mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
36b699f2b1
This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
384 lines
12 KiB
C++
384 lines
12 KiB
C++
//===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines specializations of GraphTraits that allow Function and
|
|
// BasicBlock graphs to be treated as proper graphs for generic algorithms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_CFG_H
|
|
#define LLVM_IR_CFG_H
|
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BasicBlock pred_iterator definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class Ptr, class USE_iterator> // Predecessor Iterator
|
|
class PredIterator : public std::iterator<std::forward_iterator_tag,
|
|
Ptr, ptrdiff_t, Ptr*, Ptr*> {
|
|
typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
|
|
Ptr*> super;
|
|
typedef PredIterator<Ptr, USE_iterator> Self;
|
|
USE_iterator It;
|
|
|
|
inline void advancePastNonTerminators() {
|
|
// Loop to ignore non-terminator uses (for example BlockAddresses).
|
|
while (!It.atEnd() && !isa<TerminatorInst>(*It))
|
|
++It;
|
|
}
|
|
|
|
public:
|
|
typedef typename super::pointer pointer;
|
|
typedef typename super::reference reference;
|
|
|
|
PredIterator() {}
|
|
explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
|
|
advancePastNonTerminators();
|
|
}
|
|
inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
|
|
|
|
inline bool operator==(const Self& x) const { return It == x.It; }
|
|
inline bool operator!=(const Self& x) const { return !operator==(x); }
|
|
|
|
inline reference operator*() const {
|
|
assert(!It.atEnd() && "pred_iterator out of range!");
|
|
return cast<TerminatorInst>(*It)->getParent();
|
|
}
|
|
inline pointer *operator->() const { return &operator*(); }
|
|
|
|
inline Self& operator++() { // Preincrement
|
|
assert(!It.atEnd() && "pred_iterator out of range!");
|
|
++It; advancePastNonTerminators();
|
|
return *this;
|
|
}
|
|
|
|
inline Self operator++(int) { // Postincrement
|
|
Self tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
/// getOperandNo - Return the operand number in the predecessor's
|
|
/// terminator of the successor.
|
|
unsigned getOperandNo() const {
|
|
return It.getOperandNo();
|
|
}
|
|
|
|
/// getUse - Return the operand Use in the predecessor's terminator
|
|
/// of the successor.
|
|
Use &getUse() const {
|
|
return It.getUse();
|
|
}
|
|
};
|
|
|
|
typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
|
|
typedef PredIterator<const BasicBlock,
|
|
Value::const_user_iterator> const_pred_iterator;
|
|
|
|
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
|
|
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
|
|
return const_pred_iterator(BB);
|
|
}
|
|
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
|
|
inline const_pred_iterator pred_end(const BasicBlock *BB) {
|
|
return const_pred_iterator(BB, true);
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BasicBlock succ_iterator definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class Term_, class BB_> // Successor Iterator
|
|
class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_,
|
|
int, BB_ *, BB_ *> {
|
|
typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *>
|
|
super;
|
|
|
|
public:
|
|
typedef typename super::pointer pointer;
|
|
typedef typename super::reference reference;
|
|
|
|
private:
|
|
const Term_ Term;
|
|
unsigned idx;
|
|
typedef SuccIterator<Term_, BB_> Self;
|
|
|
|
inline bool index_is_valid(int idx) {
|
|
return idx >= 0 && (unsigned) idx < Term->getNumSuccessors();
|
|
}
|
|
|
|
/// \brief Proxy object to allow write access in operator[]
|
|
class SuccessorProxy {
|
|
Self it;
|
|
|
|
public:
|
|
explicit SuccessorProxy(const Self &it) : it(it) {}
|
|
|
|
SuccessorProxy &operator=(SuccessorProxy r) {
|
|
*this = reference(r);
|
|
return *this;
|
|
}
|
|
|
|
SuccessorProxy &operator=(reference r) {
|
|
it.Term->setSuccessor(it.idx, r);
|
|
return *this;
|
|
}
|
|
|
|
operator reference() const { return *it; }
|
|
};
|
|
|
|
public:
|
|
explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator
|
|
}
|
|
inline SuccIterator(Term_ T, bool) // end iterator
|
|
: Term(T) {
|
|
if (Term)
|
|
idx = Term->getNumSuccessors();
|
|
else
|
|
// Term == NULL happens, if a basic block is not fully constructed and
|
|
// consequently getTerminator() returns NULL. In this case we construct a
|
|
// SuccIterator which describes a basic block that has zero successors.
|
|
// Defining SuccIterator for incomplete and malformed CFGs is especially
|
|
// useful for debugging.
|
|
idx = 0;
|
|
}
|
|
|
|
inline const Self &operator=(const Self &I) {
|
|
assert(Term == I.Term &&"Cannot assign iterators to two different blocks!");
|
|
idx = I.idx;
|
|
return *this;
|
|
}
|
|
|
|
/// getSuccessorIndex - This is used to interface between code that wants to
|
|
/// operate on terminator instructions directly.
|
|
unsigned getSuccessorIndex() const { return idx; }
|
|
|
|
inline bool operator==(const Self& x) const { return idx == x.idx; }
|
|
inline bool operator!=(const Self& x) const { return !operator==(x); }
|
|
|
|
inline reference operator*() const { return Term->getSuccessor(idx); }
|
|
inline pointer operator->() const { return operator*(); }
|
|
|
|
inline Self& operator++() { ++idx; return *this; } // Preincrement
|
|
|
|
inline Self operator++(int) { // Postincrement
|
|
Self tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
inline Self& operator--() { --idx; return *this; } // Predecrement
|
|
inline Self operator--(int) { // Postdecrement
|
|
Self tmp = *this; --*this; return tmp;
|
|
}
|
|
|
|
inline bool operator<(const Self& x) const {
|
|
assert(Term == x.Term && "Cannot compare iterators of different blocks!");
|
|
return idx < x.idx;
|
|
}
|
|
|
|
inline bool operator<=(const Self& x) const {
|
|
assert(Term == x.Term && "Cannot compare iterators of different blocks!");
|
|
return idx <= x.idx;
|
|
}
|
|
inline bool operator>=(const Self& x) const {
|
|
assert(Term == x.Term && "Cannot compare iterators of different blocks!");
|
|
return idx >= x.idx;
|
|
}
|
|
|
|
inline bool operator>(const Self& x) const {
|
|
assert(Term == x.Term && "Cannot compare iterators of different blocks!");
|
|
return idx > x.idx;
|
|
}
|
|
|
|
inline Self& operator+=(int Right) {
|
|
unsigned new_idx = idx + Right;
|
|
assert(index_is_valid(new_idx) && "Iterator index out of bound");
|
|
idx = new_idx;
|
|
return *this;
|
|
}
|
|
|
|
inline Self operator+(int Right) const {
|
|
Self tmp = *this;
|
|
tmp += Right;
|
|
return tmp;
|
|
}
|
|
|
|
inline Self& operator-=(int Right) {
|
|
return operator+=(-Right);
|
|
}
|
|
|
|
inline Self operator-(int Right) const {
|
|
return operator+(-Right);
|
|
}
|
|
|
|
inline int operator-(const Self& x) const {
|
|
assert(Term == x.Term && "Cannot work on iterators of different blocks!");
|
|
int distance = idx - x.idx;
|
|
return distance;
|
|
}
|
|
|
|
inline SuccessorProxy operator[](int offset) {
|
|
Self tmp = *this;
|
|
tmp += offset;
|
|
return SuccessorProxy(tmp);
|
|
}
|
|
|
|
/// Get the source BB of this iterator.
|
|
inline BB_ *getSource() {
|
|
assert(Term && "Source not available, if basic block was malformed");
|
|
return Term->getParent();
|
|
}
|
|
};
|
|
|
|
typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator;
|
|
typedef SuccIterator<const TerminatorInst*,
|
|
const BasicBlock> succ_const_iterator;
|
|
|
|
inline succ_iterator succ_begin(BasicBlock *BB) {
|
|
return succ_iterator(BB->getTerminator());
|
|
}
|
|
inline succ_const_iterator succ_begin(const BasicBlock *BB) {
|
|
return succ_const_iterator(BB->getTerminator());
|
|
}
|
|
inline succ_iterator succ_end(BasicBlock *BB) {
|
|
return succ_iterator(BB->getTerminator(), true);
|
|
}
|
|
inline succ_const_iterator succ_end(const BasicBlock *BB) {
|
|
return succ_const_iterator(BB->getTerminator(), true);
|
|
}
|
|
|
|
template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > {
|
|
static const bool value = isPodLike<T>::value;
|
|
};
|
|
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// GraphTraits specializations for basic block graphs (CFGs)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a function as a
|
|
// graph of basic blocks...
|
|
|
|
template <> struct GraphTraits<BasicBlock*> {
|
|
typedef BasicBlock NodeType;
|
|
typedef succ_iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return succ_begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return succ_end(N);
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const BasicBlock*> {
|
|
typedef const BasicBlock NodeType;
|
|
typedef succ_const_iterator ChildIteratorType;
|
|
|
|
static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
|
|
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return succ_begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return succ_end(N);
|
|
}
|
|
};
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a function as a
|
|
// graph of basic blocks... and to walk it in inverse order. Inverse order for
|
|
// a function is considered to be when traversing the predecessor edges of a BB
|
|
// instead of the successor edges.
|
|
//
|
|
template <> struct GraphTraits<Inverse<BasicBlock*> > {
|
|
typedef BasicBlock NodeType;
|
|
typedef pred_iterator ChildIteratorType;
|
|
static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return pred_begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return pred_end(N);
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<Inverse<const BasicBlock*> > {
|
|
typedef const BasicBlock NodeType;
|
|
typedef const_pred_iterator ChildIteratorType;
|
|
static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
|
|
return G.Graph;
|
|
}
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return pred_begin(N);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return pred_end(N);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// GraphTraits specializations for function basic block graphs (CFGs)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a function as a
|
|
// graph of basic blocks... these are the same as the basic block iterators,
|
|
// except that the root node is implicitly the first node of the function.
|
|
//
|
|
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
|
|
static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
|
|
|
|
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
|
typedef Function::iterator nodes_iterator;
|
|
static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
|
|
static nodes_iterator nodes_end (Function *F) { return F->end(); }
|
|
static size_t size (Function *F) { return F->size(); }
|
|
};
|
|
template <> struct GraphTraits<const Function*> :
|
|
public GraphTraits<const BasicBlock*> {
|
|
static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
|
|
|
|
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
|
|
typedef Function::const_iterator nodes_iterator;
|
|
static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
|
|
static nodes_iterator nodes_end (const Function *F) { return F->end(); }
|
|
static size_t size (const Function *F) { return F->size(); }
|
|
};
|
|
|
|
|
|
// Provide specializations of GraphTraits to be able to treat a function as a
|
|
// graph of basic blocks... and to walk it in inverse order. Inverse order for
|
|
// a function is considered to be when traversing the predecessor edges of a BB
|
|
// instead of the successor edges.
|
|
//
|
|
template <> struct GraphTraits<Inverse<Function*> > :
|
|
public GraphTraits<Inverse<BasicBlock*> > {
|
|
static NodeType *getEntryNode(Inverse<Function*> G) {
|
|
return &G.Graph->getEntryBlock();
|
|
}
|
|
};
|
|
template <> struct GraphTraits<Inverse<const Function*> > :
|
|
public GraphTraits<Inverse<const BasicBlock*> > {
|
|
static NodeType *getEntryNode(Inverse<const Function *> G) {
|
|
return &G.Graph->getEntryBlock();
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|