mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112409 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SSAUpdater class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "ssaupdater"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/Support/AlignOf.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
 | |
| static AvailableValsTy &getAvailableVals(void *AV) {
 | |
|   return *static_cast<AvailableValsTy*>(AV);
 | |
| }
 | |
| 
 | |
| SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
 | |
|   : AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}
 | |
| 
 | |
| SSAUpdater::~SSAUpdater() {
 | |
|   delete &getAvailableVals(AV);
 | |
| }
 | |
| 
 | |
| /// Initialize - Reset this object to get ready for a new set of SSA
 | |
| /// updates.  ProtoValue is the value used to name PHI nodes.
 | |
| void SSAUpdater::Initialize(Value *ProtoValue) {
 | |
|   if (AV == 0)
 | |
|     AV = new AvailableValsTy();
 | |
|   else
 | |
|     getAvailableVals(AV).clear();
 | |
|   PrototypeValue = ProtoValue;
 | |
| }
 | |
| 
 | |
| /// HasValueForBlock - Return true if the SSAUpdater already has a value for
 | |
| /// the specified block.
 | |
| bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
 | |
|   return getAvailableVals(AV).count(BB);
 | |
| }
 | |
| 
 | |
| /// AddAvailableValue - Indicate that a rewritten value is available in the
 | |
| /// specified block with the specified value.
 | |
| void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
 | |
|   assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
 | |
|   assert(PrototypeValue->getType() == V->getType() &&
 | |
|          "All rewritten values must have the same type");
 | |
|   getAvailableVals(AV)[BB] = V;
 | |
| }
 | |
| 
 | |
| /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
 | |
| /// in ValueMapping for each predecessor block.
 | |
| static bool IsEquivalentPHI(PHINode *PHI,
 | |
|                             DenseMap<BasicBlock*, Value*> &ValueMapping) {
 | |
|   unsigned PHINumValues = PHI->getNumIncomingValues();
 | |
|   if (PHINumValues != ValueMapping.size())
 | |
|     return false;
 | |
| 
 | |
|   // Scan the phi to see if it matches.
 | |
|   for (unsigned i = 0, e = PHINumValues; i != e; ++i)
 | |
|     if (ValueMapping[PHI->getIncomingBlock(i)] !=
 | |
|         PHI->getIncomingValue(i)) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
 | |
| /// live at the end of the specified block.
 | |
| Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
 | |
|   Value *Res = GetValueAtEndOfBlockInternal(BB);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
 | |
| /// is live in the middle of the specified block.
 | |
| ///
 | |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
 | |
| /// important case: if there is a definition of the rewritten value after the
 | |
| /// 'use' in BB.  Consider code like this:
 | |
| ///
 | |
| ///      X1 = ...
 | |
| ///   SomeBB:
 | |
| ///      use(X)
 | |
| ///      X2 = ...
 | |
| ///      br Cond, SomeBB, OutBB
 | |
| ///
 | |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals
 | |
| /// set by the client of the rewriter, and those values are both live out of
 | |
| /// their respective blocks.  However, the use of X happens in the *middle* of
 | |
| /// a block.  Because of this, we need to insert a new PHI node in SomeBB to
 | |
| /// merge the appropriate values, and this value isn't live out of the block.
 | |
| ///
 | |
| Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
 | |
|   // If there is no definition of the renamed variable in this block, just use
 | |
|   // GetValueAtEndOfBlock to do our work.
 | |
|   if (!HasValueForBlock(BB))
 | |
|     return GetValueAtEndOfBlock(BB);
 | |
| 
 | |
|   // Otherwise, we have the hard case.  Get the live-in values for each
 | |
|   // predecessor.
 | |
|   SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
 | |
|   Value *SingularValue = 0;
 | |
| 
 | |
|   // We can get our predecessor info by walking the pred_iterator list, but it
 | |
|   // is relatively slow.  If we already have PHI nodes in this block, walk one
 | |
|   // of them to get the predecessor list instead.
 | |
|   if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | |
|     for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
 | |
|       Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | |
|       PredValues.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|       // Compute SingularValue.
 | |
|       if (i == 0)
 | |
|         SingularValue = PredVal;
 | |
|       else if (PredVal != SingularValue)
 | |
|         SingularValue = 0;
 | |
|     }
 | |
|   } else {
 | |
|     bool isFirstPred = true;
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|       BasicBlock *PredBB = *PI;
 | |
|       Value *PredVal = GetValueAtEndOfBlock(PredBB);
 | |
|       PredValues.push_back(std::make_pair(PredBB, PredVal));
 | |
| 
 | |
|       // Compute SingularValue.
 | |
|       if (isFirstPred) {
 | |
|         SingularValue = PredVal;
 | |
|         isFirstPred = false;
 | |
|       } else if (PredVal != SingularValue)
 | |
|         SingularValue = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no predecessors, just return undef.
 | |
|   if (PredValues.empty())
 | |
|     return UndefValue::get(PrototypeValue->getType());
 | |
| 
 | |
|   // Otherwise, if all the merged values are the same, just use it.
 | |
|   if (SingularValue != 0)
 | |
|     return SingularValue;
 | |
| 
 | |
|   // Otherwise, we do need a PHI: check to see if we already have one available
 | |
|   // in this block that produces the right value.
 | |
|   if (isa<PHINode>(BB->begin())) {
 | |
|     DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
 | |
|                                                PredValues.end());
 | |
|     PHINode *SomePHI;
 | |
|     for (BasicBlock::iterator It = BB->begin();
 | |
|          (SomePHI = dyn_cast<PHINode>(It)); ++It) {
 | |
|       if (IsEquivalentPHI(SomePHI, ValueMapping))
 | |
|         return SomePHI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ok, we have no way out, insert a new one now.
 | |
|   PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
 | |
|                                          PrototypeValue->getName(),
 | |
|                                          &BB->front());
 | |
|   InsertedPHI->reserveOperandSpace(PredValues.size());
 | |
| 
 | |
|   // Fill in all the predecessors of the PHI.
 | |
|   for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
 | |
|     InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
 | |
| 
 | |
|   // See if the PHI node can be merged to a single value.  This can happen in
 | |
|   // loop cases when we get a PHI of itself and one other value.
 | |
|   if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
 | |
|     InsertedPHI->eraseFromParent();
 | |
|     return ConstVal;
 | |
|   }
 | |
| 
 | |
|   // If the client wants to know about all new instructions, tell it.
 | |
|   if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
 | |
| 
 | |
|   DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
 | |
|   return InsertedPHI;
 | |
| }
 | |
| 
 | |
| /// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
 | |
| /// which use their value in the corresponding predecessor.
 | |
| void SSAUpdater::RewriteUse(Use &U) {
 | |
|   Instruction *User = cast<Instruction>(U.getUser());
 | |
| 
 | |
|   Value *V;
 | |
|   if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | |
|     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | |
|   else
 | |
|     V = GetValueInMiddleOfBlock(User->getParent());
 | |
| 
 | |
|   U.set(V);
 | |
| }
 | |
| 
 | |
| /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
 | |
| /// this version of the method can rewrite uses in the same block as a
 | |
| /// definition, because it assumes that all uses of a value are below any
 | |
| /// inserted values.
 | |
| void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
 | |
|   Instruction *User = cast<Instruction>(U.getUser());
 | |
|   
 | |
|   Value *V;
 | |
|   if (PHINode *UserPN = dyn_cast<PHINode>(User))
 | |
|     V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
 | |
|   else
 | |
|     V = GetValueAtEndOfBlock(User->getParent());
 | |
|   
 | |
|   U.set(V);
 | |
| }
 | |
| 
 | |
| /// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
 | |
| /// in the SSAUpdaterImpl template.
 | |
| namespace {
 | |
|   class PHIiter {
 | |
|   private:
 | |
|     PHINode *PHI;
 | |
|     unsigned idx;
 | |
| 
 | |
|   public:
 | |
|     explicit PHIiter(PHINode *P) // begin iterator
 | |
|       : PHI(P), idx(0) {}
 | |
|     PHIiter(PHINode *P, bool) // end iterator
 | |
|       : PHI(P), idx(PHI->getNumIncomingValues()) {}
 | |
| 
 | |
|     PHIiter &operator++() { ++idx; return *this; } 
 | |
|     bool operator==(const PHIiter& x) const { return idx == x.idx; }
 | |
|     bool operator!=(const PHIiter& x) const { return !operator==(x); }
 | |
|     Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
 | |
|     BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
 | |
| /// specialized for SSAUpdater.
 | |
| namespace llvm {
 | |
| template<>
 | |
| class SSAUpdaterTraits<SSAUpdater> {
 | |
| public:
 | |
|   typedef BasicBlock BlkT;
 | |
|   typedef Value *ValT;
 | |
|   typedef PHINode PhiT;
 | |
| 
 | |
|   typedef succ_iterator BlkSucc_iterator;
 | |
|   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
 | |
|   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
 | |
| 
 | |
|   typedef PHIiter PHI_iterator;
 | |
|   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
 | |
|   static inline PHI_iterator PHI_end(PhiT *PHI) {
 | |
|     return PHI_iterator(PHI, true);
 | |
|   }
 | |
| 
 | |
|   /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
 | |
|   /// vector, set Info->NumPreds, and allocate space in Info->Preds.
 | |
|   static void FindPredecessorBlocks(BasicBlock *BB,
 | |
|                                     SmallVectorImpl<BasicBlock*> *Preds) {
 | |
|     // We can get our predecessor info by walking the pred_iterator list,
 | |
|     // but it is relatively slow.  If we already have PHI nodes in this
 | |
|     // block, walk one of them to get the predecessor list instead.
 | |
|     if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
 | |
|       for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
 | |
|         Preds->push_back(SomePhi->getIncomingBlock(PI));
 | |
|     } else {
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|         Preds->push_back(*PI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// GetUndefVal - Get an undefined value of the same type as the value
 | |
|   /// being handled.
 | |
|   static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
 | |
|     return UndefValue::get(Updater->PrototypeValue->getType());
 | |
|   }
 | |
| 
 | |
|   /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
 | |
|   /// Reserve space for the operands but do not fill them in yet.
 | |
|   static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
 | |
|                                SSAUpdater *Updater) {
 | |
|     PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
 | |
|                                    Updater->PrototypeValue->getName(),
 | |
|                                    &BB->front());
 | |
|     PHI->reserveOperandSpace(NumPreds);
 | |
|     return PHI;
 | |
|   }
 | |
| 
 | |
|   /// AddPHIOperand - Add the specified value as an operand of the PHI for
 | |
|   /// the specified predecessor block.
 | |
|   static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
 | |
|     PHI->addIncoming(Val, Pred);
 | |
|   }
 | |
| 
 | |
|   /// InstrIsPHI - Check if an instruction is a PHI.
 | |
|   ///
 | |
|   static PHINode *InstrIsPHI(Instruction *I) {
 | |
|     return dyn_cast<PHINode>(I);
 | |
|   }
 | |
| 
 | |
|   /// ValueIsPHI - Check if a value is a PHI.
 | |
|   ///
 | |
|   static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
 | |
|     return dyn_cast<PHINode>(Val);
 | |
|   }
 | |
| 
 | |
|   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
 | |
|   /// operands, i.e., it was just added.
 | |
|   static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
 | |
|     PHINode *PHI = ValueIsPHI(Val, Updater);
 | |
|     if (PHI && PHI->getNumIncomingValues() == 0)
 | |
|       return PHI;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// GetPHIValue - For the specified PHI instruction, return the value
 | |
|   /// that it defines.
 | |
|   static Value *GetPHIValue(PHINode *PHI) {
 | |
|     return PHI;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
 | |
| /// for the specified BB and if so, return it.  If not, construct SSA form by
 | |
| /// first calculating the required placement of PHIs and then inserting new
 | |
| /// PHIs where needed.
 | |
| Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
 | |
|   AvailableValsTy &AvailableVals = getAvailableVals(AV);
 | |
|   if (Value *V = AvailableVals[BB])
 | |
|     return V;
 | |
| 
 | |
|   SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
 | |
|   return Impl.GetValue(BB);
 | |
| }
 |