mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74878 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			846 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			846 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This family of functions determines the possibility of performing constant
 | |
| // folding.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cerrno>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding internal helper functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
 | |
| /// from a global, return the global and the constant.  Because of
 | |
| /// constantexprs, this function is recursive.
 | |
| static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | |
|                                        int64_t &Offset, const TargetData &TD) {
 | |
|   // Trivial case, constant is the global.
 | |
|   if ((GV = dyn_cast<GlobalValue>(C))) {
 | |
|     Offset = 0;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, if this isn't a constant expr, bail out.
 | |
|   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
 | |
|   if (!CE) return false;
 | |
|   
 | |
|   // Look through ptr->int and ptr->ptr casts.
 | |
|   if (CE->getOpcode() == Instruction::PtrToInt ||
 | |
|       CE->getOpcode() == Instruction::BitCast)
 | |
|     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
 | |
|   
 | |
|   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)    
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|     // Cannot compute this if the element type of the pointer is missing size
 | |
|     // info.
 | |
|     if (!cast<PointerType>(CE->getOperand(0)->getType())
 | |
|                  ->getElementType()->isSized())
 | |
|       return false;
 | |
|     
 | |
|     // If the base isn't a global+constant, we aren't either.
 | |
|     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
 | |
|       return false;
 | |
|     
 | |
|     // Otherwise, add any offset that our operands provide.
 | |
|     gep_type_iterator GTI = gep_type_begin(CE);
 | |
|     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
 | |
|          i != e; ++i, ++GTI) {
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(*i);
 | |
|       if (!CI) return false;  // Index isn't a simple constant?
 | |
|       if (CI->getZExtValue() == 0) continue;  // Not adding anything.
 | |
|       
 | |
|       if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
 | |
|         // N = N + Offset
 | |
|         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
 | |
|       } else {
 | |
|         const SequentialType *SQT = cast<SequentialType>(*GTI);
 | |
|         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
 | |
| /// Attempt to symbolically evaluate the result of a binary operator merging
 | |
| /// these together.  If target data info is available, it is provided as TD, 
 | |
| /// otherwise TD is null.
 | |
| static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
 | |
|                                            Constant *Op1, const TargetData *TD,
 | |
|                                            LLVMContext *Context){
 | |
|   // SROA
 | |
|   
 | |
|   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | |
|   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | |
|   // bits.
 | |
|   
 | |
|   
 | |
|   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | |
|   // constant.  This happens frequently when iterating over a global array.
 | |
|   if (Opc == Instruction::Sub && TD) {
 | |
|     GlobalValue *GV1, *GV2;
 | |
|     int64_t Offs1, Offs2;
 | |
|     
 | |
|     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
 | |
|       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
 | |
|           GV1 == GV2) {
 | |
|         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | |
|         return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
 | |
| /// constant expression, do so.
 | |
| static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
 | |
|                                          const Type *ResultTy,
 | |
|                                          LLVMContext *Context,
 | |
|                                          const TargetData *TD) {
 | |
|   Constant *Ptr = Ops[0];
 | |
|   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
 | |
|     return 0;
 | |
|   
 | |
|   uint64_t BasePtr = 0;
 | |
|   if (!Ptr->isNullValue()) {
 | |
|     // If this is a inttoptr from a constant int, we can fold this as the base,
 | |
|     // otherwise we can't.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|       if (CE->getOpcode() == Instruction::IntToPtr)
 | |
|         if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | |
|           BasePtr = Base->getZExtValue();
 | |
|     
 | |
|     if (BasePtr == 0)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // If this is a constant expr gep that is effectively computing an
 | |
|   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
 | |
|   for (unsigned i = 1; i != NumOps; ++i)
 | |
|     if (!isa<ConstantInt>(Ops[i]))
 | |
|       return false;
 | |
|   
 | |
|   uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
 | |
|                                          (Value**)Ops+1, NumOps-1);
 | |
|   Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
 | |
|   return Context->getConstantExprIntToPtr(C, ResultTy);
 | |
| }
 | |
| 
 | |
| /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with 
 | |
| /// targetdata.  Return 0 if unfoldable.
 | |
| static Constant *FoldBitCast(Constant *C, const Type *DestTy,
 | |
|                              const TargetData &TD, LLVMContext *Context) {
 | |
|   // If this is a bitcast from constant vector -> vector, fold it.
 | |
|   if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
 | |
|     if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | |
|       // If the element types match, VMCore can fold it.
 | |
|       unsigned NumDstElt = DestVTy->getNumElements();
 | |
|       unsigned NumSrcElt = CV->getNumOperands();
 | |
|       if (NumDstElt == NumSrcElt)
 | |
|         return 0;
 | |
|       
 | |
|       const Type *SrcEltTy = CV->getType()->getElementType();
 | |
|       const Type *DstEltTy = DestVTy->getElementType();
 | |
|       
 | |
|       // Otherwise, we're changing the number of elements in a vector, which 
 | |
|       // requires endianness information to do the right thing.  For example,
 | |
|       //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|       // folds to (little endian):
 | |
|       //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | |
|       // and to (big endian):
 | |
|       //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | |
|       
 | |
|       // First thing is first.  We only want to think about integer here, so if
 | |
|       // we have something in FP form, recast it as integer.
 | |
|       if (DstEltTy->isFloatingPoint()) {
 | |
|         // Fold to an vector of integers with same size as our FP type.
 | |
|         unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | |
|         const Type *DestIVTy = Context->getVectorType(
 | |
|                                    Context->getIntegerType(FPWidth), NumDstElt);
 | |
|         // Recursively handle this integer conversion, if possible.
 | |
|         C = FoldBitCast(C, DestIVTy, TD, Context);
 | |
|         if (!C) return 0;
 | |
|         
 | |
|         // Finally, VMCore can handle this now that #elts line up.
 | |
|         return Context->getConstantExprBitCast(C, DestTy);
 | |
|       }
 | |
|       
 | |
|       // Okay, we know the destination is integer, if the input is FP, convert
 | |
|       // it to integer first.
 | |
|       if (SrcEltTy->isFloatingPoint()) {
 | |
|         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | |
|         const Type *SrcIVTy = Context->getVectorType(
 | |
|                                    Context->getIntegerType(FPWidth), NumSrcElt);
 | |
|         // Ask VMCore to do the conversion now that #elts line up.
 | |
|         C = Context->getConstantExprBitCast(C, SrcIVTy);
 | |
|         CV = dyn_cast<ConstantVector>(C);
 | |
|         if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
 | |
|       }
 | |
|       
 | |
|       // Now we know that the input and output vectors are both integer vectors
 | |
|       // of the same size, and that their #elements is not the same.  Do the
 | |
|       // conversion here, which depends on whether the input or output has
 | |
|       // more elements.
 | |
|       bool isLittleEndian = TD.isLittleEndian();
 | |
|       
 | |
|       SmallVector<Constant*, 32> Result;
 | |
|       if (NumDstElt < NumSrcElt) {
 | |
|         // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | |
|         Constant *Zero = Context->getNullValue(DstEltTy);
 | |
|         unsigned Ratio = NumSrcElt/NumDstElt;
 | |
|         unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | |
|         unsigned SrcElt = 0;
 | |
|         for (unsigned i = 0; i != NumDstElt; ++i) {
 | |
|           // Build each element of the result.
 | |
|           Constant *Elt = Zero;
 | |
|           unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | |
|           for (unsigned j = 0; j != Ratio; ++j) {
 | |
|             Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
 | |
|             if (!Src) return 0;  // Reject constantexpr elements.
 | |
|             
 | |
|             // Zero extend the element to the right size.
 | |
|             Src = Context->getConstantExprZExt(Src, Elt->getType());
 | |
|             
 | |
|             // Shift it to the right place, depending on endianness.
 | |
|             Src = Context->getConstantExprShl(Src, 
 | |
|                              Context->getConstantInt(Src->getType(), ShiftAmt));
 | |
|             ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | |
|             
 | |
|             // Mix it in.
 | |
|             Elt = Context->getConstantExprOr(Elt, Src);
 | |
|           }
 | |
|           Result.push_back(Elt);
 | |
|         }
 | |
|       } else {
 | |
|         // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | |
|         unsigned Ratio = NumDstElt/NumSrcElt;
 | |
|         unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
 | |
|         
 | |
|         // Loop over each source value, expanding into multiple results.
 | |
|         for (unsigned i = 0; i != NumSrcElt; ++i) {
 | |
|           Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
 | |
|           if (!Src) return 0;  // Reject constantexpr elements.
 | |
| 
 | |
|           unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | |
|           for (unsigned j = 0; j != Ratio; ++j) {
 | |
|             // Shift the piece of the value into the right place, depending on
 | |
|             // endianness.
 | |
|             Constant *Elt = Context->getConstantExprLShr(Src, 
 | |
|                             Context->getConstantInt(Src->getType(), ShiftAmt));
 | |
|             ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | |
| 
 | |
|             // Truncate and remember this piece.
 | |
|             Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       return Context->getConstantVector(Result.data(), Result.size());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constant Folding public APIs
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// ConstantFoldInstruction - Attempt to constant fold the specified
 | |
| /// instruction.  If successful, the constant result is returned, if not, null
 | |
| /// is returned.  Note that this function can only fail when attempting to fold
 | |
| /// instructions like loads and stores, which have no constant expression form.
 | |
| ///
 | |
| Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
 | |
|                                         const TargetData *TD) {
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     if (PN->getNumIncomingValues() == 0)
 | |
|       return Context->getUndef(PN->getType());
 | |
| 
 | |
|     Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
 | |
|     if (Result == 0) return 0;
 | |
| 
 | |
|     // Handle PHI nodes specially here...
 | |
|     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
 | |
|         return 0;   // Not all the same incoming constants...
 | |
| 
 | |
|     // If we reach here, all incoming values are the same constant.
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Scan the operand list, checking to see if they are all constants, if so,
 | |
|   // hand off to ConstantFoldInstOperands.
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | |
|     if (Constant *Op = dyn_cast<Constant>(*i))
 | |
|       Ops.push_back(Op);
 | |
|     else
 | |
|       return 0;  // All operands not constant!
 | |
| 
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(),
 | |
|                                            Ops.data(), Ops.size(), 
 | |
|                                            Context, TD);
 | |
|   else
 | |
|     return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
 | |
|                                     Ops.data(), Ops.size(), Context, TD);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldConstantExpression - Attempt to fold the constant expression
 | |
| /// using the specified TargetData.  If successful, the constant result is
 | |
| /// result is returned, if not, null is returned.
 | |
| Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
 | |
|                                                LLVMContext *Context,
 | |
|                                                const TargetData *TD) {
 | |
|   SmallVector<Constant*, 8> Ops;
 | |
|   for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
 | |
|     Ops.push_back(cast<Constant>(*i));
 | |
| 
 | |
|   if (CE->isCompare())
 | |
|     return ConstantFoldCompareInstOperands(CE->getPredicate(),
 | |
|                                            Ops.data(), Ops.size(), 
 | |
|                                            Context, TD);
 | |
|   else 
 | |
|     return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
 | |
|                                     Ops.data(), Ops.size(), Context, TD);
 | |
| }
 | |
| 
 | |
| /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
 | |
| /// specified opcode and operands.  If successful, the constant result is
 | |
| /// returned, if not, null is returned.  Note that this function can fail when
 | |
| /// attempting to fold instructions like loads and stores, which have no
 | |
| /// constant expression form.
 | |
| ///
 | |
| Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy, 
 | |
|                                          Constant* const* Ops, unsigned NumOps,
 | |
|                                          LLVMContext *Context,
 | |
|                                          const TargetData *TD) {
 | |
|   // Handle easy binops first.
 | |
|   if (Instruction::isBinaryOp(Opcode)) {
 | |
|     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
 | |
|       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
 | |
|                                                   Context))
 | |
|         return C;
 | |
|     
 | |
|     return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
 | |
|   }
 | |
|   
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case Instruction::Call:
 | |
|     if (Function *F = dyn_cast<Function>(Ops[0]))
 | |
|       if (canConstantFoldCallTo(F))
 | |
|         return ConstantFoldCall(F, Ops+1, NumOps-1);
 | |
|     return 0;
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::VICmp:
 | |
|   case Instruction::VFCmp:
 | |
|     assert(0 &&"This function is invalid for compares: no predicate specified");
 | |
|   case Instruction::PtrToInt:
 | |
|     // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | |
|     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | |
|       if (TD && CE->getOpcode() == Instruction::IntToPtr) {
 | |
|         Constant *Input = CE->getOperand(0);
 | |
|         unsigned InWidth = Input->getType()->getScalarSizeInBits();
 | |
|         if (TD->getPointerSizeInBits() < InWidth) {
 | |
|           Constant *Mask = 
 | |
|             Context->getConstantInt(APInt::getLowBitsSet(InWidth,
 | |
|                                                   TD->getPointerSizeInBits()));
 | |
|           Input = Context->getConstantExprAnd(Input, Mask);
 | |
|         }
 | |
|         // Do a zext or trunc to get to the dest size.
 | |
|         return Context->getConstantExprIntegerCast(Input, DestTy, false);
 | |
|       }
 | |
|     }
 | |
|     return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::IntToPtr:
 | |
|     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | |
|     // the int size is >= the ptr size.  This requires knowing the width of a
 | |
|     // pointer, so it can't be done in ConstantExpr::getCast.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
 | |
|       if (TD &&
 | |
|           TD->getPointerSizeInBits() <=
 | |
|           CE->getType()->getScalarSizeInBits()) {
 | |
|         if (CE->getOpcode() == Instruction::PtrToInt) {
 | |
|           Constant *Input = CE->getOperand(0);
 | |
|           Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
 | |
|           return C ? C : Context->getConstantExprBitCast(Input, DestTy);
 | |
|         }
 | |
|         // If there's a constant offset added to the integer value before
 | |
|         // it is casted back to a pointer, see if the expression can be
 | |
|         // converted into a GEP.
 | |
|         if (CE->getOpcode() == Instruction::Add)
 | |
|           if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | |
|             if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
 | |
|               if (R->getOpcode() == Instruction::PtrToInt)
 | |
|                 if (GlobalVariable *GV =
 | |
|                       dyn_cast<GlobalVariable>(R->getOperand(0))) {
 | |
|                   const PointerType *GVTy = cast<PointerType>(GV->getType());
 | |
|                   if (const ArrayType *AT =
 | |
|                         dyn_cast<ArrayType>(GVTy->getElementType())) {
 | |
|                     const Type *ElTy = AT->getElementType();
 | |
|                     uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
 | |
|                     APInt PSA(L->getValue().getBitWidth(), AllocSize);
 | |
|                     if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
 | |
|                         L->getValue().urem(PSA) == 0) {
 | |
|                       APInt ElemIdx = L->getValue().udiv(PSA);
 | |
|                       if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
 | |
|                                             AT->getNumElements()))) {
 | |
|                         Constant *Index[] = {
 | |
|                           Context->getNullValue(CE->getType()),
 | |
|                           Context->getConstantInt(ElemIdx)
 | |
|                         };
 | |
|                         return
 | |
|                         Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
 | |
|                       }
 | |
|                     }
 | |
|                   }
 | |
|                 }
 | |
|       }
 | |
|     }
 | |
|     return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|       return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
 | |
|   case Instruction::BitCast:
 | |
|     if (TD)
 | |
|       if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
 | |
|         return C;
 | |
|     return Context->getConstantExprBitCast(Ops[0], DestTy);
 | |
|   case Instruction::Select:
 | |
|     return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ExtractElement:
 | |
|     return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
 | |
|   case Instruction::InsertElement:
 | |
|     return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::ShuffleVector:
 | |
|     return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
 | |
|   case Instruction::GetElementPtr:
 | |
|     if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
 | |
|       return C;
 | |
|     
 | |
|     return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
 | |
| /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
 | |
| /// returns a constant expression of the specified operands.
 | |
| ///
 | |
| Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
 | |
|                                                 Constant*const * Ops, 
 | |
|                                                 unsigned NumOps,
 | |
|                                                 LLVMContext *Context,
 | |
|                                                 const TargetData *TD) {
 | |
|   // fold: icmp (inttoptr x), null         -> icmp x, 0
 | |
|   // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | |
|   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | |
|   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | |
|   //
 | |
|   // ConstantExpr::getCompare cannot do this, because it doesn't have TD
 | |
|   // around to know if bit truncation is happening.
 | |
|   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
 | |
|     if (TD && Ops[1]->isNullValue()) {
 | |
|       const Type *IntPtrTy = TD->getIntPtrType();
 | |
|       if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|         // Convert the integer value to the right size to ensure we get the
 | |
|         // proper extension or truncation.
 | |
|         Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
 | |
|                                                    IntPtrTy, false);
 | |
|         Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
 | |
|         return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
 | |
|                                                Context, TD);
 | |
|       }
 | |
|       
 | |
|       // Only do this transformation if the int is intptrty in size, otherwise
 | |
|       // there is a truncation or extension that we aren't modeling.
 | |
|       if (CE0->getOpcode() == Instruction::PtrToInt && 
 | |
|           CE0->getType() == IntPtrTy) {
 | |
|         Constant *C = CE0->getOperand(0);
 | |
|         Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
 | |
|         // FIXME!
 | |
|         return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
 | |
|                                                Context, TD);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
 | |
|       if (TD && CE0->getOpcode() == CE1->getOpcode()) {
 | |
|         const Type *IntPtrTy = TD->getIntPtrType();
 | |
| 
 | |
|         if (CE0->getOpcode() == Instruction::IntToPtr) {
 | |
|           // Convert the integer value to the right size to ensure we get the
 | |
|           // proper extension or truncation.
 | |
|           Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
 | |
|                                                       IntPtrTy, false);
 | |
|           Constant *NewOps[] = { C0, C1 };
 | |
|           return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, 
 | |
|                                                  Context, TD);
 | |
|         }
 | |
| 
 | |
|         // Only do this transformation if the int is intptrty in size, otherwise
 | |
|         // there is a truncation or extension that we aren't modeling.
 | |
|         if ((CE0->getOpcode() == Instruction::PtrToInt &&
 | |
|              CE0->getType() == IntPtrTy &&
 | |
|              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
 | |
|           Constant *NewOps[] = { 
 | |
|             CE0->getOperand(0), CE1->getOperand(0) 
 | |
|           };
 | |
|           return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, 
 | |
|                                                  Context, TD);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
 | |
| /// getelementptr constantexpr, return the constant value being addressed by the
 | |
| /// constant expression, or null if something is funny and we can't decide.
 | |
| Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 
 | |
|                                                        ConstantExpr *CE,
 | |
|                                                        LLVMContext *Context) {
 | |
|   if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
 | |
|     return 0;  // Do not allow stepping over the value!
 | |
|   
 | |
|   // Loop over all of the operands, tracking down which value we are
 | |
|   // addressing...
 | |
|   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | |
|   for (++I; I != E; ++I)
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*I)) {
 | |
|       ConstantInt *CU = cast<ConstantInt>(I.getOperand());
 | |
|       assert(CU->getZExtValue() < STy->getNumElements() &&
 | |
|              "Struct index out of range!");
 | |
|       unsigned El = (unsigned)CU->getZExtValue();
 | |
|       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
 | |
|         C = CS->getOperand(El);
 | |
|       } else if (isa<ConstantAggregateZero>(C)) {
 | |
|         C = Context->getNullValue(STy->getElementType(El));
 | |
|       } else if (isa<UndefValue>(C)) {
 | |
|         C = Context->getUndef(STy->getElementType(El));
 | |
|       } else {
 | |
|         return 0;
 | |
|       }
 | |
|     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
 | |
|       if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
 | |
|         if (CI->getZExtValue() >= ATy->getNumElements())
 | |
|          return 0;
 | |
|         if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
 | |
|           C = CA->getOperand(CI->getZExtValue());
 | |
|         else if (isa<ConstantAggregateZero>(C))
 | |
|           C = Context->getNullValue(ATy->getElementType());
 | |
|         else if (isa<UndefValue>(C))
 | |
|           C = Context->getUndef(ATy->getElementType());
 | |
|         else
 | |
|           return 0;
 | |
|       } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
 | |
|         if (CI->getZExtValue() >= PTy->getNumElements())
 | |
|           return 0;
 | |
|         if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
 | |
|           C = CP->getOperand(CI->getZExtValue());
 | |
|         else if (isa<ConstantAggregateZero>(C))
 | |
|           C = Context->getNullValue(PTy->getElementType());
 | |
|         else if (isa<UndefValue>(C))
 | |
|           C = Context->getUndef(PTy->getElementType());
 | |
|         else
 | |
|           return 0;
 | |
|       } else {
 | |
|         return 0;
 | |
|       }
 | |
|     } else {
 | |
|       return 0;
 | |
|     }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Constant Folding for Calls
 | |
| //
 | |
| 
 | |
| /// canConstantFoldCallTo - Return true if its even possible to fold a call to
 | |
| /// the specified function.
 | |
| bool
 | |
| llvm::canConstantFoldCallTo(const Function *F) {
 | |
|   switch (F->getIntrinsicID()) {
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::powi:
 | |
|   case Intrinsic::bswap:
 | |
|   case Intrinsic::ctpop:
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|     return true;
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   if (!F->hasName()) return false;
 | |
|   const char *Str = F->getNameStart();
 | |
|   unsigned Len = F->getNameLen();
 | |
|   
 | |
|   // In these cases, the check of the length is required.  We don't want to
 | |
|   // return true for a name like "cos\0blah" which strcmp would return equal to
 | |
|   // "cos", but has length 8.
 | |
|   switch (Str[0]) {
 | |
|   default: return false;
 | |
|   case 'a':
 | |
|     if (Len == 4)
 | |
|       return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
 | |
|              !strcmp(Str, "atan");
 | |
|     else if (Len == 5)
 | |
|       return !strcmp(Str, "atan2");
 | |
|     return false;
 | |
|   case 'c':
 | |
|     if (Len == 3)
 | |
|       return !strcmp(Str, "cos");
 | |
|     else if (Len == 4)
 | |
|       return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
 | |
|              !strcmp(Str, "cosh");
 | |
|     return false;
 | |
|   case 'e':
 | |
|     if (Len == 3)
 | |
|       return !strcmp(Str, "exp");
 | |
|     return false;
 | |
|   case 'f':
 | |
|     if (Len == 4)
 | |
|       return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
 | |
|     else if (Len == 5)
 | |
|       return !strcmp(Str, "floor");
 | |
|     return false;
 | |
|     break;
 | |
|   case 'l':
 | |
|     if (Len == 3 && !strcmp(Str, "log"))
 | |
|       return true;
 | |
|     if (Len == 5 && !strcmp(Str, "log10"))
 | |
|       return true;
 | |
|     return false;
 | |
|   case 'p':
 | |
|     if (Len == 3 && !strcmp(Str, "pow"))
 | |
|       return true;
 | |
|     return false;
 | |
|   case 's':
 | |
|     if (Len == 3)
 | |
|       return !strcmp(Str, "sin");
 | |
|     if (Len == 4)
 | |
|       return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
 | |
|              !strcmp(Str, "sinf");
 | |
|     if (Len == 5)
 | |
|       return !strcmp(Str, "sqrtf");
 | |
|     return false;
 | |
|   case 't':
 | |
|     if (Len == 3 && !strcmp(Str, "tan"))
 | |
|       return true;
 | |
|     else if (Len == 4 && !strcmp(Str, "tanh"))
 | |
|       return true;
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldFP(double (*NativeFP)(double), double V, 
 | |
|                                 const Type *Ty, LLVMContext *Context) {
 | |
|   errno = 0;
 | |
|   V = NativeFP(V);
 | |
|   if (errno != 0) {
 | |
|     errno = 0;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if (Ty == Type::FloatTy)
 | |
|     return Context->getConstantFP(APFloat((float)V));
 | |
|   if (Ty == Type::DoubleTy)
 | |
|     return Context->getConstantFP(APFloat(V));
 | |
|   assert(0 && "Can only constant fold float/double");
 | |
|   return 0; // dummy return to suppress warning
 | |
| }
 | |
| 
 | |
| static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | |
|                                       double V, double W,
 | |
|                                       const Type *Ty,
 | |
|                                       LLVMContext *Context) {
 | |
|   errno = 0;
 | |
|   V = NativeFP(V, W);
 | |
|   if (errno != 0) {
 | |
|     errno = 0;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if (Ty == Type::FloatTy)
 | |
|     return Context->getConstantFP(APFloat((float)V));
 | |
|   if (Ty == Type::DoubleTy)
 | |
|     return Context->getConstantFP(APFloat(V));
 | |
|   assert(0 && "Can only constant fold float/double");
 | |
|   return 0; // dummy return to suppress warning
 | |
| }
 | |
| 
 | |
| /// ConstantFoldCall - Attempt to constant fold a call to the specified function
 | |
| /// with the specified arguments, returning null if unsuccessful.
 | |
| 
 | |
| Constant *
 | |
| llvm::ConstantFoldCall(Function *F, 
 | |
|                        Constant* const* Operands, unsigned NumOperands) {
 | |
|   if (!F->hasName()) return 0;
 | |
|   LLVMContext *Context = F->getContext();
 | |
|   const char *Str = F->getNameStart();
 | |
|   unsigned Len = F->getNameLen();
 | |
|   
 | |
|   const Type *Ty = F->getReturnType();
 | |
|   if (NumOperands == 1) {
 | |
|     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|       if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
 | |
|         return 0;
 | |
|       /// Currently APFloat versions of these functions do not exist, so we use
 | |
|       /// the host native double versions.  Float versions are not called
 | |
|       /// directly but for all these it is true (float)(f((double)arg)) ==
 | |
|       /// f(arg).  Long double not supported yet.
 | |
|       double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
 | |
|                                      Op->getValueAPF().convertToDouble();
 | |
|       switch (Str[0]) {
 | |
|       case 'a':
 | |
|         if (Len == 4 && !strcmp(Str, "acos"))
 | |
|           return ConstantFoldFP(acos, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "asin"))
 | |
|           return ConstantFoldFP(asin, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "atan"))
 | |
|           return ConstantFoldFP(atan, V, Ty, Context);
 | |
|         break;
 | |
|       case 'c':
 | |
|         if (Len == 4 && !strcmp(Str, "ceil"))
 | |
|           return ConstantFoldFP(ceil, V, Ty, Context);
 | |
|         else if (Len == 3 && !strcmp(Str, "cos"))
 | |
|           return ConstantFoldFP(cos, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "cosh"))
 | |
|           return ConstantFoldFP(cosh, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "cosf"))
 | |
|           return ConstantFoldFP(cos, V, Ty, Context);
 | |
|         break;
 | |
|       case 'e':
 | |
|         if (Len == 3 && !strcmp(Str, "exp"))
 | |
|           return ConstantFoldFP(exp, V, Ty, Context);
 | |
|         break;
 | |
|       case 'f':
 | |
|         if (Len == 4 && !strcmp(Str, "fabs"))
 | |
|           return ConstantFoldFP(fabs, V, Ty, Context);
 | |
|         else if (Len == 5 && !strcmp(Str, "floor"))
 | |
|           return ConstantFoldFP(floor, V, Ty, Context);
 | |
|         break;
 | |
|       case 'l':
 | |
|         if (Len == 3 && !strcmp(Str, "log") && V > 0)
 | |
|           return ConstantFoldFP(log, V, Ty, Context);
 | |
|         else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
 | |
|           return ConstantFoldFP(log10, V, Ty, Context);
 | |
|         else if (!strcmp(Str, "llvm.sqrt.f32") ||
 | |
|                  !strcmp(Str, "llvm.sqrt.f64")) {
 | |
|           if (V >= -0.0)
 | |
|             return ConstantFoldFP(sqrt, V, Ty, Context);
 | |
|           else // Undefined
 | |
|             return Context->getNullValue(Ty);
 | |
|         }
 | |
|         break;
 | |
|       case 's':
 | |
|         if (Len == 3 && !strcmp(Str, "sin"))
 | |
|           return ConstantFoldFP(sin, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "sinh"))
 | |
|           return ConstantFoldFP(sinh, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
 | |
|           return ConstantFoldFP(sqrt, V, Ty, Context);
 | |
|         else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
 | |
|           return ConstantFoldFP(sqrt, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "sinf"))
 | |
|           return ConstantFoldFP(sin, V, Ty, Context);
 | |
|         break;
 | |
|       case 't':
 | |
|         if (Len == 3 && !strcmp(Str, "tan"))
 | |
|           return ConstantFoldFP(tan, V, Ty, Context);
 | |
|         else if (Len == 4 && !strcmp(Str, "tanh"))
 | |
|           return ConstantFoldFP(tanh, V, Ty, Context);
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | |
|       if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
 | |
|         return Context->getConstantInt(Op->getValue().byteSwap());
 | |
|       else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
 | |
|         return Context->getConstantInt(Ty, Op->getValue().countPopulation());
 | |
|       else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
 | |
|         return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
 | |
|       else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
 | |
|         return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
 | |
|     }
 | |
|   } else if (NumOperands == 2) {
 | |
|     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | |
|       if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
 | |
|         return 0;
 | |
|       double Op1V = Ty==Type::FloatTy ? 
 | |
|                       (double)Op1->getValueAPF().convertToFloat():
 | |
|                       Op1->getValueAPF().convertToDouble();
 | |
|       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | |
|         double Op2V = Ty==Type::FloatTy ? 
 | |
|                       (double)Op2->getValueAPF().convertToFloat():
 | |
|                       Op2->getValueAPF().convertToDouble();
 | |
| 
 | |
|         if (Len == 3 && !strcmp(Str, "pow")) {
 | |
|           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
 | |
|         } else if (Len == 4 && !strcmp(Str, "fmod")) {
 | |
|           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
 | |
|         } else if (Len == 5 && !strcmp(Str, "atan2")) {
 | |
|           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
 | |
|         }
 | |
|       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | |
|         if (!strcmp(Str, "llvm.powi.f32")) {
 | |
|           return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
 | |
|                                                  (int)Op2C->getZExtValue())));
 | |
|         } else if (!strcmp(Str, "llvm.powi.f64")) {
 | |
|           return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
 | |
|                                                  (int)Op2C->getZExtValue())));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 |