mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@18500 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1146 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1146 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Writer.cpp - Library for writing LLVM bytecode files --------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Bytecode/Writer.h
 | 
						|
//
 | 
						|
// Note that this file uses an unusual technique of outputting all the bytecode
 | 
						|
// to a vector of unsigned char, then copies the vector to an ostream.  The
 | 
						|
// reason for this is that we must do "seeking" in the stream to do back-
 | 
						|
// patching, and some very important ostreams that we want to support (like
 | 
						|
// pipes) do not support seeking.  :( :( :(
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "WriterInternals.h"
 | 
						|
#include "llvm/Bytecode/WriteBytecodePass.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/Compressor.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <cstring>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// This value needs to be incremented every time the bytecode format changes
 | 
						|
/// so that the reader can distinguish which format of the bytecode file has
 | 
						|
/// been written.
 | 
						|
/// @brief The bytecode version number
 | 
						|
const unsigned BCVersionNum = 5;
 | 
						|
 | 
						|
static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer");
 | 
						|
 | 
						|
static Statistic<> 
 | 
						|
BytesWritten("bytecodewriter", "Number of bytecode bytes written");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//===                           Output Primitives                          ===//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// output - If a position is specified, it must be in the valid portion of the
 | 
						|
// string... note that this should be inlined always so only the relevant IF 
 | 
						|
// body should be included.
 | 
						|
inline void BytecodeWriter::output(unsigned i, int pos) {
 | 
						|
  if (pos == -1) { // Be endian clean, little endian is our friend
 | 
						|
    Out.push_back((unsigned char)i); 
 | 
						|
    Out.push_back((unsigned char)(i >> 8));
 | 
						|
    Out.push_back((unsigned char)(i >> 16));
 | 
						|
    Out.push_back((unsigned char)(i >> 24));
 | 
						|
  } else {
 | 
						|
    Out[pos  ] = (unsigned char)i;
 | 
						|
    Out[pos+1] = (unsigned char)(i >> 8);
 | 
						|
    Out[pos+2] = (unsigned char)(i >> 16);
 | 
						|
    Out[pos+3] = (unsigned char)(i >> 24);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output(int i) {
 | 
						|
  output((unsigned)i);
 | 
						|
}
 | 
						|
 | 
						|
/// output_vbr - Output an unsigned value, by using the least number of bytes
 | 
						|
/// possible.  This is useful because many of our "infinite" values are really
 | 
						|
/// very small most of the time; but can be large a few times.
 | 
						|
/// Data format used:  If you read a byte with the high bit set, use the low 
 | 
						|
/// seven bits as data and then read another byte. 
 | 
						|
inline void BytecodeWriter::output_vbr(uint64_t i) {
 | 
						|
  while (1) {
 | 
						|
    if (i < 0x80) { // done?
 | 
						|
      Out.push_back((unsigned char)i);   // We know the high bit is clear...
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Nope, we are bigger than a character, output the next 7 bits and set the
 | 
						|
    // high bit to say that there is more coming...
 | 
						|
    Out.push_back(0x80 | ((unsigned char)i & 0x7F));
 | 
						|
    i >>= 7;  // Shift out 7 bits now...
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_vbr(unsigned i) {
 | 
						|
  while (1) {
 | 
						|
    if (i < 0x80) { // done?
 | 
						|
      Out.push_back((unsigned char)i);   // We know the high bit is clear...
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Nope, we are bigger than a character, output the next 7 bits and set the
 | 
						|
    // high bit to say that there is more coming...
 | 
						|
    Out.push_back(0x80 | ((unsigned char)i & 0x7F));
 | 
						|
    i >>= 7;  // Shift out 7 bits now...
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_typeid(unsigned i) {
 | 
						|
  if (i <= 0x00FFFFFF)
 | 
						|
    this->output_vbr(i);
 | 
						|
  else {
 | 
						|
    this->output_vbr(0x00FFFFFF);
 | 
						|
    this->output_vbr(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_vbr(int64_t i) {
 | 
						|
  if (i < 0) 
 | 
						|
    output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit...
 | 
						|
  else
 | 
						|
    output_vbr((uint64_t)i << 1);          // Low order bit is clear.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline void BytecodeWriter::output_vbr(int i) {
 | 
						|
  if (i < 0) 
 | 
						|
    output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit...
 | 
						|
  else
 | 
						|
    output_vbr((unsigned)i << 1);          // Low order bit is clear.
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output(const std::string &s) {
 | 
						|
  unsigned Len = s.length();
 | 
						|
  output_vbr(Len );             // Strings may have an arbitrary length...
 | 
						|
  Out.insert(Out.end(), s.begin(), s.end());
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_data(const void *Ptr, const void *End) {
 | 
						|
  Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End);
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_float(float& FloatVal) {
 | 
						|
  /// FIXME: This isn't optimal, it has size problems on some platforms
 | 
						|
  /// where FP is not IEEE.
 | 
						|
  union {
 | 
						|
    float f;
 | 
						|
    uint32_t i;
 | 
						|
  } FloatUnion;
 | 
						|
  FloatUnion.f = FloatVal;
 | 
						|
  Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF )));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF));
 | 
						|
}
 | 
						|
 | 
						|
inline void BytecodeWriter::output_double(double& DoubleVal) {
 | 
						|
  /// FIXME: This isn't optimal, it has size problems on some platforms
 | 
						|
  /// where FP is not IEEE.
 | 
						|
  union {
 | 
						|
    double d;
 | 
						|
    uint64_t i;
 | 
						|
  } DoubleUnion;
 | 
						|
  DoubleUnion.d = DoubleVal;
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF )));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF));
 | 
						|
  Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF));
 | 
						|
}
 | 
						|
 | 
						|
inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w,
 | 
						|
		     bool elideIfEmpty, bool hasLongFormat )
 | 
						|
  : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){
 | 
						|
 | 
						|
  if (HasLongFormat) {
 | 
						|
    w.output(ID);
 | 
						|
    w.output(0U); // For length in long format
 | 
						|
  } else {
 | 
						|
    w.output(0U); /// Place holder for ID and length for this block
 | 
						|
  }
 | 
						|
  Loc = w.size();
 | 
						|
}
 | 
						|
 | 
						|
inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out
 | 
						|
				         // of scope...
 | 
						|
  if (Loc == Writer.size() && ElideIfEmpty) {
 | 
						|
    // If the block is empty, and we are allowed to, do not emit the block at
 | 
						|
    // all!
 | 
						|
    Writer.resize(Writer.size()-(HasLongFormat?8:4));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasLongFormat)
 | 
						|
    Writer.output(unsigned(Writer.size()-Loc), int(Loc-4));
 | 
						|
  else
 | 
						|
    Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//===                           Constant Output                            ===//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void BytecodeWriter::outputType(const Type *T) {
 | 
						|
  output_vbr((unsigned)T->getTypeID());
 | 
						|
  
 | 
						|
  // That's all there is to handling primitive types...
 | 
						|
  if (T->isPrimitiveType()) {
 | 
						|
    return;     // We might do this if we alias a prim type: %x = type int
 | 
						|
  }
 | 
						|
 | 
						|
  switch (T->getTypeID()) {   // Handle derived types now.
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *MT = cast<FunctionType>(T);
 | 
						|
    int Slot = Table.getSlot(MT->getReturnType());
 | 
						|
    assert(Slot != -1 && "Type used but not available!!");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
 | 
						|
    // Output the number of arguments to function (+1 if varargs):
 | 
						|
    output_vbr((unsigned)MT->getNumParams()+MT->isVarArg());
 | 
						|
 | 
						|
    // Output all of the arguments...
 | 
						|
    FunctionType::param_iterator I = MT->param_begin();
 | 
						|
    for (; I != MT->param_end(); ++I) {
 | 
						|
      Slot = Table.getSlot(*I);
 | 
						|
      assert(Slot != -1 && "Type used but not available!!");
 | 
						|
      output_typeid((unsigned)Slot);
 | 
						|
    }
 | 
						|
 | 
						|
    // Terminate list with VoidTy if we are a varargs function...
 | 
						|
    if (MT->isVarArg())
 | 
						|
      output_typeid((unsigned)Type::VoidTyID);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *AT = cast<ArrayType>(T);
 | 
						|
    int Slot = Table.getSlot(AT->getElementType());
 | 
						|
    assert(Slot != -1 && "Type used but not available!!");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
    output_vbr(AT->getNumElements());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
 case Type::PackedTyID: {
 | 
						|
    const PackedType *PT = cast<PackedType>(T);
 | 
						|
    int Slot = Table.getSlot(PT->getElementType());
 | 
						|
    assert(Slot != -1 && "Type used but not available!!");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
    output_vbr(PT->getNumElements());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *ST = cast<StructType>(T);
 | 
						|
 | 
						|
    // Output all of the element types...
 | 
						|
    for (StructType::element_iterator I = ST->element_begin(),
 | 
						|
           E = ST->element_end(); I != E; ++I) {
 | 
						|
      int Slot = Table.getSlot(*I);
 | 
						|
      assert(Slot != -1 && "Type used but not available!!");
 | 
						|
      output_typeid((unsigned)Slot);
 | 
						|
    }
 | 
						|
 | 
						|
    // Terminate list with VoidTy
 | 
						|
    output_typeid((unsigned)Type::VoidTyID);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID: {
 | 
						|
    const PointerType *PT = cast<PointerType>(T);
 | 
						|
    int Slot = Table.getSlot(PT->getElementType());
 | 
						|
    assert(Slot != -1 && "Type used but not available!!");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::OpaqueTyID:
 | 
						|
    // No need to emit anything, just the count of opaque types is enough.
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
 | 
						|
              << " Type '" << T->getDescription() << "'\n";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputConstant(const Constant *CPV) {
 | 
						|
  assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) &&
 | 
						|
         "Shouldn't output null constants!");
 | 
						|
 | 
						|
  // We must check for a ConstantExpr before switching by type because
 | 
						|
  // a ConstantExpr can be of any type, and has no explicit value.
 | 
						|
  // 
 | 
						|
  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
 | 
						|
    // FIXME: Encoding of constant exprs could be much more compact!
 | 
						|
    assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands");
 | 
						|
    assert(CE->getNumOperands() != 1 || CE->getOpcode() == Instruction::Cast);
 | 
						|
    output_vbr(1+CE->getNumOperands());   // flags as an expr
 | 
						|
    output_vbr(CE->getOpcode());        // flags as an expr
 | 
						|
    
 | 
						|
    for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){
 | 
						|
      int Slot = Table.getSlot(*OI);
 | 
						|
      assert(Slot != -1 && "Unknown constant used in ConstantExpr!!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
      Slot = Table.getSlot((*OI)->getType());
 | 
						|
      output_typeid((unsigned)Slot);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  } else if (isa<UndefValue>(CPV)) {
 | 
						|
    output_vbr(1U);       // 1 -> UndefValue constant.
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    output_vbr(0U);       // flag as not a ConstantExpr
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (CPV->getType()->getTypeID()) {
 | 
						|
  case Type::BoolTyID:    // Boolean Types
 | 
						|
    if (cast<ConstantBool>(CPV)->getValue())
 | 
						|
      output_vbr(1U);
 | 
						|
    else
 | 
						|
      output_vbr(0U);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::UByteTyID:   // Unsigned integer types...
 | 
						|
  case Type::UShortTyID:
 | 
						|
  case Type::UIntTyID:
 | 
						|
  case Type::ULongTyID:
 | 
						|
    output_vbr(cast<ConstantUInt>(CPV)->getValue());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::SByteTyID:   // Signed integer types...
 | 
						|
  case Type::ShortTyID:
 | 
						|
  case Type::IntTyID:
 | 
						|
  case Type::LongTyID:
 | 
						|
    output_vbr(cast<ConstantSInt>(CPV)->getValue());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ConstantArray *CPA = cast<ConstantArray>(CPV);
 | 
						|
    assert(!CPA->isString() && "Constant strings should be handled specially!");
 | 
						|
 | 
						|
    for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) {
 | 
						|
      int Slot = Table.getSlot(CPA->getOperand(i));
 | 
						|
      assert(Slot != -1 && "Constant used but not available!!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PackedTyID: {
 | 
						|
    const ConstantPacked *CP = cast<ConstantPacked>(CPV);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
 | 
						|
      int Slot = Table.getSlot(CP->getOperand(i));
 | 
						|
      assert(Slot != -1 && "Constant used but not available!!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const ConstantStruct *CPS = cast<ConstantStruct>(CPV);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) {
 | 
						|
      int Slot = Table.getSlot(CPS->getOperand(i));
 | 
						|
      assert(Slot != -1 && "Constant used but not available!!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::PointerTyID:
 | 
						|
    assert(0 && "No non-null, non-constant-expr constants allowed!");
 | 
						|
    abort();
 | 
						|
 | 
						|
  case Type::FloatTyID: {   // Floating point types...
 | 
						|
    float Tmp = (float)cast<ConstantFP>(CPV)->getValue();
 | 
						|
    output_float(Tmp);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::DoubleTyID: {
 | 
						|
    double Tmp = cast<ConstantFP>(CPV)->getValue();
 | 
						|
    output_double(Tmp);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::VoidTyID: 
 | 
						|
  case Type::LabelTyID:
 | 
						|
  default:
 | 
						|
    std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize"
 | 
						|
              << " type '" << *CPV->getType() << "'\n";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputConstantStrings() {
 | 
						|
  SlotCalculator::string_iterator I = Table.string_begin();
 | 
						|
  SlotCalculator::string_iterator E = Table.string_end();
 | 
						|
  if (I == E) return;  // No strings to emit
 | 
						|
 | 
						|
  // If we have != 0 strings to emit, output them now.  Strings are emitted into
 | 
						|
  // the 'void' type plane.
 | 
						|
  output_vbr(unsigned(E-I));
 | 
						|
  output_typeid(Type::VoidTyID);
 | 
						|
    
 | 
						|
  // Emit all of the strings.
 | 
						|
  for (I = Table.string_begin(); I != E; ++I) {
 | 
						|
    const ConstantArray *Str = *I;
 | 
						|
    int Slot = Table.getSlot(Str->getType());
 | 
						|
    assert(Slot != -1 && "Constant string of unknown type?");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
    
 | 
						|
    // Now that we emitted the type (which indicates the size of the string),
 | 
						|
    // emit all of the characters.
 | 
						|
    std::string Val = Str->getAsString();
 | 
						|
    output_data(Val.c_str(), Val.c_str()+Val.size());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//===                           Instruction Output                         ===//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
typedef unsigned char uchar;
 | 
						|
 | 
						|
// outputInstructionFormat0 - Output those wierd instructions that have a large
 | 
						|
// number of operands or have large operands themselves...
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
void BytecodeWriter::outputInstructionFormat0(const Instruction *I,
 | 
						|
                                              unsigned Opcode,
 | 
						|
                                              const SlotCalculator &Table,
 | 
						|
                                              unsigned Type) {
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2);                  // Instruction Opcode ID
 | 
						|
  output_typeid(Type);                      // Result type
 | 
						|
 | 
						|
  unsigned NumArgs = I->getNumOperands();
 | 
						|
  output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) ||
 | 
						|
                        isa<VAArgInst>(I)));
 | 
						|
 | 
						|
  if (!isa<GetElementPtrInst>(&I)) {
 | 
						|
    for (unsigned i = 0; i < NumArgs; ++i) {
 | 
						|
      int Slot = Table.getSlot(I->getOperand(i));
 | 
						|
      assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | 
						|
      int Slot = Table.getSlot(I->getType());
 | 
						|
      assert(Slot != -1 && "Cast return type unknown?");
 | 
						|
      output_typeid((unsigned)Slot);
 | 
						|
    } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) {
 | 
						|
      int Slot = Table.getSlot(VAI->getArgType());
 | 
						|
      assert(Slot != -1 && "VarArg argument type unknown?");
 | 
						|
      output_typeid((unsigned)Slot);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    int Slot = Table.getSlot(I->getOperand(0));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr(unsigned(Slot));
 | 
						|
 | 
						|
    // We need to encode the type of sequential type indices into their slot #
 | 
						|
    unsigned Idx = 1;
 | 
						|
    for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I);
 | 
						|
         Idx != NumArgs; ++TI, ++Idx) {
 | 
						|
      Slot = Table.getSlot(I->getOperand(Idx));
 | 
						|
      assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    
 | 
						|
      if (isa<SequentialType>(*TI)) {
 | 
						|
        unsigned IdxId;
 | 
						|
        switch (I->getOperand(Idx)->getType()->getTypeID()) {
 | 
						|
        default: assert(0 && "Unknown index type!");
 | 
						|
        case Type::UIntTyID:  IdxId = 0; break;
 | 
						|
        case Type::IntTyID:   IdxId = 1; break;
 | 
						|
        case Type::ULongTyID: IdxId = 2; break;
 | 
						|
        case Type::LongTyID:  IdxId = 3; break;
 | 
						|
        }
 | 
						|
        Slot = (Slot << 2) | IdxId;
 | 
						|
      }
 | 
						|
      output_vbr(unsigned(Slot));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstrVarArgsCall - Output the absurdly annoying varargs function calls.
 | 
						|
// This are more annoying than most because the signature of the call does not
 | 
						|
// tell us anything about the types of the arguments in the varargs portion.
 | 
						|
// Because of this, we encode (as type 0) all of the argument types explicitly
 | 
						|
// before the argument value.  This really sucks, but you shouldn't be using
 | 
						|
// varargs functions in your code! *death to printf*!
 | 
						|
//
 | 
						|
// Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>]
 | 
						|
//
 | 
						|
void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I, 
 | 
						|
	                                    unsigned Opcode,
 | 
						|
					    const SlotCalculator &Table,
 | 
						|
				            unsigned Type) {
 | 
						|
  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
 | 
						|
  // Opcode must have top two bits clear...
 | 
						|
  output_vbr(Opcode << 2);                  // Instruction Opcode ID
 | 
						|
  output_typeid(Type);                      // Result type (varargs type)
 | 
						|
 | 
						|
  const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  unsigned NumParams = FTy->getNumParams();
 | 
						|
 | 
						|
  unsigned NumFixedOperands;
 | 
						|
  if (isa<CallInst>(I)) {
 | 
						|
    // Output an operand for the callee and each fixed argument, then two for
 | 
						|
    // each variable argument.
 | 
						|
    NumFixedOperands = 1+NumParams;
 | 
						|
  } else {
 | 
						|
    assert(isa<InvokeInst>(I) && "Not call or invoke??");
 | 
						|
    // Output an operand for the callee and destinations, then two for each
 | 
						|
    // variable argument.
 | 
						|
    NumFixedOperands = 3+NumParams;
 | 
						|
  }
 | 
						|
  output_vbr(2 * I->getNumOperands()-NumFixedOperands);
 | 
						|
 | 
						|
  // The type for the function has already been emitted in the type field of the
 | 
						|
  // instruction.  Just emit the slot # now.
 | 
						|
  for (unsigned i = 0; i != NumFixedOperands; ++i) {
 | 
						|
    int Slot = Table.getSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) {
 | 
						|
    // Output Arg Type ID
 | 
						|
    int Slot = Table.getSlot(I->getOperand(i)->getType());
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
    
 | 
						|
    // Output arg ID itself
 | 
						|
    Slot = Table.getSlot(I->getOperand(i));
 | 
						|
    assert(Slot >= 0 && "No slot number for value!?!?");      
 | 
						|
    output_vbr((unsigned)Slot);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat1 - Output one operand instructions, knowing that no
 | 
						|
// operand index is >= 2^12.
 | 
						|
//
 | 
						|
inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I, 
 | 
						|
	                                             unsigned Opcode,
 | 
						|
						     unsigned *Slots, 
 | 
						|
						     unsigned Type) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 1.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 19-08: Resulting type plane
 | 
						|
  // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | 
						|
  //
 | 
						|
  output(1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat2 - Output two operand instructions, knowing that no
 | 
						|
// operand index is >= 2^8.
 | 
						|
//
 | 
						|
inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I, 
 | 
						|
     						     unsigned Opcode,
 | 
						|
						     unsigned *Slots, 
 | 
						|
						     unsigned Type) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 2.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 15-08: Resulting type plane
 | 
						|
  // 23-16: Operand #1
 | 
						|
  // 31-24: Operand #2  
 | 
						|
  //
 | 
						|
  output(2 | (Opcode << 2) | (Type << 8) | (Slots[0] << 16) | (Slots[1] << 24));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// outputInstructionFormat3 - Output three operand instructions, knowing that no
 | 
						|
// operand index is >= 2^6.
 | 
						|
//
 | 
						|
inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I, 
 | 
						|
                                                     unsigned Opcode,
 | 
						|
						     unsigned *Slots, 
 | 
						|
						     unsigned Type) {
 | 
						|
  // bits   Instruction format:
 | 
						|
  // --------------------------
 | 
						|
  // 01-00: Opcode type, fixed to 3.
 | 
						|
  // 07-02: Opcode
 | 
						|
  // 13-08: Resulting type plane
 | 
						|
  // 19-14: Operand #1
 | 
						|
  // 25-20: Operand #2
 | 
						|
  // 31-26: Operand #3
 | 
						|
  //
 | 
						|
  output(3 | (Opcode << 2) | (Type << 8) |
 | 
						|
          (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26));
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputInstruction(const Instruction &I) {
 | 
						|
  assert(I.getOpcode() < 62 && "Opcode too big???");
 | 
						|
  unsigned Opcode = I.getOpcode();
 | 
						|
  unsigned NumOperands = I.getNumOperands();
 | 
						|
 | 
						|
  // Encode 'volatile load' as 62 and 'volatile store' as 63.
 | 
						|
  if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile())
 | 
						|
    Opcode = 62;
 | 
						|
  if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())
 | 
						|
    Opcode = 63;
 | 
						|
 | 
						|
  // Figure out which type to encode with the instruction.  Typically we want
 | 
						|
  // the type of the first parameter, as opposed to the type of the instruction
 | 
						|
  // (for example, with setcc, we always know it returns bool, but the type of
 | 
						|
  // the first param is actually interesting).  But if we have no arguments
 | 
						|
  // we take the type of the instruction itself.  
 | 
						|
  //
 | 
						|
  const Type *Ty;
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Select:
 | 
						|
  case Instruction::Malloc:
 | 
						|
  case Instruction::Alloca:
 | 
						|
    Ty = I.getType();  // These ALWAYS want to encode the return type
 | 
						|
    break;
 | 
						|
  case Instruction::Store:
 | 
						|
    Ty = I.getOperand(1)->getType();  // Encode the pointer type...
 | 
						|
    assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?");
 | 
						|
    break;
 | 
						|
  default:              // Otherwise use the default behavior...
 | 
						|
    Ty = NumOperands ? I.getOperand(0)->getType() : I.getType();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Type;
 | 
						|
  int Slot = Table.getSlot(Ty);
 | 
						|
  assert(Slot != -1 && "Type not available!!?!");
 | 
						|
  Type = (unsigned)Slot;
 | 
						|
 | 
						|
  // Varargs calls and invokes are encoded entirely different from any other
 | 
						|
  // instructions.
 | 
						|
  if (const CallInst *CI = dyn_cast<CallInst>(&I)){
 | 
						|
    const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(CI, Opcode, Table, Type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType());
 | 
						|
    if (cast<FunctionType>(Ty->getElementType())->isVarArg()) {
 | 
						|
      outputInstrVarArgsCall(II, Opcode, Table, Type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumOperands <= 3) {
 | 
						|
    // Make sure that we take the type number into consideration.  We don't want
 | 
						|
    // to overflow the field size for the instruction format we select.
 | 
						|
    //
 | 
						|
    unsigned MaxOpSlot = Type;
 | 
						|
    unsigned Slots[3]; Slots[0] = (1 << 12)-1;   // Marker to signify 0 operands
 | 
						|
    
 | 
						|
    for (unsigned i = 0; i != NumOperands; ++i) {
 | 
						|
      int slot = Table.getSlot(I.getOperand(i));
 | 
						|
      assert(slot != -1 && "Broken bytecode!");
 | 
						|
      if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot);
 | 
						|
      Slots[i] = unsigned(slot);
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle the special cases for various instructions...
 | 
						|
    if (isa<CastInst>(I) || isa<VAArgInst>(I)) {
 | 
						|
      // Cast has to encode the destination type as the second argument in the
 | 
						|
      // packet, or else we won't know what type to cast to!
 | 
						|
      Slots[1] = Table.getSlot(I.getType());
 | 
						|
      assert(Slots[1] != ~0U && "Cast return type unknown?");
 | 
						|
      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | 
						|
      NumOperands++;
 | 
						|
    } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) {
 | 
						|
      Slots[1] = Table.getSlot(VANI->getArgType());
 | 
						|
      assert(Slots[1] != ~0U && "va_next return type unknown?");
 | 
						|
      if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1];
 | 
						|
      NumOperands++;
 | 
						|
    } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
      // We need to encode the type of sequential type indices into their slot #
 | 
						|
      unsigned Idx = 1;
 | 
						|
      for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
 | 
						|
           I != E; ++I, ++Idx)
 | 
						|
        if (isa<SequentialType>(*I)) {
 | 
						|
          unsigned IdxId;
 | 
						|
          switch (GEP->getOperand(Idx)->getType()->getTypeID()) {
 | 
						|
          default: assert(0 && "Unknown index type!");
 | 
						|
          case Type::UIntTyID:  IdxId = 0; break;
 | 
						|
          case Type::IntTyID:   IdxId = 1; break;
 | 
						|
          case Type::ULongTyID: IdxId = 2; break;
 | 
						|
          case Type::LongTyID:  IdxId = 3; break;
 | 
						|
          }
 | 
						|
          Slots[Idx] = (Slots[Idx] << 2) | IdxId;
 | 
						|
          if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Decide which instruction encoding to use.  This is determined primarily
 | 
						|
    // by the number of operands, and secondarily by whether or not the max
 | 
						|
    // operand will fit into the instruction encoding.  More operands == fewer
 | 
						|
    // bits per operand.
 | 
						|
    //
 | 
						|
    switch (NumOperands) {
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops
 | 
						|
        outputInstructionFormat1(&I, Opcode, Slots, Type);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case 2:
 | 
						|
      if (MaxOpSlot < (1 << 8)) {
 | 
						|
        outputInstructionFormat2(&I, Opcode, Slots, Type);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    case 3:
 | 
						|
      if (MaxOpSlot < (1 << 6)) {
 | 
						|
        outputInstructionFormat3(&I, Opcode, Slots, Type);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we weren't handled before here, we either have a large number of
 | 
						|
  // operands or a large operand index that we are referring to.
 | 
						|
  outputInstructionFormat0(&I, Opcode, Table, Type);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//===                              Block Output                            ===//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M) 
 | 
						|
  : Out(o), Table(M) {
 | 
						|
 | 
						|
  // Emit the signature...
 | 
						|
  static const unsigned char *Sig =  (const unsigned char*)"llvm";
 | 
						|
  output_data(Sig, Sig+4);
 | 
						|
 | 
						|
  // Emit the top level CLASS block.
 | 
						|
  BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true);
 | 
						|
 | 
						|
  bool isBigEndian      = M->getEndianness() == Module::BigEndian;
 | 
						|
  bool hasLongPointers  = M->getPointerSize() == Module::Pointer64;
 | 
						|
  bool hasNoEndianness  = M->getEndianness() == Module::AnyEndianness;
 | 
						|
  bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize;
 | 
						|
 | 
						|
  // Output the version identifier and other information.
 | 
						|
  unsigned Version = (BCVersionNum << 4) | 
 | 
						|
                     (unsigned)isBigEndian | (hasLongPointers << 1) |
 | 
						|
                     (hasNoEndianness << 2) | 
 | 
						|
                     (hasNoPointerSize << 3);
 | 
						|
  output_vbr(Version);
 | 
						|
 | 
						|
  // The Global type plane comes first
 | 
						|
  {
 | 
						|
      BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this );
 | 
						|
      outputTypes(Type::FirstDerivedTyID);
 | 
						|
  }
 | 
						|
 | 
						|
  // The ModuleInfoBlock follows directly after the type information
 | 
						|
  outputModuleInfoBlock(M);
 | 
						|
 | 
						|
  // Output module level constants, used for global variable initializers
 | 
						|
  outputConstants(false);
 | 
						|
 | 
						|
  // Do the whole module now! Process each function at a time...
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    outputFunction(I);
 | 
						|
 | 
						|
  // If needed, output the symbol table for the module...
 | 
						|
  outputSymbolTable(M->getSymbolTable());
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputTypes(unsigned TypeNum) {
 | 
						|
  // Write the type plane for types first because earlier planes (e.g. for a
 | 
						|
  // primitive type like float) may have constants constructed using types
 | 
						|
  // coming later (e.g., via getelementptr from a pointer type).  The type
 | 
						|
  // plane is needed before types can be fwd or bkwd referenced.
 | 
						|
  const std::vector<const Type*>& Types = Table.getTypes();
 | 
						|
  assert(!Types.empty() && "No types at all?");
 | 
						|
  assert(TypeNum <= Types.size() && "Invalid TypeNo index");
 | 
						|
 | 
						|
  unsigned NumEntries = Types.size() - TypeNum;
 | 
						|
  
 | 
						|
  // Output type header: [num entries]
 | 
						|
  output_vbr(NumEntries);
 | 
						|
 | 
						|
  for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i)
 | 
						|
    outputType(Types[i]);
 | 
						|
}
 | 
						|
 | 
						|
// Helper function for outputConstants().
 | 
						|
// Writes out all the constants in the plane Plane starting at entry StartNo.
 | 
						|
// 
 | 
						|
void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*>
 | 
						|
                                            &Plane, unsigned StartNo) {
 | 
						|
  unsigned ValNo = StartNo;
 | 
						|
  
 | 
						|
  // Scan through and ignore function arguments, global values, and constant
 | 
						|
  // strings.
 | 
						|
  for (; ValNo < Plane.size() &&
 | 
						|
         (isa<Argument>(Plane[ValNo]) || isa<GlobalValue>(Plane[ValNo]) ||
 | 
						|
          (isa<ConstantArray>(Plane[ValNo]) &&
 | 
						|
           cast<ConstantArray>(Plane[ValNo])->isString())); ValNo++)
 | 
						|
    /*empty*/;
 | 
						|
 | 
						|
  unsigned NC = ValNo;              // Number of constants
 | 
						|
  for (; NC < Plane.size() && (isa<Constant>(Plane[NC])); NC++)
 | 
						|
    /*empty*/;
 | 
						|
  NC -= ValNo;                      // Convert from index into count
 | 
						|
  if (NC == 0) return;              // Skip empty type planes...
 | 
						|
 | 
						|
  // FIXME: Most slabs only have 1 or 2 entries!  We should encode this much
 | 
						|
  // more compactly.
 | 
						|
 | 
						|
  // Output type header: [num entries][type id number]
 | 
						|
  //
 | 
						|
  output_vbr(NC);
 | 
						|
 | 
						|
  // Output the Type ID Number...
 | 
						|
  int Slot = Table.getSlot(Plane.front()->getType());
 | 
						|
  assert (Slot != -1 && "Type in constant pool but not in function!!");
 | 
						|
  output_typeid((unsigned)Slot);
 | 
						|
 | 
						|
  for (unsigned i = ValNo; i < ValNo+NC; ++i) {
 | 
						|
    const Value *V = Plane[i];
 | 
						|
    if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
      outputConstant(C);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static inline bool hasNullValue(unsigned TyID) {
 | 
						|
  return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputConstants(bool isFunction) {
 | 
						|
  BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this,
 | 
						|
                      true  /* Elide block if empty */);
 | 
						|
 | 
						|
  unsigned NumPlanes = Table.getNumPlanes();
 | 
						|
 | 
						|
  if (isFunction)
 | 
						|
    // Output the type plane before any constants!
 | 
						|
    outputTypes(Table.getModuleTypeLevel());
 | 
						|
  else
 | 
						|
    // Output module-level string constants before any other constants.
 | 
						|
    outputConstantStrings();
 | 
						|
 | 
						|
  for (unsigned pno = 0; pno != NumPlanes; pno++) {
 | 
						|
    const std::vector<const Value*> &Plane = Table.getPlane(pno);
 | 
						|
    if (!Plane.empty()) {              // Skip empty type planes...
 | 
						|
      unsigned ValNo = 0;
 | 
						|
      if (isFunction)                  // Don't re-emit module constants
 | 
						|
        ValNo += Table.getModuleLevel(pno);
 | 
						|
      
 | 
						|
      if (hasNullValue(pno)) {
 | 
						|
        // Skip zero initializer
 | 
						|
        if (ValNo == 0)
 | 
						|
          ValNo = 1;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Write out constants in the plane
 | 
						|
      outputConstantsInPlane(Plane, ValNo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getEncodedLinkage(const GlobalValue *GV) {
 | 
						|
  switch (GV->getLinkage()) {
 | 
						|
  default: assert(0 && "Invalid linkage!");
 | 
						|
  case GlobalValue::ExternalLinkage:  return 0;
 | 
						|
  case GlobalValue::WeakLinkage:      return 1;
 | 
						|
  case GlobalValue::AppendingLinkage: return 2;
 | 
						|
  case GlobalValue::InternalLinkage:  return 3;
 | 
						|
  case GlobalValue::LinkOnceLinkage:  return 4;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputModuleInfoBlock(const Module *M) {
 | 
						|
  BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this);
 | 
						|
  
 | 
						|
  // Output the types for the global variables in the module...
 | 
						|
  for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) {
 | 
						|
    int Slot = Table.getSlot(I->getType());
 | 
						|
    assert(Slot != -1 && "Module global vars is broken!");
 | 
						|
 | 
						|
    // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage,
 | 
						|
    // bit5+ = Slot # for type
 | 
						|
    unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) |
 | 
						|
                     (I->hasInitializer() << 1) | (unsigned)I->isConstant();
 | 
						|
    output_vbr(oSlot);
 | 
						|
 | 
						|
    // If we have an initializer, output it now.
 | 
						|
    if (I->hasInitializer()) {
 | 
						|
      Slot = Table.getSlot((Value*)I->getInitializer());
 | 
						|
      assert(Slot != -1 && "No slot for global var initializer!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  output_typeid((unsigned)Table.getSlot(Type::VoidTy));
 | 
						|
 | 
						|
  // Output the types of the functions in this module.
 | 
						|
  for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) {
 | 
						|
    int Slot = Table.getSlot(I->getType());
 | 
						|
    assert(Slot != -1 && "Module slot calculator is broken!");
 | 
						|
    assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!");
 | 
						|
    assert(((Slot << 5) >> 5) == Slot && "Slot # too big!");
 | 
						|
    unsigned ID = (Slot << 5) + 1;
 | 
						|
    if (I->isExternal())   // If external, we don't have an FunctionInfo block.
 | 
						|
      ID |= 1 << 4;
 | 
						|
    output_vbr(ID);
 | 
						|
  }
 | 
						|
  output_vbr((unsigned)Table.getSlot(Type::VoidTy) << 5);
 | 
						|
 | 
						|
  // Emit the list of dependent libraries for the Module.
 | 
						|
  Module::lib_iterator LI = M->lib_begin();
 | 
						|
  Module::lib_iterator LE = M->lib_end();
 | 
						|
  output_vbr(unsigned(LE - LI));   // Emit the number of dependent libraries.
 | 
						|
  for (; LI != LE; ++LI)
 | 
						|
    output(*LI);
 | 
						|
 | 
						|
  // Output the target triple from the module
 | 
						|
  output(M->getTargetTriple());
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputInstructions(const Function *F) {
 | 
						|
  BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this);
 | 
						|
  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
 | 
						|
      outputInstruction(*I);
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputFunction(const Function *F) {
 | 
						|
  // If this is an external function, there is nothing else to emit!
 | 
						|
  if (F->isExternal()) return;
 | 
						|
 | 
						|
  BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this);
 | 
						|
  output_vbr(getEncodedLinkage(F));
 | 
						|
 | 
						|
  // Get slot information about the function...
 | 
						|
  Table.incorporateFunction(F);
 | 
						|
 | 
						|
  if (Table.getCompactionTable().empty()) {
 | 
						|
    // Output information about the constants in the function if the compaction
 | 
						|
    // table is not being used.
 | 
						|
    outputConstants(true);
 | 
						|
  } else {
 | 
						|
    // Otherwise, emit the compaction table.
 | 
						|
    outputCompactionTable();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Output all of the instructions in the body of the function
 | 
						|
  outputInstructions(F);
 | 
						|
  
 | 
						|
  // If needed, output the symbol table for the function...
 | 
						|
  outputSymbolTable(F->getSymbolTable());
 | 
						|
  
 | 
						|
  Table.purgeFunction();
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo,
 | 
						|
                                         const std::vector<const Value*> &Plane,
 | 
						|
                                                unsigned StartNo) {
 | 
						|
  unsigned End = Table.getModuleLevel(PlaneNo);
 | 
						|
  if (Plane.empty() || StartNo == End || End == 0) return;   // Nothing to emit
 | 
						|
  assert(StartNo < End && "Cannot emit negative range!");
 | 
						|
  assert(StartNo < Plane.size() && End <= Plane.size());
 | 
						|
 | 
						|
  // Do not emit the null initializer!
 | 
						|
  ++StartNo;
 | 
						|
 | 
						|
  // Figure out which encoding to use.  By far the most common case we have is
 | 
						|
  // to emit 0-2 entries in a compaction table plane.
 | 
						|
  switch (End-StartNo) {
 | 
						|
  case 0:         // Avoid emitting two vbr's if possible.
 | 
						|
  case 1:
 | 
						|
  case 2:
 | 
						|
    output_vbr((PlaneNo << 2) | End-StartNo);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Output the number of things.
 | 
						|
    output_vbr((unsigned(End-StartNo) << 2) | 3);
 | 
						|
    output_typeid(PlaneNo);                 // Emit the type plane this is
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = StartNo; i != End; ++i)
 | 
						|
    output_vbr(Table.getGlobalSlot(Plane[i]));
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputCompactionTypes(unsigned StartNo) {
 | 
						|
  // Get the compaction type table from the slot calculator
 | 
						|
  const std::vector<const Type*> &CTypes = Table.getCompactionTypes();
 | 
						|
 | 
						|
  // The compaction types may have been uncompactified back to the
 | 
						|
  // global types. If so, we just write an empty table
 | 
						|
  if (CTypes.size() == 0 ) {
 | 
						|
    output_vbr(0U);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(CTypes.size() >= StartNo && "Invalid compaction types start index");
 | 
						|
 | 
						|
  // Determine how many types to write
 | 
						|
  unsigned NumTypes = CTypes.size() - StartNo;
 | 
						|
 | 
						|
  // Output the number of types.
 | 
						|
  output_vbr(NumTypes);
 | 
						|
 | 
						|
  for (unsigned i = StartNo; i < StartNo+NumTypes; ++i)
 | 
						|
    output_typeid(Table.getGlobalSlot(CTypes[i]));
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputCompactionTable() {
 | 
						|
  // Avoid writing the compaction table at all if there is no content.
 | 
						|
  if (Table.getCompactionTypes().size() >= Type::FirstDerivedTyID ||
 | 
						|
      (!Table.CompactionTableIsEmpty())) {
 | 
						|
    BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this, 
 | 
						|
                      true/*ElideIfEmpty*/);
 | 
						|
    const std::vector<std::vector<const Value*> > &CT =
 | 
						|
      Table.getCompactionTable();
 | 
						|
    
 | 
						|
    // First things first, emit the type compaction table if there is one.
 | 
						|
    outputCompactionTypes(Type::FirstDerivedTyID);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = CT.size(); i != e; ++i)
 | 
						|
      outputCompactionTablePlane(i, CT[i], 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) {
 | 
						|
  // Do not output the Bytecode block for an empty symbol table, it just wastes
 | 
						|
  // space!
 | 
						|
  if (MST.isEmpty()) return;
 | 
						|
 | 
						|
  BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTableBlockID, *this,
 | 
						|
                            true/*ElideIfEmpty*/);
 | 
						|
 | 
						|
  // Write the number of types 
 | 
						|
  output_vbr(MST.num_types());
 | 
						|
 | 
						|
  // Write each of the types
 | 
						|
  for (SymbolTable::type_const_iterator TI = MST.type_begin(),
 | 
						|
       TE = MST.type_end(); TI != TE; ++TI ) {
 | 
						|
    // Symtab entry:[def slot #][name]
 | 
						|
    output_typeid((unsigned)Table.getSlot(TI->second));
 | 
						|
    output(TI->first); 
 | 
						|
  }
 | 
						|
 | 
						|
  // Now do each of the type planes in order.
 | 
						|
  for (SymbolTable::plane_const_iterator PI = MST.plane_begin(), 
 | 
						|
       PE = MST.plane_end(); PI != PE;  ++PI) {
 | 
						|
    SymbolTable::value_const_iterator I = MST.value_begin(PI->first);
 | 
						|
    SymbolTable::value_const_iterator End = MST.value_end(PI->first);
 | 
						|
    int Slot;
 | 
						|
    
 | 
						|
    if (I == End) continue;  // Don't mess with an absent type...
 | 
						|
 | 
						|
    // Write the number of values in this plane
 | 
						|
    output_vbr(MST.type_size(PI->first));
 | 
						|
 | 
						|
    // Write the slot number of the type for this plane
 | 
						|
    Slot = Table.getSlot(PI->first);
 | 
						|
    assert(Slot != -1 && "Type in symtab, but not in table!");
 | 
						|
    output_typeid((unsigned)Slot);
 | 
						|
 | 
						|
    // Write each of the values in this plane
 | 
						|
    for (; I != End; ++I) {
 | 
						|
      // Symtab entry: [def slot #][name]
 | 
						|
      Slot = Table.getSlot(I->second);
 | 
						|
      assert(Slot != -1 && "Value in symtab but has no slot number!!");
 | 
						|
      output_vbr((unsigned)Slot);
 | 
						|
      output(I->first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void llvm::WriteBytecodeToFile(const Module *M, std::ostream &Out,
 | 
						|
                               bool compress ) {
 | 
						|
  assert(M && "You can't write a null module!!");
 | 
						|
 | 
						|
  // Create a vector of unsigned char for the bytecode output. We
 | 
						|
  // reserve 256KBytes of space in the vector so that we avoid doing
 | 
						|
  // lots of little allocations. 256KBytes is sufficient for a large
 | 
						|
  // proportion of the bytecode files we will encounter. Larger files
 | 
						|
  // will be automatically doubled in size as needed (std::vector
 | 
						|
  // behavior).
 | 
						|
  std::vector<unsigned char> Buffer;
 | 
						|
  Buffer.reserve(256 * 1024);
 | 
						|
 | 
						|
  // The BytecodeWriter populates Buffer for us.
 | 
						|
  BytecodeWriter BCW(Buffer, M);
 | 
						|
 | 
						|
  // Keep track of how much we've written
 | 
						|
  BytesWritten += Buffer.size();
 | 
						|
 | 
						|
  // Determine start and end points of the Buffer
 | 
						|
  const unsigned char *FirstByte = &Buffer.front();
 | 
						|
 | 
						|
  // If we're supposed to compress this mess ...
 | 
						|
  if (compress) {
 | 
						|
 | 
						|
    // We signal compression by using an alternate magic number for the
 | 
						|
    // file. The compressed bytecode file's magic number is "llvc" instead
 | 
						|
    // of "llvm". 
 | 
						|
    char compressed_magic[4];
 | 
						|
    compressed_magic[0] = 'l';
 | 
						|
    compressed_magic[1] = 'l';
 | 
						|
    compressed_magic[2] = 'v';
 | 
						|
    compressed_magic[3] = 'c';
 | 
						|
 | 
						|
    Out.write(compressed_magic,4);
 | 
						|
 | 
						|
    // Compress everything after the magic number (which we altered)
 | 
						|
    uint64_t zipSize = Compressor::compressToStream(
 | 
						|
      (char*)(FirstByte+4),        // Skip the magic number
 | 
						|
      Buffer.size()-4,             // Skip the magic number
 | 
						|
      Out                          // Where to write compressed data
 | 
						|
    );
 | 
						|
 | 
						|
  } else {
 | 
						|
 | 
						|
    // We're not compressing, so just write the entire block.
 | 
						|
    Out.write((char*)FirstByte, Buffer.size());
 | 
						|
  }
 | 
						|
 | 
						|
  // make sure it hits disk now
 | 
						|
  Out.flush();
 | 
						|
}
 | 
						|
 | 
						|
// vim: sw=2 ai
 |