mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34137 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the DenseMap class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_DENSEMAP_H
 | 
						|
#define LLVM_ADT_DENSEMAP_H
 | 
						|
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  
 | 
						|
template<typename T>
 | 
						|
struct DenseMapKeyInfo {
 | 
						|
  //static inline T getEmptyKey();
 | 
						|
  //static inline T getTombstoneKey();
 | 
						|
  //static unsigned getHashValue(const T &Val);
 | 
						|
  //static bool isPod()
 | 
						|
};
 | 
						|
 | 
						|
// Provide DenseMapKeyInfo for all pointers.
 | 
						|
template<typename T>
 | 
						|
struct DenseMapKeyInfo<T*> {
 | 
						|
  static inline T* getEmptyKey() { return (T*)-1; }
 | 
						|
  static inline T* getTombstoneKey() { return (T*)-2; }
 | 
						|
  static unsigned getHashValue(const T *PtrVal) {
 | 
						|
    return (unsigned)((uintptr_t)PtrVal >> 4) ^
 | 
						|
           (unsigned)((uintptr_t)PtrVal >> 9);
 | 
						|
  }
 | 
						|
  static bool isPod() { return true; }
 | 
						|
};
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT, 
 | 
						|
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
 | 
						|
class DenseMapIterator;
 | 
						|
template<typename KeyT, typename ValueT,
 | 
						|
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
 | 
						|
class DenseMapConstIterator;
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT,
 | 
						|
         typename KeyInfoT = DenseMapKeyInfo<KeyT> >
 | 
						|
class DenseMap {
 | 
						|
  typedef std::pair<KeyT, ValueT> BucketT;
 | 
						|
  unsigned NumBuckets;
 | 
						|
  BucketT *Buckets;
 | 
						|
  
 | 
						|
  unsigned NumEntries;
 | 
						|
  unsigned NumTombstones;
 | 
						|
  DenseMap(const DenseMap &); // not implemented.
 | 
						|
public:
 | 
						|
  explicit DenseMap(unsigned NumInitBuckets = 64) {
 | 
						|
    init(NumInitBuckets);
 | 
						|
  }
 | 
						|
  ~DenseMap() {
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | 
						|
      if (P->first != EmptyKey && P->first != TombstoneKey)
 | 
						|
        P->second.~ValueT();
 | 
						|
      P->first.~KeyT();
 | 
						|
    }
 | 
						|
    delete[] (char*)Buckets;
 | 
						|
  }
 | 
						|
  
 | 
						|
  typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
 | 
						|
  typedef DenseMapConstIterator<KeyT, ValueT, KeyInfoT> const_iterator;
 | 
						|
  inline iterator begin() {
 | 
						|
     return iterator(Buckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  inline iterator end() {
 | 
						|
    return iterator(Buckets+NumBuckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  inline const_iterator begin() const {
 | 
						|
    return const_iterator(Buckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  inline const_iterator end() const {
 | 
						|
    return const_iterator(Buckets+NumBuckets, Buckets+NumBuckets);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool empty() const { return NumEntries == 0; }
 | 
						|
  unsigned size() const { return NumEntries; }
 | 
						|
  
 | 
						|
  void clear() {
 | 
						|
    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *P = Buckets, *E = Buckets+NumBuckets; P != E; ++P) {
 | 
						|
      if (P->first != EmptyKey && P->first != TombstoneKey) {
 | 
						|
        P->first = EmptyKey;
 | 
						|
        P->second.~ValueT();
 | 
						|
        --NumEntries;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(NumEntries == 0 && "Node count imbalance!");
 | 
						|
    NumTombstones = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// count - Return true if the specified key is in the map.
 | 
						|
  bool count(const KeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    return LookupBucketFor(Val, TheBucket);
 | 
						|
  }
 | 
						|
  
 | 
						|
  iterator find(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return iterator(TheBucket, Buckets+NumBuckets);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  const_iterator find(const KeyT &Val) const {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Val, TheBucket))
 | 
						|
      return const_iterator(TheBucket, Buckets+NumBuckets);
 | 
						|
    return end();
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool insert(const std::pair<KeyT, ValueT> &KV) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(KV.first, TheBucket))
 | 
						|
      return false; // Already in map.
 | 
						|
    
 | 
						|
    // Otherwise, insert the new element.
 | 
						|
    InsertIntoBucket(KV.first, KV.second, TheBucket);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool erase(const KeyT &Val) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (!LookupBucketFor(Val, TheBucket))
 | 
						|
      return false; // not in map.
 | 
						|
 | 
						|
    TheBucket->second.~ValueT();
 | 
						|
    TheBucket->first = getTombstoneKey();
 | 
						|
    --NumEntries;
 | 
						|
    ++NumTombstones;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  bool erase(iterator I) {
 | 
						|
    BucketT *TheBucket = &*I;
 | 
						|
    TheBucket->second.~ValueT();
 | 
						|
    TheBucket->first = getTombstoneKey();
 | 
						|
    --NumEntries;
 | 
						|
    ++NumTombstones;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  ValueT &operator[](const KeyT &Key) {
 | 
						|
    BucketT *TheBucket;
 | 
						|
    if (LookupBucketFor(Key, TheBucket))
 | 
						|
      return TheBucket->second;
 | 
						|
 | 
						|
    return InsertIntoBucket(Key, ValueT(), TheBucket)->second;
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
 | 
						|
                            BucketT *TheBucket) {
 | 
						|
    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
 | 
						|
    // the buckets are empty (meaning that many are filled with tombstones),
 | 
						|
    // grow the table.
 | 
						|
    //
 | 
						|
    // The later case is tricky.  For example, if we had one empty bucket with
 | 
						|
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
 | 
						|
    // probe almost the entire table until it found the empty bucket.  If the
 | 
						|
    // table completely filled with tombstones, no lookup would ever succeed,
 | 
						|
    // causing infinite loops in lookup.
 | 
						|
    if (NumEntries*4 >= NumBuckets*3 ||
 | 
						|
        NumBuckets-(NumEntries+NumTombstones) < NumBuckets/8) {        
 | 
						|
      this->grow();
 | 
						|
      LookupBucketFor(Key, TheBucket);
 | 
						|
    }
 | 
						|
    ++NumEntries;
 | 
						|
    
 | 
						|
    // If we are writing over a tombstone, remember this.
 | 
						|
    if (TheBucket->first != getEmptyKey())
 | 
						|
      --NumTombstones;
 | 
						|
    
 | 
						|
    TheBucket->first = Key;
 | 
						|
    new (&TheBucket->second) ValueT(Value);
 | 
						|
    return TheBucket;
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const KeyT &Val) {
 | 
						|
    return KeyInfoT::getHashValue(Val);
 | 
						|
  }
 | 
						|
  static const KeyT getEmptyKey() {
 | 
						|
    return KeyInfoT::getEmptyKey();
 | 
						|
  }
 | 
						|
  static const KeyT getTombstoneKey() {
 | 
						|
    return KeyInfoT::getTombstoneKey();
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
 | 
						|
  /// FoundBucket.  If the bucket contains the key and a value, this returns
 | 
						|
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
 | 
						|
  /// returns false.
 | 
						|
  bool LookupBucketFor(const KeyT &Val, BucketT *&FoundBucket) const {
 | 
						|
    unsigned BucketNo = getHashValue(Val);
 | 
						|
    unsigned ProbeAmt = 1;
 | 
						|
    BucketT *BucketsPtr = Buckets;
 | 
						|
    
 | 
						|
    // FoundTombstone - Keep track of whether we find a tombstone while probing.
 | 
						|
    BucketT *FoundTombstone = 0;
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    assert(Val != EmptyKey && Val != TombstoneKey &&
 | 
						|
           "Empty/Tombstone value shouldn't be inserted into map!");
 | 
						|
      
 | 
						|
    while (1) {
 | 
						|
      BucketT *ThisBucket = BucketsPtr + (BucketNo & (NumBuckets-1));
 | 
						|
      // Found Val's bucket?  If so, return it.
 | 
						|
      if (ThisBucket->first == Val) {
 | 
						|
        FoundBucket = ThisBucket;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If we found an empty bucket, the key doesn't exist in the set.
 | 
						|
      // Insert it and return the default value.
 | 
						|
      if (ThisBucket->first == EmptyKey) {
 | 
						|
        // If we've already seen a tombstone while probing, fill it in instead
 | 
						|
        // of the empty bucket we eventually probed to.
 | 
						|
        if (FoundTombstone) ThisBucket = FoundTombstone;
 | 
						|
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If this is a tombstone, remember it.  If Val ends up not in the map, we
 | 
						|
      // prefer to return it than something that would require more probing.
 | 
						|
      if (ThisBucket->first == TombstoneKey && !FoundTombstone)
 | 
						|
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.
 | 
						|
      
 | 
						|
      // Otherwise, it's a hash collision or a tombstone, continue quadratic
 | 
						|
      // probing.
 | 
						|
      BucketNo += ProbeAmt++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void init(unsigned InitBuckets) {
 | 
						|
    NumEntries = 0;
 | 
						|
    NumTombstones = 0;
 | 
						|
    NumBuckets = InitBuckets;
 | 
						|
    assert(InitBuckets && (InitBuckets & InitBuckets-1) == 0 &&
 | 
						|
           "# initial buckets must be a power of two!");
 | 
						|
    Buckets = (BucketT*)new char[sizeof(BucketT)*InitBuckets];
 | 
						|
    // Initialize all the keys to EmptyKey.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (unsigned i = 0; i != InitBuckets; ++i)
 | 
						|
      new (&Buckets[i].first) KeyT(EmptyKey);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void grow() {
 | 
						|
    unsigned OldNumBuckets = NumBuckets;
 | 
						|
    BucketT *OldBuckets = Buckets;
 | 
						|
    
 | 
						|
    // Double the number of buckets.
 | 
						|
    NumBuckets <<= 1;
 | 
						|
    NumTombstones = 0;
 | 
						|
    Buckets = (BucketT*)new char[sizeof(BucketT)*NumBuckets];
 | 
						|
 | 
						|
    // Initialize all the keys to EmptyKey.
 | 
						|
    const KeyT EmptyKey = getEmptyKey();
 | 
						|
    for (unsigned i = 0, e = NumBuckets; i != e; ++i)
 | 
						|
      new (&Buckets[i].first) KeyT(EmptyKey);
 | 
						|
 | 
						|
    // Insert all the old elements.
 | 
						|
    const KeyT TombstoneKey = getTombstoneKey();
 | 
						|
    for (BucketT *B = OldBuckets, *E = OldBuckets+OldNumBuckets; B != E; ++B) {
 | 
						|
      if (B->first != EmptyKey && B->first != TombstoneKey) {
 | 
						|
        // Insert the key/value into the new table.
 | 
						|
        BucketT *DestBucket;
 | 
						|
        bool FoundVal = LookupBucketFor(B->first, DestBucket);
 | 
						|
        FoundVal = FoundVal; // silence warning.
 | 
						|
        assert(!FoundVal && "Key already in new map?");
 | 
						|
        DestBucket->first = B->first;
 | 
						|
        new (&DestBucket->second) ValueT(B->second);
 | 
						|
        
 | 
						|
        // Free the value.
 | 
						|
        B->second.~ValueT();
 | 
						|
      }
 | 
						|
      B->first.~KeyT();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Free the old table.
 | 
						|
    delete[] (char*)OldBuckets;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT, typename KeyInfoT>
 | 
						|
class DenseMapIterator {
 | 
						|
  typedef std::pair<KeyT, ValueT> BucketT;
 | 
						|
protected:
 | 
						|
  const BucketT *Ptr, *End;
 | 
						|
public:
 | 
						|
  DenseMapIterator(const BucketT *Pos, const BucketT *E) : Ptr(Pos), End(E) {
 | 
						|
    AdvancePastEmptyBuckets();
 | 
						|
  }
 | 
						|
  
 | 
						|
  std::pair<KeyT, ValueT> &operator*() const {
 | 
						|
    return *const_cast<BucketT*>(Ptr);
 | 
						|
  }
 | 
						|
  std::pair<KeyT, ValueT> *operator->() const {
 | 
						|
    return const_cast<BucketT*>(Ptr);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool operator==(const DenseMapIterator &RHS) const {
 | 
						|
    return Ptr == RHS.Ptr;
 | 
						|
  }
 | 
						|
  bool operator!=(const DenseMapIterator &RHS) const {
 | 
						|
    return Ptr != RHS.Ptr;
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline DenseMapIterator& operator++() {          // Preincrement
 | 
						|
    ++Ptr;
 | 
						|
    AdvancePastEmptyBuckets();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
  DenseMapIterator operator++(int) {        // Postincrement
 | 
						|
    DenseMapIterator tmp = *this; ++*this; return tmp;
 | 
						|
  }
 | 
						|
  
 | 
						|
private:
 | 
						|
  void AdvancePastEmptyBuckets() {
 | 
						|
    const KeyT Empty = KeyInfoT::getEmptyKey();
 | 
						|
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();
 | 
						|
 | 
						|
    while (Ptr != End && (Ptr->first == Empty || Ptr->first == Tombstone))
 | 
						|
      ++Ptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<typename KeyT, typename ValueT, typename KeyInfoT>
 | 
						|
class DenseMapConstIterator : public DenseMapIterator<KeyT, ValueT, KeyInfoT> {
 | 
						|
public:
 | 
						|
  DenseMapConstIterator(const std::pair<KeyT, ValueT> *Pos,
 | 
						|
                        const std::pair<KeyT, ValueT> *E)
 | 
						|
    : DenseMapIterator<KeyT, ValueT, KeyInfoT>(Pos, E) {
 | 
						|
  }
 | 
						|
  const std::pair<KeyT, ValueT> &operator*() const {
 | 
						|
    return *this->Ptr;
 | 
						|
  }
 | 
						|
  const std::pair<KeyT, ValueT> *operator->() const {
 | 
						|
    return this->Ptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |