mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36485 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			946 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			946 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Evan Cheng and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down register pressure reduction list
 | |
| // schedulers, using standard algorithms.  The basic approach uses a priority
 | |
| // queue of available nodes to schedule.  One at a time, nodes are taken from
 | |
| // the priority queue (thus in priority order), checked for legality to
 | |
| // schedule, and emitted if legal.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <climits>
 | |
| #include <queue>
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static RegisterScheduler
 | |
|   burrListDAGScheduler("list-burr",
 | |
|                        "  Bottom-up register reduction list scheduling",
 | |
|                        createBURRListDAGScheduler);
 | |
| static RegisterScheduler
 | |
|   tdrListrDAGScheduler("list-tdrr",
 | |
|                        "  Top-down register reduction list scheduling",
 | |
|                        createTDRRListDAGScheduler);
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGRRList - The actual register reduction list scheduler
 | |
| /// implementation.  This supports both top-down and bottom-up scheduling.
 | |
| ///
 | |
| 
 | |
| class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
 | |
| private:
 | |
|   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | |
|   /// it is top-down.
 | |
|   bool isBottomUp;
 | |
|   
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   ///
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
| 
 | |
| public:
 | |
|   ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
 | |
|                   const TargetMachine &tm, bool isbottomup,
 | |
|                   SchedulingPriorityQueue *availqueue)
 | |
|     : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
 | |
|       AvailableQueue(availqueue) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGRRList() {
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
| private:
 | |
|   void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | |
|   void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
 | |
|   void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | |
|   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|   void ListScheduleTopDown();
 | |
|   void ListScheduleBottomUp();
 | |
|   void CommuteNodesToReducePressure();
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGRRList::Schedule() {
 | |
|   DOUT << "********** List Scheduling **********\n";
 | |
|   
 | |
|   // Build scheduling units.
 | |
|   BuildSchedUnits();
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(&DAG));
 | |
|   CalculateDepths();
 | |
|   CalculateHeights();
 | |
| 
 | |
|   AvailableQueue->initNodes(SUnitMap, SUnits);
 | |
| 
 | |
|   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | |
|   if (isBottomUp)
 | |
|     ListScheduleBottomUp();
 | |
|   else
 | |
|     ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
| 
 | |
|   CommuteNodesToReducePressure();
 | |
|   
 | |
|   DOUT << "*** Final schedule ***\n";
 | |
|   DEBUG(dumpSchedule());
 | |
|   DOUT << "\n";
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitSchedule();
 | |
| }
 | |
| 
 | |
| /// CommuteNodesToReducePressure - If a node is two-address and commutable, and
 | |
| /// it is not the last use of its first operand, add it to the CommuteSet if
 | |
| /// possible. It will be commuted when it is translated to a MI.
 | |
| void ScheduleDAGRRList::CommuteNodesToReducePressure() {
 | |
|   std::set<SUnit *> OperandSeen;
 | |
|   for (unsigned i = Sequence.size()-1; i != 0; --i) {  // Ignore first node.
 | |
|     SUnit *SU = Sequence[i];
 | |
|     if (!SU) continue;
 | |
|     if (SU->isCommutable) {
 | |
|       unsigned Opc = SU->Node->getTargetOpcode();
 | |
|       unsigned NumRes = CountResults(SU->Node);
 | |
|       unsigned NumOps = CountOperands(SU->Node);
 | |
|       for (unsigned j = 0; j != NumOps; ++j) {
 | |
|         if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
 | |
|           continue;
 | |
| 
 | |
|         SDNode *OpN = SU->Node->getOperand(j).Val;
 | |
|         SUnit *OpSU = SUnitMap[OpN];
 | |
|         if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|           // Ok, so SU is not the last use of OpSU, but SU is two-address so
 | |
|           // it will clobber OpSU. Try to commute SU if no other source operands
 | |
|           // are live below.
 | |
|           bool DoCommute = true;
 | |
|           for (unsigned k = 0; k < NumOps; ++k) {
 | |
|             if (k != j) {
 | |
|               OpN = SU->Node->getOperand(k).Val;
 | |
|               OpSU = SUnitMap[OpN];
 | |
|               if (OpSU && OperandSeen.count(OpSU) == 1) {
 | |
|                 DoCommute = false;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           if (DoCommute)
 | |
|             CommuteSet.insert(SU->Node);
 | |
|         }
 | |
| 
 | |
|         // Only look at the first use&def node for now.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (!I->second)
 | |
|         OperandSeen.insert(I->first);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the Available queue is the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | |
| 
 | |
|   if (!isChain)
 | |
|     PredSU->NumSuccsLeft--;
 | |
|   else
 | |
|     PredSU->NumChainSuccsLeft--;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | |
|     cerr << "*** List scheduling failed! ***\n";
 | |
|     PredSU->dump(&DAG);
 | |
|     cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | |
|     // EntryToken has to go last!  Special case it here.
 | |
|     if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | |
|       PredSU->isAvailable = true;
 | |
|       AvailableQueue->push(PredSU);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   // Bottom up: release predecessors
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     ReleasePred(I->first, I->second, CurCycle);
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// isReady - True if node's lower cycle bound is less or equal to the current
 | |
| /// scheduling cycle. Always true if all nodes have uniform latency 1.
 | |
| static inline bool isReady(SUnit *SU, unsigned CurCycle) {
 | |
|   return SU->CycleBound <= CurCycle;
 | |
| }
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGRRList::ListScheduleBottomUp() {
 | |
|   unsigned CurCycle = 0;
 | |
|   // Add root to Available queue.
 | |
|   AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back. Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurNode = AvailableQueue->pop();
 | |
|     while (CurNode && !isReady(CurNode, CurCycle)) {
 | |
|       NotReady.push_back(CurNode);
 | |
|       CurNode = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurNode != NULL)
 | |
|       ScheduleNodeBottomUp(CurNode, CurCycle);
 | |
|     CurCycle++;
 | |
|   }
 | |
| 
 | |
|   // Add entry node last
 | |
|   if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | |
|     SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
|     Sequence.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero.
 | |
| void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
 | |
|                                     unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
 | |
| 
 | |
|   if (!isChain)
 | |
|     SuccSU->NumPredsLeft--;
 | |
|   else
 | |
|     SuccSU->NumChainPredsLeft--;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
 | |
|     cerr << "*** List scheduling failed! ***\n";
 | |
|     SuccSU->dump(&DAG);
 | |
|     cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | |
|     SuccSU->isAvailable = true;
 | |
|     AvailableQueue->push(SuccSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   AvailableQueue->ScheduledNode(SU);
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   // Top down: release successors
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     ReleaseSucc(I->first, I->second, CurCycle);
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGRRList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
|   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Emit the entry node first.
 | |
|   ScheduleNodeTopDown(Entry, CurCycle);
 | |
|   CurCycle++;
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back. Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurNode = AvailableQueue->pop();
 | |
|     while (CurNode && !isReady(CurNode, CurCycle)) {
 | |
|       NotReady.push_back(CurNode);
 | |
|       CurNode = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     if (CurNode != NULL)
 | |
|       ScheduleNodeTopDown(CurNode, CurCycle);
 | |
|     CurCycle++;
 | |
|   }
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (!SUnits[i].isScheduled) {
 | |
|       if (!AnyNotSched)
 | |
|         cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| // 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class RegReductionPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
 | |
|     bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| 
 | |
|   struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
 | |
|     td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
 | |
|     td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| static inline bool isCopyFromLiveIn(const SUnit *SU) {
 | |
|   SDNode *N = SU->Node;
 | |
|   return N->getOpcode() == ISD::CopyFromReg &&
 | |
|     N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN RegReductionPriorityQueue
 | |
|    : public SchedulingPriorityQueue {
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
 | |
| 
 | |
|   public:
 | |
|     RegReductionPriorityQueue() :
 | |
|     Queue(SF(this)) {}
 | |
|     
 | |
|     virtual void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | |
|                            std::vector<SUnit> &sunits) {}
 | |
|     virtual void releaseState() {}
 | |
|     
 | |
|     virtual unsigned getNodePriority(const SUnit *SU) const {
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     void push(SUnit *U) {
 | |
|       Queue.push(U);
 | |
|     }
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         Queue.push(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       if (empty()) return NULL;
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     virtual bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class SF>
 | |
|   class VISIBILITY_HIDDEN BURegReductionPriorityQueue
 | |
|    : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnitMap SDNode to SUnit mapping (n -> 1).
 | |
|     DenseMap<SDNode*, SUnit*> *SUnitMap;
 | |
| 
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|     const TargetInstrInfo *TII;
 | |
|   public:
 | |
|     BURegReductionPriorityQueue(const TargetInstrInfo *tii)
 | |
|       : TII(tii) {}
 | |
| 
 | |
|     void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | |
|                    std::vector<SUnit> &sunits) {
 | |
|       SUnitMap = &sumap;
 | |
|       SUnits = &sunits;
 | |
|       // Add pseudo dependency edges for two-address nodes.
 | |
|       AddPseudoTwoAddrDeps();
 | |
|       // Calculate node priorities.
 | |
|       CalculateSethiUllmanNumbers();
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     unsigned getNodePriority(const SUnit *SU) const {
 | |
|       assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|       unsigned Opc = SU->Node->getOpcode();
 | |
|       if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
 | |
|         // CopyFromReg should be close to its def because it restricts
 | |
|         // allocation choices. But if it is a livein then perhaps we want it
 | |
|         // closer to its uses so it can be coalesced.
 | |
|         return 0xffff;
 | |
|       else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|         // CopyToReg should be close to its uses to facilitate coalescing and
 | |
|         // avoid spilling.
 | |
|         return 0;
 | |
|       else if (SU->NumSuccs == 0)
 | |
|         // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|         // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|         // Give it a large SethiUllman number so it will be scheduled right
 | |
|         // before its predecessors that it doesn't lengthen their live ranges.
 | |
|         return 0xffff;
 | |
|       else if (SU->NumPreds == 0)
 | |
|         // If SU does not have a def, schedule it close to its uses because it
 | |
|         // does not lengthen any live ranges.
 | |
|         return 0;
 | |
|       else
 | |
|         return SethiUllmanNumbers[SU->NodeNum];
 | |
|     }
 | |
| 
 | |
|     bool isDUOperand(const SUnit *SU1, const SUnit *SU2) {
 | |
|       unsigned Opc = SU1->Node->getTargetOpcode();
 | |
|       unsigned NumRes = ScheduleDAG::CountResults(SU1->Node);
 | |
|       unsigned NumOps = ScheduleDAG::CountOperands(SU1->Node);
 | |
|       for (unsigned i = 0; i != NumOps; ++i) {
 | |
|         if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) == -1)
 | |
|           continue;
 | |
|         if (SU1->Node->getOperand(i).isOperand(SU2->Node))
 | |
|           return true;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   private:
 | |
|     bool canClobber(SUnit *SU, SUnit *Op);
 | |
|     void AddPseudoTwoAddrDeps();
 | |
|     void CalculateSethiUllmanNumbers();
 | |
|     unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | |
|   };
 | |
| 
 | |
| 
 | |
|   template<class SF>
 | |
|   class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
 | |
|     // SUnitMap SDNode to SUnit mapping (n -> 1).
 | |
|     DenseMap<SDNode*, SUnit*> *SUnitMap;
 | |
| 
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<unsigned> SethiUllmanNumbers;
 | |
| 
 | |
|   public:
 | |
|     TDRegReductionPriorityQueue() {}
 | |
| 
 | |
|     void initNodes(DenseMap<SDNode*, SUnit*> &sumap,
 | |
|                    std::vector<SUnit> &sunits) {
 | |
|       SUnitMap = &sumap;
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculateSethiUllmanNumbers();
 | |
|     }
 | |
| 
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
| 
 | |
|     unsigned getNodePriority(const SUnit *SU) const {
 | |
|       assert(SU->NodeNum < SethiUllmanNumbers.size());
 | |
|       return SethiUllmanNumbers[SU->NodeNum];
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void CalculateSethiUllmanNumbers();
 | |
|     unsigned CalcNodeSethiUllmanNumber(const SUnit *SU);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// closestSucc - Returns the scheduled cycle of the successor which is
 | |
| /// closet to the current cycle.
 | |
| static unsigned closestSucc(const SUnit *SU) {
 | |
|   unsigned MaxCycle = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Cycle = I->first->Cycle;
 | |
|     // If there are bunch of CopyToRegs stacked up, they should be considered
 | |
|     // to be at the same position.
 | |
|     if (I->first->Node->getOpcode() == ISD::CopyToReg)
 | |
|       Cycle = closestSucc(I->first)+1;
 | |
|     if (Cycle > MaxCycle)
 | |
|       MaxCycle = Cycle;
 | |
|   }
 | |
|   return MaxCycle;
 | |
| }
 | |
| 
 | |
| /// calcMaxScratches - Returns an cost estimate of the worse case requirement
 | |
| /// for scratch registers. Live-in operands and live-out results don't count
 | |
| /// since they are "fixed".
 | |
| static unsigned calcMaxScratches(const SUnit *SU) {
 | |
|   unsigned Scratches = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second) continue;  // ignore chain preds
 | |
|     if (I->first->Node->getOpcode() != ISD::CopyFromReg)
 | |
|       Scratches++;
 | |
|   }
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second) continue;  // ignore chain succs
 | |
|     if (I->first->Node->getOpcode() != ISD::CopyToReg)
 | |
|       Scratches += 10;
 | |
|   }
 | |
|   return Scratches;
 | |
| }
 | |
| 
 | |
| // Bottom up
 | |
| bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   bool LIsTarget = left->Node->isTargetOpcode();
 | |
|   bool RIsTarget = right->Node->isTargetOpcode();
 | |
| 
 | |
|   // Special tie breaker: if two nodes share a operand, the one that use it
 | |
|   // as a def&use operand is preferred.
 | |
|   if (LIsTarget && RIsTarget) {
 | |
|     if (left->isTwoAddress && !right->isTwoAddress)
 | |
|       if (SPQ->isDUOperand(left, right))
 | |
|         return false;
 | |
|     if (!left->isTwoAddress && right->isTwoAddress)
 | |
|       if (SPQ->isDUOperand(right, left))
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   if (LPriority > RPriority)
 | |
|     return true;
 | |
|   else if (LPriority == RPriority) {
 | |
|     // Try schedule def + use closer when Sethi-Ullman numbers are the same.
 | |
|     // e.g.
 | |
|     // t1 = op t2, c1
 | |
|     // t3 = op t4, c2
 | |
|     //
 | |
|     // and the following instructions are both ready.
 | |
|     // t2 = op c3
 | |
|     // t4 = op c4
 | |
|     //
 | |
|     // Then schedule t2 = op first.
 | |
|     // i.e.
 | |
|     // t4 = op c4
 | |
|     // t2 = op c3
 | |
|     // t1 = op t2, c1
 | |
|     // t3 = op t4, c2
 | |
|     //
 | |
|     // This creates more short live intervals.
 | |
|     unsigned LDist = closestSucc(left);
 | |
|     unsigned RDist = closestSucc(right);
 | |
|     if (LDist < RDist)
 | |
|       return true;
 | |
|     else if (LDist == RDist) {
 | |
|       // Intuitively, it's good to push down instructions whose results are
 | |
|       // liveout so their long live ranges won't conflict with other values
 | |
|       // which are needed inside the BB. Further prioritize liveout instructions
 | |
|       // by the number of operands which are calculated within the BB.
 | |
|       unsigned LScratch = calcMaxScratches(left);
 | |
|       unsigned RScratch = calcMaxScratches(right);
 | |
|       if (LScratch > RScratch)
 | |
|         return true;
 | |
|       else if (LScratch == RScratch)
 | |
|         if (left->Height > right->Height)
 | |
|           return true;
 | |
|         else if (left->Height == right->Height)
 | |
|           if (left->Depth < right->Depth)
 | |
|             return true;
 | |
|           else if (left->Depth == right->Depth)
 | |
|             if (left->CycleBound > right->CycleBound) 
 | |
|               return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FIXME: This is probably too slow!
 | |
| static void isReachable(SUnit *SU, SUnit *TargetSU,
 | |
|                         std::set<SUnit *> &Visited, bool &Reached) {
 | |
|   if (Reached) return;
 | |
|   if (SU == TargetSU) {
 | |
|     Reached = true;
 | |
|     return;
 | |
|   }
 | |
|   if (!Visited.insert(SU).second) return;
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E;
 | |
|        ++I)
 | |
|     isReachable(I->first, TargetSU, Visited, Reached);
 | |
| }
 | |
| 
 | |
| static bool isReachable(SUnit *SU, SUnit *TargetSU) {
 | |
|   std::set<SUnit *> Visited;
 | |
|   bool Reached = false;
 | |
|   isReachable(SU, TargetSU, Visited, Reached);
 | |
|   return Reached;
 | |
| }
 | |
| 
 | |
| template<class SF>
 | |
| bool BURegReductionPriorityQueue<SF>::canClobber(SUnit *SU, SUnit *Op) {
 | |
|   if (SU->isTwoAddress) {
 | |
|     unsigned Opc = SU->Node->getTargetOpcode();
 | |
|     unsigned NumRes = ScheduleDAG::CountResults(SU->Node);
 | |
|     unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->Node->getOperand(i).Val;
 | |
|         if (Op == (*SUnitMap)[DU])
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
 | |
| /// it as a def&use operand. Add a pseudo control edge from it to the other
 | |
| /// node (if it won't create a cycle) so the two-address one will be scheduled
 | |
| /// first (lower in the schedule).
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = (SUnit *)&((*SUnits)[i]);
 | |
|     if (!SU->isTwoAddress)
 | |
|       continue;
 | |
| 
 | |
|     SDNode *Node = SU->Node;
 | |
|     if (!Node->isTargetOpcode())
 | |
|       continue;
 | |
| 
 | |
|     unsigned Opc = Node->getTargetOpcode();
 | |
|     unsigned NumRes = ScheduleDAG::CountResults(Node);
 | |
|     unsigned NumOps = ScheduleDAG::CountOperands(Node);
 | |
|     for (unsigned j = 0; j != NumOps; ++j) {
 | |
|       if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
 | |
|         SDNode *DU = SU->Node->getOperand(j).Val;
 | |
|         SUnit *DUSU = (*SUnitMap)[DU];
 | |
|         if (!DUSU) continue;
 | |
|         for (SUnit::succ_iterator I = DUSU->Succs.begin(),E = DUSU->Succs.end();
 | |
|              I != E; ++I) {
 | |
|           if (I->second) continue;
 | |
|           SUnit *SuccSU = I->first;
 | |
|           if (SuccSU != SU &&
 | |
|               (!canClobber(SuccSU, DUSU) ||
 | |
|                (!SU->isCommutable && SuccSU->isCommutable))){
 | |
|             if (SuccSU->Depth == SU->Depth && !isReachable(SuccSU, SU)) {
 | |
|               DOUT << "Adding an edge from SU # " << SU->NodeNum
 | |
|                    << " to SU #" << SuccSU->NodeNum << "\n";
 | |
|               if (SU->addPred(SuccSU, true))
 | |
|                 SU->NumChainPredsLeft++;
 | |
|               if (SuccSU->addSucc(SU, true))
 | |
|                 SuccSU->NumChainSuccsLeft++;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| unsigned BURegReductionPriorityQueue<SF>::
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | |
|   unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Extra = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->second) continue;  // ignore chain preds
 | |
|     SUnit *PredSU = I->first;
 | |
|     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | |
|     if (PredSethiUllman > SethiUllmanNumber) {
 | |
|       SethiUllmanNumber = PredSethiUllman;
 | |
|       Extra = 0;
 | |
|     } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | |
|       Extra++;
 | |
|   }
 | |
| 
 | |
|   SethiUllmanNumber += Extra;
 | |
| 
 | |
|   if (SethiUllmanNumber == 0)
 | |
|     SethiUllmanNumber = 1;
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| template<class SF>
 | |
| void BURegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
 | |
|   unsigned Sum = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit *SuccSU = I->first;
 | |
|     for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
 | |
|          EE = SuccSU->Preds.end(); II != EE; ++II) {
 | |
|       SUnit *PredSU = II->first;
 | |
|       if (!PredSU->isScheduled)
 | |
|         Sum++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Sum;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Top down
 | |
| bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LPriority = SPQ->getNodePriority(left);
 | |
|   unsigned RPriority = SPQ->getNodePriority(right);
 | |
|   bool LIsTarget = left->Node->isTargetOpcode();
 | |
|   bool RIsTarget = right->Node->isTargetOpcode();
 | |
|   bool LIsFloater = LIsTarget && left->NumPreds == 0;
 | |
|   bool RIsFloater = RIsTarget && right->NumPreds == 0;
 | |
|   unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
 | |
|   unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
 | |
| 
 | |
|   if (left->NumSuccs == 0 && right->NumSuccs != 0)
 | |
|     return false;
 | |
|   else if (left->NumSuccs != 0 && right->NumSuccs == 0)
 | |
|     return true;
 | |
| 
 | |
|   // Special tie breaker: if two nodes share a operand, the one that use it
 | |
|   // as a def&use operand is preferred.
 | |
|   if (LIsTarget && RIsTarget) {
 | |
|     if (left->isTwoAddress && !right->isTwoAddress) {
 | |
|       SDNode *DUNode = left->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(right->Node))
 | |
|         RBonus += 2;
 | |
|     }
 | |
|     if (!left->isTwoAddress && right->isTwoAddress) {
 | |
|       SDNode *DUNode = right->Node->getOperand(0).Val;
 | |
|       if (DUNode->isOperand(left->Node))
 | |
|         LBonus += 2;
 | |
|     }
 | |
|   }
 | |
|   if (LIsFloater)
 | |
|     LBonus -= 2;
 | |
|   if (RIsFloater)
 | |
|     RBonus -= 2;
 | |
|   if (left->NumSuccs == 1)
 | |
|     LBonus += 2;
 | |
|   if (right->NumSuccs == 1)
 | |
|     RBonus += 2;
 | |
| 
 | |
|   if (LPriority+LBonus < RPriority+RBonus)
 | |
|     return true;
 | |
|   else if (LPriority == RPriority)
 | |
|     if (left->Depth < right->Depth)
 | |
|       return true;
 | |
|     else if (left->Depth == right->Depth)
 | |
|       if (left->NumSuccsLeft > right->NumSuccsLeft)
 | |
|         return true;
 | |
|       else if (left->NumSuccsLeft == right->NumSuccsLeft)
 | |
|         if (left->CycleBound > right->CycleBound) 
 | |
|           return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CalcNodeSethiUllmanNumber - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| template<class SF>
 | |
| unsigned TDRegReductionPriorityQueue<SF>::
 | |
| CalcNodeSethiUllmanNumber(const SUnit *SU) {
 | |
|   unsigned &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != 0)
 | |
|     return SethiUllmanNumber;
 | |
| 
 | |
|   unsigned Opc = SU->Node->getOpcode();
 | |
|   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
 | |
|     SethiUllmanNumber = 0xffff;
 | |
|   else if (SU->NumSuccsLeft == 0)
 | |
|     // If SU does not have a use, i.e. it doesn't produce a value that would
 | |
|     // be consumed (e.g. store), then it terminates a chain of computation.
 | |
|     // Give it a small SethiUllman number so it will be scheduled right before
 | |
|     // its predecessors that it doesn't lengthen their live ranges.
 | |
|     SethiUllmanNumber = 0;
 | |
|   else if (SU->NumPredsLeft == 0 &&
 | |
|            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
 | |
|     SethiUllmanNumber = 0xffff;
 | |
|   else {
 | |
|     int Extra = 0;
 | |
|     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second) continue;  // ignore chain preds
 | |
|       SUnit *PredSU = I->first;
 | |
|       unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU);
 | |
|       if (PredSethiUllman > SethiUllmanNumber) {
 | |
|         SethiUllmanNumber = PredSethiUllman;
 | |
|         Extra = 0;
 | |
|       } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
 | |
|         Extra++;
 | |
|     }
 | |
| 
 | |
|     SethiUllmanNumber += Extra;
 | |
|   }
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
 | |
| /// scheduling units.
 | |
| template<class SF>
 | |
| void TDRegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodeSethiUllmanNumber(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
 | |
|   return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true,
 | |
|                            new BURegReductionPriorityQueue<bu_ls_rr_sort>(TII));
 | |
| }
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
 | |
|                                                     SelectionDAG *DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false,
 | |
|                               new TDRegReductionPriorityQueue<td_ls_rr_sort>());
 | |
| }
 | |
| 
 |