mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-05 12:31:33 +00:00
0b8c9a80f2
into their new header subdirectory: include/llvm/IR. This matches the directory structure of lib, and begins to correct a long standing point of file layout clutter in LLVM. There are still more header files to move here, but I wanted to handle them in separate commits to make tracking what files make sense at each layer easier. The only really questionable files here are the target intrinsic tablegen files. But that's a battle I'd rather not fight today. I've updated both CMake and Makefile build systems (I think, and my tests think, but I may have missed something). I've also re-sorted the includes throughout the project. I'll be committing updates to Clang, DragonEgg, and Polly momentarily. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
421 lines
18 KiB
C++
421 lines
18 KiB
C++
//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains an implementation of 32bit scalar integer division for
|
|
// targets that don't have native support. It's largely derived from
|
|
// compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
|
|
// amount of control flow
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "integer-division"
|
|
#include "llvm/Transforms/Utils/IntegerDivision.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Generate code to compute the remainder of two signed integers. Returns the
|
|
/// remainder, which will have the sign of the dividend. Builder's insert point
|
|
/// should be pointing where the caller wants code generated, e.g. at the srem
|
|
/// instruction. This will generate a urem in the process, and Builder's insert
|
|
/// point will be pointing at the uren (if present, i.e. not folded), ready to
|
|
/// be expanded if the user wishes
|
|
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
|
|
IRBuilder<> &Builder) {
|
|
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
|
|
|
// ; %dividend_sgn = ashr i32 %dividend, 31
|
|
// ; %divisor_sgn = ashr i32 %divisor, 31
|
|
// ; %dvd_xor = xor i32 %dividend, %dividend_sgn
|
|
// ; %dvs_xor = xor i32 %divisor, %divisor_sgn
|
|
// ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
|
|
// ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
|
|
// ; %urem = urem i32 %dividend, %divisor
|
|
// ; %xored = xor i32 %urem, %dividend_sgn
|
|
// ; %srem = sub i32 %xored, %dividend_sgn
|
|
Value *DividendSign = Builder.CreateAShr(Dividend, ThirtyOne);
|
|
Value *DivisorSign = Builder.CreateAShr(Divisor, ThirtyOne);
|
|
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
|
|
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
|
|
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
|
|
Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
|
|
Value *URem = Builder.CreateURem(UDividend, UDivisor);
|
|
Value *Xored = Builder.CreateXor(URem, DividendSign);
|
|
Value *SRem = Builder.CreateSub(Xored, DividendSign);
|
|
|
|
if (Instruction *URemInst = dyn_cast<Instruction>(URem))
|
|
Builder.SetInsertPoint(URemInst);
|
|
|
|
return SRem;
|
|
}
|
|
|
|
|
|
/// Generate code to compute the remainder of two unsigned integers. Returns the
|
|
/// remainder. Builder's insert point should be pointing where the caller wants
|
|
/// code generated, e.g. at the urem instruction. This will generate a udiv in
|
|
/// the process, and Builder's insert point will be pointing at the udiv (if
|
|
/// present, i.e. not folded), ready to be expanded if the user wishes
|
|
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
|
|
IRBuilder<> &Builder) {
|
|
// Remainder = Dividend - Quotient*Divisor
|
|
|
|
// ; %quotient = udiv i32 %dividend, %divisor
|
|
// ; %product = mul i32 %divisor, %quotient
|
|
// ; %remainder = sub i32 %dividend, %product
|
|
Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
|
|
Value *Product = Builder.CreateMul(Divisor, Quotient);
|
|
Value *Remainder = Builder.CreateSub(Dividend, Product);
|
|
|
|
if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
|
|
Builder.SetInsertPoint(UDiv);
|
|
|
|
return Remainder;
|
|
}
|
|
|
|
/// Generate code to divide two signed integers. Returns the quotient, rounded
|
|
/// towards 0. Builder's insert point should be pointing where the caller wants
|
|
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
|
|
/// the process, and Builder's insert point will be pointing at the udiv (if
|
|
/// present, i.e. not folded), ready to be expanded if the user wishes.
|
|
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
|
|
IRBuilder<> &Builder) {
|
|
// Implementation taken from compiler-rt's __divsi3
|
|
|
|
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
|
|
|
// ; %tmp = ashr i32 %dividend, 31
|
|
// ; %tmp1 = ashr i32 %divisor, 31
|
|
// ; %tmp2 = xor i32 %tmp, %dividend
|
|
// ; %u_dvnd = sub nsw i32 %tmp2, %tmp
|
|
// ; %tmp3 = xor i32 %tmp1, %divisor
|
|
// ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
|
|
// ; %q_sgn = xor i32 %tmp1, %tmp
|
|
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
|
|
// ; %tmp4 = xor i32 %q_mag, %q_sgn
|
|
// ; %q = sub i32 %tmp4, %q_sgn
|
|
Value *Tmp = Builder.CreateAShr(Dividend, ThirtyOne);
|
|
Value *Tmp1 = Builder.CreateAShr(Divisor, ThirtyOne);
|
|
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
|
|
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
|
|
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
|
|
Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
|
|
Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
|
|
Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
|
|
Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
|
|
Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
|
|
|
|
if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
|
|
Builder.SetInsertPoint(UDiv);
|
|
|
|
return Q;
|
|
}
|
|
|
|
/// Generates code to divide two unsigned scalar 32-bit integers. Returns the
|
|
/// quotient, rounded towards 0. Builder's insert point should be pointing where
|
|
/// the caller wants code generated, e.g. at the udiv instruction.
|
|
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
|
|
IRBuilder<> &Builder) {
|
|
// The basic algorithm can be found in the compiler-rt project's
|
|
// implementation of __udivsi3.c. Here, we do a lower-level IR based approach
|
|
// that's been hand-tuned to lessen the amount of control flow involved.
|
|
|
|
// Some helper values
|
|
IntegerType *I32Ty = Builder.getInt32Ty();
|
|
|
|
ConstantInt *Zero = Builder.getInt32(0);
|
|
ConstantInt *One = Builder.getInt32(1);
|
|
ConstantInt *ThirtyOne = Builder.getInt32(31);
|
|
ConstantInt *NegOne = ConstantInt::getSigned(I32Ty, -1);
|
|
ConstantInt *True = Builder.getTrue();
|
|
|
|
BasicBlock *IBB = Builder.GetInsertBlock();
|
|
Function *F = IBB->getParent();
|
|
Function *CTLZi32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
|
|
I32Ty);
|
|
|
|
// Our CFG is going to look like:
|
|
// +---------------------+
|
|
// | special-cases |
|
|
// | ... |
|
|
// +---------------------+
|
|
// | |
|
|
// | +----------+
|
|
// | | bb1 |
|
|
// | | ... |
|
|
// | +----------+
|
|
// | | |
|
|
// | | +------------+
|
|
// | | | preheader |
|
|
// | | | ... |
|
|
// | | +------------+
|
|
// | | |
|
|
// | | | +---+
|
|
// | | | | |
|
|
// | | +------------+ |
|
|
// | | | do-while | |
|
|
// | | | ... | |
|
|
// | | +------------+ |
|
|
// | | | | |
|
|
// | +-----------+ +---+
|
|
// | | loop-exit |
|
|
// | | ... |
|
|
// | +-----------+
|
|
// | |
|
|
// +-------+
|
|
// | ... |
|
|
// | end |
|
|
// +-------+
|
|
BasicBlock *SpecialCases = Builder.GetInsertBlock();
|
|
SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
|
|
BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
|
|
"udiv-end");
|
|
BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
|
|
"udiv-loop-exit", F, End);
|
|
BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
|
|
"udiv-do-while", F, End);
|
|
BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
|
|
"udiv-preheader", F, End);
|
|
BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
|
|
"udiv-bb1", F, End);
|
|
|
|
// We'll be overwriting the terminator to insert our extra blocks
|
|
SpecialCases->getTerminator()->eraseFromParent();
|
|
|
|
// First off, check for special cases: dividend or divisor is zero, divisor
|
|
// is greater than dividend, and divisor is 1.
|
|
// ; special-cases:
|
|
// ; %ret0_1 = icmp eq i32 %divisor, 0
|
|
// ; %ret0_2 = icmp eq i32 %dividend, 0
|
|
// ; %ret0_3 = or i1 %ret0_1, %ret0_2
|
|
// ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
|
|
// ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
|
|
// ; %sr = sub nsw i32 %tmp0, %tmp1
|
|
// ; %ret0_4 = icmp ugt i32 %sr, 31
|
|
// ; %ret0 = or i1 %ret0_3, %ret0_4
|
|
// ; %retDividend = icmp eq i32 %sr, 31
|
|
// ; %retVal = select i1 %ret0, i32 0, i32 %dividend
|
|
// ; %earlyRet = or i1 %ret0, %retDividend
|
|
// ; br i1 %earlyRet, label %end, label %bb1
|
|
Builder.SetInsertPoint(SpecialCases);
|
|
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
|
|
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
|
|
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
|
|
Value *Tmp0 = Builder.CreateCall2(CTLZi32, Divisor, True);
|
|
Value *Tmp1 = Builder.CreateCall2(CTLZi32, Dividend, True);
|
|
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
|
|
Value *Ret0_4 = Builder.CreateICmpUGT(SR, ThirtyOne);
|
|
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
|
|
Value *RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
|
|
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
|
|
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
|
|
Builder.CreateCondBr(EarlyRet, End, BB1);
|
|
|
|
// ; bb1: ; preds = %special-cases
|
|
// ; %sr_1 = add i32 %sr, 1
|
|
// ; %tmp2 = sub i32 31, %sr
|
|
// ; %q = shl i32 %dividend, %tmp2
|
|
// ; %skipLoop = icmp eq i32 %sr_1, 0
|
|
// ; br i1 %skipLoop, label %loop-exit, label %preheader
|
|
Builder.SetInsertPoint(BB1);
|
|
Value *SR_1 = Builder.CreateAdd(SR, One);
|
|
Value *Tmp2 = Builder.CreateSub(ThirtyOne, SR);
|
|
Value *Q = Builder.CreateShl(Dividend, Tmp2);
|
|
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
|
|
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
|
|
|
|
// ; preheader: ; preds = %bb1
|
|
// ; %tmp3 = lshr i32 %dividend, %sr_1
|
|
// ; %tmp4 = add i32 %divisor, -1
|
|
// ; br label %do-while
|
|
Builder.SetInsertPoint(Preheader);
|
|
Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
|
|
Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
|
|
Builder.CreateBr(DoWhile);
|
|
|
|
// ; do-while: ; preds = %do-while, %preheader
|
|
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
|
|
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
|
|
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
|
|
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
|
|
// ; %tmp5 = shl i32 %r_1, 1
|
|
// ; %tmp6 = lshr i32 %q_2, 31
|
|
// ; %tmp7 = or i32 %tmp5, %tmp6
|
|
// ; %tmp8 = shl i32 %q_2, 1
|
|
// ; %q_1 = or i32 %carry_1, %tmp8
|
|
// ; %tmp9 = sub i32 %tmp4, %tmp7
|
|
// ; %tmp10 = ashr i32 %tmp9, 31
|
|
// ; %carry = and i32 %tmp10, 1
|
|
// ; %tmp11 = and i32 %tmp10, %divisor
|
|
// ; %r = sub i32 %tmp7, %tmp11
|
|
// ; %sr_2 = add i32 %sr_3, -1
|
|
// ; %tmp12 = icmp eq i32 %sr_2, 0
|
|
// ; br i1 %tmp12, label %loop-exit, label %do-while
|
|
Builder.SetInsertPoint(DoWhile);
|
|
PHINode *Carry_1 = Builder.CreatePHI(I32Ty, 2);
|
|
PHINode *SR_3 = Builder.CreatePHI(I32Ty, 2);
|
|
PHINode *R_1 = Builder.CreatePHI(I32Ty, 2);
|
|
PHINode *Q_2 = Builder.CreatePHI(I32Ty, 2);
|
|
Value *Tmp5 = Builder.CreateShl(R_1, One);
|
|
Value *Tmp6 = Builder.CreateLShr(Q_2, ThirtyOne);
|
|
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
|
|
Value *Tmp8 = Builder.CreateShl(Q_2, One);
|
|
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
|
|
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
|
|
Value *Tmp10 = Builder.CreateAShr(Tmp9, 31);
|
|
Value *Carry = Builder.CreateAnd(Tmp10, One);
|
|
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
|
|
Value *R = Builder.CreateSub(Tmp7, Tmp11);
|
|
Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
|
|
Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
|
|
Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
|
|
|
|
// ; loop-exit: ; preds = %do-while, %bb1
|
|
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
|
|
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
|
|
// ; %tmp13 = shl i32 %q_3, 1
|
|
// ; %q_4 = or i32 %carry_2, %tmp13
|
|
// ; br label %end
|
|
Builder.SetInsertPoint(LoopExit);
|
|
PHINode *Carry_2 = Builder.CreatePHI(I32Ty, 2);
|
|
PHINode *Q_3 = Builder.CreatePHI(I32Ty, 2);
|
|
Value *Tmp13 = Builder.CreateShl(Q_3, One);
|
|
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
|
|
Builder.CreateBr(End);
|
|
|
|
// ; end: ; preds = %loop-exit, %special-cases
|
|
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
|
|
// ; ret i32 %q_5
|
|
Builder.SetInsertPoint(End, End->begin());
|
|
PHINode *Q_5 = Builder.CreatePHI(I32Ty, 2);
|
|
|
|
// Populate the Phis, since all values have now been created. Our Phis were:
|
|
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
|
|
Carry_1->addIncoming(Zero, Preheader);
|
|
Carry_1->addIncoming(Carry, DoWhile);
|
|
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
|
|
SR_3->addIncoming(SR_1, Preheader);
|
|
SR_3->addIncoming(SR_2, DoWhile);
|
|
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
|
|
R_1->addIncoming(Tmp3, Preheader);
|
|
R_1->addIncoming(R, DoWhile);
|
|
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
|
|
Q_2->addIncoming(Q, Preheader);
|
|
Q_2->addIncoming(Q_1, DoWhile);
|
|
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
|
|
Carry_2->addIncoming(Zero, BB1);
|
|
Carry_2->addIncoming(Carry, DoWhile);
|
|
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
|
|
Q_3->addIncoming(Q, BB1);
|
|
Q_3->addIncoming(Q_1, DoWhile);
|
|
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
|
|
Q_5->addIncoming(Q_4, LoopExit);
|
|
Q_5->addIncoming(RetVal, SpecialCases);
|
|
|
|
return Q_5;
|
|
}
|
|
|
|
/// Generate code to calculate the remainder of two integers, replacing Rem with
|
|
/// the generated code. This currently generates code using the udiv expansion,
|
|
/// but future work includes generating more specialized code, e.g. when more
|
|
/// information about the operands are known. Currently only implements 32bit
|
|
/// scalar division (due to udiv's limitation), but future work is removing this
|
|
/// limitation.
|
|
///
|
|
/// @brief Replace Rem with generated code.
|
|
bool llvm::expandRemainder(BinaryOperator *Rem) {
|
|
assert((Rem->getOpcode() == Instruction::SRem ||
|
|
Rem->getOpcode() == Instruction::URem) &&
|
|
"Trying to expand remainder from a non-remainder function");
|
|
|
|
IRBuilder<> Builder(Rem);
|
|
|
|
// First prepare the sign if it's a signed remainder
|
|
if (Rem->getOpcode() == Instruction::SRem) {
|
|
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
|
|
Rem->getOperand(1), Builder);
|
|
|
|
Rem->replaceAllUsesWith(Remainder);
|
|
Rem->dropAllReferences();
|
|
Rem->eraseFromParent();
|
|
|
|
// If we didn't actually generate a udiv instruction, we're done
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
|
|
if (!BO || BO->getOpcode() != Instruction::URem)
|
|
return true;
|
|
|
|
Rem = BO;
|
|
}
|
|
|
|
Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
|
|
Rem->getOperand(1),
|
|
Builder);
|
|
|
|
Rem->replaceAllUsesWith(Remainder);
|
|
Rem->dropAllReferences();
|
|
Rem->eraseFromParent();
|
|
|
|
// Expand the udiv
|
|
if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
|
|
assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
|
|
expandDivision(UDiv);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Generate code to divide two integers, replacing Div with the generated
|
|
/// code. This currently generates code similarly to compiler-rt's
|
|
/// implementations, but future work includes generating more specialized code
|
|
/// when more information about the operands are known. Currently only
|
|
/// implements 32bit scalar division, but future work is removing this
|
|
/// limitation.
|
|
///
|
|
/// @brief Replace Div with generated code.
|
|
bool llvm::expandDivision(BinaryOperator *Div) {
|
|
assert((Div->getOpcode() == Instruction::SDiv ||
|
|
Div->getOpcode() == Instruction::UDiv) &&
|
|
"Trying to expand division from a non-division function");
|
|
|
|
IRBuilder<> Builder(Div);
|
|
|
|
if (Div->getType()->isVectorTy())
|
|
llvm_unreachable("Div over vectors not supported");
|
|
|
|
// First prepare the sign if it's a signed division
|
|
if (Div->getOpcode() == Instruction::SDiv) {
|
|
// Lower the code to unsigned division, and reset Div to point to the udiv.
|
|
Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
|
|
Div->getOperand(1), Builder);
|
|
Div->replaceAllUsesWith(Quotient);
|
|
Div->dropAllReferences();
|
|
Div->eraseFromParent();
|
|
|
|
// If we didn't actually generate a udiv instruction, we're done
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
|
|
if (!BO || BO->getOpcode() != Instruction::UDiv)
|
|
return true;
|
|
|
|
Div = BO;
|
|
}
|
|
|
|
// Insert the unsigned division code
|
|
Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
|
|
Div->getOperand(1),
|
|
Builder);
|
|
Div->replaceAllUsesWith(Quotient);
|
|
Div->dropAllReferences();
|
|
Div->eraseFromParent();
|
|
|
|
return true;
|
|
}
|