mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78116 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			775 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			775 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---------------- ConstantsContext.h - Implementation ------*- C++ -*--===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines various helper methods and classes used by
 | |
| // LLVMContextImpl for creating and managing constants.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CONSTANTSCONTEXT_H
 | |
| #define LLVM_CONSTANTSCONTEXT_H
 | |
| 
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/System/Mutex.h"
 | |
| #include "llvm/System/RWMutex.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
| template<class ValType>
 | |
| struct ConstantTraits;
 | |
| 
 | |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement unary constant exprs.
 | |
| class UnaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | |
|     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
 | |
|     Op<0>() = C;
 | |
|   }
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement binary constant exprs.
 | |
| class BinaryConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement select constant exprs.
 | |
| class SelectConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractelement constant exprs.
 | |
| class ExtractElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
 | |
|                    Instruction::ExtractElement, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertelement constant exprs.
 | |
| class InsertElementConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | |
|                    &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ShuffleVectorConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// shufflevector constant exprs.
 | |
| class ShuffleVectorConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|   : ConstantExpr(VectorType::get(
 | |
|                    cast<VectorType>(C1->getType())->getElementType(),
 | |
|                    cast<VectorType>(C3->getType())->getNumElements()),
 | |
|                  Instruction::ShuffleVector, 
 | |
|                  &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractvalue constant exprs.
 | |
| class ExtractValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   ExtractValueConstantExpr(Constant *Agg,
 | |
|                            const SmallVector<unsigned, 4> &IdxList,
 | |
|                            const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify which value to extract.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertvalue constant exprs.
 | |
| class InsertValueConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   InsertValueConstantExpr(Constant *Agg, Constant *Val,
 | |
|                           const SmallVector<unsigned, 4> &IdxList,
 | |
|                           const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|     Op<1>() = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify the position for the insertion.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| 
 | |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | |
| /// used behind the scenes to implement getelementpr constant exprs.
 | |
| class GetElementPtrConstantExpr : public ConstantExpr {
 | |
|   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                             const Type *DestTy);
 | |
| public:
 | |
|   static GetElementPtrConstantExpr *Create(Constant *C,
 | |
|                                            const std::vector<Constant*>&IdxList,
 | |
|                                            const Type *DestTy) {
 | |
|     return
 | |
|       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used
 | |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is
 | |
| // needed in order to store the predicate value for these instructions.
 | |
| struct CompareConstantExpr : public ConstantExpr {
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   unsigned short predicate;
 | |
|   CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
 | |
|                       unsigned short pred,  Constant* LHS, Constant* RHS)
 | |
|     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
 | |
|     Op<0>() = LHS;
 | |
|     Op<1>() = RHS;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<UnaryConstantExpr> : FixedNumOperandTraits<1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<BinaryConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<SelectConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractElementConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertElementConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ShuffleVectorConstantExpr> : FixedNumOperandTraits<3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractValueConstantExpr> : FixedNumOperandTraits<1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertValueConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<GetElementPtrConstantExpr> : VariadicOperandTraits<1> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
 | |
| 
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<CompareConstantExpr> : FixedNumOperandTraits<2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
 | |
| 
 | |
| struct ExprMapKeyType {
 | |
|   typedef SmallVector<unsigned, 4> IndexList;
 | |
| 
 | |
|   ExprMapKeyType(unsigned opc,
 | |
|       const std::vector<Constant*> &ops,
 | |
|       unsigned short pred = 0,
 | |
|       const IndexList &inds = IndexList())
 | |
|         : opcode(opc), predicate(pred), operands(ops), indices(inds) {}
 | |
|   uint16_t opcode;
 | |
|   uint16_t predicate;
 | |
|   std::vector<Constant*> operands;
 | |
|   IndexList indices;
 | |
|   bool operator==(const ExprMapKeyType& that) const {
 | |
|     return this->opcode == that.opcode &&
 | |
|            this->predicate == that.predicate &&
 | |
|            this->operands == that.operands &&
 | |
|            this->indices == that.indices;
 | |
|   }
 | |
|   bool operator<(const ExprMapKeyType & that) const {
 | |
|     return this->opcode < that.opcode ||
 | |
|       (this->opcode == that.opcode && this->predicate < that.predicate) ||
 | |
|       (this->opcode == that.opcode && this->predicate == that.predicate &&
 | |
|        this->operands < that.operands) ||
 | |
|       (this->opcode == that.opcode && this->predicate == that.predicate &&
 | |
|        this->operands == that.operands && this->indices < that.indices);
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ExprMapKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The number of operands for each ConstantCreator::create method is
 | |
| // determined by the ConstantTraits template.
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ValueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| template<typename T, typename Alloc>
 | |
| struct ConstantTraits< std::vector<T, Alloc> > {
 | |
|   static unsigned uses(const std::vector<T, Alloc>& v) {
 | |
|     return v.size();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass, class TypeClass, class ValType>
 | |
| struct ConstantCreator {
 | |
|   static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | |
|     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass, class TypeClass>
 | |
| struct ConvertConstantType {
 | |
|   static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | |
|     llvm_unreachable("This type cannot be converted!");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|   static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
 | |
|       unsigned short pred = 0) {
 | |
|     if (Instruction::isCast(V.opcode))
 | |
|       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
 | |
|     if ((V.opcode >= Instruction::BinaryOpsBegin &&
 | |
|          V.opcode < Instruction::BinaryOpsEnd))
 | |
|       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::Select)
 | |
|       return new SelectConstantExpr(V.operands[0], V.operands[1], 
 | |
|                                     V.operands[2]);
 | |
|     if (V.opcode == Instruction::ExtractElement)
 | |
|       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::InsertElement)
 | |
|       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::ShuffleVector)
 | |
|       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::InsertValue)
 | |
|       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
 | |
|                                          V.indices, Ty);
 | |
|     if (V.opcode == Instruction::ExtractValue)
 | |
|       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
 | |
|     if (V.opcode == Instruction::GetElementPtr) {
 | |
|       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
 | |
|       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty);
 | |
|     }
 | |
| 
 | |
|     // The compare instructions are weird. We have to encode the predicate
 | |
|     // value and it is combined with the instruction opcode by multiplying
 | |
|     // the opcode by one hundred. We must decode this to get the predicate.
 | |
|     if (V.opcode == Instruction::ICmp)
 | |
|       return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, 
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::FCmp) 
 | |
|       return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, 
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     llvm_unreachable("Invalid ConstantExpr!");
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantExpr, Type> {
 | |
|   static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | |
|     Constant *New;
 | |
|     switch (OldC->getOpcode()) {
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::BitCast:
 | |
|       New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), 
 | |
|                                   NewTy);
 | |
|       break;
 | |
|     case Instruction::Select:
 | |
|       New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
 | |
|                                       OldC->getOperand(1),
 | |
|                                       OldC->getOperand(2));
 | |
|       break;
 | |
|     default:
 | |
|       assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | |
|              OldC->getOpcode() <  Instruction::BinaryOpsEnd);
 | |
|       New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | |
|                                 OldC->getOperand(1));
 | |
|       break;
 | |
|     case Instruction::GetElementPtr:
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
 | |
|       New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0),
 | |
|                                              &Idx[0], Idx.size());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ConstantAggregateZero does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | |
|   static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | |
|     return new ConstantAggregateZero(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantVector, VectorType> {
 | |
|   static void convert(ConstantVector *OldC, const VectorType *NewTy) {
 | |
|     // Make everyone now use a constant of the new type...
 | |
|     std::vector<Constant*> C;
 | |
|     for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|       C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|     Constant *New = ConstantVector::get(NewTy, C);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantAggregateZero, Type> {
 | |
|   static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | |
|     // Make everyone now use a constant of the new type...
 | |
|     Constant *New = ConstantAggregateZero::get(NewTy);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantArray, ArrayType> {
 | |
|   static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | |
|     // Make everyone now use a constant of the new type...
 | |
|     std::vector<Constant*> C;
 | |
|     for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|       C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|     Constant *New = ConstantArray::get(NewTy, C);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantStruct, StructType> {
 | |
|   static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | |
|     // Make everyone now use a constant of the new type...
 | |
|     std::vector<Constant*> C;
 | |
|     for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|       C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|     Constant *New = ConstantStruct::get(NewTy, C);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
| 
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ConstantPointerNull does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | |
|   static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | |
|     return new ConstantPointerNull(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | |
|   static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | |
|     // Make everyone now use a constant of the new type...
 | |
|     Constant *New = ConstantPointerNull::get(NewTy);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| // UndefValue does not take extra "value" argument...
 | |
| template<class ValType>
 | |
| struct ConstantCreator<UndefValue, Type, ValType> {
 | |
|   static UndefValue *create(const Type *Ty, const ValType &V) {
 | |
|     return new UndefValue(Ty);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConvertConstantType<UndefValue, Type> {
 | |
|   static void convert(UndefValue *OldC, const Type *NewTy) {
 | |
|     // Make everyone now use a constant of the new type.
 | |
|     Constant *New = UndefValue::get(NewTy);
 | |
|     assert(New != OldC && "Didn't replace constant??");
 | |
|     OldC->uncheckedReplaceAllUsesWith(New);
 | |
|     OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ValType, class TypeClass, class ConstantClass,
 | |
|          bool HasLargeKey = false /*true for arrays and structs*/ >
 | |
| class ValueMap : public AbstractTypeUser {
 | |
| public:
 | |
|   typedef std::pair<const Type*, ValType> MapKey;
 | |
|   typedef std::map<MapKey, Constant *> MapTy;
 | |
|   typedef std::map<Constant*, typename MapTy::iterator> InverseMapTy;
 | |
|   typedef std::map<const Type*, typename MapTy::iterator> AbstractTypeMapTy;
 | |
| private:
 | |
|   /// Map - This is the main map from the element descriptor to the Constants.
 | |
|   /// This is the primary way we avoid creating two of the same shape
 | |
|   /// constant.
 | |
|   MapTy Map;
 | |
|     
 | |
|   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | |
|   /// from the constants to their element in Map.  This is important for
 | |
|   /// removal of constants from the array, which would otherwise have to scan
 | |
|   /// through the map with very large keys.
 | |
|   InverseMapTy InverseMap;
 | |
| 
 | |
|   /// AbstractTypeMap - Map for abstract type constants.
 | |
|   ///
 | |
|   AbstractTypeMapTy AbstractTypeMap;
 | |
|     
 | |
|   /// ValueMapLock - Mutex for this map.
 | |
|   sys::SmartMutex<true> ValueMapLock;
 | |
| 
 | |
| public:
 | |
|   // NOTE: This function is not locked.  It is the caller's responsibility
 | |
|   // to enforce proper synchronization.
 | |
|   typename MapTy::iterator map_end() { return Map.end(); }
 | |
|     
 | |
|   /// InsertOrGetItem - Return an iterator for the specified element.
 | |
|   /// If the element exists in the map, the returned iterator points to the
 | |
|   /// entry and Exists=true.  If not, the iterator points to the newly
 | |
|   /// inserted entry and returns Exists=false.  Newly inserted entries have
 | |
|   /// I->second == 0, and should be filled in.
 | |
|   /// NOTE: This function is not locked.  It is the caller's responsibility
 | |
|   // to enforce proper synchronization.
 | |
|   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, Constant *>
 | |
|                                  &InsertVal,
 | |
|                                  bool &Exists) {
 | |
|     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
 | |
|     Exists = !IP.second;
 | |
|     return IP.first;
 | |
|   }
 | |
|     
 | |
| private:
 | |
|   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
 | |
|     if (HasLargeKey) {
 | |
|       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
 | |
|       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | |
|              IMI->second->second == CP &&
 | |
|              "InverseMap corrupt!");
 | |
|       return IMI->second;
 | |
|     }
 | |
|       
 | |
|     typename MapTy::iterator I =
 | |
|       Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
 | |
|                       getValType(CP)));
 | |
|     if (I == Map.end() || I->second != CP) {
 | |
|       // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|       // performance problem, someone should look at this.
 | |
|       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | |
|         /* empty */;
 | |
|     }
 | |
|     return I;
 | |
|   }
 | |
|     
 | |
|   ConstantClass* Create(const TypeClass *Ty, const ValType &V,
 | |
|                         typename MapTy::iterator I) {
 | |
|     ConstantClass* Result =
 | |
|       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
|     assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.insert(std::make_pair(Result, I));
 | |
| 
 | |
|     // If the type of the constant is abstract, make sure that an entry
 | |
|     // exists for it in the AbstractTypeMap.
 | |
|     if (Ty->isAbstract()) {
 | |
|       typename AbstractTypeMapTy::iterator TI = 
 | |
|                                                AbstractTypeMap.find(Ty);
 | |
| 
 | |
|       if (TI == AbstractTypeMap.end()) {
 | |
|         // Add ourselves to the ATU list of the type.
 | |
|         cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | |
| 
 | |
|         AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     return Result;
 | |
|   }
 | |
| public:
 | |
|     
 | |
|   /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|   /// necessary.
 | |
|   ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | |
|     sys::SmartScopedLock<true> Lock(ValueMapLock);
 | |
|     MapKey Lookup(Ty, V);
 | |
|     ConstantClass* Result = 0;
 | |
|     
 | |
|     typename MapTy::iterator I = Map.find(Lookup);
 | |
|     // Is it in the map?  
 | |
|     if (I != Map.end())
 | |
|       Result = static_cast<ConstantClass *>(I->second);
 | |
|         
 | |
|     if (!Result) {
 | |
|       // If no preexisting value, create one now...
 | |
|       Result = Create(Ty, V, I);
 | |
|     }
 | |
|         
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   void remove(ConstantClass *CP) {
 | |
|     sys::SmartScopedLock<true> Lock(ValueMapLock);
 | |
|     typename MapTy::iterator I = FindExistingElement(CP);
 | |
|     assert(I != Map.end() && "Constant not found in constant table!");
 | |
|     assert(I->second == CP && "Didn't find correct element?");
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.erase(CP);
 | |
|       
 | |
|     // Now that we found the entry, make sure this isn't the entry that
 | |
|     // the AbstractTypeMap points to.
 | |
|     const TypeClass *Ty = static_cast<const TypeClass *>(I->first.first);
 | |
|     if (Ty->isAbstract()) {
 | |
|       assert(AbstractTypeMap.count(Ty) &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
|       typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
 | |
|       if (ATMEntryIt == I) {
 | |
|         // Yes, we are removing the representative entry for this type.
 | |
|         // See if there are any other entries of the same type.
 | |
|         typename MapTy::iterator TmpIt = ATMEntryIt;
 | |
| 
 | |
|         // First check the entry before this one...
 | |
|         if (TmpIt != Map.begin()) {
 | |
|           --TmpIt;
 | |
|           if (TmpIt->first.first != Ty) // Not the same type, move back...
 | |
|             ++TmpIt;
 | |
|         }
 | |
| 
 | |
|         // If we didn't find the same type, try to move forward...
 | |
|         if (TmpIt == ATMEntryIt) {
 | |
|           ++TmpIt;
 | |
|           if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | |
|             --TmpIt;   // No entry afterwards with the same type
 | |
|         }
 | |
| 
 | |
|         // If there is another entry in the map of the same abstract type,
 | |
|         // update the AbstractTypeMap entry now.
 | |
|         if (TmpIt != ATMEntryIt) {
 | |
|           ATMEntryIt = TmpIt;
 | |
|         } else {
 | |
|           // Otherwise, we are removing the last instance of this type
 | |
|           // from the table.  Remove from the ATM, and from user list.
 | |
|           cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | |
|           AbstractTypeMap.erase(Ty);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Map.erase(I);
 | |
|   }
 | |
| 
 | |
|     
 | |
|   /// MoveConstantToNewSlot - If we are about to change C to be the element
 | |
|   /// specified by I, update our internal data structures to reflect this
 | |
|   /// fact.
 | |
|   /// NOTE: This function is not locked. It is the responsibility of the
 | |
|   /// caller to enforce proper synchronization if using this method.
 | |
|   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
 | |
|     // First, remove the old location of the specified constant in the map.
 | |
|     typename MapTy::iterator OldI = FindExistingElement(C);
 | |
|     assert(OldI != Map.end() && "Constant not found in constant table!");
 | |
|     assert(OldI->second == C && "Didn't find correct element?");
 | |
|       
 | |
|     // If this constant is the representative element for its abstract type,
 | |
|     // update the AbstractTypeMap so that the representative element is I.
 | |
|     if (C->getType()->isAbstract()) {
 | |
|       typename AbstractTypeMapTy::iterator ATI =
 | |
|           AbstractTypeMap.find(C->getType());
 | |
|       assert(ATI != AbstractTypeMap.end() &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
|       if (ATI->second == OldI)
 | |
|         ATI->second = I;
 | |
|     }
 | |
|       
 | |
|     // Remove the old entry from the map.
 | |
|     Map.erase(OldI);
 | |
|     
 | |
|     // Update the inverse map so that we know that this constant is now
 | |
|     // located at descriptor I.
 | |
|     if (HasLargeKey) {
 | |
|       assert(I->second == C && "Bad inversemap entry!");
 | |
|       InverseMap[C] = I;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|     sys::SmartScopedLock<true> Lock(ValueMapLock);
 | |
|     typename AbstractTypeMapTy::iterator I =
 | |
|       AbstractTypeMap.find(cast<Type>(OldTy));
 | |
| 
 | |
|     assert(I != AbstractTypeMap.end() &&
 | |
|            "Abstract type not in AbstractTypeMap?");
 | |
| 
 | |
|     // Convert a constant at a time until the last one is gone.  The last one
 | |
|     // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | |
|     // eliminated eventually.
 | |
|     do {
 | |
|       ConvertConstantType<ConstantClass,
 | |
|                           TypeClass>::convert(
 | |
|                               static_cast<ConstantClass *>(I->second->second),
 | |
|                                               cast<TypeClass>(NewTy));
 | |
| 
 | |
|       I = AbstractTypeMap.find(cast<Type>(OldTy));
 | |
|     } while (I != AbstractTypeMap.end());
 | |
|   }
 | |
| 
 | |
|   // If the type became concrete without being refined to any other existing
 | |
|   // type, we just remove ourselves from the ATU list.
 | |
|   void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|     AbsTy->removeAbstractTypeUser(this);
 | |
|   }
 | |
| 
 | |
|   void dump() const {
 | |
|     DOUT << "Constant.cpp: ValueMap\n";
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |