NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
 | |
|     if (!InterferingVReg)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
 | |
|       continue;
 | |
|     if (reassignVReg(*InterferingVReg, PhysReg))
 | |
|       return PhysReg;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Interference eviction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// canEvict - Return true if all interferences between VirtReg and PhysReg can
 | |
| /// be evicted. Set maxWeight to the maximal spill weight of an interference.
 | |
| bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                     unsigned Size, float &MaxWeight) {
 | |
|   float Weight = 0;
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | |
|     // If there is 10 or more interferences, chances are one is smaller.
 | |
|     if (Q.collectInterferingVRegs(10) >= 10)
 | |
|       return false;
 | |
| 
 | |
|     // CHeck if any interfering live range is shorter than VirtReg.
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i];
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
 | |
|         return false;
 | |
|       if (Intf->getSize() <= Size)
 | |
|         return false;
 | |
|       Weight = std::max(Weight, Intf->weight);
 | |
|     }
 | |
|   }
 | |
|   MaxWeight = Weight;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// tryEvict - Try to evict all interferences for a physreg.
 | |
| /// @param  VirtReg Currently unassigned virtual register.
 | |
| /// @param  Order   Physregs to try.
 | |
| /// @return         Physreg to assign VirtReg, or 0.
 | |
| unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
 | |
|                             AllocationOrder &Order,
 | |
|                             SmallVectorImpl<LiveInterval*> &NewVRegs){
 | |
|   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   // We can only evict interference if all interfering registers are virtual and
 | |
|   // longer than VirtReg.
 | |
|   const unsigned Size = VirtReg.getSize();
 | |
| 
 | |
|   // Keep track of the lightest single interference seen so far.
 | |
|   float BestWeight = 0;
 | |
|   unsigned BestPhys = 0;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     float Weight = 0;
 | |
|     if (!canEvictInterference(VirtReg, PhysReg, Size, Weight))
 | |
|       continue;
 | |
| 
 | |
|     // This is an eviction candidate.
 | |
|     DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
 | |
|                  << Weight << '\n');
 | |
|     if (BestPhys && Weight >= BestWeight)
 | |
|       continue;
 | |
| 
 | |
|     // Best so far.
 | |
|     BestPhys = PhysReg;
 | |
|     BestWeight = Weight;
 | |
|   }
 | |
| 
 | |
|   if (!BestPhys)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
 | |
|     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | |
|       LiveInterval *Intf = Q.interferingVRegs()[i];
 | |
|       unassign(*Intf, VRM->getPhys(Intf->reg));
 | |
|       ++NumEvicted;
 | |
|       NewVRegs.push_back(Intf);
 | |
|     }
 | |
|   }
 | |
|   return BestPhys;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Region Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints
 | |
| /// when considering interference from PhysReg. Also compute an optimistic local
 | |
| /// cost of this interference pattern.
 | |
| ///
 | |
| /// The final cost of a split is the local cost + global cost of preferences
 | |
| /// broken by SpillPlacement.
 | |
| ///
 | |
| float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) {
 | |
|   // Reset interference dependent info.
 | |
|   SpillConstraints.resize(SA->LiveBlocks.size());
 | |
|   for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|     SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|     SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | |
|     BC.Number = BI.MBB->getNumber();
 | |
|     BC.Entry = (BI.Uses && BI.LiveIn) ?
 | |
|       SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
|     BC.Exit = (BI.Uses && BI.LiveOut) ?
 | |
|       SpillPlacement::PrefReg : SpillPlacement::DontCare;
 | |
|     BI.OverlapEntry = BI.OverlapExit = false;
 | |
|   }
 | |
| 
 | |
|   // Add interference info from each PhysReg alias.
 | |
|   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | |
|     if (!query(VirtReg, *AI).checkInterference())
 | |
|       continue;
 | |
|     LiveIntervalUnion::SegmentIter IntI =
 | |
|       PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
 | |
|     if (!IntI.valid())
 | |
|       continue;
 | |
| 
 | |
|     // Determine which blocks have interference live in or after the last split
 | |
|     // point.
 | |
|     for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|       SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|       SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | |
|       SlotIndex Start, Stop;
 | |
|       tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
| 
 | |
|       // Skip interference-free blocks.
 | |
|       if (IntI.start() >= Stop)
 | |
|         continue;
 | |
| 
 | |
|       // Is the interference live-in?
 | |
|       if (BI.LiveIn) {
 | |
|         IntI.advanceTo(Start);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         if (IntI.start() <= Start)
 | |
|           BC.Entry = SpillPlacement::MustSpill;
 | |
|       }
 | |
| 
 | |
|       // Is the interference overlapping the last split point?
 | |
|       if (BI.LiveOut) {
 | |
|         if (IntI.stop() < BI.LastSplitPoint)
 | |
|           IntI.advanceTo(BI.LastSplitPoint.getPrevSlot());
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         if (IntI.start() < Stop)
 | |
|           BC.Exit = SpillPlacement::MustSpill;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Rewind iterator and check other interferences.
 | |
|     IntI.find(VirtReg.beginIndex());
 | |
|     for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|       SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|       SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | |
|       SlotIndex Start, Stop;
 | |
|       tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
| 
 | |
|       // Skip interference-free blocks.
 | |
|       if (IntI.start() >= Stop)
 | |
|         continue;
 | |
| 
 | |
|       // Handle transparent blocks with interference separately.
 | |
|       // Transparent blocks never incur any fixed cost.
 | |
|       if (BI.LiveThrough && !BI.Uses) {
 | |
|         IntI.advanceTo(Start);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         if (IntI.start() >= Stop)
 | |
|           continue;
 | |
| 
 | |
|         if (BC.Entry != SpillPlacement::MustSpill)
 | |
|           BC.Entry = SpillPlacement::PrefSpill;
 | |
|         if (BC.Exit != SpillPlacement::MustSpill)
 | |
|           BC.Exit = SpillPlacement::PrefSpill;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Now we only have blocks with uses left.
 | |
|       // Check if the interference overlaps the uses.
 | |
|       assert(BI.Uses && "Non-transparent block without any uses");
 | |
| 
 | |
|       // Check interference on entry.
 | |
|       if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) {
 | |
|         IntI.advanceTo(Start);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         // Not live in, but before the first use.
 | |
|         if (IntI.start() < BI.FirstUse) {
 | |
|           BC.Entry = SpillPlacement::PrefSpill;
 | |
|           // If the block contains a kill from an earlier split, never split
 | |
|           // again in the same block.
 | |
|           if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Kill))
 | |
|             BC.Entry = SpillPlacement::MustSpill;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Does interference overlap the uses in the entry segment
 | |
|       // [FirstUse;Kill)?
 | |
|       if (BI.LiveIn && !BI.OverlapEntry) {
 | |
|         IntI.advanceTo(BI.FirstUse);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         // A live-through interval has no kill.
 | |
|         // Check [FirstUse;LastUse) instead.
 | |
|         if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
 | |
|           BI.OverlapEntry = true;
 | |
|       }
 | |
| 
 | |
|       // Does interference overlap the uses in the exit segment [Def;LastUse)?
 | |
|       if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) {
 | |
|         IntI.advanceTo(BI.Def);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         if (IntI.start() < BI.LastUse)
 | |
|           BI.OverlapExit = true;
 | |
|       }
 | |
| 
 | |
|       // Check interference on exit.
 | |
|       if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) {
 | |
|         // Check interference between LastUse and Stop.
 | |
|         if (BC.Exit != SpillPlacement::PrefSpill) {
 | |
|           IntI.advanceTo(BI.LastUse);
 | |
|           if (!IntI.valid())
 | |
|             break;
 | |
|           if (IntI.start() < Stop) {
 | |
|             BC.Exit = SpillPlacement::PrefSpill;
 | |
|             // Avoid splitting twice in the same block.
 | |
|             if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Def))
 | |
|               BC.Exit = SpillPlacement::MustSpill;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Accumulate a local cost of this interference pattern.
 | |
|   float LocalCost = 0;
 | |
|   for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|     SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|     if (!BI.Uses)
 | |
|       continue;
 | |
|     SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | |
|     unsigned Inserts = 0;
 | |
| 
 | |
|     // Do we need spill code for the entry segment?
 | |
|     if (BI.LiveIn)
 | |
|       Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg;
 | |
| 
 | |
|     // For the exit segment?
 | |
|     if (BI.LiveOut)
 | |
|       Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg;
 | |
| 
 | |
|     // The local cost of spill code in this block is the block frequency times
 | |
|     // the number of spill instructions inserted.
 | |
|     if (Inserts)
 | |
|       LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB);
 | |
|   }
 | |
|   DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = "
 | |
|                << LocalCost << '\n');
 | |
|   return LocalCost;
 | |
| }
 | |
| 
 | |
| /// calcGlobalSplitCost - Return the global split cost of following the split
 | |
| /// pattern in LiveBundles. This cost should be added to the local cost of the
 | |
| /// interference pattern in SpillConstraints.
 | |
| ///
 | |
| float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
 | |
|   float GlobalCost = 0;
 | |
|   for (unsigned i = 0, e = SpillConstraints.size(); i != e; ++i) {
 | |
|     SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
 | |
|     unsigned Inserts = 0;
 | |
|     // Broken entry preference?
 | |
|     Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] !=
 | |
|                  (BC.Entry == SpillPlacement::PrefReg);
 | |
|     // Broken exit preference?
 | |
|     Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] !=
 | |
|                  (BC.Exit == SpillPlacement::PrefReg);
 | |
|     if (Inserts)
 | |
|       GlobalCost +=
 | |
|         Inserts * SpillPlacer->getBlockFrequency(SA->LiveBlocks[i].MBB);
 | |
|   }
 | |
|   DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n');
 | |
|   return GlobalCost;
 | |
| }
 | |
| 
 | |
| /// splitAroundRegion - Split VirtReg around the region determined by
 | |
| /// LiveBundles. Make an effort to avoid interference from PhysReg.
 | |
| ///
 | |
| /// The 'register' interval is going to contain as many uses as possible while
 | |
| /// avoiding interference. The 'stack' interval is the complement constructed by
 | |
| /// SplitEditor. It will contain the rest.
 | |
| ///
 | |
| void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                  const BitVector &LiveBundles,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   DEBUG({
 | |
|     dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
 | |
|            << " with bundles";
 | |
|     for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
 | |
|       dbgs() << " EB#" << i;
 | |
|     dbgs() << ".\n";
 | |
|   });
 | |
| 
 | |
|   // First compute interference ranges in the live blocks.
 | |
|   typedef std::pair<SlotIndex, SlotIndex> IndexPair;
 | |
|   SmallVector<IndexPair, 8> InterferenceRanges;
 | |
|   InterferenceRanges.resize(SA->LiveBlocks.size());
 | |
|   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | |
|     if (!query(VirtReg, *AI).checkInterference())
 | |
|       continue;
 | |
|     LiveIntervalUnion::SegmentIter IntI =
 | |
|       PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
 | |
|     if (!IntI.valid())
 | |
|       continue;
 | |
|     for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|       const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|       IndexPair &IP = InterferenceRanges[i];
 | |
|       SlotIndex Start, Stop;
 | |
|       tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
|       // Skip interference-free blocks.
 | |
|       if (IntI.start() >= Stop)
 | |
|         continue;
 | |
| 
 | |
|       // First interference in block.
 | |
|       if (BI.LiveIn) {
 | |
|         IntI.advanceTo(Start);
 | |
|         if (!IntI.valid())
 | |
|           break;
 | |
|         if (IntI.start() >= Stop)
 | |
|           continue;
 | |
|         if (!IP.first.isValid() || IntI.start() < IP.first)
 | |
|           IP.first = IntI.start();
 | |
|       }
 | |
| 
 | |
|       // Last interference in block.
 | |
|       if (BI.LiveOut) {
 | |
|         IntI.advanceTo(Stop);
 | |
|         if (!IntI.valid() || IntI.start() >= Stop)
 | |
|           --IntI;
 | |
|         if (IntI.stop() <= Start)
 | |
|           continue;
 | |
|         if (!IP.second.isValid() || IntI.stop() > IP.second)
 | |
|           IP.second = IntI.stop();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<LiveInterval*, 4> SpillRegs;
 | |
|   LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | |
|   SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
 | |
| 
 | |
|   // Create the main cross-block interval.
 | |
|   SE.openIntv();
 | |
| 
 | |
|   // First add all defs that are live out of a block.
 | |
|   for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|     SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | |
| 
 | |
|     // Should the register be live out?
 | |
|     if (!BI.LiveOut || !RegOut)
 | |
|       continue;
 | |
| 
 | |
|     IndexPair &IP = InterferenceRanges[i];
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
| 
 | |
|     DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
 | |
|                  << Bundles->getBundle(BI.MBB->getNumber(), 1)
 | |
|                  << " intf [" << IP.first << ';' << IP.second << ')');
 | |
| 
 | |
|     // The interference interval should either be invalid or overlap MBB.
 | |
|     assert((!IP.first.isValid() || IP.first < Stop) && "Bad interference");
 | |
|     assert((!IP.second.isValid() || IP.second > Start) && "Bad interference");
 | |
| 
 | |
|     // Check interference leaving the block.
 | |
|     if (!IP.second.isValid()) {
 | |
|       // Block is interference-free.
 | |
|       DEBUG(dbgs() << ", no interference");
 | |
|       if (!BI.Uses) {
 | |
|         assert(BI.LiveThrough && "No uses, but not live through block?");
 | |
|         // Block is live-through without interference.
 | |
|         DEBUG(dbgs() << ", no uses"
 | |
|                      << (RegIn ? ", live-through.\n" : ", stack in.\n"));
 | |
|         if (!RegIn)
 | |
|           SE.enterIntvAtEnd(*BI.MBB);
 | |
|         continue;
 | |
|       }
 | |
|       if (!BI.LiveThrough) {
 | |
|         DEBUG(dbgs() << ", not live-through.\n");
 | |
|         SE.useIntv(SE.enterIntvBefore(BI.Def), Stop);
 | |
|         continue;
 | |
|       }
 | |
|       if (!RegIn) {
 | |
|         // Block is live-through, but entry bundle is on the stack.
 | |
|         // Reload just before the first use.
 | |
|         DEBUG(dbgs() << ", not live-in, enter before first use.\n");
 | |
|         SE.useIntv(SE.enterIntvBefore(BI.FirstUse), Stop);
 | |
|         continue;
 | |
|       }
 | |
|       DEBUG(dbgs() << ", live-through.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Block has interference.
 | |
|     DEBUG(dbgs() << ", interference to " << IP.second);
 | |
| 
 | |
|     if (!BI.LiveThrough && IP.second <= BI.Def) {
 | |
|       // The interference doesn't reach the outgoing segment.
 | |
|       DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
 | |
|       SE.useIntv(BI.Def, Stop);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if (!BI.Uses) {
 | |
|       // No uses in block, avoid interference by reloading as late as possible.
 | |
|       DEBUG(dbgs() << ", no uses.\n");
 | |
|       SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB);
 | |
|       assert(SegStart >= IP.second && "Couldn't avoid interference");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (IP.second.getBoundaryIndex() < BI.LastUse) {
 | |
|       // There are interference-free uses at the end of the block.
 | |
|       // Find the first use that can get the live-out register.
 | |
|       SmallVectorImpl<SlotIndex>::const_iterator UI =
 | |
|         std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | |
|                          IP.second.getBoundaryIndex());
 | |
|       assert(UI != SA->UseSlots.end() && "Couldn't find last use");
 | |
|       SlotIndex Use = *UI;
 | |
|       assert(Use <= BI.LastUse && "Couldn't find last use");
 | |
|       // Only attempt a split befroe the last split point.
 | |
|       if (Use.getBaseIndex() <= BI.LastSplitPoint) {
 | |
|         DEBUG(dbgs() << ", free use at " << Use << ".\n");
 | |
|         SlotIndex SegStart = SE.enterIntvBefore(Use);
 | |
|         assert(SegStart >= IP.second && "Couldn't avoid interference");
 | |
|         assert(SegStart < BI.LastSplitPoint && "Impossible split point");
 | |
|         SE.useIntv(SegStart, Stop);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Interference is after the last use.
 | |
|     DEBUG(dbgs() << " after last use.\n");
 | |
|     SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB);
 | |
|     assert(SegStart >= IP.second && "Couldn't avoid interference");
 | |
|   }
 | |
| 
 | |
|   // Now all defs leading to live bundles are handled, do everything else.
 | |
|   for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
 | |
|     SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
 | |
|     bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
 | |
|     bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
 | |
| 
 | |
|     // Is the register live-in?
 | |
|     if (!BI.LiveIn || !RegIn)
 | |
|       continue;
 | |
| 
 | |
|     // We have an incoming register. Check for interference.
 | |
|     IndexPair &IP = InterferenceRanges[i];
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
 | |
| 
 | |
|     DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
 | |
|                  << " -> BB#" << BI.MBB->getNumber());
 | |
| 
 | |
|     // Check interference entering the block.
 | |
|     if (!IP.first.isValid()) {
 | |
|       // Block is interference-free.
 | |
|       DEBUG(dbgs() << ", no interference");
 | |
|       if (!BI.Uses) {
 | |
|         assert(BI.LiveThrough && "No uses, but not live through block?");
 | |
|         // Block is live-through without interference.
 | |
|         if (RegOut) {
 | |
|           DEBUG(dbgs() << ", no uses, live-through.\n");
 | |
|           SE.useIntv(Start, Stop);
 | |
|         } else {
 | |
|           DEBUG(dbgs() << ", no uses, stack-out.\n");
 | |
|           SE.leaveIntvAtTop(*BI.MBB);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       if (!BI.LiveThrough) {
 | |
|         DEBUG(dbgs() << ", killed in block.\n");
 | |
|         SE.useIntv(Start, SE.leaveIntvAfter(BI.Kill));
 | |
|         continue;
 | |
|       }
 | |
|       if (!RegOut) {
 | |
|         // Block is live-through, but exit bundle is on the stack.
 | |
|         // Spill immediately after the last use.
 | |
|         if (BI.LastUse < BI.LastSplitPoint) {
 | |
|           DEBUG(dbgs() << ", uses, stack-out.\n");
 | |
|           SE.useIntv(Start, SE.leaveIntvAfter(BI.LastUse));
 | |
|           continue;
 | |
|         }
 | |
|         // The last use is after the last split point, it is probably an
 | |
|         // indirect jump.
 | |
|         DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
 | |
|                      << BI.LastSplitPoint << ", stack-out.\n");
 | |
|         SlotIndex SegEnd = SE.leaveIntvBefore(BI.LastSplitPoint);
 | |
|         SE.useIntv(Start, SegEnd);
 | |
|         // Run a double interval from the split to the last use.
 | |
|         // This makes it possible to spill the complement without affecting the
 | |
|         // indirect branch.
 | |
|         SE.overlapIntv(SegEnd, BI.LastUse);
 | |
|         continue;
 | |
|       }
 | |
|       // Register is live-through.
 | |
|       DEBUG(dbgs() << ", uses, live-through.\n");
 | |
|       SE.useIntv(Start, Stop);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Block has interference.
 | |
|     DEBUG(dbgs() << ", interference from " << IP.first);
 | |
| 
 | |
|     if (!BI.LiveThrough && IP.first >= BI.Kill) {
 | |
|       // The interference doesn't reach the outgoing segment.
 | |
|       DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
 | |
|       SE.useIntv(Start, BI.Kill);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (!BI.Uses) {
 | |
|       // No uses in block, avoid interference by spilling as soon as possible.
 | |
|       DEBUG(dbgs() << ", no uses.\n");
 | |
|       SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB);
 | |
|       assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | |
|       continue;
 | |
|     }
 | |
|     if (IP.first.getBaseIndex() > BI.FirstUse) {
 | |
|       // There are interference-free uses at the beginning of the block.
 | |
|       // Find the last use that can get the register.
 | |
|       SmallVectorImpl<SlotIndex>::const_iterator UI =
 | |
|         std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
 | |
|                          IP.first.getBaseIndex());
 | |
|       assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
 | |
|       SlotIndex Use = (--UI)->getBoundaryIndex();
 | |
|       DEBUG(dbgs() << ", free use at " << *UI << ".\n");
 | |
|       SlotIndex SegEnd = SE.leaveIntvAfter(Use);
 | |
|       assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | |
|       SE.useIntv(Start, SegEnd);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Interference is before the first use.
 | |
|     DEBUG(dbgs() << " before first use.\n");
 | |
|     SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB);
 | |
|     assert(SegEnd <= IP.first && "Couldn't avoid interference");
 | |
|   }
 | |
| 
 | |
|   SE.closeIntv();
 | |
| 
 | |
|   // FIXME: Should we be more aggressive about splitting the stack region into
 | |
|   // per-block segments? The current approach allows the stack region to
 | |
|   // separate into connected components. Some components may be allocatable.
 | |
|   SE.finish();
 | |
|   ++NumGlobalSplits;
 | |
| 
 | |
|   if (VerifyEnabled) {
 | |
|     MF->verify(this, "After splitting live range around region");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // Make sure that at least one of the new intervals can allocate to PhysReg.
 | |
|     // That was the whole point of splitting the live range.
 | |
|     bool found = false;
 | |
|     for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E;
 | |
|          ++I)
 | |
|       if (!checkUncachedInterference(**I, PhysReg)) {
 | |
|         found = true;
 | |
|         break;
 | |
|       }
 | |
|     assert(found && "No allocatable intervals after pointless splitting");
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   BitVector LiveBundles, BestBundles;
 | |
|   float BestCost = 0;
 | |
|   unsigned BestReg = 0;
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     float Cost = calcInterferenceInfo(VirtReg, PhysReg);
 | |
|     if (BestReg && Cost >= BestCost)
 | |
|       continue;
 | |
| 
 | |
|     SpillPlacer->placeSpills(SpillConstraints, LiveBundles);
 | |
|     // No live bundles, defer to splitSingleBlocks().
 | |
|     if (!LiveBundles.any())
 | |
|       continue;
 | |
| 
 | |
|     Cost += calcGlobalSplitCost(LiveBundles);
 | |
|     if (!BestReg || Cost < BestCost) {
 | |
|       BestReg = PhysReg;
 | |
|       BestCost = Cost;
 | |
|       BestBundles.swap(LiveBundles);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BestReg)
 | |
|     return 0;
 | |
| 
 | |
|   splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Local Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
 | |
| /// in order to use PhysReg between two entries in SA->UseSlots.
 | |
| ///
 | |
| /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
 | |
| ///
 | |
| void RAGreedy::calcGapWeights(unsigned PhysReg,
 | |
|                               SmallVectorImpl<float> &GapWeight) {
 | |
|   assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   // Start and end points for the interference check.
 | |
|   SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
 | |
|   SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
 | |
| 
 | |
|   GapWeight.assign(NumGaps, 0.0f);
 | |
| 
 | |
|   // Add interference from each overlapping register.
 | |
|   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | |
|     if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
 | |
|            .checkInterference())
 | |
|       continue;
 | |
| 
 | |
|     // We know that VirtReg is a continuous interval from FirstUse to LastUse,
 | |
|     // so we don't need InterferenceQuery.
 | |
|     //
 | |
|     // Interference that overlaps an instruction is counted in both gaps
 | |
|     // surrounding the instruction. The exception is interference before
 | |
|     // StartIdx and after StopIdx.
 | |
|     //
 | |
|     LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
 | |
|     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
 | |
|       // Skip the gaps before IntI.
 | |
|       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
 | |
|         if (++Gap == NumGaps)
 | |
|           break;
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
| 
 | |
|       // Update the gaps covered by IntI.
 | |
|       const float weight = IntI.value()->weight;
 | |
|       for (; Gap != NumGaps; ++Gap) {
 | |
|         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
 | |
|         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
 | |
|           break;
 | |
|       }
 | |
|       if (Gap == NumGaps)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPrevMappedIndex - Return the slot index of the last non-copy instruction
 | |
| /// before MI that has a slot index. If MI is the first mapped instruction in
 | |
| /// its block, return the block start index instead.
 | |
| ///
 | |
| SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) {
 | |
|   assert(MI && "Missing MachineInstr");
 | |
|   const MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineBasicBlock::const_iterator B = MBB->begin(), I = MI;
 | |
|   while (I != B)
 | |
|     if (!(--I)->isDebugValue() && !I->isCopy())
 | |
|       return Indexes->getInstructionIndex(I);
 | |
|   return Indexes->getMBBStartIdx(MBB);
 | |
| }
 | |
| 
 | |
| /// calcPrevSlots - Fill in the PrevSlot array with the index of the previous
 | |
| /// real non-copy instruction for each instruction in SA->UseSlots.
 | |
| ///
 | |
| void RAGreedy::calcPrevSlots() {
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   PrevSlot.clear();
 | |
|   PrevSlot.reserve(Uses.size());
 | |
|   for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | |
|     const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]);
 | |
|     PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may
 | |
| /// be beneficial to split before UseSlots[i].
 | |
| ///
 | |
| /// 0 is always a valid split point
 | |
| unsigned RAGreedy::nextSplitPoint(unsigned i) {
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   const unsigned Size = Uses.size();
 | |
|   assert(i != Size && "No split points after the end");
 | |
|   // Allow split before i when Uses[i] is not adjacent to the previous use.
 | |
|   while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex())
 | |
|     ;
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
 | |
| /// basic block.
 | |
| ///
 | |
| unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
 | |
|   const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
 | |
| 
 | |
|   // Note that it is possible to have an interval that is live-in or live-out
 | |
|   // while only covering a single block - A phi-def can use undef values from
 | |
|   // predecessors, and the block could be a single-block loop.
 | |
|   // We don't bother doing anything clever about such a case, we simply assume
 | |
|   // that the interval is continuous from FirstUse to LastUse. We should make
 | |
|   // sure that we don't do anything illegal to such an interval, though.
 | |
| 
 | |
|   const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
 | |
|   if (Uses.size() <= 2)
 | |
|     return 0;
 | |
|   const unsigned NumGaps = Uses.size()-1;
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "tryLocalSplit: ";
 | |
|     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
 | |
|       dbgs() << ' ' << SA->UseSlots[i];
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| 
 | |
|   // For every use, find the previous mapped non-copy instruction.
 | |
|   // We use this to detect valid split points, and to estimate new interval
 | |
|   // sizes.
 | |
|   calcPrevSlots();
 | |
| 
 | |
|   unsigned BestBefore = NumGaps;
 | |
|   unsigned BestAfter = 0;
 | |
|   float BestDiff = 0;
 | |
| 
 | |
|   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB);
 | |
|   SmallVector<float, 8> GapWeight;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     // Keep track of the largest spill weight that would need to be evicted in
 | |
|     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
 | |
|     calcGapWeights(PhysReg, GapWeight);
 | |
| 
 | |
|     // Try to find the best sequence of gaps to close.
 | |
|     // The new spill weight must be larger than any gap interference.
 | |
| 
 | |
|     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
 | |
|     unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1;
 | |
| 
 | |
|     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
 | |
|     // It is the spill weight that needs to be evicted.
 | |
|     float MaxGap = GapWeight[0];
 | |
|     for (unsigned i = 1; i != SplitAfter; ++i)
 | |
|       MaxGap = std::max(MaxGap, GapWeight[i]);
 | |
| 
 | |
|     for (;;) {
 | |
|       // Live before/after split?
 | |
|       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
 | |
|       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
 | |
| 
 | |
|       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
 | |
|                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
 | |
|                    << " i=" << MaxGap);
 | |
| 
 | |
|       // Stop before the interval gets so big we wouldn't be making progress.
 | |
|       if (!LiveBefore && !LiveAfter) {
 | |
|         DEBUG(dbgs() << " all\n");
 | |
|         break;
 | |
|       }
 | |
|       // Should the interval be extended or shrunk?
 | |
|       bool Shrink = true;
 | |
|       if (MaxGap < HUGE_VALF) {
 | |
|         // Estimate the new spill weight.
 | |
|         //
 | |
|         // Each instruction reads and writes the register, except the first
 | |
|         // instr doesn't read when !FirstLive, and the last instr doesn't write
 | |
|         // when !LastLive.
 | |
|         //
 | |
|         // We will be inserting copies before and after, so the total number of
 | |
|         // reads and writes is 2 * EstUses.
 | |
|         //
 | |
|         const unsigned EstUses = 2*(SplitAfter - SplitBefore) +
 | |
|                                  2*(LiveBefore + LiveAfter);
 | |
| 
 | |
|         // Try to guess the size of the new interval. This should be trivial,
 | |
|         // but the slot index of an inserted copy can be a lot smaller than the
 | |
|         // instruction it is inserted before if there are many dead indexes
 | |
|         // between them.
 | |
|         //
 | |
|         // We measure the distance from the instruction before SplitBefore to
 | |
|         // get a conservative estimate.
 | |
|         //
 | |
|         // The final distance can still be different if inserting copies
 | |
|         // triggers a slot index renumbering.
 | |
|         //
 | |
|         const float EstWeight = normalizeSpillWeight(blockFreq * EstUses,
 | |
|                               PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
 | |
|         // Would this split be possible to allocate?
 | |
|         // Never allocate all gaps, we wouldn't be making progress.
 | |
|         float Diff = EstWeight - MaxGap;
 | |
|         DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
 | |
|         if (Diff > 0) {
 | |
|           Shrink = false;
 | |
|           if (Diff > BestDiff) {
 | |
|             DEBUG(dbgs() << " (best)");
 | |
|             BestDiff = Diff;
 | |
|             BestBefore = SplitBefore;
 | |
|             BestAfter = SplitAfter;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Try to shrink.
 | |
|       if (Shrink) {
 | |
|         SplitBefore = nextSplitPoint(SplitBefore);
 | |
|         if (SplitBefore < SplitAfter) {
 | |
|           DEBUG(dbgs() << " shrink\n");
 | |
|           // Recompute the max when necessary.
 | |
|           if (GapWeight[SplitBefore - 1] >= MaxGap) {
 | |
|             MaxGap = GapWeight[SplitBefore];
 | |
|             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
 | |
|               MaxGap = std::max(MaxGap, GapWeight[i]);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         MaxGap = 0;
 | |
|       }
 | |
| 
 | |
|       // Try to extend the interval.
 | |
|       if (SplitAfter >= NumGaps) {
 | |
|         DEBUG(dbgs() << " end\n");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << " extend\n");
 | |
|       for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1;
 | |
|            SplitAfter != e; ++SplitAfter)
 | |
|         MaxGap = std::max(MaxGap, GapWeight[SplitAfter]);
 | |
|           continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Didn't find any candidates?
 | |
|   if (BestBefore == NumGaps)
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
 | |
|                << '-' << Uses[BestAfter] << ", " << BestDiff
 | |
|                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
 | |
| 
 | |
|   SmallVector<LiveInterval*, 4> SpillRegs;
 | |
|   LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | |
|   SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
 | |
| 
 | |
|   SE.openIntv();
 | |
|   SlotIndex SegStart = SE.enterIntvBefore(Uses[BestBefore]);
 | |
|   SlotIndex SegStop  = SE.leaveIntvAfter(Uses[BestAfter]);
 | |
|   SE.useIntv(SegStart, SegStop);
 | |
|   SE.closeIntv();
 | |
|   SE.finish();
 | |
|   ++NumLocalSplits;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Live Range Splitting
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// trySplit - Try to split VirtReg or one of its interferences, making it
 | |
| /// assignable.
 | |
| /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
 | |
| unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
 | |
|                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
 | |
|   SA->analyze(&VirtReg);
 | |
| 
 | |
|   // Local intervals are handled separately.
 | |
|   if (LIS->intervalIsInOneMBB(VirtReg)) {
 | |
|     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
|     return tryLocalSplit(VirtReg, Order, NewVRegs);
 | |
|   }
 | |
| 
 | |
|   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
 | |
| 
 | |
|   // First try to split around a region spanning multiple blocks.
 | |
|   unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
 | |
|   if (PhysReg || !NewVRegs.empty())
 | |
|     return PhysReg;
 | |
| 
 | |
|   // Then isolate blocks with multiple uses.
 | |
|   SplitAnalysis::BlockPtrSet Blocks;
 | |
|   if (SA->getMultiUseBlocks(Blocks)) {
 | |
|     SmallVector<LiveInterval*, 4> SpillRegs;
 | |
|     LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
 | |
|     SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks);
 | |
|     if (VerifyEnabled)
 | |
|       MF->verify(this, "After splitting live range around basic blocks");
 | |
|   }
 | |
| 
 | |
|   // Don't assign any physregs.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Spilling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// calcInterferenceWeight - Calculate the combined spill weight of
 | |
| /// interferences when assigning VirtReg to PhysReg.
 | |
| float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){
 | |
|   float Sum = 0;
 | |
|   for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
 | |
|     Q.collectInterferingVRegs();
 | |
|     if (Q.seenUnspillableVReg())
 | |
|       return HUGE_VALF;
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i)
 | |
|       Sum += Q.interferingVRegs()[i]->weight;
 | |
|   }
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| /// trySpillInterferences - Try to spill interfering registers instead of the
 | |
| /// current one. Only do it if the accumulated spill weight is smaller than the
 | |
| /// current spill weight.
 | |
| unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
 | |
|                                          AllocationOrder &Order,
 | |
|                                      SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled);
 | |
|   unsigned BestPhys = 0;
 | |
|   float BestWeight = 0;
 | |
| 
 | |
|   Order.rewind();
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     float Weight = calcInterferenceWeight(VirtReg, PhysReg);
 | |
|     if (Weight == HUGE_VALF || Weight >= VirtReg.weight)
 | |
|       continue;
 | |
|     if (!BestPhys || Weight < BestWeight)
 | |
|       BestPhys = PhysReg, BestWeight = Weight;
 | |
|   }
 | |
| 
 | |
|   // No candidates found.
 | |
|   if (!BestPhys)
 | |
|     return 0;
 | |
| 
 | |
|   // Collect all interfering registers.
 | |
|   SmallVector<LiveInterval*, 8> Spills;
 | |
|   for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) {
 | |
|     LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
 | |
|     Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end());
 | |
|     for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
 | |
|       LiveInterval *VReg = Q.interferingVRegs()[i];
 | |
|       unassign(*VReg, *AI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Spill them all.
 | |
|   DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight "
 | |
|                << BestWeight << '\n');
 | |
|   for (unsigned i = 0, e = Spills.size(); i != e; ++i)
 | |
|     spiller().spill(Spills[i], NewVRegs, Spills);
 | |
|   return BestPhys;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Main Entry Point
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
 | |
|   // First try assigning a free register.
 | |
|   AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
 | |
|   while (unsigned PhysReg = Order.next()) {
 | |
|     if (!checkPhysRegInterference(VirtReg, PhysReg))
 | |
|       return PhysReg;
 | |
|   }
 | |
| 
 | |
|   if (unsigned PhysReg = tryReassign(VirtReg, Order, NewVRegs))
 | |
|     return PhysReg;
 | |
| 
 | |
|   if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
 | |
|     return PhysReg;
 | |
| 
 | |
|   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
 | |
| 
 | |
|   // Try splitting VirtReg or interferences.
 | |
|   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
 | |
|   if (PhysReg || !NewVRegs.empty())
 | |
|     return PhysReg;
 | |
| 
 | |
|   // Try to spill another interfering reg with less spill weight.
 | |
|   PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs);
 | |
|   if (PhysReg)
 | |
|     return PhysReg;
 | |
| 
 | |
|   // Finally spill VirtReg itself.
 | |
|   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
 | |
|   SmallVector<LiveInterval*, 1> pendingSpills;
 | |
|   spiller().spill(&VirtReg, NewVRegs, pendingSpills);
 | |
| 
 | |
|   // The live virtual register requesting allocation was spilled, so tell
 | |
|   // the caller not to allocate anything during this round.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf.getFunction())->getName() << '\n');
 | |
| 
 | |
|   MF = &mf;
 | |
|   if (VerifyEnabled)
 | |
|     MF->verify(this, "Before greedy register allocator");
 | |
| 
 | |
|   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   DomTree = &getAnalysis<MachineDominatorTree>();
 | |
|   ReservedRegs = TRI->getReservedRegs(*MF);
 | |
|   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
 | |
|   Loops = &getAnalysis<MachineLoopInfo>();
 | |
|   LoopRanges = &getAnalysis<MachineLoopRanges>();
 | |
|   Bundles = &getAnalysis<EdgeBundles>();
 | |
|   SpillPlacer = &getAnalysis<SpillPlacement>();
 | |
| 
 | |
|   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
 | |
| 
 | |
|   allocatePhysRegs();
 | |
|   addMBBLiveIns(MF);
 | |
|   LIS->addKillFlags();
 | |
| 
 | |
|   // Run rewriter
 | |
|   {
 | |
|     NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
 | |
|     VRM->rewrite(Indexes);
 | |
|   }
 | |
| 
 | |
|   // The pass output is in VirtRegMap. Release all the transient data.
 | |
|   releaseMemory();
 | |
| 
 | |
|   return true;
 | |
| }
 |