mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	fixes PR1403. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36959 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5029 lines
		
	
	
		
			192 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5029 lines
		
	
	
		
			192 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAGISel class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "isel"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/ParameterAttributes.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| ViewISelDAGs("view-isel-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show isel dags as they are selected"));
 | |
| static cl::opt<bool>
 | |
| ViewSchedDAGs("view-sched-dags", cl::Hidden,
 | |
|           cl::desc("Pop up a window to show sched dags as they are processed"));
 | |
| #else
 | |
| static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
 | |
| #endif
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// RegisterScheduler class - Track the registration of instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| MachinePassRegistry RegisterScheduler::Registry;
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| ///
 | |
| /// ISHeuristic command line option for instruction schedulers.
 | |
| ///
 | |
| //===---------------------------------------------------------------------===//
 | |
| namespace {
 | |
|   cl::opt<RegisterScheduler::FunctionPassCtor, false,
 | |
|           RegisterPassParser<RegisterScheduler> >
 | |
|   ISHeuristic("sched",
 | |
|               cl::init(&createDefaultScheduler),
 | |
|               cl::desc("Instruction schedulers available:"));
 | |
| 
 | |
|   static RegisterScheduler
 | |
|   defaultListDAGScheduler("default", "  Best scheduler for the target",
 | |
|                           createDefaultScheduler);
 | |
| } // namespace
 | |
| 
 | |
| namespace { struct AsmOperandInfo; }
 | |
| 
 | |
| namespace {
 | |
|   /// RegsForValue - This struct represents the physical registers that a
 | |
|   /// particular value is assigned and the type information about the value.
 | |
|   /// This is needed because values can be promoted into larger registers and
 | |
|   /// expanded into multiple smaller registers than the value.
 | |
|   struct VISIBILITY_HIDDEN RegsForValue {
 | |
|     /// Regs - This list hold the register (for legal and promoted values)
 | |
|     /// or register set (for expanded values) that the value should be assigned
 | |
|     /// to.
 | |
|     std::vector<unsigned> Regs;
 | |
|     
 | |
|     /// RegVT - The value type of each register.
 | |
|     ///
 | |
|     MVT::ValueType RegVT;
 | |
|     
 | |
|     /// ValueVT - The value type of the LLVM value, which may be promoted from
 | |
|     /// RegVT or made from merging the two expanded parts.
 | |
|     MVT::ValueType ValueVT;
 | |
|     
 | |
|     RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
 | |
|     
 | |
|     RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
 | |
|       : RegVT(regvt), ValueVT(valuevt) {
 | |
|         Regs.push_back(Reg);
 | |
|     }
 | |
|     RegsForValue(const std::vector<unsigned> ®s, 
 | |
|                  MVT::ValueType regvt, MVT::ValueType valuevt)
 | |
|       : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
 | |
|     }
 | |
|     
 | |
|     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
 | |
|     /// this value and returns the result as a ValueVT value.  This uses 
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     SDOperand getCopyFromRegs(SelectionDAG &DAG,
 | |
|                               SDOperand &Chain, SDOperand &Flag) const;
 | |
| 
 | |
|     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
|     /// specified value into the registers specified by this object.  This uses 
 | |
|     /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
|     void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | |
|                        SDOperand &Chain, SDOperand &Flag,
 | |
|                        MVT::ValueType PtrVT) const;
 | |
|     
 | |
|     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
|     /// operand list.  This adds the code marker and includes the number of 
 | |
|     /// values added into it.
 | |
|     void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | |
|                               std::vector<SDOperand> &Ops) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// createDefaultScheduler - This creates an instruction scheduler appropriate
 | |
|   /// for the target.
 | |
|   ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
 | |
|                                       SelectionDAG *DAG,
 | |
|                                       MachineBasicBlock *BB) {
 | |
|     TargetLowering &TLI = IS->getTargetLowering();
 | |
|     
 | |
|     if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
 | |
|       return createTDListDAGScheduler(IS, DAG, BB);
 | |
|     } else {
 | |
|       assert(TLI.getSchedulingPreference() ==
 | |
|            TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
 | |
|       return createBURRListDAGScheduler(IS, DAG, BB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// FunctionLoweringInfo - This contains information that is global to a
 | |
|   /// function that is used when lowering a region of the function.
 | |
|   class FunctionLoweringInfo {
 | |
|   public:
 | |
|     TargetLowering &TLI;
 | |
|     Function &Fn;
 | |
|     MachineFunction &MF;
 | |
|     SSARegMap *RegMap;
 | |
| 
 | |
|     FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
 | |
| 
 | |
|     /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
 | |
|     std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
 | |
| 
 | |
|     /// ValueMap - Since we emit code for the function a basic block at a time,
 | |
|     /// we must remember which virtual registers hold the values for
 | |
|     /// cross-basic-block values.
 | |
|     DenseMap<const Value*, unsigned> ValueMap;
 | |
| 
 | |
|     /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
 | |
|     /// the entry block.  This allows the allocas to be efficiently referenced
 | |
|     /// anywhere in the function.
 | |
|     std::map<const AllocaInst*, int> StaticAllocaMap;
 | |
| 
 | |
|     unsigned MakeReg(MVT::ValueType VT) {
 | |
|       return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
|     }
 | |
|     
 | |
|     /// isExportedInst - Return true if the specified value is an instruction
 | |
|     /// exported from its block.
 | |
|     bool isExportedInst(const Value *V) {
 | |
|       return ValueMap.count(V);
 | |
|     }
 | |
| 
 | |
|     unsigned CreateRegForValue(const Value *V);
 | |
|     
 | |
|     unsigned InitializeRegForValue(const Value *V) {
 | |
|       unsigned &R = ValueMap[V];
 | |
|       assert(R == 0 && "Already initialized this value register!");
 | |
|       return R = CreateRegForValue(V);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a 
 | |
| /// switch instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   BasicBlock *BB = I->getParent();
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
 | |
|         // FIXME: Remove switchinst special case.
 | |
|         isa<SwitchInst>(*UI))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
 | |
| /// entry block, return true.  This includes arguments used by switches, since
 | |
| /// the switch may expand into multiple basic blocks.
 | |
| static bool isOnlyUsedInEntryBlock(Argument *A) {
 | |
|   BasicBlock *Entry = A->getParent()->begin();
 | |
|   for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
 | |
|     if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
 | |
|       return false;  // Use not in entry block.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
 | |
|                                            Function &fn, MachineFunction &mf)
 | |
|     : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
 | |
| 
 | |
|   // Create a vreg for each argument register that is not dead and is used
 | |
|   // outside of the entry block for the function.
 | |
|   for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
 | |
|        AI != E; ++AI)
 | |
|     if (!isOnlyUsedInEntryBlock(AI))
 | |
|       InitializeRegForValue(AI);
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::iterator BB = Fn.begin(), EB = Fn.end();
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         const Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
 | |
|         unsigned Align = 
 | |
|           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF.getFrameInfo()->CreateStackObject(TySize, Align);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = new MachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF.getBasicBlockList().push_back(MBB);
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
 | |
|       if (PN->use_empty()) continue;
 | |
|       
 | |
|       MVT::ValueType VT = TLI.getValueType(PN->getType());
 | |
|       unsigned NumElements;
 | |
|       if (VT != MVT::Vector)
 | |
|         NumElements = TLI.getNumElements(VT);
 | |
|       else {
 | |
|         MVT::ValueType VT1,VT2;
 | |
|         NumElements = 
 | |
|           TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
 | |
|                                      VT1, VT2);
 | |
|       }
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
|       const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
 | |
|       for (unsigned i = 0; i != NumElements; ++i)
 | |
|         BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
 | |
|   MVT::ValueType VT = TLI.getValueType(V->getType());
 | |
|   
 | |
|   // The number of multiples of registers that we need, to, e.g., split up
 | |
|   // a <2 x int64> -> 4 x i32 registers.
 | |
|   unsigned NumVectorRegs = 1;
 | |
|   
 | |
|   // If this is a vector type, figure out what type it will decompose into
 | |
|   // and how many of the elements it will use.
 | |
|   if (VT == MVT::Vector) {
 | |
|     const VectorType *PTy = cast<VectorType>(V->getType());
 | |
|     unsigned NumElts = PTy->getNumElements();
 | |
|     MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
 | |
|     MVT::ValueType VecTy = getVectorType(EltTy, NumElts);
 | |
|     
 | |
|     // Divide the input until we get to a supported size.  This will always
 | |
|     // end with a scalar if the target doesn't support vectors.
 | |
|     while (NumElts > 1 && !TLI.isTypeLegal(VecTy)) {
 | |
|       NumElts >>= 1;
 | |
|       NumVectorRegs <<= 1;
 | |
|       VecTy = getVectorType(EltTy, NumElts);
 | |
|     }
 | |
| 
 | |
|     // Check that VecTy isn't a 1-element vector.
 | |
|     if (NumElts == 1 && VecTy == MVT::Other)
 | |
|       VT = EltTy;
 | |
|     else
 | |
|       VT = VecTy;
 | |
|   }
 | |
| 
 | |
|   // The common case is that we will only create one register for this
 | |
|   // value.  If we have that case, create and return the virtual register.
 | |
|   unsigned NV = TLI.getNumElements(VT);
 | |
|   if (NV == 1) {
 | |
|     // If we are promoting this value, pick the next largest supported type.
 | |
|     MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
 | |
|     unsigned Reg = MakeReg(PromotedType);
 | |
|     // If this is a vector of supported or promoted types (e.g. 4 x i16),
 | |
|     // create all of the registers.
 | |
|     for (unsigned i = 1; i != NumVectorRegs; ++i)
 | |
|       MakeReg(PromotedType);
 | |
|     return Reg;
 | |
|   }
 | |
|   
 | |
|   // If this value is represented with multiple target registers, make sure
 | |
|   // to create enough consecutive registers of the right (smaller) type.
 | |
|   VT = TLI.getTypeToExpandTo(VT);
 | |
|   unsigned R = MakeReg(VT);
 | |
|   for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
 | |
|     MakeReg(VT);
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SelectionDAGLowering - This is the common target-independent lowering
 | |
| /// implementation that is parameterized by a TargetLowering object.
 | |
| /// Also, targets can overload any lowering method.
 | |
| ///
 | |
| namespace llvm {
 | |
| class SelectionDAGLowering {
 | |
|   MachineBasicBlock *CurMBB;
 | |
| 
 | |
|   DenseMap<const Value*, SDOperand> NodeMap;
 | |
| 
 | |
|   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | |
|   /// them up and then emit token factor nodes when possible.  This allows us to
 | |
|   /// get simple disambiguation between loads without worrying about alias
 | |
|   /// analysis.
 | |
|   std::vector<SDOperand> PendingLoads;
 | |
| 
 | |
|   /// Case - A struct to record the Value for a switch case, and the
 | |
|   /// case's target basic block.
 | |
|   struct Case {
 | |
|     Constant* Low;
 | |
|     Constant* High;
 | |
|     MachineBasicBlock* BB;
 | |
| 
 | |
|     Case() : Low(0), High(0), BB(0) { }
 | |
|     Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
 | |
|       Low(low), High(high), BB(bb) { }
 | |
|     uint64_t size() const {
 | |
|       uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
 | |
|       uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
 | |
|       return (rHigh - rLow + 1ULL);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct CaseBits {
 | |
|     uint64_t Mask;
 | |
|     MachineBasicBlock* BB;
 | |
|     unsigned Bits;
 | |
| 
 | |
|     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
 | |
|       Mask(mask), BB(bb), Bits(bits) { }
 | |
|   };
 | |
| 
 | |
|   typedef std::vector<Case>           CaseVector;
 | |
|   typedef std::vector<CaseBits>       CaseBitsVector;
 | |
|   typedef CaseVector::iterator        CaseItr;
 | |
|   typedef std::pair<CaseItr, CaseItr> CaseRange;
 | |
| 
 | |
|   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
 | |
|   /// of conditional branches.
 | |
|   struct CaseRec {
 | |
|     CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
 | |
|     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
 | |
| 
 | |
|     /// CaseBB - The MBB in which to emit the compare and branch
 | |
|     MachineBasicBlock *CaseBB;
 | |
|     /// LT, GE - If nonzero, we know the current case value must be less-than or
 | |
|     /// greater-than-or-equal-to these Constants.
 | |
|     Constant *LT;
 | |
|     Constant *GE;
 | |
|     /// Range - A pair of iterators representing the range of case values to be
 | |
|     /// processed at this point in the binary search tree.
 | |
|     CaseRange Range;
 | |
|   };
 | |
| 
 | |
|   typedef std::vector<CaseRec> CaseRecVector;
 | |
| 
 | |
|   /// The comparison function for sorting the switch case values in the vector.
 | |
|   /// WARNING: Case ranges should be disjoint!
 | |
|   struct CaseCmp {
 | |
|     bool operator () (const Case& C1, const Case& C2) {
 | |
|       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
 | |
|       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
 | |
|       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
 | |
|       return CI1->getValue().slt(CI2->getValue());
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   struct CaseBitsCmp {
 | |
|     bool operator () (const CaseBits& C1, const CaseBits& C2) {
 | |
|       return C1.Bits > C2.Bits;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
 | |
|   
 | |
| public:
 | |
|   // TLI - This is information that describes the available target features we
 | |
|   // need for lowering.  This indicates when operations are unavailable,
 | |
|   // implemented with a libcall, etc.
 | |
|   TargetLowering &TLI;
 | |
|   SelectionDAG &DAG;
 | |
|   const TargetData *TD;
 | |
| 
 | |
|   /// SwitchCases - Vector of CaseBlock structures used to communicate
 | |
|   /// SwitchInst code generation information.
 | |
|   std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
 | |
|   /// JTCases - Vector of JumpTable structures used to communicate
 | |
|   /// SwitchInst code generation information.
 | |
|   std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
 | |
|   std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
 | |
|   
 | |
|   /// FuncInfo - Information about the function as a whole.
 | |
|   ///
 | |
|   FunctionLoweringInfo &FuncInfo;
 | |
| 
 | |
|   SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
 | |
|                        FunctionLoweringInfo &funcinfo)
 | |
|     : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
 | |
|       FuncInfo(funcinfo) {
 | |
|   }
 | |
| 
 | |
|   /// getRoot - Return the current virtual root of the Selection DAG.
 | |
|   ///
 | |
|   SDOperand getRoot() {
 | |
|     if (PendingLoads.empty())
 | |
|       return DAG.getRoot();
 | |
| 
 | |
|     if (PendingLoads.size() == 1) {
 | |
|       SDOperand Root = PendingLoads[0];
 | |
|       DAG.setRoot(Root);
 | |
|       PendingLoads.clear();
 | |
|       return Root;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have to make a token factor node.
 | |
|     SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                                  &PendingLoads[0], PendingLoads.size());
 | |
|     PendingLoads.clear();
 | |
|     DAG.setRoot(Root);
 | |
|     return Root;
 | |
|   }
 | |
| 
 | |
|   SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
 | |
| 
 | |
|   void visit(Instruction &I) { visit(I.getOpcode(), I); }
 | |
| 
 | |
|   void visit(unsigned Opcode, User &I) {
 | |
|     // Note: this doesn't use InstVisitor, because it has to work with
 | |
|     // ConstantExpr's in addition to instructions.
 | |
|     switch (Opcode) {
 | |
|     default: assert(0 && "Unknown instruction type encountered!");
 | |
|              abort();
 | |
|       // Build the switch statement using the Instruction.def file.
 | |
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | |
|     case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
 | |
| #include "llvm/Instruction.def"
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
 | |
| 
 | |
|   SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
 | |
|                         const Value *SV, SDOperand Root,
 | |
|                         bool isVolatile, unsigned Alignment);
 | |
| 
 | |
|   SDOperand getIntPtrConstant(uint64_t Val) {
 | |
|     return DAG.getConstant(Val, TLI.getPointerTy());
 | |
|   }
 | |
| 
 | |
|   SDOperand getValue(const Value *V);
 | |
| 
 | |
|   void setValue(const Value *V, SDOperand NewN) {
 | |
|     SDOperand &N = NodeMap[V];
 | |
|     assert(N.Val == 0 && "Already set a value for this node!");
 | |
|     N = NewN;
 | |
|   }
 | |
|   
 | |
|   void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
 | |
|                             std::set<unsigned> &OutputRegs, 
 | |
|                             std::set<unsigned> &InputRegs);
 | |
| 
 | |
|   void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
 | |
|                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
 | |
|                             unsigned Opc);
 | |
|   bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
 | |
|   void ExportFromCurrentBlock(Value *V);
 | |
|   void LowerCallTo(Instruction &I,
 | |
|                    const Type *CalledValueTy, unsigned CallingConv,
 | |
|                    bool IsTailCall, SDOperand Callee, unsigned OpIdx);
 | |
|                                          
 | |
|   // Terminator instructions.
 | |
|   void visitRet(ReturnInst &I);
 | |
|   void visitBr(BranchInst &I);
 | |
|   void visitSwitch(SwitchInst &I);
 | |
|   void visitUnreachable(UnreachableInst &I) { /* noop */ }
 | |
| 
 | |
|   // Helpers for visitSwitch
 | |
|   bool handleSmallSwitchRange(CaseRec& CR,
 | |
|                               CaseRecVector& WorkList,
 | |
|                               Value* SV,
 | |
|                               MachineBasicBlock* Default);
 | |
|   bool handleJTSwitchCase(CaseRec& CR,
 | |
|                           CaseRecVector& WorkList,
 | |
|                           Value* SV,
 | |
|                           MachineBasicBlock* Default);
 | |
|   bool handleBTSplitSwitchCase(CaseRec& CR,
 | |
|                                CaseRecVector& WorkList,
 | |
|                                Value* SV,
 | |
|                                MachineBasicBlock* Default);
 | |
|   bool handleBitTestsSwitchCase(CaseRec& CR,
 | |
|                                 CaseRecVector& WorkList,
 | |
|                                 Value* SV,
 | |
|                                 MachineBasicBlock* Default);  
 | |
|   void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
 | |
|   void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
 | |
|   void visitBitTestCase(MachineBasicBlock* NextMBB,
 | |
|                         unsigned Reg,
 | |
|                         SelectionDAGISel::BitTestCase &B);
 | |
|   void visitJumpTable(SelectionDAGISel::JumpTable &JT);
 | |
|   void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
 | |
|                             SelectionDAGISel::JumpTableHeader &JTH);
 | |
|   
 | |
|   // These all get lowered before this pass.
 | |
|   void visitInvoke(InvokeInst &I);
 | |
|   void visitInvoke(InvokeInst &I, bool AsTerminator);
 | |
|   void visitUnwind(UnwindInst &I);
 | |
| 
 | |
|   void visitScalarBinary(User &I, unsigned OpCode);
 | |
|   void visitVectorBinary(User &I, unsigned OpCode);
 | |
|   void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
 | |
|   void visitShift(User &I, unsigned Opcode);
 | |
|   void visitAdd(User &I) { 
 | |
|     if (isa<VectorType>(I.getType()))
 | |
|       visitVectorBinary(I, ISD::VADD);
 | |
|     else if (I.getType()->isFloatingPoint())
 | |
|       visitScalarBinary(I, ISD::FADD);
 | |
|     else
 | |
|       visitScalarBinary(I, ISD::ADD);
 | |
|   }
 | |
|   void visitSub(User &I);
 | |
|   void visitMul(User &I) {
 | |
|     if (isa<VectorType>(I.getType()))
 | |
|       visitVectorBinary(I, ISD::VMUL);
 | |
|     else if (I.getType()->isFloatingPoint())
 | |
|       visitScalarBinary(I, ISD::FMUL);
 | |
|     else
 | |
|       visitScalarBinary(I, ISD::MUL);
 | |
|   }
 | |
|   void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
 | |
|   void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
 | |
|   void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
 | |
|   void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
 | |
|   void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
 | |
|   void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
 | |
|   void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
 | |
|   void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
 | |
|   void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
 | |
|   void visitShl (User &I) { visitShift(I, ISD::SHL); }
 | |
|   void visitLShr(User &I) { visitShift(I, ISD::SRL); }
 | |
|   void visitAShr(User &I) { visitShift(I, ISD::SRA); }
 | |
|   void visitICmp(User &I);
 | |
|   void visitFCmp(User &I);
 | |
|   // Visit the conversion instructions
 | |
|   void visitTrunc(User &I);
 | |
|   void visitZExt(User &I);
 | |
|   void visitSExt(User &I);
 | |
|   void visitFPTrunc(User &I);
 | |
|   void visitFPExt(User &I);
 | |
|   void visitFPToUI(User &I);
 | |
|   void visitFPToSI(User &I);
 | |
|   void visitUIToFP(User &I);
 | |
|   void visitSIToFP(User &I);
 | |
|   void visitPtrToInt(User &I);
 | |
|   void visitIntToPtr(User &I);
 | |
|   void visitBitCast(User &I);
 | |
| 
 | |
|   void visitExtractElement(User &I);
 | |
|   void visitInsertElement(User &I);
 | |
|   void visitShuffleVector(User &I);
 | |
| 
 | |
|   void visitGetElementPtr(User &I);
 | |
|   void visitSelect(User &I);
 | |
| 
 | |
|   void visitMalloc(MallocInst &I);
 | |
|   void visitFree(FreeInst &I);
 | |
|   void visitAlloca(AllocaInst &I);
 | |
|   void visitLoad(LoadInst &I);
 | |
|   void visitStore(StoreInst &I);
 | |
|   void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
 | |
|   void visitCall(CallInst &I);
 | |
|   void visitInlineAsm(CallInst &I);
 | |
|   const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
 | |
|   void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
 | |
| 
 | |
|   void visitVAStart(CallInst &I);
 | |
|   void visitVAArg(VAArgInst &I);
 | |
|   void visitVAEnd(CallInst &I);
 | |
|   void visitVACopy(CallInst &I);
 | |
| 
 | |
|   void visitMemIntrinsic(CallInst &I, unsigned Op);
 | |
| 
 | |
|   void visitUserOp1(Instruction &I) {
 | |
|     assert(0 && "UserOp1 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
|   void visitUserOp2(Instruction &I) {
 | |
|     assert(0 && "UserOp2 should not exist at instruction selection time!");
 | |
|     abort();
 | |
|   }
 | |
| };
 | |
| } // end namespace llvm
 | |
| 
 | |
| SDOperand SelectionDAGLowering::getValue(const Value *V) {
 | |
|   SDOperand &N = NodeMap[V];
 | |
|   if (N.Val) return N;
 | |
|   
 | |
|   const Type *VTy = V->getType();
 | |
|   MVT::ValueType VT = TLI.getValueType(VTy);
 | |
|   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       visit(CE->getOpcode(), *CE);
 | |
|       SDOperand N1 = NodeMap[V];
 | |
|       assert(N1.Val && "visit didn't populate the ValueMap!");
 | |
|       return N1;
 | |
|     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
 | |
|       return N = DAG.getGlobalAddress(GV, VT);
 | |
|     } else if (isa<ConstantPointerNull>(C)) {
 | |
|       return N = DAG.getConstant(0, TLI.getPointerTy());
 | |
|     } else if (isa<UndefValue>(C)) {
 | |
|       if (!isa<VectorType>(VTy))
 | |
|         return N = DAG.getNode(ISD::UNDEF, VT);
 | |
| 
 | |
|       // Create a VBUILD_VECTOR of undef nodes.
 | |
|       const VectorType *PTy = cast<VectorType>(VTy);
 | |
|       unsigned NumElements = PTy->getNumElements();
 | |
|       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
| 
 | |
|       SmallVector<SDOperand, 8> Ops;
 | |
|       Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
 | |
|       
 | |
|       // Create a VConstant node with generic Vector type.
 | |
|       Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
 | |
|       Ops.push_back(DAG.getValueType(PVT));
 | |
|       return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
 | |
|                              &Ops[0], Ops.size());
 | |
|     } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
 | |
|       return N = DAG.getConstantFP(CFP->getValue(), VT);
 | |
|     } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
 | |
|       unsigned NumElements = PTy->getNumElements();
 | |
|       MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|       
 | |
|       // Now that we know the number and type of the elements, push a
 | |
|       // Constant or ConstantFP node onto the ops list for each element of
 | |
|       // the packed constant.
 | |
|       SmallVector<SDOperand, 8> Ops;
 | |
|       if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
 | |
|         for (unsigned i = 0; i != NumElements; ++i)
 | |
|           Ops.push_back(getValue(CP->getOperand(i)));
 | |
|       } else {
 | |
|         assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
 | |
|         SDOperand Op;
 | |
|         if (MVT::isFloatingPoint(PVT))
 | |
|           Op = DAG.getConstantFP(0, PVT);
 | |
|         else
 | |
|           Op = DAG.getConstant(0, PVT);
 | |
|         Ops.assign(NumElements, Op);
 | |
|       }
 | |
|       
 | |
|       // Create a VBUILD_VECTOR node with generic Vector type.
 | |
|       Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
 | |
|       Ops.push_back(DAG.getValueType(PVT));
 | |
|       return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
 | |
|                                       Ops.size());
 | |
|     } else {
 | |
|       // Canonicalize all constant ints to be unsigned.
 | |
|       return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     std::map<const AllocaInst*, int>::iterator SI =
 | |
|     FuncInfo.StaticAllocaMap.find(AI);
 | |
|     if (SI != FuncInfo.StaticAllocaMap.end())
 | |
|       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
 | |
|   }
 | |
|       
 | |
|   unsigned InReg = FuncInfo.ValueMap[V];
 | |
|   assert(InReg && "Value not in map!");
 | |
|   
 | |
|   // If this type is not legal, make it so now.
 | |
|   if (VT != MVT::Vector) {
 | |
|     if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
 | |
|       // Source must be expanded.  This input value is actually coming from the
 | |
|       // register pair InReg and InReg+1.
 | |
|       MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
 | |
|       unsigned NumVals = TLI.getNumElements(VT);
 | |
|       N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
 | |
|       if (NumVals == 1)
 | |
|         N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
 | |
|       else {
 | |
|         assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
 | |
|         N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
 | |
|                        DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
 | |
|       }
 | |
|     } else {
 | |
|       MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
 | |
|       N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
 | |
|       if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
 | |
|         N = MVT::isFloatingPoint(VT)
 | |
|           ? DAG.getNode(ISD::FP_ROUND, VT, N)
 | |
|           : DAG.getNode(ISD::TRUNCATE, VT, N);
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, if this is a vector, make it available as a generic vector
 | |
|     // here.
 | |
|     MVT::ValueType PTyElementVT, PTyLegalElementVT;
 | |
|     const VectorType *PTy = cast<VectorType>(VTy);
 | |
|     unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
 | |
|                                              PTyLegalElementVT);
 | |
| 
 | |
|     // Build a VBUILD_VECTOR with the input registers.
 | |
|     SmallVector<SDOperand, 8> Ops;
 | |
|     if (PTyElementVT == PTyLegalElementVT) {
 | |
|       // If the value types are legal, just VBUILD the CopyFromReg nodes.
 | |
|       for (unsigned i = 0; i != NE; ++i)
 | |
|         Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                          PTyElementVT));
 | |
|     } else if (PTyElementVT < PTyLegalElementVT) {
 | |
|       // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
 | |
|       for (unsigned i = 0; i != NE; ++i) {
 | |
|         SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                           PTyElementVT);
 | |
|         if (MVT::isFloatingPoint(PTyElementVT))
 | |
|           Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
 | |
|         else
 | |
|           Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
 | |
|         Ops.push_back(Op);
 | |
|       }
 | |
|     } else {
 | |
|       // If the register was expanded, use BUILD_PAIR.
 | |
|       assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
 | |
|       for (unsigned i = 0; i != NE/2; ++i) {
 | |
|         SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                            PTyElementVT);
 | |
|         SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++, 
 | |
|                                            PTyElementVT);
 | |
|         Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     Ops.push_back(DAG.getConstant(NE, MVT::i32));
 | |
|     Ops.push_back(DAG.getValueType(PTyLegalElementVT));
 | |
|     N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
 | |
|     
 | |
|     // Finally, use a VBIT_CONVERT to make this available as the appropriate
 | |
|     // vector type.
 | |
|     N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N, 
 | |
|                     DAG.getConstant(PTy->getNumElements(),
 | |
|                                     MVT::i32),
 | |
|                     DAG.getValueType(TLI.getValueType(PTy->getElementType())));
 | |
|   }
 | |
|   
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitRet(ReturnInst &I) {
 | |
|   if (I.getNumOperands() == 0) {
 | |
|     DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
 | |
|     return;
 | |
|   }
 | |
|   SmallVector<SDOperand, 8> NewValues;
 | |
|   NewValues.push_back(getRoot());
 | |
|   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | |
|     SDOperand RetOp = getValue(I.getOperand(i));
 | |
|     
 | |
|     // If this is an integer return value, we need to promote it ourselves to
 | |
|     // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
 | |
|     // than sign/zero.
 | |
|     // FIXME: C calling convention requires the return type to be promoted to
 | |
|     // at least 32-bit. But this is not necessary for non-C calling conventions.
 | |
|     if (MVT::isInteger(RetOp.getValueType()) && 
 | |
|         RetOp.getValueType() < MVT::i64) {
 | |
|       MVT::ValueType TmpVT;
 | |
|       if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
 | |
|         TmpVT = TLI.getTypeToTransformTo(MVT::i32);
 | |
|       else
 | |
|         TmpVT = MVT::i32;
 | |
|       const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
 | |
|       const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | |
|       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
|       if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
 | |
|         ExtendKind = ISD::SIGN_EXTEND;
 | |
|       if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
 | |
|         ExtendKind = ISD::ZERO_EXTEND;
 | |
|       RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
 | |
|     }
 | |
|     NewValues.push_back(RetOp);
 | |
|     NewValues.push_back(DAG.getConstant(false, MVT::i32));
 | |
|   }
 | |
|   DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
 | |
|                           &NewValues[0], NewValues.size()));
 | |
| }
 | |
| 
 | |
| /// ExportFromCurrentBlock - If this condition isn't known to be exported from
 | |
| /// the current basic block, add it to ValueMap now so that we'll get a
 | |
| /// CopyTo/FromReg.
 | |
| void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
 | |
|   // No need to export constants.
 | |
|   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
 | |
|   
 | |
|   // Already exported?
 | |
|   if (FuncInfo.isExportedInst(V)) return;
 | |
| 
 | |
|   unsigned Reg = FuncInfo.InitializeRegForValue(V);
 | |
|   PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
 | |
| }
 | |
| 
 | |
| bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
 | |
|                                                     const BasicBlock *FromBB) {
 | |
|   // The operands of the setcc have to be in this block.  We don't know
 | |
|   // how to export them from some other block.
 | |
|   if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | |
|     // Can export from current BB.
 | |
|     if (VI->getParent() == FromBB)
 | |
|       return true;
 | |
|     
 | |
|     // Is already exported, noop.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
|   
 | |
|   // If this is an argument, we can export it if the BB is the entry block or
 | |
|   // if it is already exported.
 | |
|   if (isa<Argument>(V)) {
 | |
|     if (FromBB == &FromBB->getParent()->getEntryBlock())
 | |
|       return true;
 | |
| 
 | |
|     // Otherwise, can only export this if it is already exported.
 | |
|     return FuncInfo.isExportedInst(V);
 | |
|   }
 | |
|   
 | |
|   // Otherwise, constants can always be exported.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool InBlock(const Value *V, const BasicBlock *BB) {
 | |
|   if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == BB;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindMergedConditions - If Cond is an expression like 
 | |
| void SelectionDAGLowering::FindMergedConditions(Value *Cond,
 | |
|                                                 MachineBasicBlock *TBB,
 | |
|                                                 MachineBasicBlock *FBB,
 | |
|                                                 MachineBasicBlock *CurBB,
 | |
|                                                 unsigned Opc) {
 | |
|   // If this node is not part of the or/and tree, emit it as a branch.
 | |
|   Instruction *BOp = dyn_cast<Instruction>(Cond);
 | |
| 
 | |
|   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 
 | |
|       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
 | |
|       BOp->getParent() != CurBB->getBasicBlock() ||
 | |
|       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
 | |
|       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
 | |
|     const BasicBlock *BB = CurBB->getBasicBlock();
 | |
|     
 | |
|     // If the leaf of the tree is a comparison, merge the condition into 
 | |
|     // the caseblock.
 | |
|     if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
 | |
|         // The operands of the cmp have to be in this block.  We don't know
 | |
|         // how to export them from some other block.  If this is the first block
 | |
|         // of the sequence, no exporting is needed.
 | |
|         (CurBB == CurMBB ||
 | |
|          (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
 | |
|           isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
 | |
|       BOp = cast<Instruction>(Cond);
 | |
|       ISD::CondCode Condition;
 | |
|       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
 | |
|         switch (IC->getPredicate()) {
 | |
|         default: assert(0 && "Unknown icmp predicate opcode!");
 | |
|         case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
 | |
|         case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
 | |
|         case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
 | |
|         case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
 | |
|         case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
 | |
|         case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
 | |
|         case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
 | |
|         case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
 | |
|         case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
 | |
|         case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
 | |
|         }
 | |
|       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
 | |
|         ISD::CondCode FPC, FOC;
 | |
|         switch (FC->getPredicate()) {
 | |
|         default: assert(0 && "Unknown fcmp predicate opcode!");
 | |
|         case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | |
|         case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | |
|         case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | |
|         case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | |
|         case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | |
|         case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | |
|         case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | |
|         case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
 | |
|         case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
 | |
|         case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | |
|         case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | |
|         case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | |
|         case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | |
|         case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | |
|         case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | |
|         case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | |
|         }
 | |
|         if (FiniteOnlyFPMath())
 | |
|           Condition = FOC;
 | |
|         else 
 | |
|           Condition = FPC;
 | |
|       } else {
 | |
|         Condition = ISD::SETEQ; // silence warning.
 | |
|         assert(0 && "Unknown compare instruction");
 | |
|       }
 | |
|       
 | |
|       SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0), 
 | |
|                                      BOp->getOperand(1), NULL, TBB, FBB, CurBB);
 | |
|       SwitchCases.push_back(CB);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Create a CaseBlock record representing this branch.
 | |
|     SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
 | |
|                                    NULL, TBB, FBB, CurBB);
 | |
|     SwitchCases.push_back(CB);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   //  Create TmpBB after CurBB.
 | |
|   MachineFunction::iterator BBI = CurBB;
 | |
|   MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
 | |
|   CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
 | |
|   
 | |
|   if (Opc == Instruction::Or) {
 | |
|     // Codegen X | Y as:
 | |
|     //   jmp_if_X TBB
 | |
|     //   jmp TmpBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
|   
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
 | |
|   
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | |
|   } else {
 | |
|     assert(Opc == Instruction::And && "Unknown merge op!");
 | |
|     // Codegen X & Y as:
 | |
|     //   jmp_if_X TmpBB
 | |
|     //   jmp FBB
 | |
|     // TmpBB:
 | |
|     //   jmp_if_Y TBB
 | |
|     //   jmp FBB
 | |
|     //
 | |
|     //  This requires creation of TmpBB after CurBB.
 | |
|     
 | |
|     // Emit the LHS condition.
 | |
|     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
 | |
|     
 | |
|     // Emit the RHS condition into TmpBB.
 | |
|     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If the set of cases should be emitted as a series of branches, return true.
 | |
| /// If we should emit this as a bunch of and/or'd together conditions, return
 | |
| /// false.
 | |
| static bool 
 | |
| ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
 | |
|   if (Cases.size() != 2) return true;
 | |
|   
 | |
|   // If this is two comparisons of the same values or'd or and'd together, they
 | |
|   // will get folded into a single comparison, so don't emit two blocks.
 | |
|   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
 | |
|       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
 | |
|        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBr(BranchInst &I) {
 | |
|   // Update machine-CFG edges.
 | |
|   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (I.isUnconditional()) {
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (Succ0MBB != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | |
|                               DAG.getBasicBlock(Succ0MBB)));
 | |
| 
 | |
|     // Update machine-CFG edges.
 | |
|     CurMBB->addSuccessor(Succ0MBB);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this condition is one of the special cases we handle, do special stuff
 | |
|   // now.
 | |
|   Value *CondVal = I.getCondition();
 | |
|   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
| 
 | |
|   // If this is a series of conditions that are or'd or and'd together, emit
 | |
|   // this as a sequence of branches instead of setcc's with and/or operations.
 | |
|   // For example, instead of something like:
 | |
|   //     cmp A, B
 | |
|   //     C = seteq 
 | |
|   //     cmp D, E
 | |
|   //     F = setle 
 | |
|   //     or C, F
 | |
|   //     jnz foo
 | |
|   // Emit:
 | |
|   //     cmp A, B
 | |
|   //     je foo
 | |
|   //     cmp D, E
 | |
|   //     jle foo
 | |
|   //
 | |
|   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
 | |
|     if (BOp->hasOneUse() && 
 | |
|         (BOp->getOpcode() == Instruction::And ||
 | |
|          BOp->getOpcode() == Instruction::Or)) {
 | |
|       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
 | |
|       // If the compares in later blocks need to use values not currently
 | |
|       // exported from this block, export them now.  This block should always
 | |
|       // be the first entry.
 | |
|       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
 | |
|       
 | |
|       // Allow some cases to be rejected.
 | |
|       if (ShouldEmitAsBranches(SwitchCases)) {
 | |
|         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
 | |
|           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
 | |
|         }
 | |
|         
 | |
|         // Emit the branch for this block.
 | |
|         visitSwitchCase(SwitchCases[0]);
 | |
|         SwitchCases.erase(SwitchCases.begin());
 | |
|         return;
 | |
|       }
 | |
|       
 | |
|       // Okay, we decided not to do this, remove any inserted MBB's and clear
 | |
|       // SwitchCases.
 | |
|       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
 | |
|         CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
 | |
|       
 | |
|       SwitchCases.clear();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Create a CaseBlock record representing this branch.
 | |
|   SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
 | |
|                                  NULL, Succ0MBB, Succ1MBB, CurMBB);
 | |
|   // Use visitSwitchCase to actually insert the fast branch sequence for this
 | |
|   // cond branch.
 | |
|   visitSwitchCase(CB);
 | |
| }
 | |
| 
 | |
| /// visitSwitchCase - Emits the necessary code to represent a single node in
 | |
| /// the binary search tree resulting from lowering a switch instruction.
 | |
| void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
 | |
|   SDOperand Cond;
 | |
|   SDOperand CondLHS = getValue(CB.CmpLHS);
 | |
|   
 | |
|   // Build the setcc now. 
 | |
|   if (CB.CmpMHS == NULL) {
 | |
|     // Fold "(X == true)" to X and "(X == false)" to !X to
 | |
|     // handle common cases produced by branch lowering.
 | |
|     if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
 | |
|       Cond = CondLHS;
 | |
|     else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
 | |
|       SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
 | |
|       Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
 | |
|     } else
 | |
|       Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
 | |
|   } else {
 | |
|     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
 | |
| 
 | |
|     uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
 | |
|     uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
 | |
| 
 | |
|     SDOperand CmpOp = getValue(CB.CmpMHS);
 | |
|     MVT::ValueType VT = CmpOp.getValueType();
 | |
| 
 | |
|     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | |
|       Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
 | |
|     } else {
 | |
|       SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
 | |
|       Cond = DAG.getSetCC(MVT::i1, SUB,
 | |
|                           DAG.getConstant(High-Low, VT), ISD::SETULE);
 | |
|     }
 | |
|     
 | |
|   }
 | |
|   
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
|   
 | |
|   // If the lhs block is the next block, invert the condition so that we can
 | |
|   // fall through to the lhs instead of the rhs block.
 | |
|   if (CB.TrueBB == NextBlock) {
 | |
|     std::swap(CB.TrueBB, CB.FalseBB);
 | |
|     SDOperand True = DAG.getConstant(1, Cond.getValueType());
 | |
|     Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
 | |
|   }
 | |
|   SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
 | |
|                                  DAG.getBasicBlock(CB.TrueBB));
 | |
|   if (CB.FalseBB == NextBlock)
 | |
|     DAG.setRoot(BrCond);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 
 | |
|                             DAG.getBasicBlock(CB.FalseBB)));
 | |
|   // Update successor info
 | |
|   CurMBB->addSuccessor(CB.TrueBB);
 | |
|   CurMBB->addSuccessor(CB.FalseBB);
 | |
| }
 | |
| 
 | |
| /// visitJumpTable - Emit JumpTable node in the current MBB
 | |
| void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
 | |
|   // Emit the code for the jump table
 | |
|   assert(JT.Reg != -1U && "Should lower JT Header first!");
 | |
|   MVT::ValueType PTy = TLI.getPointerTy();
 | |
|   SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
 | |
|   SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
 | |
|   DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
 | |
|                           Table, Index));
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// visitJumpTableHeader - This function emits necessary code to produce index
 | |
| /// in the JumpTable from switch case.
 | |
| void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
 | |
|                                          SelectionDAGISel::JumpTableHeader &JTH) {
 | |
|   // Subtract the lowest switch case value from the value being switched on
 | |
|   // and conditional branch to default mbb if the result is greater than the
 | |
|   // difference between smallest and largest cases.
 | |
|   SDOperand SwitchOp = getValue(JTH.SValue);
 | |
|   MVT::ValueType VT = SwitchOp.getValueType();
 | |
|   SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
 | |
|                               DAG.getConstant(JTH.First, VT));
 | |
|   
 | |
|   // The SDNode we just created, which holds the value being switched on
 | |
|   // minus the the smallest case value, needs to be copied to a virtual
 | |
|   // register so it can be used as an index into the jump table in a 
 | |
|   // subsequent basic block.  This value may be smaller or larger than the
 | |
|   // target's pointer type, and therefore require extension or truncating.
 | |
|   if (VT > TLI.getPointerTy())
 | |
|     SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
 | |
|   else
 | |
|     SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
 | |
|   
 | |
|   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | |
|   SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
 | |
|   JT.Reg = JumpTableReg;
 | |
| 
 | |
|   // Emit the range check for the jump table, and branch to the default
 | |
|   // block for the switch statement if the value being switched on exceeds
 | |
|   // the largest case in the switch.
 | |
|   SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
 | |
|                                DAG.getConstant(JTH.Last-JTH.First,VT),
 | |
|                                ISD::SETUGT);
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
 | |
|                                  DAG.getBasicBlock(JT.Default));
 | |
| 
 | |
|   if (JT.MBB == NextBlock)
 | |
|     DAG.setRoot(BrCond);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond, 
 | |
|                             DAG.getBasicBlock(JT.MBB)));
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// visitBitTestHeader - This function emits necessary code to produce value
 | |
| /// suitable for "bit tests"
 | |
| void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
 | |
|   // Subtract the minimum value
 | |
|   SDOperand SwitchOp = getValue(B.SValue);
 | |
|   MVT::ValueType VT = SwitchOp.getValueType();
 | |
|   SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
 | |
|                               DAG.getConstant(B.First, VT));
 | |
| 
 | |
|   // Check range
 | |
|   SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
 | |
|                                     DAG.getConstant(B.Range, VT),
 | |
|                                     ISD::SETUGT);
 | |
| 
 | |
|   SDOperand ShiftOp;
 | |
|   if (VT > TLI.getShiftAmountTy())
 | |
|     ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
 | |
|   else
 | |
|     ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
 | |
| 
 | |
|   // Make desired shift
 | |
|   SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
 | |
|                                     DAG.getConstant(1, TLI.getPointerTy()),
 | |
|                                     ShiftOp);
 | |
| 
 | |
|   unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
 | |
|   SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
 | |
|   B.Reg = SwitchReg;
 | |
| 
 | |
|   SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
 | |
|                                   DAG.getBasicBlock(B.Default));
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
 | |
|   if (MBB == NextBlock)
 | |
|     DAG.setRoot(BrRange);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
 | |
|                             DAG.getBasicBlock(MBB)));
 | |
| 
 | |
|   CurMBB->addSuccessor(B.Default);
 | |
|   CurMBB->addSuccessor(MBB);
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /// visitBitTestCase - this function produces one "bit test"
 | |
| void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
 | |
|                                             unsigned Reg,
 | |
|                                             SelectionDAGISel::BitTestCase &B) {
 | |
|   // Emit bit tests and jumps
 | |
|   SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
 | |
|   
 | |
|   SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
 | |
|                                 SwitchVal,
 | |
|                                 DAG.getConstant(B.Mask,
 | |
|                                                 TLI.getPointerTy()));
 | |
|   SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
 | |
|                                   DAG.getConstant(0, TLI.getPointerTy()),
 | |
|                                   ISD::SETNE);
 | |
|   SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
 | |
|                                 AndCmp, DAG.getBasicBlock(B.TargetBB));
 | |
| 
 | |
|   // Set NextBlock to be the MBB immediately after the current one, if any.
 | |
|   // This is used to avoid emitting unnecessary branches to the next block.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   if (NextMBB == NextBlock)
 | |
|     DAG.setRoot(BrAnd);
 | |
|   else
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
 | |
|                             DAG.getBasicBlock(NextMBB)));
 | |
| 
 | |
|   CurMBB->addSuccessor(B.TargetBB);
 | |
|   CurMBB->addSuccessor(NextMBB);
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
 | |
|   assert(0 && "Should never be visited directly");
 | |
| }
 | |
| void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
 | |
|   // Retrieve successors.
 | |
|   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
 | |
|   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
 | |
|   
 | |
|   if (!AsTerminator) {
 | |
|     // Mark landing pad so that it doesn't get deleted in branch folding.
 | |
|     LandingPad->setIsLandingPad();
 | |
|     
 | |
|     // Insert a label before the invoke call to mark the try range.
 | |
|     // This can be used to detect deletion of the invoke via the
 | |
|     // MachineModuleInfo.
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     unsigned BeginLabel = MMI->NextLabelID();
 | |
|     DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | |
|                             DAG.getConstant(BeginLabel, MVT::i32)));
 | |
| 
 | |
|     LowerCallTo(I, I.getCalledValue()->getType(),
 | |
|                    I.getCallingConv(),
 | |
|                    false,
 | |
|                    getValue(I.getOperand(0)),
 | |
|                    3);
 | |
| 
 | |
|     // Insert a label before the invoke call to mark the try range.
 | |
|     // This can be used to detect deletion of the invoke via the
 | |
|     // MachineModuleInfo.
 | |
|     unsigned EndLabel = MMI->NextLabelID();
 | |
|     DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | |
|                             DAG.getConstant(EndLabel, MVT::i32)));
 | |
|                             
 | |
|     // Inform MachineModuleInfo of range.    
 | |
|     MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
 | |
|                             
 | |
|     // Update successor info
 | |
|     CurMBB->addSuccessor(Return);
 | |
|     CurMBB->addSuccessor(LandingPad);
 | |
|   } else {
 | |
|     // Drop into normal successor.
 | |
|     DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(), 
 | |
|                             DAG.getBasicBlock(Return)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
 | |
| }
 | |
| 
 | |
| /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
 | |
| /// small case ranges).
 | |
| bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
 | |
|                                                   CaseRecVector& WorkList,
 | |
|                                                   Value* SV,
 | |
|                                                   MachineBasicBlock* Default) {
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
|   
 | |
|   // Size is the number of Cases represented by this range.
 | |
|   unsigned Size = CR.Range.second - CR.Range.first;
 | |
|   if (Size > 3)
 | |
|     return false;  
 | |
|   
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = CurMBB->getParent();  
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
| 
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   // TODO: If any two of the cases has the same destination, and if one value
 | |
|   // is the same as the other, but has one bit unset that the other has set,
 | |
|   // use bit manipulation to do two compares at once.  For example:
 | |
|   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
 | |
|     
 | |
|   // Rearrange the case blocks so that the last one falls through if possible.
 | |
|   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
 | |
|     // The last case block won't fall through into 'NextBlock' if we emit the
 | |
|     // branches in this order.  See if rearranging a case value would help.
 | |
|     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
 | |
|       if (I->BB == NextBlock) {
 | |
|         std::swap(*I, BackCase);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Create a CaseBlock record representing a conditional branch to
 | |
|   // the Case's target mbb if the value being switched on SV is equal
 | |
|   // to C.
 | |
|   MachineBasicBlock *CurBlock = CR.CaseBB;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
 | |
|     MachineBasicBlock *FallThrough;
 | |
|     if (I != E-1) {
 | |
|       FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
 | |
|       CurMF->getBasicBlockList().insert(BBI, FallThrough);
 | |
|     } else {
 | |
|       // If the last case doesn't match, go to the default block.
 | |
|       FallThrough = Default;
 | |
|     }
 | |
| 
 | |
|     Value *RHS, *LHS, *MHS;
 | |
|     ISD::CondCode CC;
 | |
|     if (I->High == I->Low) {
 | |
|       // This is just small small case range :) containing exactly 1 case
 | |
|       CC = ISD::SETEQ;
 | |
|       LHS = SV; RHS = I->High; MHS = NULL;
 | |
|     } else {
 | |
|       CC = ISD::SETLE;
 | |
|       LHS = I->Low; MHS = SV; RHS = I->High;
 | |
|     }
 | |
|     SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
 | |
|                                    I->BB, FallThrough, CurBlock);
 | |
|     
 | |
|     // If emitting the first comparison, just call visitSwitchCase to emit the
 | |
|     // code into the current block.  Otherwise, push the CaseBlock onto the
 | |
|     // vector to be later processed by SDISel, and insert the node's MBB
 | |
|     // before the next MBB.
 | |
|     if (CurBlock == CurMBB)
 | |
|       visitSwitchCase(CB);
 | |
|     else
 | |
|       SwitchCases.push_back(CB);
 | |
|     
 | |
|     CurBlock = FallThrough;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static inline bool areJTsAllowed(const TargetLowering &TLI) {
 | |
|   return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
 | |
|           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
 | |
| }
 | |
|   
 | |
| /// handleJTSwitchCase - Emit jumptable for current switch case range
 | |
| bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
 | |
|                                               CaseRecVector& WorkList,
 | |
|                                               Value* SV,
 | |
|                                               MachineBasicBlock* Default) {
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
| 
 | |
|   int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
 | |
|   int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
 | |
| 
 | |
|   uint64_t TSize = 0;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I)
 | |
|     TSize += I->size();
 | |
| 
 | |
|   if (!areJTsAllowed(TLI) || TSize <= 3)
 | |
|     return false;
 | |
|   
 | |
|   double Density = (double)TSize / (double)((Last - First) + 1ULL);  
 | |
|   if (Density < 0.4)
 | |
|     return false;
 | |
| 
 | |
|   DOUT << "Lowering jump table\n"
 | |
|        << "First entry: " << First << ". Last entry: " << Last << "\n"
 | |
|        << "Size: " << TSize << ". Density: " << Density << "\n\n";
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = CurMBB->getParent();
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
| 
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   // Create a new basic block to hold the code for loading the address
 | |
|   // of the jump table, and jumping to it.  Update successor information;
 | |
|   // we will either branch to the default case for the switch, or the jump
 | |
|   // table.
 | |
|   MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
 | |
|   CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
 | |
|   CR.CaseBB->addSuccessor(Default);
 | |
|   CR.CaseBB->addSuccessor(JumpTableBB);
 | |
|                 
 | |
|   // Build a vector of destination BBs, corresponding to each target
 | |
|   // of the jump table. If the value of the jump table slot corresponds to
 | |
|   // a case statement, push the case's BB onto the vector, otherwise, push
 | |
|   // the default BB.
 | |
|   std::vector<MachineBasicBlock*> DestBBs;
 | |
|   int64_t TEI = First;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
 | |
|     int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
 | |
|     int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
 | |
|     
 | |
|     if ((Low <= TEI) && (TEI <= High)) {
 | |
|       DestBBs.push_back(I->BB);
 | |
|       if (TEI==High)
 | |
|         ++I;
 | |
|     } else {
 | |
|       DestBBs.push_back(Default);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Update successor info. Add one edge to each unique successor.
 | |
|   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());  
 | |
|   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 
 | |
|          E = DestBBs.end(); I != E; ++I) {
 | |
|     if (!SuccsHandled[(*I)->getNumber()]) {
 | |
|       SuccsHandled[(*I)->getNumber()] = true;
 | |
|       JumpTableBB->addSuccessor(*I);
 | |
|     }
 | |
|   }
 | |
|       
 | |
|   // Create a jump table index for this jump table, or return an existing
 | |
|   // one.
 | |
|   unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
 | |
|   
 | |
|   // Set the jump table information so that we can codegen it as a second
 | |
|   // MachineBasicBlock
 | |
|   SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
 | |
|   SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
 | |
|                                         (CR.CaseBB == CurMBB));
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitJumpTableHeader(JT, JTH);
 | |
|         
 | |
|   JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
 | |
| /// 2 subtrees.
 | |
| bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
 | |
|                                                    CaseRecVector& WorkList,
 | |
|                                                    Value* SV,
 | |
|                                                    MachineBasicBlock* Default) {
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = CurMBB->getParent();  
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
| 
 | |
|   if (++BBI != CurMBB->getParent()->end())
 | |
|     NextBlock = BBI;
 | |
| 
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   // Size is the number of Cases represented by this range.
 | |
|   unsigned Size = CR.Range.second - CR.Range.first;
 | |
| 
 | |
|   int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
 | |
|   int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
 | |
|   double FMetric = 0;
 | |
|   CaseItr Pivot = CR.Range.first + Size/2;
 | |
| 
 | |
|   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
 | |
|   // (heuristically) allow us to emit JumpTable's later.
 | |
|   uint64_t TSize = 0;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I)
 | |
|     TSize += I->size();
 | |
| 
 | |
|   uint64_t LSize = FrontCase.size();
 | |
|   uint64_t RSize = TSize-LSize;
 | |
|   DOUT << "Selecting best pivot: \n"
 | |
|        << "First: " << First << ", Last: " << Last <<"\n"
 | |
|        << "LSize: " << LSize << ", RSize: " << RSize << "\n";
 | |
|   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
 | |
|        J!=E; ++I, ++J) {
 | |
|     int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
 | |
|     int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
 | |
|     assert((RBegin-LEnd>=1) && "Invalid case distance");
 | |
|     double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
 | |
|     double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
 | |
|     double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
 | |
|     // Should always split in some non-trivial place
 | |
|     DOUT <<"=>Step\n"
 | |
|          << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
 | |
|          << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
 | |
|          << "Metric: " << Metric << "\n"; 
 | |
|     if (FMetric < Metric) {
 | |
|       Pivot = J;
 | |
|       FMetric = Metric;
 | |
|       DOUT << "Current metric set to: " << FMetric << "\n";
 | |
|     }
 | |
| 
 | |
|     LSize += J->size();
 | |
|     RSize -= J->size();
 | |
|   }
 | |
|   if (areJTsAllowed(TLI)) {
 | |
|     // If our case is dense we *really* should handle it earlier!
 | |
|     assert((FMetric > 0) && "Should handle dense range earlier!");
 | |
|   } else {
 | |
|     Pivot = CR.Range.first + Size/2;
 | |
|   }
 | |
|   
 | |
|   CaseRange LHSR(CR.Range.first, Pivot);
 | |
|   CaseRange RHSR(Pivot, CR.Range.second);
 | |
|   Constant *C = Pivot->Low;
 | |
|   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
 | |
|       
 | |
|   // We know that we branch to the LHS if the Value being switched on is
 | |
|   // less than the Pivot value, C.  We use this to optimize our binary 
 | |
|   // tree a bit, by recognizing that if SV is greater than or equal to the
 | |
|   // LHS's Case Value, and that Case Value is exactly one less than the 
 | |
|   // Pivot's Value, then we can branch directly to the LHS's Target,
 | |
|   // rather than creating a leaf node for it.
 | |
|   if ((LHSR.second - LHSR.first) == 1 &&
 | |
|       LHSR.first->High == CR.GE &&
 | |
|       cast<ConstantInt>(C)->getSExtValue() ==
 | |
|       (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
 | |
|     TrueBB = LHSR.first->BB;
 | |
|   } else {
 | |
|     TrueBB = new MachineBasicBlock(LLVMBB);
 | |
|     CurMF->getBasicBlockList().insert(BBI, TrueBB);
 | |
|     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
 | |
|   }
 | |
|   
 | |
|   // Similar to the optimization above, if the Value being switched on is
 | |
|   // known to be less than the Constant CR.LT, and the current Case Value
 | |
|   // is CR.LT - 1, then we can branch directly to the target block for
 | |
|   // the current Case Value, rather than emitting a RHS leaf node for it.
 | |
|   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
 | |
|       cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
 | |
|       (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
 | |
|     FalseBB = RHSR.first->BB;
 | |
|   } else {
 | |
|     FalseBB = new MachineBasicBlock(LLVMBB);
 | |
|     CurMF->getBasicBlockList().insert(BBI, FalseBB);
 | |
|     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
 | |
|   }
 | |
| 
 | |
|   // Create a CaseBlock record representing a conditional branch to
 | |
|   // the LHS node if the value being switched on SV is less than C. 
 | |
|   // Otherwise, branch to LHS.
 | |
|   SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
 | |
|                                  TrueBB, FalseBB, CR.CaseBB);
 | |
| 
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitSwitchCase(CB);
 | |
|   else
 | |
|     SwitchCases.push_back(CB);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// handleBitTestsSwitchCase - if current case range has few destination and
 | |
| /// range span less, than machine word bitwidth, encode case range into series
 | |
| /// of masks and emit bit tests with these masks.
 | |
| bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
 | |
|                                                     CaseRecVector& WorkList,
 | |
|                                                     Value* SV,
 | |
|                                                     MachineBasicBlock* Default){
 | |
|   unsigned IntPtrBits = getSizeInBits(TLI.getPointerTy());
 | |
| 
 | |
|   Case& FrontCase = *CR.Range.first;
 | |
|   Case& BackCase  = *(CR.Range.second-1);
 | |
| 
 | |
|   // Get the MachineFunction which holds the current MBB.  This is used when
 | |
|   // inserting any additional MBBs necessary to represent the switch.
 | |
|   MachineFunction *CurMF = CurMBB->getParent();  
 | |
| 
 | |
|   unsigned numCmps = 0;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second;
 | |
|        I!=E; ++I) {
 | |
|     // Single case counts one, case range - two.
 | |
|     if (I->Low == I->High)
 | |
|       numCmps +=1;
 | |
|     else
 | |
|       numCmps +=2;
 | |
|   }
 | |
|     
 | |
|   // Count unique destinations
 | |
|   SmallSet<MachineBasicBlock*, 4> Dests;
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | |
|     Dests.insert(I->BB);
 | |
|     if (Dests.size() > 3)
 | |
|       // Don't bother the code below, if there are too much unique destinations
 | |
|       return false;
 | |
|   }
 | |
|   DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
 | |
|        << "Total number of comparisons: " << numCmps << "\n";
 | |
|   
 | |
|   // Compute span of values.
 | |
|   Constant* minValue = FrontCase.Low;
 | |
|   Constant* maxValue = BackCase.High;
 | |
|   uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
 | |
|                    cast<ConstantInt>(minValue)->getSExtValue();
 | |
|   DOUT << "Compare range: " << range << "\n"
 | |
|        << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
 | |
|        << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
 | |
|   
 | |
|   if (range>=IntPtrBits ||
 | |
|       (!(Dests.size() == 1 && numCmps >= 3) &&
 | |
|        !(Dests.size() == 2 && numCmps >= 5) &&
 | |
|        !(Dests.size() >= 3 && numCmps >= 6)))
 | |
|     return false;
 | |
|   
 | |
|   DOUT << "Emitting bit tests\n";
 | |
|   int64_t lowBound = 0;
 | |
|     
 | |
|   // Optimize the case where all the case values fit in a
 | |
|   // word without having to subtract minValue. In this case,
 | |
|   // we can optimize away the subtraction.
 | |
|   if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
 | |
|       cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
 | |
|     range = cast<ConstantInt>(maxValue)->getSExtValue();
 | |
|   } else {
 | |
|     lowBound = cast<ConstantInt>(minValue)->getSExtValue();
 | |
|   }
 | |
|     
 | |
|   CaseBitsVector CasesBits;
 | |
|   unsigned i, count = 0;
 | |
| 
 | |
|   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
 | |
|     MachineBasicBlock* Dest = I->BB;
 | |
|     for (i = 0; i < count; ++i)
 | |
|       if (Dest == CasesBits[i].BB)
 | |
|         break;
 | |
|     
 | |
|     if (i == count) {
 | |
|       assert((count < 3) && "Too much destinations to test!");
 | |
|       CasesBits.push_back(CaseBits(0, Dest, 0));
 | |
|       count++;
 | |
|     }
 | |
|     
 | |
|     uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
 | |
|     uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
 | |
|     
 | |
|     for (uint64_t j = lo; j <= hi; j++) {
 | |
|       CasesBits[i].Mask |=  1ULL << j;
 | |
|       CasesBits[i].Bits++;
 | |
|     }
 | |
|       
 | |
|   }
 | |
|   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
 | |
|   
 | |
|   SelectionDAGISel::BitTestInfo BTC;
 | |
| 
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineFunction::iterator BBI = CR.CaseBB;
 | |
|   ++BBI;
 | |
| 
 | |
|   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
 | |
| 
 | |
|   DOUT << "Cases:\n";
 | |
|   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
 | |
|     DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
 | |
|          << ", BB: " << CasesBits[i].BB << "\n";
 | |
| 
 | |
|     MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
 | |
|     CurMF->getBasicBlockList().insert(BBI, CaseBB);
 | |
|     BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
 | |
|                                                 CaseBB,
 | |
|                                                 CasesBits[i].BB));
 | |
|   }
 | |
|   
 | |
|   SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
 | |
|                                      -1U, (CR.CaseBB == CurMBB),
 | |
|                                      CR.CaseBB, Default, BTC);
 | |
| 
 | |
|   if (CR.CaseBB == CurMBB)
 | |
|     visitBitTestHeader(BTB);
 | |
|   
 | |
|   BitTestCases.push_back(BTB);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Clusterify - Transform simple list of Cases into list of CaseRange's
 | |
| unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
 | |
|                                           const SwitchInst& SI) {
 | |
|   unsigned numCmps = 0;
 | |
| 
 | |
|   // Start with "simple" cases
 | |
|   for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
 | |
|     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
 | |
|     Cases.push_back(Case(SI.getSuccessorValue(i),
 | |
|                          SI.getSuccessorValue(i),
 | |
|                          SMBB));
 | |
|   }
 | |
|   sort(Cases.begin(), Cases.end(), CaseCmp());
 | |
| 
 | |
|   // Merge case into clusters
 | |
|   if (Cases.size()>=2)
 | |
|     for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
 | |
|       int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
 | |
|       int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
 | |
|       MachineBasicBlock* nextBB = J->BB;
 | |
|       MachineBasicBlock* currentBB = I->BB;
 | |
| 
 | |
|       // If the two neighboring cases go to the same destination, merge them
 | |
|       // into a single case.
 | |
|       if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
 | |
|         I->High = J->High;
 | |
|         J = Cases.erase(J);
 | |
|       } else {
 | |
|         I = J++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
 | |
|     if (I->Low != I->High)
 | |
|       // A range counts double, since it requires two compares.
 | |
|       ++numCmps;
 | |
|   }
 | |
| 
 | |
|   return numCmps;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {  
 | |
|   // Figure out which block is immediately after the current one.
 | |
|   MachineBasicBlock *NextBlock = 0;
 | |
|   MachineFunction::iterator BBI = CurMBB;
 | |
| 
 | |
|   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
 | |
| 
 | |
|   // If there is only the default destination, branch to it if it is not the
 | |
|   // next basic block.  Otherwise, just fall through.
 | |
|   if (SI.getNumOperands() == 2) {
 | |
|     // Update machine-CFG edges.
 | |
| 
 | |
|     // If this is not a fall-through branch, emit the branch.
 | |
|     if (Default != NextBlock)
 | |
|       DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
 | |
|                               DAG.getBasicBlock(Default)));
 | |
| 
 | |
|     CurMBB->addSuccessor(Default);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If there are any non-default case statements, create a vector of Cases
 | |
|   // representing each one, and sort the vector so that we can efficiently
 | |
|   // create a binary search tree from them.
 | |
|   CaseVector Cases;
 | |
|   unsigned numCmps = Clusterify(Cases, SI);
 | |
|   DOUT << "Clusterify finished. Total clusters: " << Cases.size()
 | |
|        << ". Total compares: " << numCmps << "\n";
 | |
| 
 | |
|   // Get the Value to be switched on and default basic blocks, which will be
 | |
|   // inserted into CaseBlock records, representing basic blocks in the binary
 | |
|   // search tree.
 | |
|   Value *SV = SI.getOperand(0);
 | |
| 
 | |
|   // Push the initial CaseRec onto the worklist
 | |
|   CaseRecVector WorkList;
 | |
|   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     // Grab a record representing a case range to process off the worklist
 | |
|     CaseRec CR = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
|     
 | |
|     // If the range has few cases (two or less) emit a series of specific
 | |
|     // tests.
 | |
|     if (handleSmallSwitchRange(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
|     
 | |
|     // If the switch has more than 5 blocks, and at least 40% dense, and the 
 | |
|     // target supports indirect branches, then emit a jump table rather than 
 | |
|     // lowering the switch to a binary tree of conditional branches.
 | |
|     if (handleJTSwitchCase(CR, WorkList, SV, Default))
 | |
|       continue;
 | |
|           
 | |
|     // Emit binary tree. We need to pick a pivot, and push left and right ranges
 | |
|     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
 | |
|     handleBTSplitSwitchCase(CR, WorkList, SV, Default);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitSub(User &I) {
 | |
|   // -0.0 - X --> fneg
 | |
|   const Type *Ty = I.getType();
 | |
|   if (isa<VectorType>(Ty)) {
 | |
|     visitVectorBinary(I, ISD::VSUB);
 | |
|   } else if (Ty->isFloatingPoint()) {
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
 | |
|       if (CFP->isExactlyValue(-0.0)) {
 | |
|         SDOperand Op2 = getValue(I.getOperand(1));
 | |
|         setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
 | |
|         return;
 | |
|       }
 | |
|     visitScalarBinary(I, ISD::FSUB);
 | |
|   } else 
 | |
|     visitScalarBinary(I, ISD::SUB);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   
 | |
|   setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void
 | |
| SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
 | |
|   assert(isa<VectorType>(I.getType()));
 | |
|   const VectorType *Ty = cast<VectorType>(I.getType());
 | |
|   SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
 | |
| 
 | |
|   setValue(&I, DAG.getNode(OpCode, MVT::Vector,
 | |
|                            getValue(I.getOperand(0)),
 | |
|                            getValue(I.getOperand(1)),
 | |
|                            DAG.getConstant(Ty->getNumElements(), MVT::i32),
 | |
|                            Typ));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
 | |
|                                              unsigned VectorOp) {
 | |
|   if (isa<VectorType>(I.getType()))
 | |
|     visitVectorBinary(I, VectorOp);
 | |
|   else
 | |
|     visitScalarBinary(I, ScalarOp);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   
 | |
|   if (TLI.getShiftAmountTy() < Op2.getValueType())
 | |
|     Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
 | |
|   else if (TLI.getShiftAmountTy() > Op2.getValueType())
 | |
|     Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
 | |
|   
 | |
|   setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitICmp(User &I) {
 | |
|   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
 | |
|     predicate = IC->getPredicate();
 | |
|   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = ICmpInst::Predicate(IC->getPredicate());
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Opcode;
 | |
|   switch (predicate) {
 | |
|     case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
 | |
|     case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
 | |
|     case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
 | |
|     case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
 | |
|     case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
 | |
|     case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
 | |
|     case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
 | |
|     case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
 | |
|     case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
 | |
|     case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
 | |
|     default:
 | |
|       assert(!"Invalid ICmp predicate value");
 | |
|       Opcode = ISD::SETEQ;
 | |
|       break;
 | |
|   }
 | |
|   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFCmp(User &I) {
 | |
|   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
 | |
|   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
 | |
|     predicate = FC->getPredicate();
 | |
|   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
 | |
|     predicate = FCmpInst::Predicate(FC->getPredicate());
 | |
|   SDOperand Op1 = getValue(I.getOperand(0));
 | |
|   SDOperand Op2 = getValue(I.getOperand(1));
 | |
|   ISD::CondCode Condition, FOC, FPC;
 | |
|   switch (predicate) {
 | |
|     case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
 | |
|     case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
 | |
|     case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
 | |
|     case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
 | |
|     case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
 | |
|     case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
 | |
|     case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
 | |
|     case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
 | |
|     case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
 | |
|     case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
 | |
|     case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
 | |
|     case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
 | |
|     case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
 | |
|     case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
 | |
|     case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
 | |
|     case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
 | |
|     default:
 | |
|       assert(!"Invalid FCmp predicate value");
 | |
|       FOC = FPC = ISD::SETFALSE;
 | |
|       break;
 | |
|   }
 | |
|   if (FiniteOnlyFPMath())
 | |
|     Condition = FOC;
 | |
|   else 
 | |
|     Condition = FPC;
 | |
|   setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSelect(User &I) {
 | |
|   SDOperand Cond     = getValue(I.getOperand(0));
 | |
|   SDOperand TrueVal  = getValue(I.getOperand(1));
 | |
|   SDOperand FalseVal = getValue(I.getOperand(2));
 | |
|   if (!isa<VectorType>(I.getType())) {
 | |
|     setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
 | |
|                              TrueVal, FalseVal));
 | |
|   } else {
 | |
|     setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
 | |
|                              *(TrueVal.Val->op_end()-2),
 | |
|                              *(TrueVal.Val->op_end()-1)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitTrunc(User &I) {
 | |
|   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitZExt(User &I) {
 | |
|   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSExt(User &I) {
 | |
|   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
 | |
|   // SExt also can't be a cast to bool for same reason. So, nothing much to do
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPTrunc(User &I) {
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPExt(User &I){ 
 | |
|   // FPTrunc is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPToUI(User &I) { 
 | |
|   // FPToUI is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFPToSI(User &I) {
 | |
|   // FPToSI is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitUIToFP(User &I) { 
 | |
|   // UIToFP is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitSIToFP(User &I){ 
 | |
|   // UIToFP is never a no-op cast, no need to check
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitPtrToInt(User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType SrcVT = N.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   SDOperand Result;
 | |
|   if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
 | |
|     Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
 | |
|   else 
 | |
|     // Note: ZERO_EXTEND can handle cases where the sizes are equal too
 | |
|     Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
 | |
|   setValue(&I, Result);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitIntToPtr(User &I) {
 | |
|   // What to do depends on the size of the integer and the size of the pointer.
 | |
|   // We can either truncate, zero extend, or no-op, accordingly.
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType SrcVT = N.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
 | |
|     setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
 | |
|   else 
 | |
|     // Note: ZERO_EXTEND can handle cases where the sizes are equal too
 | |
|     setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitBitCast(User &I) { 
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   MVT::ValueType DestVT = TLI.getValueType(I.getType());
 | |
|   if (DestVT == MVT::Vector) {
 | |
|     // This is a cast to a vector from something else.  
 | |
|     // Get information about the output vector.
 | |
|     const VectorType *DestTy = cast<VectorType>(I.getType());
 | |
|     MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
 | |
|     setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N, 
 | |
|                              DAG.getConstant(DestTy->getNumElements(),MVT::i32),
 | |
|                              DAG.getValueType(EltVT)));
 | |
|     return;
 | |
|   } 
 | |
|   MVT::ValueType SrcVT = N.getValueType();
 | |
|   if (SrcVT == MVT::Vector) {
 | |
|     // This is a cast from a vctor to something else. 
 | |
|     // Get information about the input vector.
 | |
|     setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // BitCast assures us that source and destination are the same size so this 
 | |
|   // is either a BIT_CONVERT or a no-op.
 | |
|   if (DestVT != N.getValueType())
 | |
|     setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
 | |
|   else
 | |
|     setValue(&I, N); // noop cast.
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitInsertElement(User &I) {
 | |
|   SDOperand InVec = getValue(I.getOperand(0));
 | |
|   SDOperand InVal = getValue(I.getOperand(1));
 | |
|   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(2)));
 | |
| 
 | |
|   SDOperand Num = *(InVec.Val->op_end()-2);
 | |
|   SDOperand Typ = *(InVec.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
 | |
|                            InVec, InVal, InIdx, Num, Typ));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitExtractElement(User &I) {
 | |
|   SDOperand InVec = getValue(I.getOperand(0));
 | |
|   SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
 | |
|                                 getValue(I.getOperand(1)));
 | |
|   SDOperand Typ = *(InVec.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
 | |
|                            TLI.getValueType(I.getType()), InVec, InIdx));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitShuffleVector(User &I) {
 | |
|   SDOperand V1   = getValue(I.getOperand(0));
 | |
|   SDOperand V2   = getValue(I.getOperand(1));
 | |
|   SDOperand Mask = getValue(I.getOperand(2));
 | |
| 
 | |
|   SDOperand Num = *(V1.Val->op_end()-2);
 | |
|   SDOperand Typ = *(V2.Val->op_end()-1);
 | |
|   setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
 | |
|                            V1, V2, Mask, Num, Typ));
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitGetElementPtr(User &I) {
 | |
|   SDOperand N = getValue(I.getOperand(0));
 | |
|   const Type *Ty = I.getOperand(0)->getType();
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
 | |
|        OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N,
 | |
|                         getIntPtrConstant(Offset));
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getZExtValue() == 0) continue;
 | |
|         uint64_t Offs = 
 | |
|             TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = TD->getTypeSize(Ty);
 | |
|       SDOperand IdxN = getValue(Idx);
 | |
| 
 | |
|       // If the index is smaller or larger than intptr_t, truncate or extend
 | |
|       // it.
 | |
|       if (IdxN.getValueType() < N.getValueType()) {
 | |
|         IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
 | |
|       } else if (IdxN.getValueType() > N.getValueType())
 | |
|         IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
 | |
| 
 | |
|       // If this is a multiply by a power of two, turn it into a shl
 | |
|       // immediately.  This is a very common case.
 | |
|       if (isPowerOf2_64(ElementSize)) {
 | |
|         unsigned Amt = Log2_64(ElementSize);
 | |
|         IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
 | |
|                            DAG.getConstant(Amt, TLI.getShiftAmountTy()));
 | |
|         N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       SDOperand Scale = getIntPtrConstant(ElementSize);
 | |
|       IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
 | |
|       N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
 | |
|     }
 | |
|   }
 | |
|   setValue(&I, N);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
 | |
|   // If this is a fixed sized alloca in the entry block of the function,
 | |
|   // allocate it statically on the stack.
 | |
|   if (FuncInfo.StaticAllocaMap.count(&I))
 | |
|     return;   // getValue will auto-populate this.
 | |
| 
 | |
|   const Type *Ty = I.getAllocatedType();
 | |
|   uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
 | |
|   unsigned Align =
 | |
|     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
 | |
|              I.getAlignment());
 | |
| 
 | |
|   SDOperand AllocSize = getValue(I.getArraySize());
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   if (IntPtr < AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
 | |
|   else if (IntPtr > AllocSize.getValueType())
 | |
|     AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
 | |
| 
 | |
|   AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
 | |
|                           getIntPtrConstant(TySize));
 | |
| 
 | |
|   // Handle alignment.  If the requested alignment is less than or equal to the
 | |
|   // stack alignment, ignore it and round the size of the allocation up to the
 | |
|   // stack alignment size.  If the size is greater than the stack alignment, we
 | |
|   // note this in the DYNAMIC_STACKALLOC node.
 | |
|   unsigned StackAlign =
 | |
|     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
 | |
|   if (Align <= StackAlign) {
 | |
|     Align = 0;
 | |
|     // Add SA-1 to the size.
 | |
|     AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(StackAlign-1));
 | |
|     // Mask out the low bits for alignment purposes.
 | |
|     AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
 | |
|                             getIntPtrConstant(~(uint64_t)(StackAlign-1)));
 | |
|   }
 | |
| 
 | |
|   SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
 | |
|   const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
 | |
|                                                     MVT::Other);
 | |
|   SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
 | |
|   setValue(&I, DSA);
 | |
|   DAG.setRoot(DSA.getValue(1));
 | |
| 
 | |
|   // Inform the Frame Information that we have just allocated a variable-sized
 | |
|   // object.
 | |
|   CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitLoad(LoadInst &I) {
 | |
|   SDOperand Ptr = getValue(I.getOperand(0));
 | |
| 
 | |
|   SDOperand Root;
 | |
|   if (I.isVolatile())
 | |
|     Root = getRoot();
 | |
|   else {
 | |
|     // Do not serialize non-volatile loads against each other.
 | |
|     Root = DAG.getRoot();
 | |
|   }
 | |
| 
 | |
|   setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
 | |
|                            Root, I.isVolatile(), I.getAlignment()));
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
 | |
|                                             const Value *SV, SDOperand Root,
 | |
|                                             bool isVolatile, 
 | |
|                                             unsigned Alignment) {
 | |
|   SDOperand L;
 | |
|   if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
 | |
|     MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
 | |
|     L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
 | |
|                        DAG.getSrcValue(SV));
 | |
|   } else {
 | |
|     L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, 
 | |
|                     isVolatile, Alignment);
 | |
|   }
 | |
| 
 | |
|   if (isVolatile)
 | |
|     DAG.setRoot(L.getValue(1));
 | |
|   else
 | |
|     PendingLoads.push_back(L.getValue(1));
 | |
|   
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitStore(StoreInst &I) {
 | |
|   Value *SrcV = I.getOperand(0);
 | |
|   SDOperand Src = getValue(SrcV);
 | |
|   SDOperand Ptr = getValue(I.getOperand(1));
 | |
|   DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
 | |
|                            I.isVolatile(), I.getAlignment()));
 | |
| }
 | |
| 
 | |
| /// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
 | |
| /// access memory and has no other side effects at all.
 | |
| static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
 | |
| #define GET_NO_MEMORY_INTRINSICS
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_NO_MEMORY_INTRINSICS
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
 | |
| // have any side-effects or if it only reads memory.
 | |
| static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
 | |
| #define GET_SIDE_EFFECT_INFO
 | |
| #include "llvm/Intrinsics.gen"
 | |
| #undef GET_SIDE_EFFECT_INFO
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
 | |
| /// node.
 | |
| void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I, 
 | |
|                                                 unsigned Intrinsic) {
 | |
|   bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
 | |
|   bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
 | |
|   
 | |
|   // Build the operand list.
 | |
|   SmallVector<SDOperand, 8> Ops;
 | |
|   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
 | |
|     if (OnlyLoad) {
 | |
|       // We don't need to serialize loads against other loads.
 | |
|       Ops.push_back(DAG.getRoot());
 | |
|     } else { 
 | |
|       Ops.push_back(getRoot());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add the intrinsic ID as an integer operand.
 | |
|   Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
 | |
| 
 | |
|   // Add all operands of the call to the operand list.
 | |
|   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
 | |
|     SDOperand Op = getValue(I.getOperand(i));
 | |
|     
 | |
|     // If this is a vector type, force it to the right vector type.
 | |
|     if (Op.getValueType() == MVT::Vector) {
 | |
|       const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
 | |
|       MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
 | |
|       
 | |
|       MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
 | |
|       assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
 | |
|       Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
 | |
|     }
 | |
|     
 | |
|     assert(TLI.isTypeLegal(Op.getValueType()) &&
 | |
|            "Intrinsic uses a non-legal type?");
 | |
|     Ops.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   if (I.getType() != Type::VoidTy) {
 | |
|     MVT::ValueType VT = TLI.getValueType(I.getType());
 | |
|     if (VT == MVT::Vector) {
 | |
|       const VectorType *DestTy = cast<VectorType>(I.getType());
 | |
|       MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
 | |
|       
 | |
|       VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
 | |
|       assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
 | |
|     }
 | |
|     
 | |
|     assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
 | |
|     VTs.push_back(VT);
 | |
|   }
 | |
|   if (HasChain)
 | |
|     VTs.push_back(MVT::Other);
 | |
| 
 | |
|   const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
 | |
| 
 | |
|   // Create the node.
 | |
|   SDOperand Result;
 | |
|   if (!HasChain)
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
 | |
|                          &Ops[0], Ops.size());
 | |
|   else if (I.getType() != Type::VoidTy)
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
 | |
|                          &Ops[0], Ops.size());
 | |
|   else
 | |
|     Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
 | |
|                          &Ops[0], Ops.size());
 | |
| 
 | |
|   if (HasChain) {
 | |
|     SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
 | |
|     if (OnlyLoad)
 | |
|       PendingLoads.push_back(Chain);
 | |
|     else
 | |
|       DAG.setRoot(Chain);
 | |
|   }
 | |
|   if (I.getType() != Type::VoidTy) {
 | |
|     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
 | |
|       MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
 | |
|       Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
 | |
|                            DAG.getConstant(PTy->getNumElements(), MVT::i32),
 | |
|                            DAG.getValueType(EVT));
 | |
|     } 
 | |
|     setValue(&I, Result);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ExtractGlobalVariable - If C is a global variable, or a bitcast of one
 | |
| /// (possibly constant folded), return it.  Otherwise return NULL.
 | |
| static GlobalVariable *ExtractGlobalVariable (Constant *C) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | |
|     return GV;
 | |
|   else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|     if (CE->getOpcode() == Instruction::BitCast)
 | |
|       return dyn_cast<GlobalVariable>(CE->getOperand(0));
 | |
|     else if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|         if (!CE->getOperand(i)->isNullValue())
 | |
|           return NULL;
 | |
|       return dyn_cast<GlobalVariable>(CE->getOperand(0));
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
 | |
| /// we want to emit this as a call to a named external function, return the name
 | |
| /// otherwise lower it and return null.
 | |
| const char *
 | |
| SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
 | |
|   switch (Intrinsic) {
 | |
|   default:
 | |
|     // By default, turn this into a target intrinsic node.
 | |
|     visitTargetIntrinsic(I, Intrinsic);
 | |
|     return 0;
 | |
|   case Intrinsic::vastart:  visitVAStart(I); return 0;
 | |
|   case Intrinsic::vaend:    visitVAEnd(I); return 0;
 | |
|   case Intrinsic::vacopy:   visitVACopy(I); return 0;
 | |
|   case Intrinsic::returnaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::frameaddress:
 | |
|     setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::setjmp:
 | |
|     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
 | |
|     break;
 | |
|   case Intrinsic::longjmp:
 | |
|     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
 | |
|     break;
 | |
|   case Intrinsic::memcpy_i32:
 | |
|   case Intrinsic::memcpy_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMCPY);
 | |
|     return 0;
 | |
|   case Intrinsic::memset_i32:
 | |
|   case Intrinsic::memset_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMSET);
 | |
|     return 0;
 | |
|   case Intrinsic::memmove_i32:
 | |
|   case Intrinsic::memmove_i64:
 | |
|     visitMemIntrinsic(I, ISD::MEMMOVE);
 | |
|     return 0;
 | |
|     
 | |
|   case Intrinsic::dbg_stoppoint: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
 | |
|     if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
 | |
|       SDOperand Ops[5];
 | |
| 
 | |
|       Ops[0] = getRoot();
 | |
|       Ops[1] = getValue(SPI.getLineValue());
 | |
|       Ops[2] = getValue(SPI.getColumnValue());
 | |
| 
 | |
|       DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
 | |
|       assert(DD && "Not a debug information descriptor");
 | |
|       CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
 | |
|       
 | |
|       Ops[3] = DAG.getString(CompileUnit->getFileName());
 | |
|       Ops[4] = DAG.getString(CompileUnit->getDirectory());
 | |
|       
 | |
|       DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_start: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
 | |
|     if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
 | |
|       unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
 | |
|       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
 | |
|                               DAG.getConstant(LabelID, MVT::i32)));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_end: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
 | |
|     if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
 | |
|       unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
 | |
|       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
 | |
|                               getRoot(), DAG.getConstant(LabelID, MVT::i32)));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_func_start: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
 | |
|     if (MMI && FSI.getSubprogram() &&
 | |
|         MMI->Verify(FSI.getSubprogram())) {
 | |
|       unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
 | |
|       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
 | |
|                   getRoot(), DAG.getConstant(LabelID, MVT::i32)));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
 | |
|     if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
 | |
|       SDOperand AddressOp  = getValue(DI.getAddress());
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
 | |
|         MMI->RecordVariable(DI.getVariable(), FI->getIndex());
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
|     
 | |
|   case Intrinsic::eh_exception: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     
 | |
|     if (MMI) {
 | |
|       // Add a label to mark the beginning of the landing pad.  Deletion of the
 | |
|       // landing pad can thus be detected via the MachineModuleInfo.
 | |
|       unsigned LabelID = MMI->addLandingPad(CurMBB);
 | |
|       DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
 | |
|                               DAG.getConstant(LabelID, MVT::i32)));
 | |
|       
 | |
|       // Mark exception register as live in.
 | |
|       unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|       if (Reg) CurMBB->addLiveIn(Reg);
 | |
|       
 | |
|       // Insert the EXCEPTIONADDR instruction.
 | |
|       SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
 | |
|       SDOperand Ops[1];
 | |
|       Ops[0] = DAG.getRoot();
 | |
|       SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
 | |
|       setValue(&I, Op);
 | |
|       DAG.setRoot(Op.getValue(1));
 | |
|     } else {
 | |
|       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::eh_selector:
 | |
|   case Intrinsic::eh_filter:{
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     
 | |
|     if (MMI) {
 | |
|       // Inform the MachineModuleInfo of the personality for this landing pad.
 | |
|       ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
 | |
|       assert(CE && CE->getOpcode() == Instruction::BitCast &&
 | |
|              isa<Function>(CE->getOperand(0)) &&
 | |
|              "Personality should be a function");
 | |
|       MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
 | |
|       if (Intrinsic == Intrinsic::eh_filter)
 | |
|         MMI->setIsFilterLandingPad(CurMBB);
 | |
| 
 | |
|       // Gather all the type infos for this landing pad and pass them along to
 | |
|       // MachineModuleInfo.
 | |
|       std::vector<GlobalVariable *> TyInfo;
 | |
|       for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
 | |
|         Constant *C = cast<Constant>(I.getOperand(i));
 | |
|         GlobalVariable *GV = ExtractGlobalVariable(C);
 | |
|         assert (GV || (isa<ConstantInt>(C) &&
 | |
|                        cast<ConstantInt>(C)->isNullValue()) &&
 | |
|                 "TypeInfo must be a global variable or NULL");
 | |
|         TyInfo.push_back(GV);
 | |
|       }
 | |
|       MMI->addCatchTypeInfo(CurMBB, TyInfo);
 | |
|       
 | |
|       // Mark exception selector register as live in.
 | |
|       unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|       if (Reg) CurMBB->addLiveIn(Reg);
 | |
| 
 | |
|       // Insert the EHSELECTION instruction.
 | |
|       SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
 | |
|       SDOperand Ops[2];
 | |
|       Ops[0] = getValue(I.getOperand(1));
 | |
|       Ops[1] = getRoot();
 | |
|       SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
 | |
|       setValue(&I, Op);
 | |
|       DAG.setRoot(Op.getValue(1));
 | |
|     } else {
 | |
|       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
 | |
|     }
 | |
|     
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   case Intrinsic::eh_typeid_for: {
 | |
|     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
 | |
|     
 | |
|     if (MMI) {
 | |
|       // Find the type id for the given typeinfo.
 | |
|       Constant *C = cast<Constant>(I.getOperand(1));
 | |
|       GlobalVariable *GV = ExtractGlobalVariable(C);
 | |
|       assert (GV || (isa<ConstantInt>(C) &&
 | |
|                      cast<ConstantInt>(C)->isNullValue()) &&
 | |
|               "TypeInfo must be a global variable or NULL");
 | |
| 
 | |
|       unsigned TypeID = MMI->getTypeIDFor(GV);
 | |
|       setValue(&I, DAG.getConstant(TypeID, MVT::i32));
 | |
|     } else {
 | |
|       setValue(&I, DAG.getConstant(0, MVT::i32));
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case Intrinsic::sqrt_f32:
 | |
|   case Intrinsic::sqrt_f64:
 | |
|     setValue(&I, DAG.getNode(ISD::FSQRT,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::powi_f32:
 | |
|   case Intrinsic::powi_f64:
 | |
|     setValue(&I, DAG.getNode(ISD::FPOWI,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1)),
 | |
|                              getValue(I.getOperand(2))));
 | |
|     return 0;
 | |
|   case Intrinsic::pcmarker: {
 | |
|     SDOperand Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::readcyclecounter: {
 | |
|     SDOperand Op = getRoot();
 | |
|     SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
 | |
|                                 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
 | |
|                                 &Op, 1);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::part_select: {
 | |
|     // Currently not implemented: just abort
 | |
|     assert(0 && "part_select intrinsic not implemented");
 | |
|     abort();
 | |
|   }
 | |
|   case Intrinsic::part_set: {
 | |
|     // Currently not implemented: just abort
 | |
|     assert(0 && "part_set intrinsic not implemented");
 | |
|     abort();
 | |
|   }
 | |
|   case Intrinsic::bswap:
 | |
|     setValue(&I, DAG.getNode(ISD::BSWAP,
 | |
|                              getValue(I.getOperand(1)).getValueType(),
 | |
|                              getValue(I.getOperand(1))));
 | |
|     return 0;
 | |
|   case Intrinsic::cttz: {
 | |
|     SDOperand Arg = getValue(I.getOperand(1));
 | |
|     MVT::ValueType Ty = Arg.getValueType();
 | |
|     SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
 | |
|     if (Ty < MVT::i32)
 | |
|       result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
 | |
|     else if (Ty > MVT::i32)
 | |
|       result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::ctlz: {
 | |
|     SDOperand Arg = getValue(I.getOperand(1));
 | |
|     MVT::ValueType Ty = Arg.getValueType();
 | |
|     SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
 | |
|     if (Ty < MVT::i32)
 | |
|       result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
 | |
|     else if (Ty > MVT::i32)
 | |
|       result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::ctpop: {
 | |
|     SDOperand Arg = getValue(I.getOperand(1));
 | |
|     MVT::ValueType Ty = Arg.getValueType();
 | |
|     SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
 | |
|     if (Ty < MVT::i32)
 | |
|       result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
 | |
|     else if (Ty > MVT::i32)
 | |
|       result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
 | |
|     setValue(&I, result);
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stacksave: {
 | |
|     SDOperand Op = getRoot();
 | |
|     SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
 | |
|               DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
 | |
|     setValue(&I, Tmp);
 | |
|     DAG.setRoot(Tmp.getValue(1));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::stackrestore: {
 | |
|     SDOperand Tmp = getValue(I.getOperand(1));
 | |
|     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
 | |
|     return 0;
 | |
|   }
 | |
|   case Intrinsic::prefetch:
 | |
|     // FIXME: Currently discarding prefetches.
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::LowerCallTo(Instruction &I,
 | |
|                                        const Type *CalledValueTy,
 | |
|                                        unsigned CallingConv,
 | |
|                                        bool IsTailCall,
 | |
|                                        SDOperand Callee, unsigned OpIdx) {
 | |
|   const PointerType *PT = cast<PointerType>(CalledValueTy);
 | |
|   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
 | |
|   const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Args.reserve(I.getNumOperands());
 | |
|   for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
 | |
|     Value *Arg = I.getOperand(i);
 | |
|     SDOperand ArgNode = getValue(Arg);
 | |
|     Entry.Node = ArgNode; Entry.Ty = Arg->getType();
 | |
| 
 | |
|     unsigned attrInd = i - OpIdx + 1;
 | |
|     Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
 | |
|     Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
 | |
|     Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
 | |
|     Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), 
 | |
|                     Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
 | |
|                     FTy->isVarArg(), CallingConv, IsTailCall, 
 | |
|                     Callee, Args, DAG);
 | |
|   if (I.getType() != Type::VoidTy)
 | |
|     setValue(&I, Result.first);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitCall(CallInst &I) {
 | |
|   const char *RenameFn = 0;
 | |
|   if (Function *F = I.getCalledFunction()) {
 | |
|     if (F->isDeclaration())
 | |
|       if (unsigned IID = F->getIntrinsicID()) {
 | |
|         RenameFn = visitIntrinsicCall(I, IID);
 | |
|         if (!RenameFn)
 | |
|           return;
 | |
|       } else {    // Not an LLVM intrinsic.
 | |
|         const std::string &Name = F->getName();
 | |
|         if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
 | |
|           if (I.getNumOperands() == 3 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType() &&
 | |
|               I.getType() == I.getOperand(2)->getType()) {
 | |
|             SDOperand LHS = getValue(I.getOperand(1));
 | |
|             SDOperand RHS = getValue(I.getOperand(2));
 | |
|             setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
 | |
|                                      LHS, RHS));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
 | |
|           if (I.getNumOperands() == 2 &&   // Basic sanity checks.
 | |
|               I.getOperand(1)->getType()->isFloatingPoint() &&
 | |
|               I.getType() == I.getOperand(1)->getType()) {
 | |
|             SDOperand Tmp = getValue(I.getOperand(1));
 | |
|             setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   } else if (isa<InlineAsm>(I.getOperand(0))) {
 | |
|     visitInlineAsm(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SDOperand Callee;
 | |
|   if (!RenameFn)
 | |
|     Callee = getValue(I.getOperand(0));
 | |
|   else
 | |
|     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
 | |
|     
 | |
|   LowerCallTo(I, I.getCalledValue()->getType(),
 | |
|                  I.getCallingConv(),
 | |
|                  I.isTailCall(),
 | |
|                  Callee,
 | |
|                  1);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
 | |
|                                         SDOperand &Chain, SDOperand &Flag)const{
 | |
|   SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
 | |
|   Chain = Val.getValue(1);
 | |
|   Flag  = Val.getValue(2);
 | |
|   
 | |
|   // If the result was expanded, copy from the top part.
 | |
|   if (Regs.size() > 1) {
 | |
|     assert(Regs.size() == 2 &&
 | |
|            "Cannot expand to more than 2 elts yet!");
 | |
|     SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
 | |
|     Chain = Hi.getValue(1);
 | |
|     Flag  = Hi.getValue(2);
 | |
|     if (DAG.getTargetLoweringInfo().isLittleEndian())
 | |
|       return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
 | |
|     else
 | |
|       return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if the return value was promoted or extended, truncate it to the
 | |
|   // appropriate type.
 | |
|   if (RegVT == ValueVT)
 | |
|     return Val;
 | |
|   
 | |
|   if (MVT::isVector(RegVT)) {
 | |
|     assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
 | |
|     return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val, 
 | |
|                        DAG.getConstant(MVT::getVectorNumElements(RegVT),
 | |
|                                        MVT::i32),
 | |
|                        DAG.getValueType(MVT::getVectorBaseType(RegVT)));
 | |
|   }
 | |
|   
 | |
|   if (MVT::isInteger(RegVT)) {
 | |
|     if (ValueVT < RegVT)
 | |
|       return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
 | |
|     else
 | |
|       return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
 | |
|   }
 | |
|   
 | |
|   assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
 | |
|   return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
 | |
| }
 | |
| 
 | |
| /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
 | |
| /// specified value into the registers specified by this object.  This uses 
 | |
| /// Chain/Flag as the input and updates them for the output Chain/Flag.
 | |
| void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
 | |
|                                  SDOperand &Chain, SDOperand &Flag,
 | |
|                                  MVT::ValueType PtrVT) const {
 | |
|   if (Regs.size() == 1) {
 | |
|     // If there is a single register and the types differ, this must be
 | |
|     // a promotion.
 | |
|     if (RegVT != ValueVT) {
 | |
|       if (MVT::isVector(RegVT)) {
 | |
|         assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
 | |
|         Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
 | |
|       } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
 | |
|         if (RegVT < ValueVT)
 | |
|           Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
 | |
|         else
 | |
|           Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
 | |
|       } else if (MVT::isFloatingPoint(RegVT) &&
 | |
|                  MVT::isFloatingPoint(Val.getValueType())) {
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
 | |
|       } else if (MVT::getSizeInBits(RegVT) == 
 | |
|                  MVT::getSizeInBits(Val.getValueType())) {
 | |
|         Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
 | |
|       } else {
 | |
|         assert(0 && "Unknown mismatch!");
 | |
|       }
 | |
|     }
 | |
|     Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   } else {
 | |
|     std::vector<unsigned> R(Regs);
 | |
|     if (!DAG.getTargetLoweringInfo().isLittleEndian())
 | |
|       std::reverse(R.begin(), R.end());
 | |
|     
 | |
|     for (unsigned i = 0, e = R.size(); i != e; ++i) {
 | |
|       SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val, 
 | |
|                                    DAG.getConstant(i, PtrVT));
 | |
|       Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
 | |
|       Flag = Chain.getValue(1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddInlineAsmOperands - Add this value to the specified inlineasm node
 | |
| /// operand list.  This adds the code marker and includes the number of 
 | |
| /// values added into it.
 | |
| void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
 | |
|                                         std::vector<SDOperand> &Ops) const {
 | |
|   MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
 | |
|   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(Regs[i], RegVT));
 | |
| }
 | |
| 
 | |
| /// isAllocatableRegister - If the specified register is safe to allocate, 
 | |
| /// i.e. it isn't a stack pointer or some other special register, return the
 | |
| /// register class for the register.  Otherwise, return null.
 | |
| static const TargetRegisterClass *
 | |
| isAllocatableRegister(unsigned Reg, MachineFunction &MF,
 | |
|                       const TargetLowering &TLI, const MRegisterInfo *MRI) {
 | |
|   MVT::ValueType FoundVT = MVT::Other;
 | |
|   const TargetRegisterClass *FoundRC = 0;
 | |
|   for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
 | |
|        E = MRI->regclass_end(); RCI != E; ++RCI) {
 | |
|     MVT::ValueType ThisVT = MVT::Other;
 | |
| 
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     // If none of the the value types for this register class are valid, we 
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (TLI.isTypeLegal(*I)) {
 | |
|         // If we have already found this register in a different register class,
 | |
|         // choose the one with the largest VT specified.  For example, on
 | |
|         // PowerPC, we favor f64 register classes over f32.
 | |
|         if (FoundVT == MVT::Other || 
 | |
|             MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
 | |
|           ThisVT = *I;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (ThisVT == MVT::Other) continue;
 | |
|     
 | |
|     // NOTE: This isn't ideal.  In particular, this might allocate the
 | |
|     // frame pointer in functions that need it (due to them not being taken
 | |
|     // out of allocation, because a variable sized allocation hasn't been seen
 | |
|     // yet).  This is a slight code pessimization, but should still work.
 | |
|     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
 | |
|          E = RC->allocation_order_end(MF); I != E; ++I)
 | |
|       if (*I == Reg) {
 | |
|         // We found a matching register class.  Keep looking at others in case
 | |
|         // we find one with larger registers that this physreg is also in.
 | |
|         FoundRC = RC;
 | |
|         FoundVT = ThisVT;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return FoundRC;
 | |
| }    
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| /// AsmOperandInfo - This contains information for each constraint that we are
 | |
| /// lowering.
 | |
| struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
 | |
|   /// ConstraintCode - This contains the actual string for the code, like "m".
 | |
|   std::string ConstraintCode;
 | |
| 
 | |
|   /// ConstraintType - Information about the constraint code, e.g. Register,
 | |
|   /// RegisterClass, Memory, Other, Unknown.
 | |
|   TargetLowering::ConstraintType ConstraintType;
 | |
|   
 | |
|   /// CallOperand/CallOperandval - If this is the result output operand or a
 | |
|   /// clobber, this is null, otherwise it is the incoming operand to the
 | |
|   /// CallInst.  This gets modified as the asm is processed.
 | |
|   SDOperand CallOperand;
 | |
|   Value *CallOperandVal;
 | |
|   
 | |
|   /// ConstraintVT - The ValueType for the operand value.
 | |
|   MVT::ValueType ConstraintVT;
 | |
|   
 | |
|   /// AssignedRegs - If this is a register or register class operand, this
 | |
|   /// contains the set of register corresponding to the operand.
 | |
|   RegsForValue AssignedRegs;
 | |
|   
 | |
|   AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
 | |
|     : InlineAsm::ConstraintInfo(info), 
 | |
|       ConstraintType(TargetLowering::C_Unknown),
 | |
|       CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
 | |
|   }
 | |
|   
 | |
|   void ComputeConstraintToUse(const TargetLowering &TLI);
 | |
|   
 | |
|   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
 | |
|   /// busy in OutputRegs/InputRegs.
 | |
|   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
 | |
|                          std::set<unsigned> &OutputRegs, 
 | |
|                          std::set<unsigned> &InputRegs) const {
 | |
|      if (isOutReg)
 | |
|        OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
 | |
|      if (isInReg)
 | |
|        InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
 | |
|    }
 | |
| };
 | |
| } // end anon namespace.
 | |
| 
 | |
| /// getConstraintGenerality - Return an integer indicating how general CT is.
 | |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | |
|   switch (CT) {
 | |
|     default: assert(0 && "Unknown constraint type!");
 | |
|     case TargetLowering::C_Other:
 | |
|     case TargetLowering::C_Unknown:
 | |
|       return 0;
 | |
|     case TargetLowering::C_Register:
 | |
|       return 1;
 | |
|     case TargetLowering::C_RegisterClass:
 | |
|       return 2;
 | |
|     case TargetLowering::C_Memory:
 | |
|       return 3;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
 | |
|   assert(!Codes.empty() && "Must have at least one constraint");
 | |
|   
 | |
|   std::string *Current = &Codes[0];
 | |
|   TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
 | |
|   if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
 | |
|     ConstraintCode = *Current;
 | |
|     ConstraintType = CurType;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   unsigned CurGenerality = getConstraintGenerality(CurType);
 | |
|   
 | |
|   // If we have multiple constraints, try to pick the most general one ahead
 | |
|   // of time.  This isn't a wonderful solution, but handles common cases.
 | |
|   for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
 | |
|     TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
 | |
|     unsigned ThisGenerality = getConstraintGenerality(ThisType);
 | |
|     if (ThisGenerality > CurGenerality) {
 | |
|       // This constraint letter is more general than the previous one,
 | |
|       // use it.
 | |
|       CurType = ThisType;
 | |
|       Current = &Codes[j];
 | |
|       CurGenerality = ThisGenerality;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   ConstraintCode = *Current;
 | |
|   ConstraintType = CurType;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::
 | |
| GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
 | |
|                      std::set<unsigned> &OutputRegs, 
 | |
|                      std::set<unsigned> &InputRegs) {
 | |
|   // Compute whether this value requires an input register, an output register,
 | |
|   // or both.
 | |
|   bool isOutReg = false;
 | |
|   bool isInReg = false;
 | |
|   switch (OpInfo.Type) {
 | |
|   case InlineAsm::isOutput:
 | |
|     isOutReg = true;
 | |
|     
 | |
|     // If this is an early-clobber output, or if there is an input
 | |
|     // constraint that matches this, we need to reserve the input register
 | |
|     // so no other inputs allocate to it.
 | |
|     isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
 | |
|     break;
 | |
|   case InlineAsm::isInput:
 | |
|     isInReg = true;
 | |
|     isOutReg = false;
 | |
|     break;
 | |
|   case InlineAsm::isClobber:
 | |
|     isOutReg = true;
 | |
|     isInReg = true;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   std::vector<unsigned> Regs;
 | |
|   
 | |
|   // If this is a constraint for a single physreg, or a constraint for a
 | |
|   // register class, find it.
 | |
|   std::pair<unsigned, const TargetRegisterClass*> PhysReg = 
 | |
|     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
 | |
|                                      OpInfo.ConstraintVT);
 | |
| 
 | |
|   unsigned NumRegs = 1;
 | |
|   if (OpInfo.ConstraintVT != MVT::Other)
 | |
|     NumRegs = TLI.getNumElements(OpInfo.ConstraintVT);
 | |
|   MVT::ValueType RegVT;
 | |
|   MVT::ValueType ValueVT = OpInfo.ConstraintVT;
 | |
|   
 | |
| 
 | |
|   // If this is a constraint for a specific physical register, like {r17},
 | |
|   // assign it now.
 | |
|   if (PhysReg.first) {
 | |
|     if (OpInfo.ConstraintVT == MVT::Other)
 | |
|       ValueVT = *PhysReg.second->vt_begin();
 | |
|     
 | |
|     // Get the actual register value type.  This is important, because the user
 | |
|     // may have asked for (e.g.) the AX register in i32 type.  We need to
 | |
|     // remember that AX is actually i16 to get the right extension.
 | |
|     RegVT = *PhysReg.second->vt_begin();
 | |
|     
 | |
|     // This is a explicit reference to a physical register.
 | |
|     Regs.push_back(PhysReg.first);
 | |
| 
 | |
|     // If this is an expanded reference, add the rest of the regs to Regs.
 | |
|     if (NumRegs != 1) {
 | |
|       TargetRegisterClass::iterator I = PhysReg.second->begin();
 | |
|       TargetRegisterClass::iterator E = PhysReg.second->end();
 | |
|       for (; *I != PhysReg.first; ++I)
 | |
|         assert(I != E && "Didn't find reg!"); 
 | |
|       
 | |
|       // Already added the first reg.
 | |
|       --NumRegs; ++I;
 | |
|       for (; NumRegs; --NumRegs, ++I) {
 | |
|         assert(I != E && "Ran out of registers to allocate!");
 | |
|         Regs.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
 | |
|     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, if this was a reference to an LLVM register class, create vregs
 | |
|   // for this reference.
 | |
|   std::vector<unsigned> RegClassRegs;
 | |
|   if (PhysReg.second) {
 | |
|     // If this is an early clobber or tied register, our regalloc doesn't know
 | |
|     // how to maintain the constraint.  If it isn't, go ahead and create vreg
 | |
|     // and let the regalloc do the right thing.
 | |
|     if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
 | |
|         // If there is some other early clobber and this is an input register,
 | |
|         // then we are forced to pre-allocate the input reg so it doesn't
 | |
|         // conflict with the earlyclobber.
 | |
|         !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
 | |
|       RegVT = *PhysReg.second->vt_begin();
 | |
|       
 | |
|       if (OpInfo.ConstraintVT == MVT::Other)
 | |
|         ValueVT = RegVT;
 | |
| 
 | |
|       // Create the appropriate number of virtual registers.
 | |
|       SSARegMap *RegMap = MF.getSSARegMap();
 | |
|       for (; NumRegs; --NumRegs)
 | |
|         Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
 | |
|       
 | |
|       OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
 | |
|       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we can't allocate it.  Let the code below figure out how to
 | |
|     // maintain these constraints.
 | |
|     RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
 | |
|     
 | |
|   } else {
 | |
|     // This is a reference to a register class that doesn't directly correspond
 | |
|     // to an LLVM register class.  Allocate NumRegs consecutive, available,
 | |
|     // registers from the class.
 | |
|     RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
 | |
|                                                          OpInfo.ConstraintVT);
 | |
|   }
 | |
|   
 | |
|   const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
 | |
|   unsigned NumAllocated = 0;
 | |
|   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
 | |
|     unsigned Reg = RegClassRegs[i];
 | |
|     // See if this register is available.
 | |
|     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
 | |
|         (isInReg  && InputRegs.count(Reg))) {    // Already used.
 | |
|       // Make sure we find consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Check to see if this register is allocatable (i.e. don't give out the
 | |
|     // stack pointer).
 | |
|     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
 | |
|     if (!RC) {
 | |
|       // Make sure we find consecutive registers.
 | |
|       NumAllocated = 0;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Okay, this register is good, we can use it.
 | |
|     ++NumAllocated;
 | |
| 
 | |
|     // If we allocated enough consecutive registers, succeed.
 | |
|     if (NumAllocated == NumRegs) {
 | |
|       unsigned RegStart = (i-NumAllocated)+1;
 | |
|       unsigned RegEnd   = i+1;
 | |
|       // Mark all of the allocated registers used.
 | |
|       for (unsigned i = RegStart; i != RegEnd; ++i)
 | |
|         Regs.push_back(RegClassRegs[i]);
 | |
|       
 | |
|       OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 
 | |
|                                          OpInfo.ConstraintVT);
 | |
|       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we couldn't allocate enough registers for this.
 | |
|   return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitInlineAsm - Handle a call to an InlineAsm object.
 | |
| ///
 | |
| void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
 | |
|   InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
 | |
| 
 | |
|   /// ConstraintOperands - Information about all of the constraints.
 | |
|   std::vector<AsmOperandInfo> ConstraintOperands;
 | |
|   
 | |
|   SDOperand Chain = getRoot();
 | |
|   SDOperand Flag;
 | |
|   
 | |
|   std::set<unsigned> OutputRegs, InputRegs;
 | |
| 
 | |
|   // Do a prepass over the constraints, canonicalizing them, and building up the
 | |
|   // ConstraintOperands list.
 | |
|   std::vector<InlineAsm::ConstraintInfo>
 | |
|     ConstraintInfos = IA->ParseConstraints();
 | |
| 
 | |
|   // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
 | |
|   // constraint.  If so, we can't let the register allocator allocate any input
 | |
|   // registers, because it will not know to avoid the earlyclobbered output reg.
 | |
|   bool SawEarlyClobber = false;
 | |
|   
 | |
|   unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
 | |
|   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
 | |
|     ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
 | |
|     AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
|     
 | |
|     MVT::ValueType OpVT = MVT::Other;
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       if (!OpInfo.isIndirect) {
 | |
|         // The return value of the call is this value.  As such, there is no
 | |
|         // corresponding argument.
 | |
|         assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | |
|         OpVT = TLI.getValueType(I.getType());
 | |
|       } else {
 | |
|         OpInfo.CallOperandVal = I.getOperand(OpNo++);
 | |
|       }
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpInfo.CallOperandVal = I.getOperand(OpNo++);
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Nothing to do.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is an input or an indirect output, process the call argument.
 | |
|     if (OpInfo.CallOperandVal) {
 | |
|       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
 | |
|       const Type *OpTy = OpInfo.CallOperandVal->getType();
 | |
|       // If this is an indirect operand, the operand is a pointer to the
 | |
|       // accessed type.
 | |
|       if (OpInfo.isIndirect)
 | |
|         OpTy = cast<PointerType>(OpTy)->getElementType();
 | |
|       
 | |
|       // If OpTy is not a first-class value, it may be a struct/union that we
 | |
|       // can tile with integers.
 | |
|       if (!OpTy->isFirstClassType() && OpTy->isSized()) {
 | |
|         unsigned BitSize = TD->getTypeSizeInBits(OpTy);
 | |
|         switch (BitSize) {
 | |
|         default: break;
 | |
|         case 1:
 | |
|         case 8:
 | |
|         case 16:
 | |
|         case 32:
 | |
|         case 64:
 | |
|           OpTy = IntegerType::get(BitSize);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       OpVT = TLI.getValueType(OpTy, true);
 | |
|     }
 | |
|     
 | |
|     OpInfo.ConstraintVT = OpVT;
 | |
|     
 | |
|     // Compute the constraint code and ConstraintType to use.
 | |
|     OpInfo.ComputeConstraintToUse(TLI);
 | |
| 
 | |
|     // Keep track of whether we see an earlyclobber.
 | |
|     SawEarlyClobber |= OpInfo.isEarlyClobber;
 | |
|     
 | |
|     // If this is a memory input, and if the operand is not indirect, do what we
 | |
|     // need to to provide an address for the memory input.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
 | |
|         !OpInfo.isIndirect) {
 | |
|       assert(OpInfo.Type == InlineAsm::isInput &&
 | |
|              "Can only indirectify direct input operands!");
 | |
|       
 | |
|       // Memory operands really want the address of the value.  If we don't have
 | |
|       // an indirect input, put it in the constpool if we can, otherwise spill
 | |
|       // it to a stack slot.
 | |
|       
 | |
|       // If the operand is a float, integer, or vector constant, spill to a
 | |
|       // constant pool entry to get its address.
 | |
|       Value *OpVal = OpInfo.CallOperandVal;
 | |
|       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
 | |
|           isa<ConstantVector>(OpVal)) {
 | |
|         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
 | |
|                                                  TLI.getPointerTy());
 | |
|       } else {
 | |
|         // Otherwise, create a stack slot and emit a store to it before the
 | |
|         // asm.
 | |
|         const Type *Ty = OpVal->getType();
 | |
|         uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
 | |
|         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
 | |
|         MachineFunction &MF = DAG.getMachineFunction();
 | |
|         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
 | |
|         SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
 | |
|         Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
 | |
|         OpInfo.CallOperand = StackSlot;
 | |
|       }
 | |
|      
 | |
|       // There is no longer a Value* corresponding to this operand.
 | |
|       OpInfo.CallOperandVal = 0;
 | |
|       // It is now an indirect operand.
 | |
|       OpInfo.isIndirect = true;
 | |
|     }
 | |
|     
 | |
|     // If this constraint is for a specific register, allocate it before
 | |
|     // anything else.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_Register)
 | |
|       GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
 | |
|   }
 | |
|   ConstraintInfos.clear();
 | |
|   
 | |
|   
 | |
|   // Second pass - Loop over all of the operands, assigning virtual or physregs
 | |
|   // to registerclass operands.
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     AsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
|     
 | |
|     // C_Register operands have already been allocated, Other/Memory don't need
 | |
|     // to be.
 | |
|     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
 | |
|       GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
 | |
|   }    
 | |
|   
 | |
|   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
 | |
|   std::vector<SDOperand> AsmNodeOperands;
 | |
|   AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
 | |
|   AsmNodeOperands.push_back(
 | |
|           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
 | |
|   
 | |
|   
 | |
|   // Loop over all of the inputs, copying the operand values into the
 | |
|   // appropriate registers and processing the output regs.
 | |
|   RegsForValue RetValRegs;
 | |
|   
 | |
|   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
 | |
|   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
 | |
|   
 | |
|   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
 | |
|     AsmOperandInfo &OpInfo = ConstraintOperands[i];
 | |
| 
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput: {
 | |
|       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
 | |
|           OpInfo.ConstraintType != TargetLowering::C_Register) {
 | |
|         // Memory output, or 'other' output (e.g. 'X' constraint).
 | |
|         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
 | |
| 
 | |
|         // Add information to the INLINEASM node to know about this output.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(OpInfo.CallOperand);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, this is a register or register class output.
 | |
| 
 | |
|       // Copy the output from the appropriate register.  Find a register that
 | |
|       // we can use.
 | |
|       if (OpInfo.AssignedRegs.Regs.empty()) {
 | |
|         cerr << "Couldn't allocate output reg for contraint '"
 | |
|              << OpInfo.ConstraintCode << "'!\n";
 | |
|         exit(1);
 | |
|       }
 | |
| 
 | |
|       if (!OpInfo.isIndirect) {
 | |
|         // This is the result value of the call.
 | |
|         assert(RetValRegs.Regs.empty() &&
 | |
|                "Cannot have multiple output constraints yet!");
 | |
|         assert(I.getType() != Type::VoidTy && "Bad inline asm!");
 | |
|         RetValRegs = OpInfo.AssignedRegs;
 | |
|       } else {
 | |
|         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
 | |
|                                                       OpInfo.CallOperandVal));
 | |
|       }
 | |
|       
 | |
|       // Add information to the INLINEASM node to know that this register is
 | |
|       // set.
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
 | |
|                                                AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isInput: {
 | |
|       SDOperand InOperandVal = OpInfo.CallOperand;
 | |
|       
 | |
|       if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
 | |
|         // If this is required to match an output register we have already set,
 | |
|         // just use its register.
 | |
|         unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
 | |
|         
 | |
|         // Scan until we find the definition we already emitted of this operand.
 | |
|         // When we find it, create a RegsForValue operand.
 | |
|         unsigned CurOp = 2;  // The first operand.
 | |
|         for (; OperandNo; --OperandNo) {
 | |
|           // Advance to the next operand.
 | |
|           unsigned NumOps = 
 | |
|             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | |
|           assert(((NumOps & 7) == 2 /*REGDEF*/ ||
 | |
|                   (NumOps & 7) == 4 /*MEM*/) &&
 | |
|                  "Skipped past definitions?");
 | |
|           CurOp += (NumOps>>3)+1;
 | |
|         }
 | |
| 
 | |
|         unsigned NumOps = 
 | |
|           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
 | |
|         if ((NumOps & 7) == 2 /*REGDEF*/) {
 | |
|           // Add NumOps>>3 registers to MatchedRegs.
 | |
|           RegsForValue MatchedRegs;
 | |
|           MatchedRegs.ValueVT = InOperandVal.getValueType();
 | |
|           MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
 | |
|           for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
 | |
|             unsigned Reg =
 | |
|               cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
 | |
|             MatchedRegs.Regs.push_back(Reg);
 | |
|           }
 | |
|         
 | |
|           // Use the produced MatchedRegs object to 
 | |
|           MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
 | |
|                                     TLI.getPointerTy());
 | |
|           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
 | |
|           break;
 | |
|         } else {
 | |
|           assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
 | |
|           assert(0 && "matching constraints for memory operands unimp");
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
 | |
|         assert(!OpInfo.isIndirect && 
 | |
|                "Don't know how to handle indirect other inputs yet!");
 | |
|         
 | |
|         InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
 | |
|                                                        OpInfo.ConstraintCode[0],
 | |
|                                                        DAG);
 | |
|         if (!InOperandVal.Val) {
 | |
|           cerr << "Invalid operand for inline asm constraint '"
 | |
|                << OpInfo.ConstraintCode << "'!\n";
 | |
|           exit(1);
 | |
|         }
 | |
|         
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
 | |
|         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
 | |
|         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
 | |
|                "Memory operands expect pointer values");
 | |
|                
 | |
|         // Add information to the INLINEASM node to know about this input.
 | |
|         unsigned ResOpType = 4/*MEM*/ | (1 << 3);
 | |
|         AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
 | |
|         AsmNodeOperands.push_back(InOperandVal);
 | |
|         break;
 | |
|       }
 | |
|         
 | |
|       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
 | |
|               OpInfo.ConstraintType == TargetLowering::C_Register) &&
 | |
|              "Unknown constraint type!");
 | |
|       assert(!OpInfo.isIndirect && 
 | |
|              "Don't know how to handle indirect register inputs yet!");
 | |
| 
 | |
|       // Copy the input into the appropriate registers.
 | |
|       assert(!OpInfo.AssignedRegs.Regs.empty() &&
 | |
|              "Couldn't allocate input reg!");
 | |
| 
 | |
|       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, 
 | |
|                                         TLI.getPointerTy());
 | |
|       
 | |
|       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
 | |
|                                                AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     case InlineAsm::isClobber: {
 | |
|       // Add the clobbered value to the operand list, so that the register
 | |
|       // allocator is aware that the physreg got clobbered.
 | |
|       if (!OpInfo.AssignedRegs.Regs.empty())
 | |
|         OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
 | |
|                                                  AsmNodeOperands);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finish up input operands.
 | |
|   AsmNodeOperands[0] = Chain;
 | |
|   if (Flag.Val) AsmNodeOperands.push_back(Flag);
 | |
|   
 | |
|   Chain = DAG.getNode(ISD::INLINEASM, 
 | |
|                       DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
 | |
|                       &AsmNodeOperands[0], AsmNodeOperands.size());
 | |
|   Flag = Chain.getValue(1);
 | |
| 
 | |
|   // If this asm returns a register value, copy the result from that register
 | |
|   // and set it as the value of the call.
 | |
|   if (!RetValRegs.Regs.empty()) {
 | |
|     SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
 | |
|     
 | |
|     // If the result of the inline asm is a vector, it may have the wrong
 | |
|     // width/num elts.  Make sure to convert it to the right type with
 | |
|     // vbit_convert.
 | |
|     if (Val.getValueType() == MVT::Vector) {
 | |
|       const VectorType *VTy = cast<VectorType>(I.getType());
 | |
|       unsigned DesiredNumElts = VTy->getNumElements();
 | |
|       MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
 | |
|       
 | |
|       Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val, 
 | |
|                         DAG.getConstant(DesiredNumElts, MVT::i32),
 | |
|                         DAG.getValueType(DesiredEltVT));
 | |
|     }
 | |
|     
 | |
|     setValue(&I, Val);
 | |
|   }
 | |
|   
 | |
|   std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
 | |
|   
 | |
|   // Process indirect outputs, first output all of the flagged copies out of
 | |
|   // physregs.
 | |
|   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
 | |
|     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
 | |
|     Value *Ptr = IndirectStoresToEmit[i].second;
 | |
|     SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
 | |
|     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
 | |
|   }
 | |
|   
 | |
|   // Emit the non-flagged stores from the physregs.
 | |
|   SmallVector<SDOperand, 8> OutChains;
 | |
|   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
 | |
|     OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
 | |
|                                     getValue(StoresToEmit[i].second),
 | |
|                                     StoresToEmit[i].second, 0));
 | |
|   if (!OutChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                         &OutChains[0], OutChains.size());
 | |
|   DAG.setRoot(Chain);
 | |
| }
 | |
| 
 | |
| 
 | |
| void SelectionDAGLowering::visitMalloc(MallocInst &I) {
 | |
|   SDOperand Src = getValue(I.getOperand(0));
 | |
| 
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
| 
 | |
|   if (IntPtr < Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
 | |
|   else if (IntPtr > Src.getValueType())
 | |
|     Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
 | |
| 
 | |
|   // Scale the source by the type size.
 | |
|   uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
 | |
|   Src = DAG.getNode(ISD::MUL, Src.getValueType(),
 | |
|                     Src, getIntPtrConstant(ElementSize));
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = Src;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("malloc", IntPtr),
 | |
|                     Args, DAG);
 | |
|   setValue(&I, Result.first);  // Pointers always fit in registers
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitFree(FreeInst &I) {
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = getValue(I.getOperand(0));
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType();
 | |
|   Args.push_back(Entry);
 | |
|   MVT::ValueType IntPtr = TLI.getPointerTy();
 | |
|   std::pair<SDOperand,SDOperand> Result =
 | |
|     TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
 | |
|                     DAG.getExternalSymbol("free", IntPtr), Args, DAG);
 | |
|   DAG.setRoot(Result.second);
 | |
| }
 | |
| 
 | |
| // InsertAtEndOfBasicBlock - This method should be implemented by targets that
 | |
| // mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
 | |
| // instructions are special in various ways, which require special support to
 | |
| // insert.  The specified MachineInstr is created but not inserted into any
 | |
| // basic blocks, and the scheduler passes ownership of it to this method.
 | |
| MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                                        MachineBasicBlock *MBB) {
 | |
|   cerr << "If a target marks an instruction with "
 | |
|        << "'usesCustomDAGSchedInserter', it must implement "
 | |
|        << "TargetLowering::InsertAtEndOfBasicBlock!\n";
 | |
|   abort();
 | |
|   return 0;  
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAStart(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(), 
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
 | |
|   SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
 | |
|                              getValue(I.getOperand(0)),
 | |
|                              DAG.getSrcValue(I.getOperand(0)));
 | |
|   setValue(&I, V);
 | |
|   DAG.setRoot(V.getValue(1));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVAEnd(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           DAG.getSrcValue(I.getOperand(1))));
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitVACopy(CallInst &I) {
 | |
|   DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(), 
 | |
|                           getValue(I.getOperand(1)), 
 | |
|                           getValue(I.getOperand(2)),
 | |
|                           DAG.getSrcValue(I.getOperand(1)),
 | |
|                           DAG.getSrcValue(I.getOperand(2))));
 | |
| }
 | |
| 
 | |
| /// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
 | |
| /// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
 | |
| static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
 | |
|                                         unsigned &i, SelectionDAG &DAG,
 | |
|                                         TargetLowering &TLI) {
 | |
|   if (TLI.getTypeAction(VT) != TargetLowering::Expand)
 | |
|     return SDOperand(Arg, i++);
 | |
| 
 | |
|   MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
 | |
|   unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
 | |
|   if (NumVals == 1) {
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, VT,
 | |
|                        ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
 | |
|   } else if (NumVals == 2) {
 | |
|     SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
 | |
|     SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
 | |
|     if (!TLI.isLittleEndian())
 | |
|       std::swap(Lo, Hi);
 | |
|     return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
 | |
|   } else {
 | |
|     // Value scalarized into many values.  Unimp for now.
 | |
|     assert(0 && "Cannot expand i64 -> i16 yet!");
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerArguments - This is the default LowerArguments
 | |
| /// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
 | |
| /// targets are migrated to using FORMAL_ARGUMENTS, this hook should be 
 | |
| /// integrated into SDISel.
 | |
| std::vector<SDOperand> 
 | |
| TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | |
|   const FunctionType *FTy = F.getFunctionType();
 | |
|   const ParamAttrsList *Attrs = FTy->getParamAttrs();
 | |
|   // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(DAG.getRoot());
 | |
|   Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
 | |
|   Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
 | |
| 
 | |
|   // Add one result value for each formal argument.
 | |
|   std::vector<MVT::ValueType> RetVals;
 | |
|   unsigned j = 1;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
 | |
|        I != E; ++I, ++j) {
 | |
|     MVT::ValueType VT = getValueType(I->getType());
 | |
|     unsigned Flags = ISD::ParamFlags::NoFlagSet;
 | |
|     unsigned OriginalAlignment =
 | |
|       getTargetData()->getABITypeAlignment(I->getType());
 | |
| 
 | |
|     // FIXME: Distinguish between a formal with no [sz]ext attribute from one
 | |
|     // that is zero extended!
 | |
|     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
 | |
|       Flags &= ~(ISD::ParamFlags::SExt);
 | |
|     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
 | |
|       Flags |= ISD::ParamFlags::SExt;
 | |
|     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
 | |
|       Flags |= ISD::ParamFlags::InReg;
 | |
|     if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
 | |
|       Flags |= ISD::ParamFlags::StructReturn;
 | |
|     Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
 | |
|     
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal: 
 | |
|       RetVals.push_back(VT);
 | |
|       Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|       break;
 | |
|     case Promote:
 | |
|       RetVals.push_back(getTypeToTransformTo(VT));
 | |
|       Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|       break;
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer, it needs to be broken up into small
 | |
|         // integers.  Figure out what the destination type is and how many small
 | |
|         // integers it turns into.
 | |
|         MVT::ValueType NVT = getTypeToExpandTo(VT);
 | |
|         unsigned NumVals = getNumElements(VT);
 | |
|         for (unsigned i = 0; i != NumVals; ++i) {
 | |
|           RetVals.push_back(NVT);
 | |
|           // if it isn't first piece, alignment must be 1
 | |
|           if (i > 0)
 | |
|             Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
 | |
|               (1 << ISD::ParamFlags::OrigAlignmentOffs);
 | |
|           Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|         }
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
 | |
|         const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
 | |
| 
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the vector type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           RetVals.push_back(TVT);
 | |
|           Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector arguments yet!");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   RetVals.push_back(MVT::Other);
 | |
|   
 | |
|   // Create the node.
 | |
|   SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
 | |
|                                DAG.getNodeValueTypes(RetVals), RetVals.size(),
 | |
|                                &Ops[0], Ops.size()).Val;
 | |
|   
 | |
|   DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
 | |
| 
 | |
|   // Set up the return result vector.
 | |
|   Ops.clear();
 | |
|   unsigned i = 0;
 | |
|   unsigned Idx = 1;
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 
 | |
|       ++I, ++Idx) {
 | |
|     MVT::ValueType VT = getValueType(I->getType());
 | |
|     
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal: 
 | |
|       Ops.push_back(SDOperand(Result, i++));
 | |
|       break;
 | |
|     case Promote: {
 | |
|       SDOperand Op(Result, i++);
 | |
|       if (MVT::isInteger(VT)) {
 | |
|         if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
 | |
|           Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
 | |
|                            DAG.getValueType(VT));
 | |
|         else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
 | |
|           Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
 | |
|                            DAG.getValueType(VT));
 | |
|         Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
 | |
|       } else {
 | |
|         assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
 | |
|         Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
 | |
|       }
 | |
|       Ops.push_back(Op);
 | |
|       break;
 | |
|     }
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer or a floating point node that needs to be
 | |
|         // expanded, it needs to be reassembled from small integers.  Figure out
 | |
|         // what the source elt type is and how many small integers it is.
 | |
|         Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         const VectorType *PTy = cast<VectorType>(I->getType());
 | |
|         unsigned NumElems = PTy->getNumElements();
 | |
|         const Type *EltTy = PTy->getElementType();
 | |
| 
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the vector type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           SDOperand N = SDOperand(Result, i++);
 | |
|           // Handle copies from generic vectors to registers.
 | |
|           N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
 | |
|                           DAG.getConstant(NumElems, MVT::i32), 
 | |
|                           DAG.getValueType(getValueType(EltTy)));
 | |
|           Ops.push_back(N);
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector arguments yet!");
 | |
|           abort();
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Ops;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ExpandScalarCallArgs - Recursively expand call argument node by
 | |
| /// bit_converting it or extract a pair of elements from the larger  node.
 | |
| static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
 | |
|                                  unsigned Flags,
 | |
|                                  SmallVector<SDOperand, 32> &Ops,
 | |
|                                  SelectionDAG &DAG,
 | |
|                                  TargetLowering &TLI,
 | |
|                                  bool isFirst = true) {
 | |
| 
 | |
|   if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
 | |
|     // if it isn't first piece, alignment must be 1
 | |
|     if (!isFirst)
 | |
|       Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
 | |
|         (1 << ISD::ParamFlags::OrigAlignmentOffs);
 | |
|     Ops.push_back(Arg);
 | |
|     Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
 | |
|   unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
 | |
|   if (NumVals == 1) {
 | |
|     Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
 | |
|     ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
 | |
|   } else if (NumVals == 2) {
 | |
|     SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
 | |
|                                DAG.getConstant(0, TLI.getPointerTy()));
 | |
|     SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
 | |
|                                DAG.getConstant(1, TLI.getPointerTy()));
 | |
|     if (!TLI.isLittleEndian())
 | |
|       std::swap(Lo, Hi);
 | |
|     ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
 | |
|     ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
 | |
|   } else {
 | |
|     // Value scalarized into many values.  Unimp for now.
 | |
|     assert(0 && "Cannot expand i64 -> i16 yet!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// TargetLowering::LowerCallTo - This is the default LowerCallTo
 | |
| /// implementation, which just inserts an ISD::CALL node, which is later custom
 | |
| /// lowered by the target to something concrete.  FIXME: When all targets are
 | |
| /// migrated to using ISD::CALL, this hook should be integrated into SDISel.
 | |
| std::pair<SDOperand, SDOperand>
 | |
| TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, 
 | |
|                             bool RetTyIsSigned, bool isVarArg,
 | |
|                             unsigned CallingConv, bool isTailCall, 
 | |
|                             SDOperand Callee,
 | |
|                             ArgListTy &Args, SelectionDAG &DAG) {
 | |
|   SmallVector<SDOperand, 32> Ops;
 | |
|   Ops.push_back(Chain);   // Op#0 - Chain
 | |
|   Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
 | |
|   Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
 | |
|   Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
 | |
|   Ops.push_back(Callee);
 | |
|   
 | |
|   // Handle all of the outgoing arguments.
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     MVT::ValueType VT = getValueType(Args[i].Ty);
 | |
|     SDOperand Op = Args[i].Node;
 | |
|     unsigned Flags = ISD::ParamFlags::NoFlagSet;
 | |
|     unsigned OriginalAlignment =
 | |
|       getTargetData()->getABITypeAlignment(Args[i].Ty);
 | |
|     
 | |
|     if (Args[i].isSExt)
 | |
|       Flags |= ISD::ParamFlags::SExt;
 | |
|     if (Args[i].isZExt)
 | |
|       Flags |= ISD::ParamFlags::ZExt;
 | |
|     if (Args[i].isInReg)
 | |
|       Flags |= ISD::ParamFlags::InReg;
 | |
|     if (Args[i].isSRet)
 | |
|       Flags |= ISD::ParamFlags::StructReturn;
 | |
|     Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
 | |
|     
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal:
 | |
|       Ops.push_back(Op);
 | |
|       Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|       break;
 | |
|     case Promote:
 | |
|       if (MVT::isInteger(VT)) {
 | |
|         unsigned ExtOp;
 | |
|         if (Args[i].isSExt)
 | |
|           ExtOp = ISD::SIGN_EXTEND;
 | |
|         else if (Args[i].isZExt)
 | |
|           ExtOp = ISD::ZERO_EXTEND;
 | |
|         else
 | |
|           ExtOp = ISD::ANY_EXTEND;
 | |
|         Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
 | |
|       } else {
 | |
|         assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
 | |
|         Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
 | |
|       }
 | |
|       Ops.push_back(Op);
 | |
|       Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|       break;
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer, it needs to be broken down into small
 | |
|         // integers.  Figure out what the source elt type is and how many small
 | |
|         // integers it is.
 | |
|         ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         const VectorType *PTy = cast<VectorType>(Args[i].Ty);
 | |
|         unsigned NumElems = PTy->getNumElements();
 | |
|         const Type *EltTy = PTy->getElementType();
 | |
|         
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the vector type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
 | |
|           Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
 | |
|           Ops.push_back(Op);
 | |
|           Ops.push_back(DAG.getConstant(Flags, MVT::i32));
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector call args yet!");
 | |
|           abort();
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Figure out the result value types.
 | |
|   SmallVector<MVT::ValueType, 4> RetTys;
 | |
| 
 | |
|   if (RetTy != Type::VoidTy) {
 | |
|     MVT::ValueType VT = getValueType(RetTy);
 | |
|     switch (getTypeAction(VT)) {
 | |
|     default: assert(0 && "Unknown type action!");
 | |
|     case Legal:
 | |
|       RetTys.push_back(VT);
 | |
|       break;
 | |
|     case Promote:
 | |
|       RetTys.push_back(getTypeToTransformTo(VT));
 | |
|       break;
 | |
|     case Expand:
 | |
|       if (VT != MVT::Vector) {
 | |
|         // If this is a large integer, it needs to be reassembled from small
 | |
|         // integers.  Figure out what the source elt type is and how many small
 | |
|         // integers it is.
 | |
|         MVT::ValueType NVT = getTypeToExpandTo(VT);
 | |
|         unsigned NumVals = getNumElements(VT);
 | |
|         for (unsigned i = 0; i != NumVals; ++i)
 | |
|           RetTys.push_back(NVT);
 | |
|       } else {
 | |
|         // Otherwise, this is a vector type.  We only support legal vectors
 | |
|         // right now.
 | |
|         const VectorType *PTy = cast<VectorType>(RetTy);
 | |
|         unsigned NumElems = PTy->getNumElements();
 | |
|         const Type *EltTy = PTy->getElementType();
 | |
|         
 | |
|         // Figure out if there is a Packed type corresponding to this Vector
 | |
|         // type.  If so, convert to the vector type.
 | |
|         MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
 | |
|         if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|           RetTys.push_back(TVT);
 | |
|         } else {
 | |
|           assert(0 && "Don't support illegal by-val vector call results yet!");
 | |
|           abort();
 | |
|         }
 | |
|       }
 | |
|     }    
 | |
|   }
 | |
|   
 | |
|   RetTys.push_back(MVT::Other);  // Always has a chain.
 | |
|   
 | |
|   // Finally, create the CALL node.
 | |
|   SDOperand Res = DAG.getNode(ISD::CALL,
 | |
|                               DAG.getVTList(&RetTys[0], RetTys.size()),
 | |
|                               &Ops[0], Ops.size());
 | |
|   
 | |
|   // This returns a pair of operands.  The first element is the
 | |
|   // return value for the function (if RetTy is not VoidTy).  The second
 | |
|   // element is the outgoing token chain.
 | |
|   SDOperand ResVal;
 | |
|   if (RetTys.size() != 1) {
 | |
|     MVT::ValueType VT = getValueType(RetTy);
 | |
|     if (RetTys.size() == 2) {
 | |
|       ResVal = Res;
 | |
|       
 | |
|       // If this value was promoted, truncate it down.
 | |
|       if (ResVal.getValueType() != VT) {
 | |
|         if (VT == MVT::Vector) {
 | |
|           // Insert a VBIT_CONVERT to convert from the packed result type to the
 | |
|           // MVT::Vector type.
 | |
|           unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
 | |
|           const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
 | |
|           
 | |
|           // Figure out if there is a Packed type corresponding to this Vector
 | |
|           // type.  If so, convert to the vector type.
 | |
|           MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
 | |
|           if (TVT != MVT::Other && isTypeLegal(TVT)) {
 | |
|             // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
 | |
|             // "N x PTyElementVT" MVT::Vector type.
 | |
|             ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
 | |
|                                  DAG.getConstant(NumElems, MVT::i32), 
 | |
|                                  DAG.getValueType(getValueType(EltTy)));
 | |
|           } else {
 | |
|             abort();
 | |
|           }
 | |
|         } else if (MVT::isInteger(VT)) {
 | |
|           unsigned AssertOp = ISD::AssertSext;
 | |
|           if (!RetTyIsSigned)
 | |
|             AssertOp = ISD::AssertZext;
 | |
|           ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal, 
 | |
|                                DAG.getValueType(VT));
 | |
|           ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
 | |
|         } else {
 | |
|           assert(MVT::isFloatingPoint(VT));
 | |
|           if (getTypeAction(VT) == Expand)
 | |
|             ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
 | |
|           else
 | |
|             ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
 | |
|         }
 | |
|       }
 | |
|     } else if (RetTys.size() == 3) {
 | |
|       ResVal = DAG.getNode(ISD::BUILD_PAIR, VT, 
 | |
|                            Res.getValue(0), Res.getValue(1));
 | |
|       
 | |
|     } else {
 | |
|       assert(0 && "Case not handled yet!");
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(0 && "LowerOperation not implemented for this target!");
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
 | |
|                                                  SelectionDAG &DAG) {
 | |
|   assert(0 && "CustomPromoteOperation not implemented for this target!");
 | |
|   abort();
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
 | |
|                                 SelectionDAG &DAG) {
 | |
|   MVT::ValueType CurVT = VT;
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     uint64_t Val   = C->getValue() & 255;
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Val = (Val << Shift) | Val;
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
|     return DAG.getConstant(Val, VT);
 | |
|   } else {
 | |
|     Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
 | |
|     unsigned Shift = 8;
 | |
|     while (CurVT != MVT::i8) {
 | |
|       Value =
 | |
|         DAG.getNode(ISD::OR, VT,
 | |
|                     DAG.getNode(ISD::SHL, VT, Value,
 | |
|                                 DAG.getConstant(Shift, MVT::i8)), Value);
 | |
|       Shift <<= 1;
 | |
|       CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
 | |
|     }
 | |
| 
 | |
|     return Value;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDOperand getMemsetStringVal(MVT::ValueType VT,
 | |
|                                     SelectionDAG &DAG, TargetLowering &TLI,
 | |
|                                     std::string &Str, unsigned Offset) {
 | |
|   uint64_t Val = 0;
 | |
|   unsigned MSB = getSizeInBits(VT) / 8;
 | |
|   if (TLI.isLittleEndian())
 | |
|     Offset = Offset + MSB - 1;
 | |
|   for (unsigned i = 0; i != MSB; ++i) {
 | |
|     Val = (Val << 8) | (unsigned char)Str[Offset];
 | |
|     Offset += TLI.isLittleEndian() ? -1 : 1;
 | |
|   }
 | |
|   return DAG.getConstant(Val, VT);
 | |
| }
 | |
| 
 | |
| /// getMemBasePlusOffset - Returns base and offset node for the 
 | |
| static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
 | |
|                                       SelectionDAG &DAG, TargetLowering &TLI) {
 | |
|   MVT::ValueType VT = Base.getValueType();
 | |
|   return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
 | |
| }
 | |
| 
 | |
| /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
 | |
| /// to replace the memset / memcpy is below the threshold. It also returns the
 | |
| /// types of the sequence of  memory ops to perform memset / memcpy.
 | |
| static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
 | |
|                                      unsigned Limit, uint64_t Size,
 | |
|                                      unsigned Align, TargetLowering &TLI) {
 | |
|   MVT::ValueType VT;
 | |
| 
 | |
|   if (TLI.allowsUnalignedMemoryAccesses()) {
 | |
|     VT = MVT::i64;
 | |
|   } else {
 | |
|     switch (Align & 7) {
 | |
|     case 0:
 | |
|       VT = MVT::i64;
 | |
|       break;
 | |
|     case 4:
 | |
|       VT = MVT::i32;
 | |
|       break;
 | |
|     case 2:
 | |
|       VT = MVT::i16;
 | |
|       break;
 | |
|     default:
 | |
|       VT = MVT::i8;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MVT::ValueType LVT = MVT::i64;
 | |
|   while (!TLI.isTypeLegal(LVT))
 | |
|     LVT = (MVT::ValueType)((unsigned)LVT - 1);
 | |
|   assert(MVT::isInteger(LVT));
 | |
| 
 | |
|   if (VT > LVT)
 | |
|     VT = LVT;
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|     while (VTSize > Size) {
 | |
|       VT = (MVT::ValueType)((unsigned)VT - 1);
 | |
|       VTSize >>= 1;
 | |
|     }
 | |
|     assert(MVT::isInteger(VT));
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
 | |
|   SDOperand Op1 = getValue(I.getOperand(1));
 | |
|   SDOperand Op2 = getValue(I.getOperand(2));
 | |
|   SDOperand Op3 = getValue(I.getOperand(3));
 | |
|   SDOperand Op4 = getValue(I.getOperand(4));
 | |
|   unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
 | |
|   if (Align == 0) Align = 1;
 | |
| 
 | |
|   if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
 | |
|     std::vector<MVT::ValueType> MemOps;
 | |
| 
 | |
|     // Expand memset / memcpy to a series of load / store ops
 | |
|     // if the size operand falls below a certain threshold.
 | |
|     SmallVector<SDOperand, 8> OutChains;
 | |
|     switch (Op) {
 | |
|     default: break;  // Do nothing for now.
 | |
|     case ISD::MEMSET: {
 | |
|       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
 | |
|                                    Size->getValue(), Align, TLI)) {
 | |
|         unsigned NumMemOps = MemOps.size();
 | |
|         unsigned Offset = 0;
 | |
|         for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|           MVT::ValueType VT = MemOps[i];
 | |
|           unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|           SDOperand Value = getMemsetValue(Op2, VT, DAG);
 | |
|           SDOperand Store = DAG.getStore(getRoot(), Value,
 | |
|                                     getMemBasePlusOffset(Op1, Offset, DAG, TLI),
 | |
|                                          I.getOperand(1), Offset);
 | |
|           OutChains.push_back(Store);
 | |
|           Offset += VTSize;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case ISD::MEMCPY: {
 | |
|       if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
 | |
|                                    Size->getValue(), Align, TLI)) {
 | |
|         unsigned NumMemOps = MemOps.size();
 | |
|         unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
 | |
|         GlobalAddressSDNode *G = NULL;
 | |
|         std::string Str;
 | |
|         bool CopyFromStr = false;
 | |
| 
 | |
|         if (Op2.getOpcode() == ISD::GlobalAddress)
 | |
|           G = cast<GlobalAddressSDNode>(Op2);
 | |
|         else if (Op2.getOpcode() == ISD::ADD &&
 | |
|                  Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|                  Op2.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|           G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
 | |
|           SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
 | |
|         }
 | |
|         if (G) {
 | |
|           GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | |
|           if (GV && GV->isConstant()) {
 | |
|             Str = GV->getStringValue(false);
 | |
|             if (!Str.empty()) {
 | |
|               CopyFromStr = true;
 | |
|               SrcOff += SrcDelta;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|           MVT::ValueType VT = MemOps[i];
 | |
|           unsigned VTSize = getSizeInBits(VT) / 8;
 | |
|           SDOperand Value, Chain, Store;
 | |
| 
 | |
|           if (CopyFromStr) {
 | |
|             Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
 | |
|             Chain = getRoot();
 | |
|             Store =
 | |
|               DAG.getStore(Chain, Value,
 | |
|                            getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | |
|                            I.getOperand(1), DstOff);
 | |
|           } else {
 | |
|             Value = DAG.getLoad(VT, getRoot(),
 | |
|                         getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
 | |
|                         I.getOperand(2), SrcOff);
 | |
|             Chain = Value.getValue(1);
 | |
|             Store =
 | |
|               DAG.getStore(Chain, Value,
 | |
|                            getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
 | |
|                            I.getOperand(1), DstOff);
 | |
|           }
 | |
|           OutChains.push_back(Store);
 | |
|           SrcOff += VTSize;
 | |
|           DstOff += VTSize;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     if (!OutChains.empty()) {
 | |
|       DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                   &OutChains[0], OutChains.size()));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SelectionDAGISel code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
 | |
|   return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool SelectionDAGISel::runOnFunction(Function &Fn) {
 | |
|   MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
 | |
|   RegMap = MF.getSSARegMap();
 | |
|   DOUT << "\n\n\n=== " << Fn.getName() << "\n";
 | |
| 
 | |
|   FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
 | |
| 
 | |
|   for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
 | |
|     SelectBasicBlock(I, MF, FuncInfo);
 | |
| 
 | |
|   // Add function live-ins to entry block live-in set.
 | |
|   BasicBlock *EntryBB = &Fn.getEntryBlock();
 | |
|   BB = FuncInfo.MBBMap[EntryBB];
 | |
|   if (!MF.livein_empty())
 | |
|     for (MachineFunction::livein_iterator I = MF.livein_begin(),
 | |
|            E = MF.livein_end(); I != E; ++I)
 | |
|       BB->addLiveIn(I->first);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, 
 | |
|                                                            unsigned Reg) {
 | |
|   SDOperand Op = getValue(V);
 | |
|   assert((Op.getOpcode() != ISD::CopyFromReg ||
 | |
|           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
 | |
|          "Copy from a reg to the same reg!");
 | |
|   
 | |
|   // If this type is not legal, we must make sure to not create an invalid
 | |
|   // register use.
 | |
|   MVT::ValueType SrcVT = Op.getValueType();
 | |
|   MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|   if (SrcVT == DestVT) {
 | |
|     return DAG.getCopyToReg(getRoot(), Reg, Op);
 | |
|   } else if (SrcVT == MVT::Vector) {
 | |
|     // Handle copies from generic vectors to registers.
 | |
|     MVT::ValueType PTyElementVT, PTyLegalElementVT;
 | |
|     unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
 | |
|                                              PTyElementVT, PTyLegalElementVT);
 | |
|     
 | |
|     // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT" 
 | |
|     // MVT::Vector type.
 | |
|     Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
 | |
|                      DAG.getConstant(NE, MVT::i32), 
 | |
|                      DAG.getValueType(PTyElementVT));
 | |
| 
 | |
|     // Loop over all of the elements of the resultant vector,
 | |
|     // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
 | |
|     // copying them into output registers.
 | |
|     SmallVector<SDOperand, 8> OutChains;
 | |
|     SDOperand Root = getRoot();
 | |
|     for (unsigned i = 0; i != NE; ++i) {
 | |
|       SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
 | |
|                                   Op, DAG.getConstant(i, TLI.getPointerTy()));
 | |
|       if (PTyElementVT == PTyLegalElementVT) {
 | |
|         // Elements are legal.
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
 | |
|       } else if (PTyLegalElementVT > PTyElementVT) {
 | |
|         // Elements are promoted.
 | |
|         if (MVT::isFloatingPoint(PTyLegalElementVT))
 | |
|           Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
 | |
|         else
 | |
|           Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
 | |
|       } else {
 | |
|         // Elements are expanded.
 | |
|         // The src value is expanded into multiple registers.
 | |
|         SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
 | |
|                                    Elt, DAG.getConstant(0, TLI.getPointerTy()));
 | |
|         SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
 | |
|                                    Elt, DAG.getConstant(1, TLI.getPointerTy()));
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
 | |
|         OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
 | |
|       }
 | |
|     }
 | |
|     return DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                        &OutChains[0], OutChains.size());
 | |
|   } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
 | |
|     // The src value is promoted to the register.
 | |
|     if (MVT::isFloatingPoint(SrcVT))
 | |
|       Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
 | |
|     else
 | |
|       Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
 | |
|     return DAG.getCopyToReg(getRoot(), Reg, Op);
 | |
|   } else  {
 | |
|     DestVT = TLI.getTypeToExpandTo(SrcVT);
 | |
|     unsigned NumVals = TLI.getNumElements(SrcVT);
 | |
|     if (NumVals == 1)
 | |
|       return DAG.getCopyToReg(getRoot(), Reg,
 | |
|                               DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
 | |
|     assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
 | |
|     // The src value is expanded into multiple registers.
 | |
|     SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(0, TLI.getPointerTy()));
 | |
|     SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
 | |
|                                Op, DAG.getConstant(1, TLI.getPointerTy()));
 | |
|     Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
 | |
|     return DAG.getCopyToReg(Op, Reg+1, Hi);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::
 | |
| LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
 | |
|                std::vector<SDOperand> &UnorderedChains) {
 | |
|   // If this is the entry block, emit arguments.
 | |
|   Function &F = *LLVMBB->getParent();
 | |
|   FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
 | |
|   SDOperand OldRoot = SDL.DAG.getRoot();
 | |
|   std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
 | |
| 
 | |
|   unsigned a = 0;
 | |
|   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
 | |
|        AI != E; ++AI, ++a)
 | |
|     if (!AI->use_empty()) {
 | |
|       SDL.setValue(AI, Args[a]);
 | |
| 
 | |
|       // If this argument is live outside of the entry block, insert a copy from
 | |
|       // whereever we got it to the vreg that other BB's will reference it as.
 | |
|       DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
 | |
|       if (VMI != FuncInfo.ValueMap.end()) {
 | |
|         SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
 | |
|         UnorderedChains.push_back(Copy);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Finally, if the target has anything special to do, allow it to do so.
 | |
|   // FIXME: this should insert code into the DAG!
 | |
|   EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
 | |
|        std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
 | |
|                                          FunctionLoweringInfo &FuncInfo) {
 | |
|   SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
 | |
| 
 | |
|   std::vector<SDOperand> UnorderedChains;
 | |
| 
 | |
|   // Lower any arguments needed in this block if this is the entry block.
 | |
|   if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
 | |
|     LowerArguments(LLVMBB, SDL, UnorderedChains);
 | |
| 
 | |
|   BB = FuncInfo.MBBMap[LLVMBB];
 | |
|   SDL.setCurrentBasicBlock(BB);
 | |
| 
 | |
|   // Lower all of the non-terminator instructions.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
 | |
|        I != E; ++I)
 | |
|     SDL.visit(*I);
 | |
|     
 | |
|   // Lower call part of invoke.
 | |
|   InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
 | |
|   if (Invoke) SDL.visitInvoke(*Invoke, false);
 | |
|   
 | |
|   // Ensure that all instructions which are used outside of their defining
 | |
|   // blocks are available as virtual registers.
 | |
|   for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
 | |
|     if (!I->use_empty() && !isa<PHINode>(I)) {
 | |
|       DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
 | |
|       if (VMI != FuncInfo.ValueMap.end())
 | |
|         UnorderedChains.push_back(
 | |
|                                 SDL.CopyValueToVirtualRegister(I, VMI->second));
 | |
|     }
 | |
| 
 | |
|   // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
 | |
|   // ensure constants are generated when needed.  Remember the virtual registers
 | |
|   // that need to be added to the Machine PHI nodes as input.  We cannot just
 | |
|   // directly add them, because expansion might result in multiple MBB's for one
 | |
|   // BB.  As such, the start of the BB might correspond to a different MBB than
 | |
|   // the end.
 | |
|   //
 | |
|   TerminatorInst *TI = LLVMBB->getTerminator();
 | |
| 
 | |
|   // Emit constants only once even if used by multiple PHI nodes.
 | |
|   std::map<Constant*, unsigned> ConstantsOut;
 | |
|   
 | |
|   // Vector bool would be better, but vector<bool> is really slow.
 | |
|   std::vector<unsigned char> SuccsHandled;
 | |
|   if (TI->getNumSuccessors())
 | |
|     SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
 | |
|     
 | |
|   // Check successor nodes PHI nodes that expect a constant to be available from
 | |
|   // this block.
 | |
|   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | |
|     BasicBlock *SuccBB = TI->getSuccessor(succ);
 | |
|     if (!isa<PHINode>(SuccBB->begin())) continue;
 | |
|     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
 | |
|     
 | |
|     // If this terminator has multiple identical successors (common for
 | |
|     // switches), only handle each succ once.
 | |
|     unsigned SuccMBBNo = SuccMBB->getNumber();
 | |
|     if (SuccsHandled[SuccMBBNo]) continue;
 | |
|     SuccsHandled[SuccMBBNo] = true;
 | |
|     
 | |
|     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | |
|     PHINode *PN;
 | |
| 
 | |
|     // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | |
|     // nodes and Machine PHI nodes, but the incoming operands have not been
 | |
|     // emitted yet.
 | |
|     for (BasicBlock::iterator I = SuccBB->begin();
 | |
|          (PN = dyn_cast<PHINode>(I)); ++I) {
 | |
|       // Ignore dead phi's.
 | |
|       if (PN->use_empty()) continue;
 | |
|       
 | |
|       unsigned Reg;
 | |
|       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | |
|       
 | |
|       if (Constant *C = dyn_cast<Constant>(PHIOp)) {
 | |
|         unsigned &RegOut = ConstantsOut[C];
 | |
|         if (RegOut == 0) {
 | |
|           RegOut = FuncInfo.CreateRegForValue(C);
 | |
|           UnorderedChains.push_back(
 | |
|                            SDL.CopyValueToVirtualRegister(C, RegOut));
 | |
|         }
 | |
|         Reg = RegOut;
 | |
|       } else {
 | |
|         Reg = FuncInfo.ValueMap[PHIOp];
 | |
|         if (Reg == 0) {
 | |
|           assert(isa<AllocaInst>(PHIOp) &&
 | |
|                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
 | |
|                  "Didn't codegen value into a register!??");
 | |
|           Reg = FuncInfo.CreateRegForValue(PHIOp);
 | |
|           UnorderedChains.push_back(
 | |
|                            SDL.CopyValueToVirtualRegister(PHIOp, Reg));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remember that this register needs to added to the machine PHI node as
 | |
|       // the input for this MBB.
 | |
|       MVT::ValueType VT = TLI.getValueType(PN->getType());
 | |
|       unsigned NumElements;
 | |
|       if (VT != MVT::Vector)
 | |
|         NumElements = TLI.getNumElements(VT);
 | |
|       else {
 | |
|         MVT::ValueType VT1,VT2;
 | |
|         NumElements = 
 | |
|           TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
 | |
|                                      VT1, VT2);
 | |
|       }
 | |
|       for (unsigned i = 0, e = NumElements; i != e; ++i)
 | |
|         PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
 | |
|     }
 | |
|   }
 | |
|   ConstantsOut.clear();
 | |
| 
 | |
|   // Turn all of the unordered chains into one factored node.
 | |
|   if (!UnorderedChains.empty()) {
 | |
|     SDOperand Root = SDL.getRoot();
 | |
|     if (Root.getOpcode() != ISD::EntryToken) {
 | |
|       unsigned i = 0, e = UnorderedChains.size();
 | |
|       for (; i != e; ++i) {
 | |
|         assert(UnorderedChains[i].Val->getNumOperands() > 1);
 | |
|         if (UnorderedChains[i].Val->getOperand(0) == Root)
 | |
|           break;  // Don't add the root if we already indirectly depend on it.
 | |
|       }
 | |
|         
 | |
|       if (i == e)
 | |
|         UnorderedChains.push_back(Root);
 | |
|     }
 | |
|     DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
 | |
|                             &UnorderedChains[0], UnorderedChains.size()));
 | |
|   }
 | |
| 
 | |
|   // Lower the terminator after the copies are emitted.
 | |
|   if (Invoke) {
 | |
|     // Just the branch part of invoke.
 | |
|     SDL.visitInvoke(*Invoke, true);
 | |
|   } else {
 | |
|     SDL.visit(*LLVMBB->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Copy over any CaseBlock records that may now exist due to SwitchInst
 | |
|   // lowering, as well as any jump table information.
 | |
|   SwitchCases.clear();
 | |
|   SwitchCases = SDL.SwitchCases;
 | |
|   JTCases.clear();
 | |
|   JTCases = SDL.JTCases;
 | |
|   BitTestCases.clear();
 | |
|   BitTestCases = SDL.BitTestCases;
 | |
|     
 | |
|   // Make sure the root of the DAG is up-to-date.
 | |
|   DAG.setRoot(SDL.getRoot());
 | |
| }
 | |
| 
 | |
| void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
 | |
|   // Get alias analysis for load/store combining.
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   // Run the DAG combiner in pre-legalize mode.
 | |
|   DAG.Combine(false, AA);
 | |
|   
 | |
|   DOUT << "Lowered selection DAG:\n";
 | |
|   DEBUG(DAG.dump());
 | |
|   
 | |
|   // Second step, hack on the DAG until it only uses operations and types that
 | |
|   // the target supports.
 | |
|   DAG.Legalize();
 | |
|   
 | |
|   DOUT << "Legalized selection DAG:\n";
 | |
|   DEBUG(DAG.dump());
 | |
|   
 | |
|   // Run the DAG combiner in post-legalize mode.
 | |
|   DAG.Combine(true, AA);
 | |
|   
 | |
|   if (ViewISelDAGs) DAG.viewGraph();
 | |
| 
 | |
|   // Third, instruction select all of the operations to machine code, adding the
 | |
|   // code to the MachineBasicBlock.
 | |
|   InstructionSelectBasicBlock(DAG);
 | |
|   
 | |
|   DOUT << "Selected machine code:\n";
 | |
|   DEBUG(BB->dump());
 | |
| }  
 | |
| 
 | |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
 | |
|                                         FunctionLoweringInfo &FuncInfo) {
 | |
|   std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
 | |
|   {
 | |
|     SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|     CurDAG = &DAG;
 | |
|   
 | |
|     // First step, lower LLVM code to some DAG.  This DAG may use operations and
 | |
|     // types that are not supported by the target.
 | |
|     BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
 | |
| 
 | |
|     // Second step, emit the lowered DAG as machine code.
 | |
|     CodeGenAndEmitDAG(DAG);
 | |
|   }
 | |
| 
 | |
|   DOUT << "Total amount of phi nodes to update: "
 | |
|        << PHINodesToUpdate.size() << "\n";
 | |
|   DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
 | |
|           DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
 | |
|                << ", " << PHINodesToUpdate[i].second << ")\n";);
 | |
|   
 | |
|   // Next, now that we know what the last MBB the LLVM BB expanded is, update
 | |
|   // PHI nodes in successors.
 | |
|   if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
 | |
|     for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[i].first;
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       PHI->addRegOperand(PHINodesToUpdate[i].second, false);
 | |
|       PHI->addMachineBasicBlockOperand(BB);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!BitTestCases[i].Emitted) {
 | |
|       SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|       CurDAG = &HSDAG;
 | |
|       SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);    
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = BitTestCases[i].Parent;
 | |
|       HSDL.setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       HSDL.visitBitTestHeader(BitTestCases[i]);
 | |
|       HSDAG.setRoot(HSDL.getRoot());
 | |
|       CodeGenAndEmitDAG(HSDAG);
 | |
|     }    
 | |
| 
 | |
|     for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
 | |
|       SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|       CurDAG = &BSDAG;
 | |
|       SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = BitTestCases[i].Cases[j].ThisBB;
 | |
|       BSDL.setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       if (j+1 != ej)
 | |
|         BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
 | |
|                               BitTestCases[i].Reg,
 | |
|                               BitTestCases[i].Cases[j]);
 | |
|       else
 | |
|         BSDL.visitBitTestCase(BitTestCases[i].Default,
 | |
|                               BitTestCases[i].Reg,
 | |
|                               BitTestCases[i].Cases[j]);
 | |
|         
 | |
|         
 | |
|       BSDAG.setRoot(BSDL.getRoot());
 | |
|       CodeGenAndEmitDAG(BSDAG);
 | |
|     }
 | |
| 
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // This is "default" BB. We have two jumps to it. From "header" BB and
 | |
|       // from last "case" BB.
 | |
|       if (PHIBB == BitTestCases[i].Default) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
 | |
|         PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
 | |
|         PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
 | |
|       }
 | |
|       // One of "cases" BB.
 | |
|       for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
 | |
|         MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
 | |
|         if (cBB->succ_end() !=
 | |
|             std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
 | |
|           PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
 | |
|           PHI->addMachineBasicBlockOperand(cBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the JumpTable record is filled in, then we need to emit a jump table.
 | |
|   // Updating the PHI nodes is tricky in this case, since we need to determine
 | |
|   // whether the PHI is a successor of the range check MBB or the jump table MBB
 | |
|   for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
 | |
|     // Lower header first, if it wasn't already lowered
 | |
|     if (!JTCases[i].first.Emitted) {
 | |
|       SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|       CurDAG = &HSDAG;
 | |
|       SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);    
 | |
|       // Set the current basic block to the mbb we wish to insert the code into
 | |
|       BB = JTCases[i].first.HeaderBB;
 | |
|       HSDL.setCurrentBasicBlock(BB);
 | |
|       // Emit the code
 | |
|       HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
 | |
|       HSDAG.setRoot(HSDL.getRoot());
 | |
|       CodeGenAndEmitDAG(HSDAG);
 | |
|     }
 | |
|     
 | |
|     SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|     CurDAG = &JSDAG;
 | |
|     SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = JTCases[i].second.MBB;
 | |
|     JSDL.setCurrentBasicBlock(BB);
 | |
|     // Emit the code
 | |
|     JSDL.visitJumpTable(JTCases[i].second);
 | |
|     JSDAG.setRoot(JSDL.getRoot());
 | |
|     CodeGenAndEmitDAG(JSDAG);
 | |
|     
 | |
|     // Update PHI Nodes
 | |
|     for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
 | |
|       MachineInstr *PHI = PHINodesToUpdate[pi].first;
 | |
|       MachineBasicBlock *PHIBB = PHI->getParent();
 | |
|       assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|              "This is not a machine PHI node that we are updating!");
 | |
|       // "default" BB. We can go there only from header BB.
 | |
|       if (PHIBB == JTCases[i].second.Default) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
 | |
|         PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
 | |
|       }
 | |
|       // JT BB. Just iterate over successors here
 | |
|       if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
 | |
|         PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
 | |
|         PHI->addMachineBasicBlockOperand(BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If the switch block involved a branch to one of the actual successors, we
 | |
|   // need to update PHI nodes in that block.
 | |
|   for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
 | |
|     MachineInstr *PHI = PHINodesToUpdate[i].first;
 | |
|     assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
 | |
|            "This is not a machine PHI node that we are updating!");
 | |
|     if (BB->isSuccessor(PHI->getParent())) {
 | |
|       PHI->addRegOperand(PHINodesToUpdate[i].second, false);
 | |
|       PHI->addMachineBasicBlockOperand(BB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we generated any switch lowering information, build and codegen any
 | |
|   // additional DAGs necessary.
 | |
|   for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
 | |
|     SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
 | |
|     CurDAG = &SDAG;
 | |
|     SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
 | |
|     
 | |
|     // Set the current basic block to the mbb we wish to insert the code into
 | |
|     BB = SwitchCases[i].ThisBB;
 | |
|     SDL.setCurrentBasicBlock(BB);
 | |
|     
 | |
|     // Emit the code
 | |
|     SDL.visitSwitchCase(SwitchCases[i]);
 | |
|     SDAG.setRoot(SDL.getRoot());
 | |
|     CodeGenAndEmitDAG(SDAG);
 | |
|     
 | |
|     // Handle any PHI nodes in successors of this chunk, as if we were coming
 | |
|     // from the original BB before switch expansion.  Note that PHI nodes can
 | |
|     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
 | |
|     // handle them the right number of times.
 | |
|     while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
 | |
|       for (MachineBasicBlock::iterator Phi = BB->begin();
 | |
|            Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
 | |
|         // This value for this PHI node is recorded in PHINodesToUpdate, get it.
 | |
|         for (unsigned pn = 0; ; ++pn) {
 | |
|           assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
 | |
|           if (PHINodesToUpdate[pn].first == Phi) {
 | |
|             Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
 | |
|             Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Don't process RHS if same block as LHS.
 | |
|       if (BB == SwitchCases[i].FalseBB)
 | |
|         SwitchCases[i].FalseBB = 0;
 | |
|       
 | |
|       // If we haven't handled the RHS, do so now.  Otherwise, we're done.
 | |
|       SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
 | |
|       SwitchCases[i].FalseBB = 0;
 | |
|     }
 | |
|     assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
 | |
| /// target node in the graph.
 | |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
 | |
|   if (ViewSchedDAGs) DAG.viewGraph();
 | |
| 
 | |
|   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
 | |
|   
 | |
|   if (!Ctor) {
 | |
|     Ctor = ISHeuristic;
 | |
|     RegisterScheduler::setDefault(Ctor);
 | |
|   }
 | |
|   
 | |
|   ScheduleDAG *SL = Ctor(this, &DAG, BB);
 | |
|   BB = SL->Run();
 | |
|   delete SL;
 | |
| }
 | |
| 
 | |
| 
 | |
| HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
 | |
|   return new HazardRecognizer();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions used by the generated instruction selector.
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calls to these methods are generated by tblgen.
 | |
| 
 | |
| /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS, 
 | |
|                                     int64_t DesiredMaskS) {
 | |
|   uint64_t ActualMask = RHS->getValue();
 | |
|   uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
 | |
|   
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
|   
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask & ~DesiredMask)
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   uint64_t NeededMask = DesiredMask & ~ActualMask;
 | |
|   if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
 | |
|     return true;
 | |
|   
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
| 
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
 | |
| /// the dag combiner simplified the 255, we still want to match.  RHS is the
 | |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
 | |
| /// specified in the .td file (e.g. 255).
 | |
| bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS, 
 | |
|                                     int64_t DesiredMaskS) {
 | |
|   uint64_t ActualMask = RHS->getValue();
 | |
|   uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
 | |
|   
 | |
|   // If the actual mask exactly matches, success!
 | |
|   if (ActualMask == DesiredMask)
 | |
|     return true;
 | |
|   
 | |
|   // If the actual AND mask is allowing unallowed bits, this doesn't match.
 | |
|   if (ActualMask & ~DesiredMask)
 | |
|     return false;
 | |
|   
 | |
|   // Otherwise, the DAG Combiner may have proven that the value coming in is
 | |
|   // either already zero or is not demanded.  Check for known zero input bits.
 | |
|   uint64_t NeededMask = DesiredMask & ~ActualMask;
 | |
|   
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
 | |
|   
 | |
|   // If all the missing bits in the or are already known to be set, match!
 | |
|   if ((NeededMask & KnownOne) == NeededMask)
 | |
|     return true;
 | |
|   
 | |
|   // TODO: check to see if missing bits are just not demanded.
 | |
|   
 | |
|   // Otherwise, this pattern doesn't match.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
 | |
| /// by tblgen.  Others should not call it.
 | |
| void SelectionDAGISel::
 | |
| SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
 | |
|   std::vector<SDOperand> InOps;
 | |
|   std::swap(InOps, Ops);
 | |
| 
 | |
|   Ops.push_back(InOps[0]);  // input chain.
 | |
|   Ops.push_back(InOps[1]);  // input asm string.
 | |
| 
 | |
|   unsigned i = 2, e = InOps.size();
 | |
|   if (InOps[e-1].getValueType() == MVT::Flag)
 | |
|     --e;  // Don't process a flag operand if it is here.
 | |
|   
 | |
|   while (i != e) {
 | |
|     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
 | |
|     if ((Flags & 7) != 4 /*MEM*/) {
 | |
|       // Just skip over this operand, copying the operands verbatim.
 | |
|       Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
 | |
|       i += (Flags >> 3) + 1;
 | |
|     } else {
 | |
|       assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
 | |
|       // Otherwise, this is a memory operand.  Ask the target to select it.
 | |
|       std::vector<SDOperand> SelOps;
 | |
|       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
 | |
|         cerr << "Could not match memory address.  Inline asm failure!\n";
 | |
|         exit(1);
 | |
|       }
 | |
|       
 | |
|       // Add this to the output node.
 | |
|       MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|       Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
 | |
|                                           IntPtrTy));
 | |
|       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
 | |
|       i += 2;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Add the flag input back if present.
 | |
|   if (e != InOps.size())
 | |
|     Ops.push_back(InOps.back());
 | |
| }
 | |
| 
 | |
| char SelectionDAGISel::ID = 0;
 |