mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19280 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1682 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1682 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Assembly/Writer.h
 | 
						|
//
 | 
						|
// Note that these routines must be extremely tolerant of various errors in the
 | 
						|
// LLVM code, because it can be used for debugging transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Assembly/CachedWriter.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Assembly/PrintModulePass.h"
 | 
						|
#include "llvm/Assembly/AsmAnnotationWriter.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instruction.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// This class provides computation of slot numbers for LLVM Assembly writing.
 | 
						|
/// @brief LLVM Assembly Writing Slot Computation.
 | 
						|
class SlotMachine {
 | 
						|
 | 
						|
/// @name Types
 | 
						|
/// @{
 | 
						|
public:
 | 
						|
 | 
						|
  /// @brief A mapping of Values to slot numbers
 | 
						|
  typedef std::map<const Value*, unsigned> ValueMap;
 | 
						|
  typedef std::map<const Type*, unsigned> TypeMap;
 | 
						|
 | 
						|
  /// @brief A plane with next slot number and ValueMap
 | 
						|
  struct ValuePlane { 
 | 
						|
    unsigned next_slot;        ///< The next slot number to use
 | 
						|
    ValueMap map;              ///< The map of Value* -> unsigned
 | 
						|
    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
 | 
						|
  };
 | 
						|
 | 
						|
  struct TypePlane {
 | 
						|
    unsigned next_slot;
 | 
						|
    TypeMap map;
 | 
						|
    TypePlane() { next_slot = 0; }
 | 
						|
    void clear() { map.clear(); next_slot = 0; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// @brief The map of planes by Type
 | 
						|
  typedef std::map<const Type*, ValuePlane> TypedPlanes;
 | 
						|
 | 
						|
/// @}
 | 
						|
/// @name Constructors
 | 
						|
/// @{
 | 
						|
public:
 | 
						|
  /// @brief Construct from a module
 | 
						|
  SlotMachine(const Module *M );
 | 
						|
 | 
						|
  /// @brief Construct from a function, starting out in incorp state.
 | 
						|
  SlotMachine(const Function *F );
 | 
						|
 | 
						|
/// @}
 | 
						|
/// @name Accessors
 | 
						|
/// @{
 | 
						|
public:
 | 
						|
  /// Return the slot number of the specified value in it's type
 | 
						|
  /// plane.  Its an error to ask for something not in the SlotMachine.
 | 
						|
  /// Its an error to ask for a Type*
 | 
						|
  int getSlot(const Value *V);
 | 
						|
  int getSlot(const Type*Ty);
 | 
						|
 | 
						|
  /// Determine if a Value has a slot or not
 | 
						|
  bool hasSlot(const Value* V);
 | 
						|
  bool hasSlot(const Type* Ty);
 | 
						|
 | 
						|
/// @}
 | 
						|
/// @name Mutators
 | 
						|
/// @{
 | 
						|
public:
 | 
						|
  /// If you'd like to deal with a function instead of just a module, use 
 | 
						|
  /// this method to get its data into the SlotMachine.
 | 
						|
  void incorporateFunction(const Function *F) { 
 | 
						|
    TheFunction = F;  
 | 
						|
    FunctionProcessed = false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// After calling incorporateFunction, use this method to remove the 
 | 
						|
  /// most recently incorporated function from the SlotMachine. This 
 | 
						|
  /// will reset the state of the machine back to just the module contents.
 | 
						|
  void purgeFunction();
 | 
						|
 | 
						|
/// @}
 | 
						|
/// @name Implementation Details
 | 
						|
/// @{
 | 
						|
private:
 | 
						|
  /// This function does the actual initialization.
 | 
						|
  inline void initialize();
 | 
						|
 | 
						|
  /// Values can be crammed into here at will. If they haven't 
 | 
						|
  /// been inserted already, they get inserted, otherwise they are ignored.
 | 
						|
  /// Either way, the slot number for the Value* is returned.
 | 
						|
  unsigned createSlot(const Value *V);
 | 
						|
  unsigned createSlot(const Type* Ty);
 | 
						|
 | 
						|
  /// Insert a value into the value table. Return the slot number
 | 
						|
  /// that it now occupies.  BadThings(TM) will happen if you insert a
 | 
						|
  /// Value that's already been inserted. 
 | 
						|
  unsigned insertValue( const Value *V );
 | 
						|
  unsigned insertValue( const Type* Ty);
 | 
						|
 | 
						|
  /// Add all of the module level global variables (and their initializers)
 | 
						|
  /// and function declarations, but not the contents of those functions.
 | 
						|
  void processModule();
 | 
						|
 | 
						|
  /// Add all of the functions arguments, basic blocks, and instructions
 | 
						|
  void processFunction();
 | 
						|
 | 
						|
  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
 | 
						|
  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
 | 
						|
 | 
						|
/// @}
 | 
						|
/// @name Data
 | 
						|
/// @{
 | 
						|
public:
 | 
						|
 | 
						|
  /// @brief The module for which we are holding slot numbers
 | 
						|
  const Module* TheModule;
 | 
						|
 | 
						|
  /// @brief The function for which we are holding slot numbers
 | 
						|
  const Function* TheFunction;
 | 
						|
  bool FunctionProcessed;
 | 
						|
 | 
						|
  /// @brief The TypePlanes map for the module level data
 | 
						|
  TypedPlanes mMap;
 | 
						|
  TypePlane mTypes;
 | 
						|
 | 
						|
  /// @brief The TypePlanes map for the function level data
 | 
						|
  TypedPlanes fMap;
 | 
						|
  TypePlane fTypes;
 | 
						|
 | 
						|
/// @}
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
}  // end namespace llvm
 | 
						|
 | 
						|
static RegisterPass<PrintModulePass>
 | 
						|
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | 
						|
static RegisterPass<PrintFunctionPass>
 | 
						|
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | 
						|
 | 
						|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
 | 
						|
                                   bool PrintName,
 | 
						|
                                 std::map<const Type *, std::string> &TypeTable,
 | 
						|
                                   SlotMachine *Machine);
 | 
						|
 | 
						|
static void WriteAsOperandInternal(std::ostream &Out, const Type *T, 
 | 
						|
                                   bool PrintName,
 | 
						|
                                 std::map<const Type *, std::string> &TypeTable,
 | 
						|
                                   SlotMachine *Machine);
 | 
						|
 | 
						|
static const Module *getModuleFromVal(const Value *V) {
 | 
						|
  if (const Argument *MA = dyn_cast<Argument>(V))
 | 
						|
    return MA->getParent() ? MA->getParent()->getParent() : 0;
 | 
						|
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return BB->getParent() ? BB->getParent()->getParent() : 0;
 | 
						|
  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | 
						|
    return M ? M->getParent() : 0;
 | 
						|
  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
 | 
						|
    return GV->getParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static SlotMachine *createSlotMachine(const Value *V) {
 | 
						|
  if (const Argument *FA = dyn_cast<Argument>(V)) {
 | 
						|
    return new SlotMachine(FA->getParent());
 | 
						|
  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    return new SlotMachine(I->getParent()->getParent());
 | 
						|
  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | 
						|
    return new SlotMachine(BB->getParent());
 | 
						|
  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
 | 
						|
    return new SlotMachine(GV->getParent());
 | 
						|
  } else if (const Function *Func = dyn_cast<Function>(V)) {
 | 
						|
    return new SlotMachine(Func);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// getLLVMName - Turn the specified string into an 'LLVM name', which is either
 | 
						|
// prefixed with % (if the string only contains simple characters) or is
 | 
						|
// surrounded with ""'s (if it has special chars in it).
 | 
						|
static std::string getLLVMName(const std::string &Name,
 | 
						|
                               bool prefixName = true) {
 | 
						|
  assert(!Name.empty() && "Cannot get empty name!");
 | 
						|
 | 
						|
  // First character cannot start with a number...
 | 
						|
  if (Name[0] >= '0' && Name[0] <= '9')
 | 
						|
    return "\"" + Name + "\"";
 | 
						|
 | 
						|
  // Scan to see if we have any characters that are not on the "white list"
 | 
						|
  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
 | 
						|
    char C = Name[i];
 | 
						|
    assert(C != '"' && "Illegal character in LLVM value name!");
 | 
						|
    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
 | 
						|
        C != '-' && C != '.' && C != '_')
 | 
						|
      return "\"" + Name + "\"";
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we get here, then the identifier is legal to use as a "VarID".
 | 
						|
  if (prefixName)
 | 
						|
    return "%"+Name;
 | 
						|
  else
 | 
						|
    return Name;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// fillTypeNameTable - If the module has a symbol table, take all global types
 | 
						|
/// and stuff their names into the TypeNames map.
 | 
						|
///
 | 
						|
static void fillTypeNameTable(const Module *M,
 | 
						|
                              std::map<const Type *, std::string> &TypeNames) {
 | 
						|
  if (!M) return;
 | 
						|
  const SymbolTable &ST = M->getSymbolTable();
 | 
						|
  SymbolTable::type_const_iterator TI = ST.type_begin();
 | 
						|
  for (; TI != ST.type_end(); ++TI ) {
 | 
						|
    // As a heuristic, don't insert pointer to primitive types, because
 | 
						|
    // they are used too often to have a single useful name.
 | 
						|
    //
 | 
						|
    const Type *Ty = cast<Type>(TI->second);
 | 
						|
    if (!isa<PointerType>(Ty) ||
 | 
						|
        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
 | 
						|
        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
 | 
						|
      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void calcTypeName(const Type *Ty, 
 | 
						|
                         std::vector<const Type *> &TypeStack,
 | 
						|
                         std::map<const Type *, std::string> &TypeNames,
 | 
						|
                         std::string & Result){
 | 
						|
  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
 | 
						|
    Result += Ty->getDescription();  // Base case
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the type is named.
 | 
						|
  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | 
						|
  if (I != TypeNames.end()) {
 | 
						|
    Result += I->second;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<OpaqueType>(Ty)) {
 | 
						|
    Result += "opaque";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if the Type is already on the stack...
 | 
						|
  unsigned Slot = 0, CurSize = TypeStack.size();
 | 
						|
  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
 | 
						|
 | 
						|
  // This is another base case for the recursion.  In this case, we know 
 | 
						|
  // that we have looped back to a type that we have previously visited.
 | 
						|
  // Generate the appropriate upreference to handle this.
 | 
						|
  if (Slot < CurSize) {
 | 
						|
    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
 | 
						|
  
 | 
						|
  switch (Ty->getTypeID()) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(Ty);
 | 
						|
    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
 | 
						|
    Result += " (";
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
           E = FTy->param_end(); I != E; ++I) {
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        Result += ", ";
 | 
						|
      calcTypeName(*I, TypeStack, TypeNames, Result);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (FTy->getNumParams()) Result += ", ";
 | 
						|
      Result += "...";
 | 
						|
    }
 | 
						|
    Result += ")";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *STy = cast<StructType>(Ty);
 | 
						|
    Result += "{ ";
 | 
						|
    for (StructType::element_iterator I = STy->element_begin(),
 | 
						|
           E = STy->element_end(); I != E; ++I) {
 | 
						|
      if (I != STy->element_begin())
 | 
						|
        Result += ", ";
 | 
						|
      calcTypeName(*I, TypeStack, TypeNames, Result);
 | 
						|
    }
 | 
						|
    Result += " }";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::PointerTyID:
 | 
						|
    calcTypeName(cast<PointerType>(Ty)->getElementType(), 
 | 
						|
                          TypeStack, TypeNames, Result);
 | 
						|
    Result += "*";
 | 
						|
    break;
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *ATy = cast<ArrayType>(Ty);
 | 
						|
    Result += "[" + utostr(ATy->getNumElements()) + " x ";
 | 
						|
    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
 | 
						|
    Result += "]";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::PackedTyID: {
 | 
						|
    const PackedType *PTy = cast<PackedType>(Ty);
 | 
						|
    Result += "<" + utostr(PTy->getNumElements()) + " x ";
 | 
						|
    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
 | 
						|
    Result += ">";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::OpaqueTyID:
 | 
						|
    Result += "opaque";
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    Result += "<unrecognized-type>";
 | 
						|
  }
 | 
						|
 | 
						|
  TypeStack.pop_back();       // Remove self from stack...
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printTypeInt - The internal guts of printing out a type that has a
 | 
						|
/// potentially named portion.
 | 
						|
///
 | 
						|
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
 | 
						|
                              std::map<const Type *, std::string> &TypeNames) {
 | 
						|
  // Primitive types always print out their description, regardless of whether
 | 
						|
  // they have been named or not.
 | 
						|
  //
 | 
						|
  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
 | 
						|
    return Out << Ty->getDescription();
 | 
						|
 | 
						|
  // Check to see if the type is named.
 | 
						|
  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
 | 
						|
  if (I != TypeNames.end()) return Out << I->second;
 | 
						|
 | 
						|
  // Otherwise we have a type that has not been named but is a derived type.
 | 
						|
  // Carefully recurse the type hierarchy to print out any contained symbolic
 | 
						|
  // names.
 | 
						|
  //
 | 
						|
  std::vector<const Type *> TypeStack;
 | 
						|
  std::string TypeName;
 | 
						|
  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
 | 
						|
  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
 | 
						|
  return (Out << TypeName);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
 | 
						|
/// type, iff there is an entry in the modules symbol table for the specified
 | 
						|
/// type or one of it's component types. This is slower than a simple x << Type
 | 
						|
///
 | 
						|
std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
 | 
						|
                                      const Module *M) {
 | 
						|
  Out << ' '; 
 | 
						|
 | 
						|
  // If they want us to print out a type, attempt to make it symbolic if there
 | 
						|
  // is a symbol table in the module...
 | 
						|
  if (M) {
 | 
						|
    std::map<const Type *, std::string> TypeNames;
 | 
						|
    fillTypeNameTable(M, TypeNames);
 | 
						|
    
 | 
						|
    return printTypeInt(Out, Ty, TypeNames);
 | 
						|
  } else {
 | 
						|
    return Out << Ty->getDescription();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// @brief Internal constant writer. 
 | 
						|
static void WriteConstantInt(std::ostream &Out, const Constant *CV, 
 | 
						|
                             bool PrintName,
 | 
						|
                             std::map<const Type *, std::string> &TypeTable,
 | 
						|
                             SlotMachine *Machine) {
 | 
						|
  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
 | 
						|
    Out << (CB == ConstantBool::True ? "true" : "false");
 | 
						|
  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
 | 
						|
    Out << CI->getValue();
 | 
						|
  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
 | 
						|
    Out << CI->getValue();
 | 
						|
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | 
						|
    // We would like to output the FP constant value in exponential notation,
 | 
						|
    // but we cannot do this if doing so will lose precision.  Check here to
 | 
						|
    // make sure that we only output it in exponential format if we can parse
 | 
						|
    // the value back and get the same value.
 | 
						|
    //
 | 
						|
    std::string StrVal = ftostr(CFP->getValue());
 | 
						|
 | 
						|
    // Check to make sure that the stringized number is not some string like
 | 
						|
    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
 | 
						|
    // the string matches the "[-+]?[0-9]" regex.
 | 
						|
    //
 | 
						|
    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
        ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
         (StrVal[1] >= '0' && StrVal[1] <= '9')))
 | 
						|
      // Reparse stringized version!
 | 
						|
      if (atof(StrVal.c_str()) == CFP->getValue()) {
 | 
						|
        Out << StrVal;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    
 | 
						|
    // Otherwise we could not reparse it to exactly the same value, so we must
 | 
						|
    // output the string in hexadecimal format!
 | 
						|
    //
 | 
						|
    // Behave nicely in the face of C TBAA rules... see:
 | 
						|
    // http://www.nullstone.com/htmls/category/aliastyp.htm
 | 
						|
    //
 | 
						|
    union {
 | 
						|
      double D;
 | 
						|
      uint64_t U;
 | 
						|
    } V;
 | 
						|
    V.D = CFP->getValue();
 | 
						|
    assert(sizeof(double) == sizeof(uint64_t) &&
 | 
						|
           "assuming that double is 64 bits!");
 | 
						|
    Out << "0x" << utohexstr(V.U);
 | 
						|
 | 
						|
  } else if (isa<ConstantAggregateZero>(CV)) {
 | 
						|
    Out << "zeroinitializer";
 | 
						|
  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | 
						|
    // As a special case, print the array as a string if it is an array of
 | 
						|
    // ubytes or an array of sbytes with positive values.
 | 
						|
    // 
 | 
						|
    const Type *ETy = CA->getType()->getElementType();
 | 
						|
    bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
 | 
						|
 | 
						|
    if (ETy == Type::SByteTy)
 | 
						|
      for (unsigned i = 0; i < CA->getNumOperands(); ++i)
 | 
						|
        if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
 | 
						|
          isString = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
    if (isString) {
 | 
						|
      Out << "c\"";
 | 
						|
      for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
 | 
						|
        unsigned char C = 
 | 
						|
          (unsigned char)cast<ConstantInt>(CA->getOperand(i))->getRawValue();
 | 
						|
        
 | 
						|
        if (isprint(C) && C != '"' && C != '\\') {
 | 
						|
          Out << C;
 | 
						|
        } else {
 | 
						|
          Out << '\\'
 | 
						|
              << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
 | 
						|
              << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << "\"";
 | 
						|
 | 
						|
    } else {                // Cannot output in string format...
 | 
						|
      Out << '[';
 | 
						|
      if (CA->getNumOperands()) {
 | 
						|
        Out << ' ';
 | 
						|
        printTypeInt(Out, ETy, TypeTable);
 | 
						|
        WriteAsOperandInternal(Out, CA->getOperand(0),
 | 
						|
                               PrintName, TypeTable, Machine);
 | 
						|
        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printTypeInt(Out, ETy, TypeTable);
 | 
						|
          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
 | 
						|
                                 TypeTable, Machine);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | 
						|
    Out << '{';
 | 
						|
    if (CS->getNumOperands()) {
 | 
						|
      Out << ' ';
 | 
						|
      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
 | 
						|
 | 
						|
      WriteAsOperandInternal(Out, CS->getOperand(0),
 | 
						|
                             PrintName, TypeTable, Machine);
 | 
						|
 | 
						|
      for (unsigned i = 1; i < CS->getNumOperands(); i++) {
 | 
						|
        Out << ", ";
 | 
						|
        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
 | 
						|
 | 
						|
        WriteAsOperandInternal(Out, CS->getOperand(i),
 | 
						|
                               PrintName, TypeTable, Machine);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " }";
 | 
						|
  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
 | 
						|
      const Type *ETy = CP->getType()->getElementType();
 | 
						|
      assert(CP->getNumOperands() > 0 && 
 | 
						|
             "Number of operands for a PackedConst must be > 0");
 | 
						|
      Out << '<';
 | 
						|
      Out << ' ';
 | 
						|
      printTypeInt(Out, ETy, TypeTable);
 | 
						|
      WriteAsOperandInternal(Out, CP->getOperand(0),
 | 
						|
                             PrintName, TypeTable, Machine);
 | 
						|
      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printTypeInt(Out, ETy, TypeTable);
 | 
						|
          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
 | 
						|
                                 TypeTable, Machine);
 | 
						|
      }
 | 
						|
      Out << " >";
 | 
						|
  } else if (isa<ConstantPointerNull>(CV)) {
 | 
						|
    Out << "null";
 | 
						|
 | 
						|
  } else if (isa<UndefValue>(CV)) {
 | 
						|
    Out << "undef";
 | 
						|
 | 
						|
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | 
						|
    Out << CE->getOpcodeName() << " (";
 | 
						|
    
 | 
						|
    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | 
						|
      printTypeInt(Out, (*OI)->getType(), TypeTable);
 | 
						|
      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
 | 
						|
      if (OI+1 != CE->op_end())
 | 
						|
        Out << ", ";
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CE->getOpcode() == Instruction::Cast) {
 | 
						|
      Out << " to ";
 | 
						|
      printTypeInt(Out, CE->getType(), TypeTable);
 | 
						|
    }
 | 
						|
    Out << ')';
 | 
						|
 | 
						|
  } else {
 | 
						|
    Out << "<placeholder or erroneous Constant>";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
/// ostream.  This can be useful when you just want to print int %reg126, not
 | 
						|
/// the whole instruction that generated it.
 | 
						|
///
 | 
						|
static void WriteAsOperandInternal(std::ostream &Out, const Value *V, 
 | 
						|
                                   bool PrintName,
 | 
						|
                                  std::map<const Type*, std::string> &TypeTable,
 | 
						|
                                   SlotMachine *Machine) {
 | 
						|
  Out << ' ';
 | 
						|
  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
 | 
						|
    Out << getLLVMName(V->getName());
 | 
						|
  else {
 | 
						|
    const Constant *CV = dyn_cast<Constant>(V);
 | 
						|
    if (CV && !isa<GlobalValue>(CV))
 | 
						|
      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
 | 
						|
    else {
 | 
						|
      int Slot;
 | 
						|
      if (Machine) {
 | 
						|
        Slot = Machine->getSlot(V);
 | 
						|
      } else {
 | 
						|
        Machine = createSlotMachine(V);
 | 
						|
        if (Machine == 0) 
 | 
						|
          Slot = Machine->getSlot(V);
 | 
						|
        else
 | 
						|
          Slot = -1;
 | 
						|
        delete Machine;
 | 
						|
      }
 | 
						|
      if (Slot != -1)
 | 
						|
        Out << '%' << Slot;
 | 
						|
      else
 | 
						|
        Out << "<badref>";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
/// ostream.  This can be useful when you just want to print int %reg126, not
 | 
						|
/// the whole instruction that generated it.
 | 
						|
///
 | 
						|
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
 | 
						|
                                   bool PrintType, bool PrintName, 
 | 
						|
                                   const Module *Context) {
 | 
						|
  std::map<const Type *, std::string> TypeNames;
 | 
						|
  if (Context == 0) Context = getModuleFromVal(V);
 | 
						|
 | 
						|
  if (Context)
 | 
						|
    fillTypeNameTable(Context, TypeNames);
 | 
						|
 | 
						|
  if (PrintType)
 | 
						|
    printTypeInt(Out, V->getType(), TypeNames);
 | 
						|
  
 | 
						|
  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
/// WriteAsOperandInternal - Write the name of the specified value out to 
 | 
						|
/// the specified ostream.  This can be useful when you just want to print 
 | 
						|
/// int %reg126, not the whole instruction that generated it.
 | 
						|
///
 | 
						|
static void WriteAsOperandInternal(std::ostream &Out, const Type *T, 
 | 
						|
                                   bool PrintName,
 | 
						|
                                  std::map<const Type*, std::string> &TypeTable,
 | 
						|
                                   SlotMachine *Machine) {
 | 
						|
  Out << ' ';
 | 
						|
  int Slot;
 | 
						|
  if (Machine) {
 | 
						|
    Slot = Machine->getSlot(T);
 | 
						|
    if (Slot != -1)
 | 
						|
      Out << '%' << Slot;
 | 
						|
    else
 | 
						|
      Out << "<badref>";
 | 
						|
  } else {
 | 
						|
    Out << T->getDescription();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
/// ostream.  This can be useful when you just want to print int %reg126, not
 | 
						|
/// the whole instruction that generated it.
 | 
						|
///
 | 
						|
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
 | 
						|
                                   bool PrintType, bool PrintName, 
 | 
						|
                                   const Module *Context) {
 | 
						|
  std::map<const Type *, std::string> TypeNames;
 | 
						|
  assert(Context != 0 && "Can't write types as operand without module context");
 | 
						|
 | 
						|
  fillTypeNameTable(Context, TypeNames);
 | 
						|
 | 
						|
  // if (PrintType)
 | 
						|
    // printTypeInt(Out, V->getType(), TypeNames);
 | 
						|
  
 | 
						|
  printTypeInt(Out, Ty, TypeNames);
 | 
						|
 | 
						|
  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class AssemblyWriter {
 | 
						|
  std::ostream &Out;
 | 
						|
  SlotMachine &Machine;
 | 
						|
  const Module *TheModule;
 | 
						|
  std::map<const Type *, std::string> TypeNames;
 | 
						|
  AssemblyAnnotationWriter *AnnotationWriter;
 | 
						|
public:
 | 
						|
  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
 | 
						|
                        AssemblyAnnotationWriter *AAW)
 | 
						|
    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
 | 
						|
 | 
						|
    // If the module has a symbol table, take all global types and stuff their
 | 
						|
    // names into the TypeNames map.
 | 
						|
    //
 | 
						|
    fillTypeNameTable(M, TypeNames);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void write(const Module *M)         { printModule(M);      }
 | 
						|
  inline void write(const GlobalVariable *G) { printGlobal(G);      }
 | 
						|
  inline void write(const Function *F)       { printFunction(F);    }
 | 
						|
  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
 | 
						|
  inline void write(const Instruction *I)    { printInstruction(*I); }
 | 
						|
  inline void write(const Constant *CPV)     { printConstant(CPV);  }
 | 
						|
  inline void write(const Type *Ty)          { printType(Ty);       }
 | 
						|
 | 
						|
  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
 | 
						|
 | 
						|
  const Module* getModule() { return TheModule; }
 | 
						|
 | 
						|
private:
 | 
						|
  void printModule(const Module *M);
 | 
						|
  void printSymbolTable(const SymbolTable &ST);
 | 
						|
  void printConstant(const Constant *CPV);
 | 
						|
  void printGlobal(const GlobalVariable *GV);
 | 
						|
  void printFunction(const Function *F);
 | 
						|
  void printArgument(const Argument *FA);
 | 
						|
  void printBasicBlock(const BasicBlock *BB);
 | 
						|
  void printInstruction(const Instruction &I);
 | 
						|
 | 
						|
  // printType - Go to extreme measures to attempt to print out a short,
 | 
						|
  // symbolic version of a type name.
 | 
						|
  //
 | 
						|
  std::ostream &printType(const Type *Ty) {
 | 
						|
    return printTypeInt(Out, Ty, TypeNames);
 | 
						|
  }
 | 
						|
 | 
						|
  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | 
						|
  // without considering any symbolic types that we may have equal to it.
 | 
						|
  //
 | 
						|
  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
 | 
						|
 | 
						|
  // printInfoComment - Print a little comment after the instruction indicating
 | 
						|
  // which slot it occupies.
 | 
						|
  void printInfoComment(const Value &V);
 | 
						|
};
 | 
						|
}  // end of llvm namespace
 | 
						|
 | 
						|
/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | 
						|
/// without considering any symbolic types that we may have equal to it.
 | 
						|
///
 | 
						|
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
 | 
						|
  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
 | 
						|
    printType(FTy->getReturnType()) << " (";
 | 
						|
    for (FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
           E = FTy->param_end(); I != E; ++I) {
 | 
						|
      if (I != FTy->param_begin())
 | 
						|
        Out << ", ";
 | 
						|
      printType(*I);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (FTy->getNumParams()) Out << ", ";
 | 
						|
      Out << "...";
 | 
						|
    }
 | 
						|
    Out << ')';
 | 
						|
  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    Out << "{ ";
 | 
						|
    for (StructType::element_iterator I = STy->element_begin(),
 | 
						|
           E = STy->element_end(); I != E; ++I) {
 | 
						|
      if (I != STy->element_begin())
 | 
						|
        Out << ", ";
 | 
						|
      printType(*I);
 | 
						|
    }
 | 
						|
    Out << " }";
 | 
						|
  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
    printType(PTy->getElementType()) << '*';
 | 
						|
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Out << '[' << ATy->getNumElements() << " x ";
 | 
						|
    printType(ATy->getElementType()) << ']';
 | 
						|
  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
 | 
						|
    Out << '<' << PTy->getNumElements() << " x ";
 | 
						|
    printType(PTy->getElementType()) << '>';
 | 
						|
  }
 | 
						|
  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
 | 
						|
    Out << "opaque";
 | 
						|
  } else {
 | 
						|
    if (!Ty->isPrimitiveType())
 | 
						|
      Out << "<unknown derived type>";
 | 
						|
    printType(Ty);
 | 
						|
  }
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, 
 | 
						|
                                  bool PrintName) {
 | 
						|
  assert(Operand != 0 && "Illegal Operand");
 | 
						|
  if (PrintType) { Out << ' '; printType(Operand->getType()); }
 | 
						|
  WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void AssemblyWriter::printModule(const Module *M) {
 | 
						|
  switch (M->getEndianness()) {
 | 
						|
  case Module::LittleEndian: Out << "target endian = little\n"; break;
 | 
						|
  case Module::BigEndian:    Out << "target endian = big\n";    break;
 | 
						|
  case Module::AnyEndianness: break;
 | 
						|
  }
 | 
						|
  switch (M->getPointerSize()) {
 | 
						|
  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
 | 
						|
  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
 | 
						|
  case Module::AnyPointerSize: break;
 | 
						|
  }
 | 
						|
  if (!M->getTargetTriple().empty())
 | 
						|
    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
 | 
						|
  
 | 
						|
  // Loop over the dependent libraries and emit them.
 | 
						|
  Module::lib_iterator LI = M->lib_begin();
 | 
						|
  Module::lib_iterator LE = M->lib_end();
 | 
						|
  if (LI != LE) {
 | 
						|
    Out << "deplibs = [ ";
 | 
						|
    while (LI != LE) {
 | 
						|
      Out << '"' << *LI << '"';
 | 
						|
      ++LI;
 | 
						|
      if (LI != LE)
 | 
						|
        Out << ", ";
 | 
						|
    }
 | 
						|
    Out << " ]\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the symbol table, emitting all named constants.
 | 
						|
  printSymbolTable(M->getSymbolTable());
 | 
						|
  
 | 
						|
  for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | 
						|
    printGlobal(I);
 | 
						|
 | 
						|
  Out << "\nimplementation   ; Functions:\n";
 | 
						|
  
 | 
						|
  // Output all of the functions.
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    printFunction(I);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | 
						|
  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
 | 
						|
 | 
						|
  if (!GV->hasInitializer()) 
 | 
						|
    Out << "external ";
 | 
						|
  else
 | 
						|
    switch (GV->getLinkage()) {
 | 
						|
    case GlobalValue::InternalLinkage:  Out << "internal "; break;
 | 
						|
    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
 | 
						|
    case GlobalValue::WeakLinkage:      Out << "weak "; break;
 | 
						|
    case GlobalValue::AppendingLinkage: Out << "appending "; break;
 | 
						|
    case GlobalValue::ExternalLinkage: break;
 | 
						|
    case GlobalValue::GhostLinkage:
 | 
						|
      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
  Out << (GV->isConstant() ? "constant " : "global ");
 | 
						|
  printType(GV->getType()->getElementType());
 | 
						|
 | 
						|
  if (GV->hasInitializer()) {
 | 
						|
    Constant* C = cast<Constant>(GV->getInitializer());
 | 
						|
    assert(C &&  "GlobalVar initializer isn't constant?");
 | 
						|
    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
 | 
						|
  }
 | 
						|
 | 
						|
  printInfoComment(*GV);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// printSymbolTable - Run through symbol table looking for constants
 | 
						|
// and types. Emit their declarations.
 | 
						|
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
 | 
						|
 | 
						|
  // Print the types.
 | 
						|
  for (SymbolTable::type_const_iterator TI = ST.type_begin();
 | 
						|
       TI != ST.type_end(); ++TI ) {
 | 
						|
    Out << "\t" << getLLVMName(TI->first) << " = type ";
 | 
						|
 | 
						|
    // Make sure we print out at least one level of the type structure, so
 | 
						|
    // that we do not get %FILE = type %FILE
 | 
						|
    //
 | 
						|
    printTypeAtLeastOneLevel(TI->second) << "\n";
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Print the constants, in type plane order.
 | 
						|
  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
 | 
						|
       PI != ST.plane_end(); ++PI ) {
 | 
						|
    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
 | 
						|
    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
 | 
						|
 | 
						|
    for (; VI != VE; ++VI) {
 | 
						|
      const Value* V = VI->second;
 | 
						|
      const Constant *CPV = dyn_cast<Constant>(V) ;
 | 
						|
      if (CPV && !isa<GlobalValue>(V)) {
 | 
						|
        printConstant(CPV);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printConstant - Print out a constant pool entry...
 | 
						|
///
 | 
						|
void AssemblyWriter::printConstant(const Constant *CPV) {
 | 
						|
  // Don't print out unnamed constants, they will be inlined
 | 
						|
  if (!CPV->hasName()) return;
 | 
						|
 | 
						|
  // Print out name...
 | 
						|
  Out << "\t" << getLLVMName(CPV->getName()) << " =";
 | 
						|
 | 
						|
  // Write the value out now...
 | 
						|
  writeOperand(CPV, true, false);
 | 
						|
 | 
						|
  printInfoComment(*CPV);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
/// printFunction - Print all aspects of a function.
 | 
						|
///
 | 
						|
void AssemblyWriter::printFunction(const Function *F) {
 | 
						|
  // Print out the return type and name...
 | 
						|
  Out << "\n";
 | 
						|
 | 
						|
  // Ensure that no local symbols conflict with global symbols.
 | 
						|
  const_cast<Function*>(F)->renameLocalSymbols();
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
 | 
						|
 | 
						|
  if (F->isExternal())
 | 
						|
    Out << "declare ";
 | 
						|
  else
 | 
						|
    switch (F->getLinkage()) {
 | 
						|
    case GlobalValue::InternalLinkage:  Out << "internal "; break;
 | 
						|
    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
 | 
						|
    case GlobalValue::WeakLinkage:      Out << "weak "; break;
 | 
						|
    case GlobalValue::AppendingLinkage: Out << "appending "; break;
 | 
						|
    case GlobalValue::ExternalLinkage: break;
 | 
						|
    case GlobalValue::GhostLinkage:
 | 
						|
      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
 | 
						|
  printType(F->getReturnType()) << ' ';
 | 
						|
  if (!F->getName().empty())
 | 
						|
    Out << getLLVMName(F->getName());
 | 
						|
  else
 | 
						|
    Out << "\"\"";
 | 
						|
  Out << '(';
 | 
						|
  Machine.incorporateFunction(F);
 | 
						|
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
  const FunctionType *FT = F->getFunctionType();
 | 
						|
 | 
						|
  for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
    printArgument(I);
 | 
						|
 | 
						|
  // Finish printing arguments...
 | 
						|
  if (FT->isVarArg()) {
 | 
						|
    if (FT->getNumParams()) Out << ", ";
 | 
						|
    Out << "...";  // Output varargs portion of signature!
 | 
						|
  }
 | 
						|
  Out << ')';
 | 
						|
 | 
						|
  if (F->isExternal()) {
 | 
						|
    Out << "\n";
 | 
						|
  } else {
 | 
						|
    Out << " {";
 | 
						|
  
 | 
						|
    // Output all of its basic blocks... for the function
 | 
						|
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
      printBasicBlock(I);
 | 
						|
 | 
						|
    Out << "}\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Machine.purgeFunction();
 | 
						|
}
 | 
						|
 | 
						|
/// printArgument - This member is called for every argument that is passed into
 | 
						|
/// the function.  Simply print it out
 | 
						|
///
 | 
						|
void AssemblyWriter::printArgument(const Argument *Arg) {
 | 
						|
  // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
  if (Arg != &Arg->getParent()->afront()) Out << ", ";
 | 
						|
 | 
						|
  // Output type...
 | 
						|
  printType(Arg->getType());
 | 
						|
  
 | 
						|
  // Output name, if available...
 | 
						|
  if (Arg->hasName())
 | 
						|
    Out << ' ' << getLLVMName(Arg->getName());
 | 
						|
}
 | 
						|
 | 
						|
/// printBasicBlock - This member is called for each basic block in a method.
 | 
						|
///
 | 
						|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | 
						|
  if (BB->hasName()) {              // Print out the label if it exists...
 | 
						|
    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
 | 
						|
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | 
						|
    Out << "\n; <label>:";
 | 
						|
    int Slot = Machine.getSlot(BB);
 | 
						|
    if (Slot != -1)
 | 
						|
      Out << Slot;
 | 
						|
    else
 | 
						|
      Out << "<badref>";
 | 
						|
  }
 | 
						|
 | 
						|
  if (BB->getParent() == 0)
 | 
						|
    Out << "\t\t; Error: Block without parent!";
 | 
						|
  else {
 | 
						|
    if (BB != &BB->getParent()->front()) {  // Not the entry block?
 | 
						|
      // Output predecessors for the block...
 | 
						|
      Out << "\t\t;";
 | 
						|
      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | 
						|
      
 | 
						|
      if (PI == PE) {
 | 
						|
        Out << " No predecessors!";
 | 
						|
      } else {
 | 
						|
        Out << " preds =";
 | 
						|
        writeOperand(*PI, false, true);
 | 
						|
        for (++PI; PI != PE; ++PI) {
 | 
						|
          Out << ',';
 | 
						|
          writeOperand(*PI, false, true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Out << "\n";
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    printInstruction(*I);
 | 
						|
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// printInfoComment - Print a little comment after the instruction indicating
 | 
						|
/// which slot it occupies.
 | 
						|
///
 | 
						|
void AssemblyWriter::printInfoComment(const Value &V) {
 | 
						|
  if (V.getType() != Type::VoidTy) {
 | 
						|
    Out << "\t\t; <";
 | 
						|
    printType(V.getType()) << '>';
 | 
						|
 | 
						|
    if (!V.hasName()) {
 | 
						|
      int SlotNum = Machine.getSlot(&V);
 | 
						|
      if (SlotNum == -1)
 | 
						|
        Out << ":<badref>";
 | 
						|
      else
 | 
						|
        Out << ':' << SlotNum; // Print out the def slot taken.
 | 
						|
    }
 | 
						|
    Out << " [#uses=" << V.use_size() << ']';  // Output # uses
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// printInstruction - This member is called for each Instruction in a function..
 | 
						|
///
 | 
						|
void AssemblyWriter::printInstruction(const Instruction &I) {
 | 
						|
  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
 | 
						|
 | 
						|
  Out << "\t";
 | 
						|
 | 
						|
  // Print out name if it exists...
 | 
						|
  if (I.hasName())
 | 
						|
    Out << getLLVMName(I.getName()) << " = ";
 | 
						|
 | 
						|
  // If this is a volatile load or store, print out the volatile marker
 | 
						|
  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
 | 
						|
      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
 | 
						|
      Out << "volatile ";
 | 
						|
 | 
						|
  // Print out the opcode...
 | 
						|
  Out << I.getOpcodeName();
 | 
						|
 | 
						|
  // Print out the type of the operands...
 | 
						|
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | 
						|
 | 
						|
  // Special case conditional branches to swizzle the condition out to the front
 | 
						|
  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
 | 
						|
    writeOperand(I.getOperand(2), true);
 | 
						|
    Out << ',';
 | 
						|
    writeOperand(Operand, true);
 | 
						|
    Out << ',';
 | 
						|
    writeOperand(I.getOperand(1), true);
 | 
						|
 | 
						|
  } else if (isa<SwitchInst>(I)) {
 | 
						|
    // Special case switch statement to get formatting nice and correct...
 | 
						|
    writeOperand(Operand        , true); Out << ',';
 | 
						|
    writeOperand(I.getOperand(1), true); Out << " [";
 | 
						|
 | 
						|
    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | 
						|
      Out << "\n\t\t";
 | 
						|
      writeOperand(I.getOperand(op  ), true); Out << ',';
 | 
						|
      writeOperand(I.getOperand(op+1), true);
 | 
						|
    }
 | 
						|
    Out << "\n\t]";
 | 
						|
  } else if (isa<PHINode>(I)) {
 | 
						|
    Out << ' ';
 | 
						|
    printType(I.getType());
 | 
						|
    Out << ' ';
 | 
						|
 | 
						|
    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | 
						|
      if (op) Out << ", ";
 | 
						|
      Out << '[';  
 | 
						|
      writeOperand(I.getOperand(op  ), false); Out << ',';
 | 
						|
      writeOperand(I.getOperand(op+1), false); Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (isa<ReturnInst>(I) && !Operand) {
 | 
						|
    Out << " void";
 | 
						|
  } else if (isa<CallInst>(I)) {
 | 
						|
    const PointerType  *PTy = cast<PointerType>(Operand->getType());
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
    const Type       *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
    // If possible, print out the short form of the call instruction.  We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    if (!FTy->isVarArg() &&
 | 
						|
        (!isa<PointerType>(RetTy) || 
 | 
						|
         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | 
						|
      Out << ' '; printType(RetTy);
 | 
						|
      writeOperand(Operand, false);
 | 
						|
    } else {
 | 
						|
      writeOperand(Operand, true);
 | 
						|
    }
 | 
						|
    Out << '(';
 | 
						|
    if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
 | 
						|
    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
 | 
						|
      Out << ',';
 | 
						|
      writeOperand(I.getOperand(op), true);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " )";
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    const PointerType  *PTy = cast<PointerType>(Operand->getType());
 | 
						|
    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
    const Type       *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
    // If possible, print out the short form of the invoke instruction. We can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the return type is not a pointer to a function.
 | 
						|
    //
 | 
						|
    if (!FTy->isVarArg() &&
 | 
						|
        (!isa<PointerType>(RetTy) || 
 | 
						|
         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | 
						|
      Out << ' '; printType(RetTy);
 | 
						|
      writeOperand(Operand, false);
 | 
						|
    } else {
 | 
						|
      writeOperand(Operand, true);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << '(';
 | 
						|
    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
 | 
						|
    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
 | 
						|
      Out << ',';
 | 
						|
      writeOperand(I.getOperand(op), true);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " )\n\t\t\tto";
 | 
						|
    writeOperand(II->getNormalDest(), true);
 | 
						|
    Out << " unwind";
 | 
						|
    writeOperand(II->getUnwindDest(), true);
 | 
						|
 | 
						|
  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | 
						|
    Out << ' ';
 | 
						|
    printType(AI->getType()->getElementType());
 | 
						|
    if (AI->isArrayAllocation()) {
 | 
						|
      Out << ',';
 | 
						|
      writeOperand(AI->getArraySize(), true);
 | 
						|
    }
 | 
						|
  } else if (isa<CastInst>(I)) {
 | 
						|
    if (Operand) writeOperand(Operand, true);   // Work with broken code
 | 
						|
    Out << " to ";
 | 
						|
    printType(I.getType());
 | 
						|
  } else if (isa<VAArgInst>(I)) {
 | 
						|
    if (Operand) writeOperand(Operand, true);   // Work with broken code
 | 
						|
    Out << ", ";
 | 
						|
    printType(I.getType());
 | 
						|
  } else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
 | 
						|
    if (Operand) writeOperand(Operand, true);   // Work with broken code
 | 
						|
    Out << ", ";
 | 
						|
    printType(VAN->getArgType());
 | 
						|
  } else if (Operand) {   // Print the normal way...
 | 
						|
 | 
						|
    // PrintAllTypes - Instructions who have operands of all the same type 
 | 
						|
    // omit the type from all but the first operand.  If the instruction has
 | 
						|
    // different type operands (for example br), then they are all printed.
 | 
						|
    bool PrintAllTypes = false;
 | 
						|
    const Type *TheType = Operand->getType();
 | 
						|
 | 
						|
    // Shift Left & Right print both types even for Ubyte LHS, and select prints
 | 
						|
    // types even if all operands are bools.
 | 
						|
    if (isa<ShiftInst>(I) || isa<SelectInst>(I)) {
 | 
						|
      PrintAllTypes = true;
 | 
						|
    } else {
 | 
						|
      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
        Operand = I.getOperand(i);
 | 
						|
        if (Operand->getType() != TheType) {
 | 
						|
          PrintAllTypes = true;    // We have differing types!  Print them all!
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (!PrintAllTypes) {
 | 
						|
      Out << ' ';
 | 
						|
      printType(TheType);
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
      if (i) Out << ',';
 | 
						|
      writeOperand(I.getOperand(i), PrintAllTypes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  printInfoComment(I);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declarations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotMachine SlotTable(this);
 | 
						|
  AssemblyWriter W(o, SlotTable, this, AAW);
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void GlobalVariable::print(std::ostream &o) const {
 | 
						|
  SlotMachine SlotTable(getParent());
 | 
						|
  AssemblyWriter W(o, SlotTable, getParent(), 0);
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotMachine SlotTable(getParent());
 | 
						|
  AssemblyWriter W(o, SlotTable, getParent(), AAW);
 | 
						|
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  SlotMachine SlotTable(getParent());
 | 
						|
  AssemblyWriter W(o, SlotTable, 
 | 
						|
                   getParent() ? getParent()->getParent() : 0, AAW);
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
 | 
						|
  const Function *F = getParent() ? getParent()->getParent() : 0;
 | 
						|
  SlotMachine SlotTable(F);
 | 
						|
  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
 | 
						|
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Constant::print(std::ostream &o) const {
 | 
						|
  if (this == 0) { o << "<null> constant value\n"; return; }
 | 
						|
 | 
						|
  o << ' ' << getType()->getDescription() << ' ';
 | 
						|
 | 
						|
  std::map<const Type *, std::string> TypeTable;
 | 
						|
  WriteConstantInt(o, this, false, TypeTable, 0);
 | 
						|
}
 | 
						|
 | 
						|
void Type::print(std::ostream &o) const { 
 | 
						|
  if (this == 0)
 | 
						|
    o << "<null Type>";
 | 
						|
  else
 | 
						|
    o << getDescription();
 | 
						|
}
 | 
						|
 | 
						|
void Argument::print(std::ostream &o) const {
 | 
						|
  WriteAsOperand(o, this, true, true,
 | 
						|
                 getParent() ? getParent()->getParent() : 0);
 | 
						|
}
 | 
						|
 | 
						|
// Value::dump - allow easy printing of  Values from the debugger.
 | 
						|
// Located here because so much of the needed functionality is here.
 | 
						|
void Value::dump() const { print(std::cerr); }
 | 
						|
 | 
						|
// Type::dump - allow easy printing of  Values from the debugger.
 | 
						|
// Located here because so much of the needed functionality is here.
 | 
						|
void Type::dump() const { print(std::cerr); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  CachedWriter Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CachedWriter::setModule(const Module *M) {
 | 
						|
  delete SC; delete AW;
 | 
						|
  if (M) {
 | 
						|
    SC = new SlotMachine(M );
 | 
						|
    AW = new AssemblyWriter(Out, *SC, M, 0);
 | 
						|
  } else {
 | 
						|
    SC = 0; AW = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CachedWriter::~CachedWriter() {
 | 
						|
  delete AW;
 | 
						|
  delete SC;
 | 
						|
}
 | 
						|
 | 
						|
CachedWriter &CachedWriter::operator<<(const Value &V) {
 | 
						|
  assert(AW && SC && "CachedWriter does not have a current module!");
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(&V))
 | 
						|
    AW->write(I);
 | 
						|
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
 | 
						|
    AW->write(BB);
 | 
						|
  else if (const Function *F = dyn_cast<Function>(&V))
 | 
						|
    AW->write(F);
 | 
						|
  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
 | 
						|
    AW->write(GV);
 | 
						|
  else 
 | 
						|
    AW->writeOperand(&V, true, true);
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
CachedWriter& CachedWriter::operator<<(const Type &Ty) {
 | 
						|
  if (SymbolicTypes) {
 | 
						|
    const Module *M = AW->getModule();
 | 
						|
    if (M) WriteTypeSymbolic(Out, &Ty, M);
 | 
						|
  } else {
 | 
						|
    AW->write(&Ty);
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//===--                    SlotMachine Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#if 0
 | 
						|
#define SC_DEBUG(X) std::cerr << X
 | 
						|
#else
 | 
						|
#define SC_DEBUG(X)
 | 
						|
#endif
 | 
						|
 | 
						|
// Module level constructor. Causes the contents of the Module (sans functions)
 | 
						|
// to be added to the slot table.
 | 
						|
SlotMachine::SlotMachine(const Module *M) 
 | 
						|
  : TheModule(M)    ///< Saved for lazy initialization.
 | 
						|
  , TheFunction(0)
 | 
						|
  , FunctionProcessed(false)
 | 
						|
  , mMap()
 | 
						|
  , mTypes()
 | 
						|
  , fMap()
 | 
						|
  , fTypes()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
// Function level constructor. Causes the contents of the Module and the one
 | 
						|
// function provided to be added to the slot table.
 | 
						|
SlotMachine::SlotMachine(const Function *F ) 
 | 
						|
  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
 | 
						|
  , TheFunction(F) ///< Saved for lazy initialization
 | 
						|
  , FunctionProcessed(false)
 | 
						|
  , mMap()
 | 
						|
  , mTypes()
 | 
						|
  , fMap()
 | 
						|
  , fTypes()
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
inline void SlotMachine::initialize(void) {
 | 
						|
  if ( TheModule) { 
 | 
						|
    processModule(); 
 | 
						|
    TheModule = 0; ///< Prevent re-processing next time we're called.
 | 
						|
  }
 | 
						|
  if ( TheFunction && ! FunctionProcessed) { 
 | 
						|
    processFunction(); 
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Iterate through all the global variables, functions, and global
 | 
						|
// variable initializers and create slots for them. 
 | 
						|
void SlotMachine::processModule() {
 | 
						|
  SC_DEBUG("begin processModule!\n");
 | 
						|
 | 
						|
  // Add all of the global variables to the value table...
 | 
						|
  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
 | 
						|
       I != E; ++I)
 | 
						|
    createSlot(I);
 | 
						|
 | 
						|
  // Add all the functions to the table
 | 
						|
  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
 | 
						|
       I != E; ++I)
 | 
						|
    createSlot(I);
 | 
						|
 | 
						|
  SC_DEBUG("end processModule!\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Process the arguments, basic blocks, and instructions  of a function.
 | 
						|
void SlotMachine::processFunction() {
 | 
						|
  SC_DEBUG("begin processFunction!\n");
 | 
						|
 | 
						|
  // Add all the function arguments
 | 
						|
  for(Function::const_aiterator AI = TheFunction->abegin(), 
 | 
						|
      AE = TheFunction->aend(); AI != AE; ++AI)
 | 
						|
    createSlot(AI);
 | 
						|
 | 
						|
  SC_DEBUG("Inserting Instructions:\n");
 | 
						|
 | 
						|
  // Add all of the basic blocks and instructions
 | 
						|
  for (Function::const_iterator BB = TheFunction->begin(), 
 | 
						|
       E = TheFunction->end(); BB != E; ++BB) {
 | 
						|
    createSlot(BB);
 | 
						|
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
 | 
						|
      createSlot(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionProcessed = true;
 | 
						|
 | 
						|
  SC_DEBUG("end processFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
// Clean up after incorporating a function. This is the only way
 | 
						|
// to get out of the function incorporation state that affects the
 | 
						|
// getSlot/createSlot lock. Function incorporation state is indicated
 | 
						|
// by TheFunction != 0.
 | 
						|
void SlotMachine::purgeFunction() {
 | 
						|
  SC_DEBUG("begin purgeFunction!\n");
 | 
						|
  fMap.clear(); // Simply discard the function level map
 | 
						|
  fTypes.clear();
 | 
						|
  TheFunction = 0;
 | 
						|
  FunctionProcessed = false;
 | 
						|
  SC_DEBUG("end purgeFunction!\n");
 | 
						|
}
 | 
						|
 | 
						|
/// Get the slot number for a value. This function will assert if you
 | 
						|
/// ask for a Value that hasn't previously been inserted with createSlot.
 | 
						|
/// Types are forbidden because Type does not inherit from Value (any more).
 | 
						|
int SlotMachine::getSlot(const Value *V) {
 | 
						|
  assert( V && "Can't get slot for null Value" );
 | 
						|
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
 | 
						|
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 
 | 
						|
 | 
						|
  // Check for uninitialized state and do lazy initialization
 | 
						|
  this->initialize();
 | 
						|
 | 
						|
  // Get the type of the value
 | 
						|
  const Type* VTy = V->getType();
 | 
						|
 | 
						|
  // Find the type plane in the module map
 | 
						|
  TypedPlanes::const_iterator MI = mMap.find(VTy);
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    // Lookup the type in the function map too
 | 
						|
    TypedPlanes::const_iterator FI = fMap.find(VTy);
 | 
						|
    // If there is a corresponding type plane in the function map
 | 
						|
    if ( FI != fMap.end() ) {
 | 
						|
      // Lookup the Value in the function map
 | 
						|
      ValueMap::const_iterator FVI = FI->second.map.find(V);
 | 
						|
      // If the value doesn't exist in the function map
 | 
						|
      if ( FVI == FI->second.map.end() ) {
 | 
						|
        // Look up the value in the module map.
 | 
						|
        if (MI == mMap.end()) return -1;
 | 
						|
        ValueMap::const_iterator MVI = MI->second.map.find(V);
 | 
						|
        // If we didn't find it, it wasn't inserted
 | 
						|
        if (MVI == MI->second.map.end()) return -1;
 | 
						|
        assert( MVI != MI->second.map.end() && "Value not found");
 | 
						|
        // We found it only at the module level
 | 
						|
        return MVI->second; 
 | 
						|
 | 
						|
      // else the value exists in the function map
 | 
						|
      } else {
 | 
						|
        // Return the slot number as the module's contribution to
 | 
						|
        // the type plane plus the index in the function's contribution
 | 
						|
        // to the type plane.
 | 
						|
        if (MI != mMap.end())
 | 
						|
          return MI->second.next_slot + FVI->second;
 | 
						|
        else
 | 
						|
          return FVI->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // N.B. Can get here only if either !TheFunction or the function doesn't
 | 
						|
  // have a corresponding type plane for the Value
 | 
						|
 | 
						|
  // Make sure the type plane exists
 | 
						|
  if (MI == mMap.end()) return -1;
 | 
						|
  // Lookup the value in the module's map
 | 
						|
  ValueMap::const_iterator MVI = MI->second.map.find(V);
 | 
						|
  // Make sure we found it.
 | 
						|
  if (MVI == MI->second.map.end()) return -1;
 | 
						|
  // Return it.
 | 
						|
  return MVI->second;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the slot number for a value. This function will assert if you
 | 
						|
/// ask for a Value that hasn't previously been inserted with createSlot.
 | 
						|
/// Types are forbidden because Type does not inherit from Value (any more).
 | 
						|
int SlotMachine::getSlot(const Type *Ty) {
 | 
						|
  assert( Ty && "Can't get slot for null Type" );
 | 
						|
 | 
						|
  // Check for uninitialized state and do lazy initialization
 | 
						|
  this->initialize();
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    // Lookup the Type in the function map
 | 
						|
    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
 | 
						|
    // If the Type doesn't exist in the function map
 | 
						|
    if ( FTI == fTypes.map.end() ) {
 | 
						|
      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
 | 
						|
      // If we didn't find it, it wasn't inserted
 | 
						|
      if (MTI == mTypes.map.end()) 
 | 
						|
        return -1;
 | 
						|
      // We found it only at the module level
 | 
						|
      return MTI->second; 
 | 
						|
 | 
						|
    // else the value exists in the function map
 | 
						|
    } else {
 | 
						|
      // Return the slot number as the module's contribution to
 | 
						|
      // the type plane plus the index in the function's contribution
 | 
						|
      // to the type plane.
 | 
						|
      return mTypes.next_slot + FTI->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // N.B. Can get here only if either !TheFunction
 | 
						|
 | 
						|
  // Lookup the value in the module's map
 | 
						|
  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
 | 
						|
  // Make sure we found it.
 | 
						|
  if (MTI == mTypes.map.end()) return -1;
 | 
						|
  // Return it.
 | 
						|
  return MTI->second;
 | 
						|
}
 | 
						|
 | 
						|
// Create a new slot, or return the existing slot if it is already
 | 
						|
// inserted. Note that the logic here parallels getSlot but instead
 | 
						|
// of asserting when the Value* isn't found, it inserts the value.
 | 
						|
unsigned SlotMachine::createSlot(const Value *V) {
 | 
						|
  assert( V && "Can't insert a null Value to SlotMachine");
 | 
						|
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
 | 
						|
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 
 | 
						|
 | 
						|
  const Type* VTy = V->getType();
 | 
						|
 | 
						|
  // Just ignore void typed things
 | 
						|
  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
 | 
						|
 | 
						|
  // Look up the type plane for the Value's type from the module map
 | 
						|
  TypedPlanes::const_iterator MI = mMap.find(VTy);
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    // Get the type plane for the Value's type from the function map
 | 
						|
    TypedPlanes::const_iterator FI = fMap.find(VTy);
 | 
						|
    // If there is a corresponding type plane in the function map
 | 
						|
    if ( FI != fMap.end() ) {
 | 
						|
      // Lookup the Value in the function map
 | 
						|
      ValueMap::const_iterator FVI = FI->second.map.find(V);
 | 
						|
      // If the value doesn't exist in the function map
 | 
						|
      if ( FVI == FI->second.map.end() ) {
 | 
						|
        // If there is no corresponding type plane in the module map
 | 
						|
        if ( MI == mMap.end() )
 | 
						|
          return insertValue(V);
 | 
						|
        // Look up the value in the module map
 | 
						|
        ValueMap::const_iterator MVI = MI->second.map.find(V);
 | 
						|
        // If we didn't find it, it wasn't inserted
 | 
						|
        if ( MVI == MI->second.map.end() )
 | 
						|
          return insertValue(V);
 | 
						|
        else
 | 
						|
          // We found it only at the module level
 | 
						|
          return MVI->second;
 | 
						|
 | 
						|
      // else the value exists in the function map
 | 
						|
      } else {
 | 
						|
        if ( MI == mMap.end() )
 | 
						|
          return FVI->second;
 | 
						|
        else
 | 
						|
          // Return the slot number as the module's contribution to
 | 
						|
          // the type plane plus the index in the function's contribution
 | 
						|
          // to the type plane.
 | 
						|
          return MI->second.next_slot + FVI->second;
 | 
						|
      }
 | 
						|
 | 
						|
    // else there is not a corresponding type plane in the function map
 | 
						|
    } else {
 | 
						|
      // If the type plane doesn't exists at the module level
 | 
						|
      if ( MI == mMap.end() ) {
 | 
						|
        return insertValue(V);
 | 
						|
      // else type plane exists at the module level, examine it
 | 
						|
      } else {
 | 
						|
        // Look up the value in the module's map
 | 
						|
        ValueMap::const_iterator MVI = MI->second.map.find(V);
 | 
						|
        // If we didn't find it there either
 | 
						|
        if ( MVI == MI->second.map.end() )
 | 
						|
          // Return the slot number as the module's contribution to
 | 
						|
          // the type plane plus the index of the function map insertion.
 | 
						|
          return MI->second.next_slot + insertValue(V);
 | 
						|
        else
 | 
						|
          return MVI->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // N.B. Can only get here if !TheFunction
 | 
						|
 | 
						|
  // If the module map's type plane is not for the Value's type
 | 
						|
  if ( MI != mMap.end() ) {
 | 
						|
    // Lookup the value in the module's map
 | 
						|
    ValueMap::const_iterator MVI = MI->second.map.find(V);
 | 
						|
    if ( MVI != MI->second.map.end() ) 
 | 
						|
      return MVI->second;
 | 
						|
  }
 | 
						|
 | 
						|
  return insertValue(V);
 | 
						|
}
 | 
						|
 | 
						|
// Create a new slot, or return the existing slot if it is already
 | 
						|
// inserted. Note that the logic here parallels getSlot but instead
 | 
						|
// of asserting when the Value* isn't found, it inserts the value.
 | 
						|
unsigned SlotMachine::createSlot(const Type *Ty) {
 | 
						|
  assert( Ty && "Can't insert a null Type to SlotMachine");
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    // Lookup the Type in the function map
 | 
						|
    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
 | 
						|
    // If the type doesn't exist in the function map
 | 
						|
    if ( FTI == fTypes.map.end() ) {
 | 
						|
      // Look up the type in the module map
 | 
						|
      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
 | 
						|
      // If we didn't find it, it wasn't inserted
 | 
						|
      if ( MTI == mTypes.map.end() )
 | 
						|
        return insertValue(Ty);
 | 
						|
      else
 | 
						|
        // We found it only at the module level
 | 
						|
        return MTI->second;
 | 
						|
 | 
						|
    // else the value exists in the function map
 | 
						|
    } else {
 | 
						|
      // Return the slot number as the module's contribution to
 | 
						|
      // the type plane plus the index in the function's contribution
 | 
						|
      // to the type plane.
 | 
						|
      return mTypes.next_slot + FTI->second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // N.B. Can only get here if !TheFunction
 | 
						|
 | 
						|
  // Lookup the type in the module's map
 | 
						|
  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
 | 
						|
  if ( MTI != mTypes.map.end() ) 
 | 
						|
    return MTI->second;
 | 
						|
 | 
						|
  return insertValue(Ty);
 | 
						|
}
 | 
						|
 | 
						|
// Low level insert function. Minimal checking is done. This
 | 
						|
// function is just for the convenience of createSlot (above).
 | 
						|
unsigned SlotMachine::insertValue(const Value *V ) {
 | 
						|
  assert(V && "Can't insert a null Value into SlotMachine!");
 | 
						|
  assert(!isa<Constant>(V) || isa<GlobalValue>(V) && 
 | 
						|
    "Can't insert a non-GlobalValue Constant into SlotMachine"); 
 | 
						|
 | 
						|
  // If this value does not contribute to a plane (is void)
 | 
						|
  // or if the value already has a name then ignore it. 
 | 
						|
  if (V->getType() == Type::VoidTy || V->hasName() ) {
 | 
						|
      SC_DEBUG("ignored value " << *V << "\n");
 | 
						|
      return 0;   // FIXME: Wrong return value
 | 
						|
  }
 | 
						|
 | 
						|
  const Type *VTy = V->getType();
 | 
						|
  unsigned DestSlot = 0;
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    TypedPlanes::iterator I = fMap.find( VTy );
 | 
						|
    if ( I == fMap.end() ) 
 | 
						|
      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
 | 
						|
    DestSlot = I->second.map[V] = I->second.next_slot++;
 | 
						|
  } else {
 | 
						|
    TypedPlanes::iterator I = mMap.find( VTy );
 | 
						|
    if ( I == mMap.end() )
 | 
						|
      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
 | 
						|
    DestSlot = I->second.map[V] = I->second.next_slot++;
 | 
						|
  }
 | 
						|
 | 
						|
  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" << 
 | 
						|
           DestSlot << " [");
 | 
						|
  // G = Global, C = Constant, T = Type, F = Function, o = other
 | 
						|
  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : 
 | 
						|
           (isa<Constant>(V) ? 'C' : 'o'))));
 | 
						|
  SC_DEBUG("]\n");
 | 
						|
  return DestSlot;
 | 
						|
}
 | 
						|
 | 
						|
// Low level insert function. Minimal checking is done. This
 | 
						|
// function is just for the convenience of createSlot (above).
 | 
						|
unsigned SlotMachine::insertValue(const Type *Ty ) {
 | 
						|
  assert(Ty && "Can't insert a null Type into SlotMachine!");
 | 
						|
 | 
						|
  unsigned DestSlot = 0;
 | 
						|
 | 
						|
  if ( TheFunction ) {
 | 
						|
    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
 | 
						|
  } else {
 | 
						|
    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
 | 
						|
  }
 | 
						|
  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
 | 
						|
  return DestSlot;
 | 
						|
}
 | 
						|
 | 
						|
// vim: sw=2
 |