Reid Spencer e1553cc956 For PR950:
Major reorganization. This patch introduces the signedness changes for
the new integer types (i8, i16, i32, i64) which replace the old signed
versions (ubyte, sbyte, ushort, short, etc). This patch also implements
the function type parameter attributes feature. Together these conspired
to introduce new reduce/reduce errors into the grammar. Consequently, it
was necessary to introduce a new keyword into the grammar in order to
disambiguate. Without this, yacc would make incorrect shift/reduce and
reduce/reduce decisions and fail to parse the intended assembly.

Changes in assembly:

1. The "implementation" keyword is superfluous but still supported. You
   can use it as a sentry which will ensure there are no remaining up
   reference types. However, this is optional as those checks are also
   performed elsewhere.

2. Parameter attributes are now implemented using an at sign to
   indicate the attribute. The attributes are placed after the type
   in a function declaration or after the argument value in a function
   call. For example:
      i8 @sext %myfunc(i16 @zext)
      call i8 @sext %myfunc(i16 @zext %someVal)
   The facility is available for supporting additional attributes and
   they can be combined using the @(attr1,attr2,attr3) syntax. Right
   now  the only two supported are @sext and @zext

3. Functions must now be defined with the "define" keyword which is
   analagous to the "declare" keyword for function declarations. The
   introduction of this keyword disambiguates situations where a
   named result type is confused with a new type or gvar definition.
   For example:
      %MyType = type i16
      %MyType %func(%MyType) { ... }
   With the introduction of optional parameter attributes between
   the function name and the function result type, yacc will pick
   the wrong rule to reduce unless it is disambiguated with "define"
   before the function definition, as in:
      define %MyType @zext %func(%MyType %someArg) { ... }


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@32781 91177308-0d34-0410-b5e6-96231b3b80d8
2006-12-31 05:40:12 +00:00

395 lines
13 KiB
C++

/*===-- Lexer.l - Scanner for llvm assembly files --------------*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the flex scanner for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===*/
%option prefix="llvmAsm"
%option yylineno
%option nostdinit
%option never-interactive
%option batch
%option noyywrap
%option nodefault
%option 8bit
%option outfile="Lexer.cpp"
%option ecs
%option noreject
%option noyymore
%{
#include "ParserInternals.h"
#include "llvm/Module.h"
#include <list>
#include "llvmAsmParser.h"
#include <cctype>
#include <cstdlib>
void set_scan_file(FILE * F){
yy_switch_to_buffer(yy_create_buffer( F, YY_BUF_SIZE ) );
}
void set_scan_string (const char * str) {
yy_scan_string (str);
}
// Construct a token value for a non-obsolete token
#define RET_TOK(type, Enum, sym) \
llvmAsmlval.type = Instruction::Enum; \
return sym
// Construct a token value for an obsolete token
#define RET_TY(CTYPE, SYM) \
llvmAsmlval.PrimType = CTYPE;\
return SYM
namespace llvm {
// TODO: All of the static identifiers are figured out by the lexer,
// these should be hashed to reduce the lexer size
// atoull - Convert an ascii string of decimal digits into the unsigned long
// long representation... this does not have to do input error checking,
// because we know that the input will be matched by a suitable regex...
//
static uint64_t atoull(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; Buffer++) {
uint64_t OldRes = Result;
Result *= 10;
Result += *Buffer-'0';
if (Result < OldRes) // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
}
return Result;
}
static uint64_t HexIntToVal(const char *Buffer) {
uint64_t Result = 0;
for (; *Buffer; ++Buffer) {
uint64_t OldRes = Result;
Result *= 16;
char C = *Buffer;
if (C >= '0' && C <= '9')
Result += C-'0';
else if (C >= 'A' && C <= 'F')
Result += C-'A'+10;
else if (C >= 'a' && C <= 'f')
Result += C-'a'+10;
if (Result < OldRes) // Uh, oh, overflow detected!!!
GenerateError("constant bigger than 64 bits detected!");
}
return Result;
}
// HexToFP - Convert the ascii string in hexidecimal format to the floating
// point representation of it.
//
static double HexToFP(const char *Buffer) {
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
union {
uint64_t UI;
double FP;
} UIntToFP;
UIntToFP.UI = HexIntToVal(Buffer);
assert(sizeof(double) == sizeof(uint64_t) &&
"Data sizes incompatible on this target!");
return UIntToFP.FP; // Cast Hex constant to double
}
// UnEscapeLexed - Run through the specified buffer and change \xx codes to the
// appropriate character. If AllowNull is set to false, a \00 value will cause
// an exception to be thrown.
//
// If AllowNull is set to true, the return value of the function points to the
// last character of the string in memory.
//
char *UnEscapeLexed(char *Buffer, bool AllowNull) {
char *BOut = Buffer;
for (char *BIn = Buffer; *BIn; ) {
if (BIn[0] == '\\' && isxdigit(BIn[1]) && isxdigit(BIn[2])) {
char Tmp = BIn[3]; BIn[3] = 0; // Terminate string
*BOut = (char)strtol(BIn+1, 0, 16); // Convert to number
if (!AllowNull && !*BOut)
GenerateError("String literal cannot accept \\00 escape!");
BIn[3] = Tmp; // Restore character
BIn += 3; // Skip over handled chars
++BOut;
} else {
*BOut++ = *BIn++;
}
}
return BOut;
}
} // End llvm namespace
using namespace llvm;
#define YY_NEVER_INTERACTIVE 1
%}
/* Comments start with a ; and go till end of line */
Comment ;.*
/* Variable(Value) identifiers start with a % sign */
VarID %[-a-zA-Z$._][-a-zA-Z$._0-9]*
/* Label identifiers end with a colon */
Label [-a-zA-Z$._0-9]+:
QuoteLabel \"[^\"]+\":
/* Quoted names can contain any character except " and \ */
StringConstant \"[^\"]*\"
/* [PN]Integer: match positive and negative literal integer values that
* are preceeded by a '%' character. These represent unnamed variable slots.
*/
EPInteger %[0-9]+
ENInteger %-[0-9]+
/* E[PN]Integer: match positive and negative literal integer values */
PInteger [0-9]+
NInteger -[0-9]+
/* FPConstant - A Floating point constant.
*/
FPConstant [-+]?[0-9]+[.][0-9]*([eE][-+]?[0-9]+)?
/* HexFPConstant - Floating point constant represented in IEEE format as a
* hexadecimal number for when exponential notation is not precise enough.
*/
HexFPConstant 0x[0-9A-Fa-f]+
/* HexIntConstant - Hexadecimal constant generated by the CFE to avoid forcing
* it to deal with 64 bit numbers.
*/
HexIntConstant [us]0x[0-9A-Fa-f]+
%%
{Comment} { /* Ignore comments for now */ }
begin { return BEGINTOK; }
end { return ENDTOK; }
true { return TRUETOK; }
false { return FALSETOK; }
declare { return DECLARE; }
define { return DEFINE; }
global { return GLOBAL; }
constant { return CONSTANT; }
internal { return INTERNAL; }
linkonce { return LINKONCE; }
weak { return WEAK; }
appending { return APPENDING; }
dllimport { return DLLIMPORT; }
dllexport { return DLLEXPORT; }
extern_weak { return EXTERN_WEAK; }
external { return EXTERNAL; }
implementation { return IMPLEMENTATION; }
zeroinitializer { return ZEROINITIALIZER; }
\.\.\. { return DOTDOTDOT; }
undef { return UNDEF; }
null { return NULL_TOK; }
to { return TO; }
tail { return TAIL; }
target { return TARGET; }
triple { return TRIPLE; }
deplibs { return DEPLIBS; }
endian { return ENDIAN; }
pointersize { return POINTERSIZE; }
datalayout { return DATALAYOUT; }
little { return LITTLE; }
big { return BIG; }
volatile { return VOLATILE; }
align { return ALIGN; }
section { return SECTION; }
module { return MODULE; }
asm { return ASM_TOK; }
sideeffect { return SIDEEFFECT; }
cc { return CC_TOK; }
ccc { return CCC_TOK; }
csretcc { return CSRETCC_TOK; }
fastcc { return FASTCC_TOK; }
coldcc { return COLDCC_TOK; }
x86_stdcallcc { return X86_STDCALLCC_TOK; }
x86_fastcallcc { return X86_FASTCALLCC_TOK; }
void { RET_TY(Type::VoidTy, VOID); }
bool { RET_TY(Type::BoolTy, BOOL); }
i8 { RET_TY(Type::Int8Ty, INT8); }
i16 { RET_TY(Type::Int16Ty, INT16); }
i32 { RET_TY(Type::Int32Ty, INT32); }
i64 { RET_TY(Type::Int64Ty, INT64); }
float { RET_TY(Type::FloatTy, FLOAT); }
double { RET_TY(Type::DoubleTy,DOUBLE);}
label { RET_TY(Type::LabelTy, LABEL); }
type { return TYPE; }
opaque { return OPAQUE; }
add { RET_TOK(BinaryOpVal, Add, ADD); }
sub { RET_TOK(BinaryOpVal, Sub, SUB); }
mul { RET_TOK(BinaryOpVal, Mul, MUL); }
udiv { RET_TOK(BinaryOpVal, UDiv, UDIV); }
sdiv { RET_TOK(BinaryOpVal, SDiv, SDIV); }
fdiv { RET_TOK(BinaryOpVal, FDiv, FDIV); }
urem { RET_TOK(BinaryOpVal, URem, UREM); }
srem { RET_TOK(BinaryOpVal, SRem, SREM); }
frem { RET_TOK(BinaryOpVal, FRem, FREM); }
and { RET_TOK(BinaryOpVal, And, AND); }
or { RET_TOK(BinaryOpVal, Or , OR ); }
xor { RET_TOK(BinaryOpVal, Xor, XOR); }
icmp { RET_TOK(OtherOpVal, ICmp, ICMP); }
fcmp { RET_TOK(OtherOpVal, FCmp, FCMP); }
eq { return EQ; }
ne { return NE; }
slt { return SLT; }
sgt { return SGT; }
sle { return SLE; }
sge { return SGE; }
ult { return ULT; }
ugt { return UGT; }
ule { return ULE; }
uge { return UGE; }
oeq { return OEQ; }
one { return ONE; }
olt { return OLT; }
ogt { return OGT; }
ole { return OLE; }
oge { return OGE; }
ord { return ORD; }
uno { return UNO; }
ueq { return UEQ; }
une { return UNE; }
phi { RET_TOK(OtherOpVal, PHI, PHI_TOK); }
call { RET_TOK(OtherOpVal, Call, CALL); }
trunc { RET_TOK(CastOpVal, Trunc, TRUNC); }
zext { RET_TOK(CastOpVal, ZExt, ZEXT); }
sext { RET_TOK(CastOpVal, SExt, SEXT); }
fptrunc { RET_TOK(CastOpVal, FPTrunc, FPTRUNC); }
fpext { RET_TOK(CastOpVal, FPExt, FPEXT); }
uitofp { RET_TOK(CastOpVal, UIToFP, UITOFP); }
sitofp { RET_TOK(CastOpVal, SIToFP, SITOFP); }
fptoui { RET_TOK(CastOpVal, FPToUI, FPTOUI); }
fptosi { RET_TOK(CastOpVal, FPToSI, FPTOSI); }
inttoptr { RET_TOK(CastOpVal, IntToPtr, INTTOPTR); }
ptrtoint { RET_TOK(CastOpVal, PtrToInt, PTRTOINT); }
bitcast { RET_TOK(CastOpVal, BitCast, BITCAST); }
select { RET_TOK(OtherOpVal, Select, SELECT); }
shl { RET_TOK(OtherOpVal, Shl, SHL); }
lshr { RET_TOK(OtherOpVal, LShr, LSHR); }
ashr { RET_TOK(OtherOpVal, AShr, ASHR); }
va_arg { RET_TOK(OtherOpVal, VAArg , VAARG); }
ret { RET_TOK(TermOpVal, Ret, RET); }
br { RET_TOK(TermOpVal, Br, BR); }
switch { RET_TOK(TermOpVal, Switch, SWITCH); }
invoke { RET_TOK(TermOpVal, Invoke, INVOKE); }
unwind { RET_TOK(TermOpVal, Unwind, UNWIND); }
unreachable { RET_TOK(TermOpVal, Unreachable, UNREACHABLE); }
malloc { RET_TOK(MemOpVal, Malloc, MALLOC); }
alloca { RET_TOK(MemOpVal, Alloca, ALLOCA); }
free { RET_TOK(MemOpVal, Free, FREE); }
load { RET_TOK(MemOpVal, Load, LOAD); }
store { RET_TOK(MemOpVal, Store, STORE); }
getelementptr { RET_TOK(MemOpVal, GetElementPtr, GETELEMENTPTR); }
extractelement { RET_TOK(OtherOpVal, ExtractElement, EXTRACTELEMENT); }
insertelement { RET_TOK(OtherOpVal, InsertElement, INSERTELEMENT); }
shufflevector { RET_TOK(OtherOpVal, ShuffleVector, SHUFFLEVECTOR); }
{VarID} {
UnEscapeLexed(yytext+1);
llvmAsmlval.StrVal = strdup(yytext+1); // Skip %
return VAR_ID;
}
{Label} {
yytext[strlen(yytext)-1] = 0; // nuke colon
UnEscapeLexed(yytext);
llvmAsmlval.StrVal = strdup(yytext);
return LABELSTR;
}
{QuoteLabel} {
yytext[strlen(yytext)-2] = 0; // nuke colon, end quote
UnEscapeLexed(yytext+1);
llvmAsmlval.StrVal = strdup(yytext+1);
return LABELSTR;
}
{StringConstant} { // Note that we cannot unescape a string constant here! The
// string constant might contain a \00 which would not be
// understood by the string stuff. It is valid to make a
// [sbyte] c"Hello World\00" constant, for example.
//
yytext[strlen(yytext)-1] = 0; // nuke end quote
llvmAsmlval.StrVal = strdup(yytext+1); // Nuke start quote
return STRINGCONSTANT;
}
{PInteger} { llvmAsmlval.UInt64Val = atoull(yytext); return EUINT64VAL; }
{NInteger} {
uint64_t Val = atoull(yytext+1);
// +1: we have bigger negative range
if (Val > (uint64_t)INT64_MAX+1)
GenerateError("Constant too large for signed 64 bits!");
llvmAsmlval.SInt64Val = -Val;
return ESINT64VAL;
}
{HexIntConstant} {
llvmAsmlval.UInt64Val = HexIntToVal(yytext+3);
return yytext[0] == 's' ? ESINT64VAL : EUINT64VAL;
}
{EPInteger} {
uint64_t Val = atoull(yytext+1);
if ((unsigned)Val != Val)
GenerateError("Invalid value number (too large)!");
llvmAsmlval.UIntVal = unsigned(Val);
return UINTVAL;
}
{ENInteger} {
uint64_t Val = atoull(yytext+2);
// +1: we have bigger negative range
if (Val > (uint64_t)INT32_MAX+1)
GenerateError("Constant too large for signed 32 bits!");
llvmAsmlval.SIntVal = (int)-Val;
return SINTVAL;
}
{FPConstant} { llvmAsmlval.FPVal = atof(yytext); return FPVAL; }
{HexFPConstant} { llvmAsmlval.FPVal = HexToFP(yytext); return FPVAL; }
<<EOF>> {
/* Make sure to free the internal buffers for flex when we are
* done reading our input!
*/
yy_delete_buffer(YY_CURRENT_BUFFER);
return EOF;
}
[ \r\t\n] { /* Ignore whitespace */ }
. { return yytext[0]; }
%%